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Abstract

Even despite the studies carried out concerning Description Log-
ics with conjunction, the structural approach for standard and non-
standard inferences in Description Logics with disjunction remains a
subject relatively unexplored. The first studies of approximation infer-
ence were made by S. Brandt, R.Kiisters and A.Turhan. The authors
have proposed a double ezponential algorithm for computing the upper
approximation from an ALC-concept description to an ALE-concept
description (ALC-ALE). In many application areas, this double expo-
nential algorithm is largely unsatisfactory. Firstly, this paper aims to
study subsumption in ALU (€ LU) language. An approximation algo-
rithm from an ALU-concept description to FL_-concept description
can be deduced directly from this subsumption. Secondly, this paper
proposes an ezponential algorithm for computing the upper approx-
imation ALC-ALE. The technique used for this algorithm is based
on the possibility of distributing the approximation computation over
disjuncts and conjuncts.

1 Introduction

In electronic commerce, a transaction consists of document interchanges be-
tween partners [11]. Composition and interpretation of these documents re-
quire a vocabulary for each partner as well as a mechanism capable of trans-
lating one vocabulary into another. However, electronic commerce is a het-
erogeneous domain and consists of many different subdomains. Each subdo-
main uses its own vocabulary for internal document interchanges. At present,



document interchange between subdomains in semantics tranparency poses a
constant challenge. Fortunately, however, recent use of ontologies for design
of such vocabularies can be considered as a solution for the problem. Each
subdomain has its own vocabulary, all of which derive from a common ontol-
ogy. These derived ontologies are probably designed with the use of different
DL languages according to required expressiveness. In such a system, one
of the essential questions is how to interprete a non-defined term found in a
received document.

This study addresses the problem which arises when automatically translat-
ing from a derived ontology in an expressive DL into another ontology (shar-
ing the same base concepts) in less expressive DL. The interpreting mech-
anism between derived ontologies, therefore, requires an efficient algorithm
which would allow us to exactely or approximately compute a L,-concept
description (source) into Lg-concept description (destination). In the case
where the precise interpretation does not exist, the approximative compu-
tation would allow us to propose a "nearest” Lj-concept description w.r.t
subsumption relation.

We begin by investigating the subsumption problem of ALY in Section 3.
In attempting to extend the automata theory method mentionned in [1] for
ALU but obtained result was not as satisfactory as first hope: we could not
represent an ALU-concept description as a automaton. The result archived
was instead a pushdown automaton. This allows us, however, to interprete
the semantics of an ALU-concept description as being tree-like in structure.
This section is then terminated by an algorithm for computing approximation
ALU-F L. This approximation is based on subsumption characterization in
ALU.

In section 4, we show a interesting property of lcs (least common subsumer)
in ALE which states that for propagated ALE concept descriptions, the com-
mon conjuncts are also conjuncts of lcs. Nevertheless, before computing of
ALC-ALE approximation, necessary transformations must be carried out on
ALC-concept description. These transformations will allow us to distribute
the approximation computation in ALE of an ALC-concept description over
its disjuncts and conjuncts. This technique is one of crucial points that will
avoid the double exponential complexity in the approximation algorithm.

2 Description Logics

Concept descriptions are built from concept constructors, a set N¢ of concept
names and a set Ng of role names. The semantics of a concept description
in some language is defined with the aide of the following interpretation
I=(A, ). The following table gives a summary of languages that are used in



this paper. Note that the largest language used in this paper is ALC. This
language allows concept descriptions to be negated whereas in ALE negation
is only allowed in front of concept names.

Subsumption inference used in this paper is defined as follows : the concept
description C' is subsumed by the description D, written C T D, iff C! C D!
holds for all interpretation Z.

Syntax Semantics FL| ALU ELU| ALE| ALC
T A X X X X X
1 0 X X X X X
cnbD CclnbD! X X X X X
vr.C {vx e ANy:(z,y) er! - yeCl} | x X X X
Ir.C {x e AFy:(z,y) e Ay e C'} X X X
-A,A€ Ne | A\ Al X X X X X
cub ctuD! X X X
-C' AN\ CT X

3 Characterization of subsumption in ALU(ELU)
and ALU-FL- approximation

We will begin by investigating the problem of subsumption in ALU(ELU).
Firstly, let us provide the following definition in order to clarify the notion
of approximation.

