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ABSTRACT
Query-based sampling is a commonly used approach to model
the content of servers. Conventionally, queries are sent to a
server and the documents in the search results returned are
downloaded in full as representation of the server’s content.
We present an approach that uses the document snippets
in the search results as samples instead of downloading the
entire documents. We show this yields equal or better mod-
eling performance for the same bandwidth consumption de-
pending on collection characteristics, like document length
distribution and homogeneity. Query-based sampling using
snippets is a useful approach for real-world systems, since it
requires no extra operations beyond exchanging queries and
search results.

1. INTRODUCTION
Query-based sampling is a technique for obtaining a re-

source description of a search server. This description is
based on the downloaded content of a small subset of doc-
uments the server returns in response to queries [8]. We
present an approach that requires no additional download-
ing beyond the returned results, but instead relies solely on
information returned as part of the results: the snippets.

Knowing what server offers what content allows a central
server to forward queries to the most suitable server for han-
dling a query. This task is commonly referred to as resource
selection [6]. Selection is based on a representation of the
content of a server: a resource description. Most servers
on the web are uncooperative and do not provide such a de-
scription, thus query-based sampling exploits only the native
search functionality provided by such servers.

In conventional query-based sampling, the first step is
sending a query to a server. The server returns a ranked
list of results of which the top N most relevant documents
are downloaded and used to build a resource description.
Queries are randomly chosen, the first from an external re-
source and subsequent queries from the description built so
far. This repeats until a stopping criterion is reached [7, 8].

Copyright c© 2010 for the individual papers by the papers’ authors. Copy-
ing permitted only for private and academic purposes. This volume is pub-
lished and copyrighted by its editors.
LSDS-IR Workshop, July 2010. Geneva, Switzerland.

Figure 1: Example snippets. From top to bottom:
each snippet consists of an underlined title, a two
line summary and a link.

Disadvantages of downloading entire documents are that
it consumes more bandwidth, is impossible if servers do not
return full documents, and does not work when the full docu-
ments themselves are non-text: multimedia with short sum-
mary descriptions. In contrast, some data always comes
along ‘for free’ in the returned search results: the snippets.
A snippet is a short piece of text consisting of a document
title, a short summary and a link as shown in Figure 1. A
summary can be either dynamically generated in response
to a query or is statically defined [16, p. 157]. We postulate
that these snippets can also be used for query-based sam-
pling to build a language model. This way we can avoid
downloading entire documents and thus reduce bandwidth
usage and cope with servers that return only search results
or contain multimedia content. However, since snippets are
small we need to see many of them. This means that we
need to send more queries compared with the full document
approach. While this increases the query load on the remote
servers, it is an advantage for live systems that need to sam-
ple from document collections that change over time, since
it allows continously updating the language model, based on
the results of live queries.

Whether the documents returned in response to random
queries are a truly random part of the underlying collection
is doubtful. Servers have a propensity to return documents
that users indicate as important and the number of in-links
has a substantial correlation with this importance [1]. This
may not be a problem, as it is preferable to know only the
language model represented by these important documents,
since the user is likely to look for those [3]. Recent work
[5] focuses on obtaining uniform random samples from large
search engines in order to estimate their size and overlap.
Others [20] have evaluated this in the context of obtaining
resource descriptions and found that it does not consistently
work well across collections.
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The foundational work for acquiring resource descriptions
via query-based sampling was done by Callan et al. [7, 8].
They show that a small sample of several hundred docu-
ments can be used for obtaining a good quality resource de-
scription of large collections consisting of hundreds of thou-
sands of documents. The test collection used in their re-
search, TREC123, is not a web data collection. While this
initially casts doubt on the applicability of the query-based
sampling approach to the web, Monroe et al. [18] show that
it also works very well for web data.

The approach we take has some similarities with prior
research by Paltoglou et al. [19]. They show that download-
ing only a part of a document can also yield good modelling
performance. However, they download the first two to three
kilobytes of each document in the result list, whereas we use
small snippets and thus avoid any extra downloading beyond
the search results.