Definition 3.1. Let Ly and Ly be two DLs, and let C' be a Lg-concept
description and D be a Lg— concept description. Then, D 1is called upper
(lower) Lq-approzimation of C' (min(C), maz(C) for short) if

i)CCD (DCC) and

W) CC D (D’CC), D’C D (DC D’)implies D’= D for all Ly-concept
descriptions D’

Remarks: Let Lyi=ALC, Ly=ALE. If there exists min(C) then it is unique.
Indeed, if D;= min(C) and Dy= min(C) then C T D; M Dy C D; and
C C DM Dy C Dy. It means that D; = D,. But there may be many
maz(C). For example, C' = Jr.PUYr.Q, maz’(C) = Ir.P, maz”(C) = Vr.Q.

Now, we will provide the following normalization definition allowing us to
postpone processing conjunctions.

Definition 3.2. A term is called V-normal iff it is disjunction of terms
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of the form : Vr.(AU B) where A,B are also ¥-normal terms and none of the
following rules can be applied at any position in the term :
PU-P — T
Ful — FE
vr. T — T
EUuTtT = T
Remarks: i) ¥Y-normal terms do not contain conjunction.
ii) Any ALU-concept description C' can be represented as conjunctions of
V-normal terms. Indeed this transformation can be made providing that two
following properties : (AN B)UC=(AUC)N(BUC) and Yw.(AM B) =
Yw.A M Vw.B. This transformation can take an exponential time in the size
of C.
iii) Replacing ¥ and U with respectively 3 and M in the definition, we will
obtain the definition of 3-normal term. In the same way, any &LU-concept

description can be represented as disjunctions of J3-normal terms.
iv) We denote Q; € {P;|P; € N¢} U{—F;|P; € N¢},r; € Ng.

Definition 3.3. A is a V-normal term. The language of A, called L(A), is
defined recursively as follows:
(1) L(Q)={(Q)e} = {(Q)}; L(Q1 U Q) = {(Q1,Q2) £} = {(Q1,Q2)}
(I1)  L(A;UAy) = {L(A)) UL(Az)}

Remarks: 1) L(A) is equivalent to a pushdown automaton. ii) For all words
w € L(A), w can be written as w = L.u where L is language of a V-normal
term and w = 7y...7ry,1; € Ng. iii) Set of paths of a word w € L(A),
called C'(w), is defined as follows: C'((Q).e)={Q}; C((L(A;) U L(Ayg)).r) =
{C(L(Ay)).r UC(L(Az)).r}. Since set of paths C'(w) does not contain struc-
tural informations, a word w € L(A) is not equivalent to the set of paths
C(w).

We now can characterize the semantics of a V-normal term using a tree which
is defined as follows.

Definition 3.4. (Construction of normal term tree)
A is a V-normal term. The tree of the term A, T4 is defined as follows:

1. The root ng of T4 is created.

2. If A=Q or A=Q); U @y, respectively a node (Q) or (Q1,Q2) is created.
The root ng is replaced by this node which becomes the root of T4.
If A=Vr.(Q U Q2), a node n1=(Q1,Q2) is created. The tree Ty is
constructed by adding an edge r in order to connect the node n; with
ng.



3. If A=(4; U Q1 U Q) and assume that the tree T4, of A; is built.
Firstly, the root of T}, is replaced by the root node ny. And then a
node (Q1, Q2) which unifies all primitive concepts at top-level is created.
This node is connected with the root node ny by an edge e. If A=A;UA,
and assume that the trees 7,, T4, are built. Two roots of these trees
are unified in a unique node which is replaced by the root node ny.

4. If A =Vri.(A; U Ay)) and assume that two subtrees T4, and Ty, are
built. Firstly, two roots of the trees T4, and T4, are unified in a unique
node n;. And then the tree T is constructed by adding an edge 7 in
order to connect ng with ny.

ry ry Iz Iz

m

)

{QuQa} {QuQst {QuQ2} {QuQst {QuQz} {QuQs}
Ta Ts Te

Figure 1: Trees T'x of V-normal terms

Remarks : i) In the construction of tree T4, each leaf of tree Ty will be a
set {Q;} i.e primitive concepts in {(Q1),...,(Qm)}.r are unified to a leaf
(Qla R Qm)

ii) For the language L(A), the tree T4 which is constructed as in Definition
3.4 is unique if the order of subtrees is not important.

iii) We denote w € C(A) as being a path from the root to a leaf of tree Ty
and Py(w) = {Q;|Q; belongs to the leaf {Q;}of w}. We write W (A, Q) for
set of paths of A terminated at @) in T'4.

Ezamples 3.1. (Fig. 1)

A = Y. (Vug. (PLUP)U (Yus.(PLUPy) ), L(A)={((PL, Py) .z, (P, Py).us).u1 )},
C(A)={(Py, Py).uy.uy, (P, P3).us.uy }.

B = Yuy.ug.(PLUPy) VU ug. (PUPs) L(B)={((Py, P).ug.uy, (P, Ps).us.uy },
C(B):{((Pl, PQ).UQ.Ul, (Pl, Pg).UQ.Ul}.

C == Vul.(Pl L P2 L (VUZ(Pl L Pg)) L(C):{((Pl, Pg).ul, (Pl, P3).U2.U1},
C(C):{((Pl, PQ).Ul, (Pl, Pg).UQ.Ul}.

Proposition 3.1. Let T be an acyclic ACU-TBox . Let I be a model
of T. Let A be concept name occurring in T and be a V-normal term. For

any d € Al (AT=dom(I)), we can build a tree TS w.r.t Ty i.e d is root of
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the tree and there exist individuals e; corresponding to the nodes and leaves
nik of Ty and each edge (e;,€;) = ui; of T4 corresponds uniquely to an edge
(ni,nj) = u;; of Ta. We have:
de Al iff
for all trees T4, there exists a path w of the tree Ty such that for
alle e Al : (de) ew! = ecQiV...Ve € Q! where Q; € Py(w).

A proof of this proposition can be found in [10]. Note that the semantics
of an d-normal term in £LU can be similarly defined as follow :

Proposition 3.1.1.  Let T be an acyclic ELU-TBox . Let I be a model
of T. Let A be a concept name occurring in T and be a 3-normal term. For
any d € AT ( Al = dom(I) ), we can build a tree TS w.r.t Ty i.e d is root of
the tree and there exist individuals e; corresponding to the nodes and leaves
ng of Ta and each edge (e;, e;) = w;; of TS corresponds uniquely to an edge
(ni, nj) = wij of Ta. We have:
dec Al iff

there exists a tree TS such that for all paths w of the tree Ty there

evistse € Al : (dje) ew! Ne€e QI N ... N e€ QL where

Q; € PA(U)).

Therefore, the results obtained for ALY can be extended to ELU.
There are at hand the notion of language of a V-normal term, we now can
define an order relation on set of languages as the following.

Definition 3.5. Let L(A) and L(B) be languages of V-normal terms.

(I)  Forall L(A) : L(L) < L(A), L(A) < L(T).
(II) L(QmU...UQ,) 2 L(Q,U...UQ,) if

{Qums - Qu} CH{Qps .-, Qg}-
(III) L(A) = L(B) iff for all words m=Ly,.u € L(A) there exists a word

n = Ly.v € L(B) such that w =wv and L, < L,.
(IV) Ty < Tj iff L(A) < L(B).

From the partial relation that is defined on set of languages in Definition 3.5,
we can characterize subsumption relation on set of V-normal terms.

Proposition 3.2. Let T be an acyclic ACU-TBox . Let I be a model of T.
Let Ay and As be Y-normal terms occurring in T, we have:

Ay B Ay iff L(Ay) = L(Ay).

A proof of Proposition 3.2 can be found in [10]. In example 3.1, from
Proposition 3.2 we have B C A.



We now extend these results for the language ALU. Firstly, we define lan-
guage L(C) and tree T of an ALU-concept description C. This definition
also allows us to determine V-normal form of an ALU-concept description C'.

Definition 3.6. Let C be an ALU-concept description.

(I)  The ¥Y-normal form of C : C =CyM...NC,, where C; are V-normal
terms and all T, L are eliminated at top-level by the following rules :
PNM-P— 1, ENT—=FEand ENL — 1.

() L(CyM...MCp) = {L(CY),...,L(Cp)}.

(1) Tieynneny = {Tey, -, T, )

Remarks : i) According to the Remarks of Definition 3.2, an ALU-concept
description C' can be always transformed into V-normal form. This transfor-
mation can take an exponential time in the size of C' ii)The semantics of C
are naturally translated into the semantics of the set of trees T¢..

Theorem 3.1. Let T be a acyclic ACU — T Box. Let I be a model of T
Let Ay and Ay be concept descriptions occurring in T where
Ay = AN .. NAq, Ay = Aol L. M Ay, are Y-normal forms. We denote:
L(Al) - {L(AH), ceey L(Alu)}, L(AQ) - {L(Agl), .. .,L(Agv)}.
We have :
Ay T Ay iff for all L(Ayj) € L(Ay), there exists L(Ay;) € L(A;)
such that L(Ay;) = L(Ay;j).

A proof of Theorem 3.1 can be found in [10]. Our problem in this section
is, however, to find a FL_-approximation D of an ALU-concept description
C. Corollary 3.1 will show that the subsumption characterization in lan-
guage ALU is an extension of method using automata theory mentionned
in [1]. This relationship allows us to compute the approximation ALU—FL_..

Corollary 3.1. Let C be Lg-concept description where Ly= ALU and Ly =
FL-. There exists an upper approzimation D of C' in Lg and the computing
of the approximation can take at most an exponential time in the size of C'.

Proof: ~ We denote T¢ = {T¢,, ..., T¢,} as a set of trees where C is
considered as a conjunction of C; terms and T¢, corresponds to C;. Accord-
ing to [1], each concept description D in FL- is characterized by the words
of L(D, Q;) which can be considered as trees terminated by @);. Hence, we
can build Tp from words of L(D, @;) for all Q;. Consequently, we obtain
a necessary and sufficient condition for the expressiveness of C in Ly from
Theorem 3.1 where it states that each T¢; must be reduced to a path.

Existence and computing of the upper approximation D of C'in Ly : C' C D.
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Assume that there exist T, such that T¢, are paths. We denote the cor-

responding concept descriptions : Ck,,...,C% . In this case, from Theo-
rem &.1 the upper approximation D is built as a conjunction of Cj,: D =
minFe = [7_, Cy,. If there does not exist T, where T¢, is a path, then

D = min¥ = T. The V-normalization of C' needs at most an exponential

time in the size of C. The research of path trees T¢, takes also at most an
exponential time in the size of C'. Hence, whole computation can be carried
out in exponential time in the size of C. [

An algorithm can be built directly from Corollary 3.1 which allows us to
compute the upper approximation D in FL_, from a concept description C'
in ALU up to equivalence.

Example 3.2.
1) mingg_(A) = T; minge (ANYr.Py OVr.Py)= Vr.(P, N P,) where A is
defined in Example 3.1.

ii) Let C= Vr.P, NVr. (P, U—P) NYr. (PN (P U Py)).
Normalizing: C= Vr.P, OVr. T OVr.P, MVr.(Ps U Py) =Vr.P, OVr.Py
vr.(Ps U Py).
Finding path trees : Vr.P,Vr.Ps.
minf4 (C)=Vr.P, NVr.P;.

4 ALU-ALE (ELU-ALE) and ALC-ALE approx-

imations

In this section, we propose an approach for computating the ALE-approximation
of a concept description containing disjunction. This approach is based on
three events : i) computing the normal forms w.r.t conjunction and disjunc-
tion. ii) computing les (least common subsumer) of disjuncts on top-level.
iii) propagating value restrictions on existential restrictions of conjuncts on
top-level.

For the sake of simplicity, we assume that the set Ny of role names is {r}.
However, all obtained results in this section can be generalized to arbitrary
sets of role names.

Definition 4.1. (the following notations are used in [3] ) C' is an ALC-
concept description (¢ for conjunction, d for disjunction).

e PRIM¢(C) or PRIM(C) ( PRIM*(C) ) denotes the set of all (negated)
concept names and the bottom (top) concept occurring on the top-level
conjunction (disjunction) of C.



o VALY(C) or VAL, (C) ( VALL(C) ) is conjunction (a set) of all C’
occurring in value restrictions of the form ¥r.C'’ on top-level of C. If
there is no value restriction on top-level of C then VALS (C) =T.

o EXYC) ( EX(C) or EX,(C) ) is set (disjunction) of all C” occurring

in existential restrictions of the form Jr.C'’ on top-level of C.

e The d-normal form of C (d-normal(C'))
C = Cyu...ud,, where
Ci == ﬂAEPRIM(Ci)A Il I_lC’EE'Xr(Ci) dr.C7 1NVr. VALi(CZ) B
1 CC;, Cand VALE(C;) are in d-normal forms.

e The c-normal form of C' (c-normal(C'))
C =(Cin...Nnc, where
Ci = uAepR[M(Di)A L HTEXg(CZ) L UC’EVALT(Di) vr.C’
C;C T, C’and EX4(C;) are in c-normal forms.

Remarks: 1) If C'is an ALC-concept description, C' can be turned into an
equivalent concept description of the d-normal form or an equivalent concept
description of the c-normal form.

ii) c-normal form and d-normal form of an ALC-concept description can be
exponentially larger than C' itself.

We now define propagated normal form of an ALC-concept description. This
is an extension of the normal form mentionned in [5] for ALE-concept de-
scription. The propagated normal form of c-normal form of an ALC-concept
description allows us to compute the approximation ALC-ALE as a conjunc-
tion of approximations on smaller terms.

Definition 4.2. Let C' be an ALC-concept description. C' is in propagated
normal if none of the following rules can be applied at top-level in C; :
Pn-P
Enl
dr.L
Vr. T
EnT
Vr.ENVr.F Vr(ENF)
Vr.EN3r.F Vr.EN3r(ENF)
where C; are terms occurring in d-normal form of C' = CiU...UC),.
Remarks. 1) Propogated normal transformation increases polynomially the
size of the d-normal form of C.

LIl d Ll
H -+

Definition 4.3. Let Cy, ... ,C,, be the L_concept descriptions. The L_concept
description C' is the least common subsumer (lcs) of Cy, ...,C, (C = les(Cy,
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...,Cy) for short) iff i) C; T C for all i=1..n ii) C; C C"’ for all i=1..n that
implies C'C C".

The main idea of the efficient algorithm is based on the possibility of dis-
tributing approximation computation over disjuncts and conjuncts. However,
the distribution only holds for disjuncts owing to the application of lcs on
the distribution. A further normalization is required for conjunctions before
the distribution. In fact, the propagated normal form allows the distribution
to hold for conjunction. This property is guaranteed by the following propo-
sition.

Proposition 4.1.

1. If A= ANC and B = BNC are propagated ALE-concept descriptions
i.e the rules in Definition 4.2 are applied to ALE-concept descriptions,
we have : les(A, B) = CnN les(Ay, By).

2. If C = ChUuCs where C is an ALC-concept description and L. T Cy, Cy
then, minace(C) = les(minace (Cr), mingce (Co)).

3. If C = CyNCy is a propagated normal ALC-concept description, we
have : minace(C) = minace(C1)N minace(Co).

A proof of Proposition 4.1 can be found in [10]. Naturally, we immediately
have an algorithm computing approximation ALU-ALE :

Input: ALU-concept description C' Output: min4.e(C)

o If C = Vvr.C; (C = Ir.Cy) , mingce(C) = Vr.(minace(Ch) )
(minace(C) = Ir.(minace(Ch))

e If C can be written in C' = C; U Cy where L C C4, O,
min ace(C) = les(minace (Cr), minace(Co))

o [fC = 01 1 02 where Cl, 02 C T,
m’inALg(C) = m’inALg(Ol)ﬂ m’inALg(Oz)

Figure 2: Algorithm for ALU(ELU)-ALE approximation
Theorem 4.1. Let C be an ALU (ELU )-concept description.

L IfC =1 orC=T then mingce (C) = L or mingce(C) =T.
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2. If C =C1uCy where L T C4, Cy then,
minace(C) = les(mingce(Cr), minace(Cs)).

3. If C =C,nCy where Cy, Cy C T, then
minALg(C) = minALg(Cl)ﬂ miTLALg(CQ).

A proof of Theorem 4.1 can be found in [10].

Corollary 4.1. The algorithm min4%5 (C ) takes at most an exponential time

in the size of C' where C' is an ALU(ALE )-concept description.

A priori, the algorithm that is introduced in Theorem 4.1 can be extended
to approximation ALC-ALE. However, ALC is not a propagated normal
language by default. Therefore, so that ALC becomes propagated normal,
further transformations are required. Theorem 4.2. shows how this process
operates.

Theorem 4.2. Let C' be an ALC _concept description.
1. IfC =1 or C =T then minace(C) = L or minygce(C) =T.

2. If C =C1uCy where L T C4, Cy then,
minace(C) = les(mingce(Cr), minace(Cs)).

3. IfC =Cin...NC,, where C; = T. We have minyce(C) = ﬂqminALg(Eq)
where the size of E; is a polynomial in the size of C' and the number of
terms E; is exponential in the size of C.

A proof of Theorem 4.2 can be found in [10].

Corollary 4.2. The algorithm min45% (C) takes an exponential time in
the size of C where C' is an ALC-concept description.

A proof of Corollary 4.2 can be found in [10].

Ezample 4.1.
C =Vr.BNd3r.AN (3Ir.BU Vr.B).

(Step 3.1) Computing d-normal of C : (Vr.BM13Ir. AN 3r.B) U (Vr.B M 3r.A)
(Step 3.2) Propagating d-normal : (Vr.B 1 3r. (AN B)N 3r.B) U (Vr.Br
Ir.(AN B))
(Step 2. ) Computing c-normal : Vr.BN (Vr.BU3Ir. (AN B)) N (Ir.(AN B)
Uvr.B) O 3r.(AN B)N (Ir.BUYr.B)N (Ir.B U Ir.(AT B))
(Step 3.4) Computing the approximation:
min(C) = min(Vr.B)M min(Vr.B U 3r.(AMN B)) M
min(3r.(AN B) U Yr.B)N min(3r.(AMN B)) M min(3r.B U Vr.B)
M min(Ir.B U Ir.(AMN B))
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= Vr.BM les(Vr.B, 3r.(A 1 B))M les(Ir.(A N B), Vr.B)r
min(3r.(AMN B))M les(Ir.B, Vr.B)M min(Ir.B U Ir.(A N B))
=Vr.BOTOTOIN(ANB)NTN3Ir.B=VYr.BMN3Ir. (AN B)M
dr.B N

Input: ALC-concept description C'
Output: min4ze(C)

1. fC =Vr.Cy (C=3r.Ch), mingce(C) = Vr.(minace(Cr) (minace(C) =
HT.(mZ'TLAgg(Ol))

2. If C' can be written in C = C; U ... U C,, where L C C;
minace(C) = les(minace(Ch) ..., minace(Cy))

3. If C can be writtenin C = C; M...MC,, where C; C T

3.1 Computing d-normal form of C : d-normal(C)= D,U ...UD,,

3.2 For each D;, replacing 3r.C” with 3r.(C’'11 VAL, (D;)), where C’
€ EX,(D;), we obtain d-normal(C)= | |, D;

3.3 Computing c-normal(d-normal(C)) =[] E;
3.4 mZ'TLAgg(C) = ﬂ({minAgg(Ei)

Figure 3: Algorithm for ALC-ALE approximation

5 Conclusion

We have proposed a way of characterizing subsumption in ALU. This way
can be extended for £LU. From the subsumption characterization, we have
proposed an exponential algorithm in the worst case for approximating an
ALU-concept description with FL_-concept description. We have also intro-
duced an efficient algorithm for computing upper approximation of an ALC-
concept description with ALE-concept description. This algorithm runs in
exponential time in the size of the ALC-concept description. At present, we
know that only structural approach allows us to develop non-standard infer-
ence services. An interesting question is how to use structural approach for
subsumption in ALC in order to extend approximation inference to expres-
sive languages. On the other hand, in electronic commerce the interpretation
of received terms depends on context informations. It remains to be seen how
we may integrate context informations into ontologies. Our work in the fu-
ture aims to address these questions.
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