Our main research question is:

“How does query-based sampling using only snip-
pets compare to downloading full documents in
terms of the learned language model?”

We show that query-based sampling using snippets offers
similar performance compared to using full documents. How-
ever, using snippets uses less bandwidth and enables con-
stantly updating the resource description at no extra cost.
Additionally, we introduce a new metric for comparing lan-
guage models in the context of resource descriptions and a
method to establish the homogeneity of a corpus.

We describe our experimental setup in section 2. This is
followed by section 3 which shows the results. Finally, the
paper concludes with sections 4 and 5.

2. METHODOLOGY
In our experimental set-up we have one remote server

which content we wish to estimate by sampling. This server
can only take queries and return search results. For each
document a title, snippet and download link is returned.
These results are used to locally build a resource description
in the form of a vocabulary with frequency information, also
called a language model [7]. The act of submitting a query
to the remote server, obtaining search results, updating the
local language model and calculating values for the evalua-
tion metrics is called an iteration. An iteration consists of
the following steps:

1. Pick a one-term query.

(a) In the first iteration our local language model is
empty and has no terms. In this case we pick a
random term from an external resource as query.

(b) In subsequent iterations we pick a random term
from our local language model that we have not
yet submitted previously as query.

2. Send the query to the remote server, requesting a max-
imum number of results (n = 10). In our set-up,
the maximum length of the document summaries may
be no more than 2 fragments of 90 characters each
(s ≤ 2 · 90).

3. Update the resource description using the returned re-
sults (1 ≤ n ≤ 10).

Table 1: Properties of the data sets used.

Name Raw Index #Docs # Terms # Unique

OANC 97M 117M 8,824 14,567,719 176,691

TREC123 2.6G 3.5G 1,078,166 432,134,562 969,061

WT2G 1.6G 2.1G 247,413 247,833,426 1,545,707

WIKIL 163M 84M 30,006 9,507,759 108,712

WIKIM 58M 25M 6,821 3,003,418 56,330

(a) For the full document strategy: download all the
returned documents and use all their content to
update the local language model.

(b) For the snippet strategy: use the snippet of each
document in the search results to update the local
language model. If a document appears multiple
times in search results, use its snippet only if it
differs from previously seen snippets of that doc-
ument.

4. Evaluate the iteration by comparing the unstemmed
language model of the remote server with the local
model (see metrics described in Section 2.2).

5. Terminate if a stopping criterion has been reached,
otherwise go to step 1.

Since the snippet approach uses the title and summary of
each document returned in the search result, the way in
which the summary is generated affects the performance.
Our simulation environment uses Apache Lucene which gen-
erates keyword-in-context document summaries [16, p. 158].
These summaries are constructed by using words surround-
ing a query term in a document, without keeping into ac-
count sentence boundaries. For all experiments the sum-
maries consisted of two keyword-in-context segments of max-
imally ninety characters. This length boundary is similar to
the one modern web search engines use to generate their
summaries. One might be tempted to believe that snippets
are biased due to the fact that they commonly also con-
tain the query terms. However, in full-document sampling
the returned documents also contain the query and have a
similar bias, although mitigated by document length.

2.1 Data sets
We used the following data sets to conduct our tests:

OANC-1.1: The Open American National Corpus: A het-
erogeneous collection. We use it exclusively for
selecting bootstrap terms [14].

TREC123: A heterogeneous collection consisting of TREC
Volumes 1–3. Contains: short newspaper and
magazine articles, scientific abstracts, and gov-
ernment documents [12]. Used in previous ex-
periments by Callan et al. [7]

WT2G: Web Track 2G: A small subset of the Very Large
Corpus web crawl conducted in 1997 [13].

WIKIL: The large Memory Alpha Wiki.
http://memory-alpha.org

WIKIM: The medium sized Fallout Wiki.
http://fallout.wikia.com

LSDS-IR’10 Query-Based Sampling using Snippets

8



0 2000 4000 6000 8000 10000

0.
00

00
0.

00
04

0.
00

08

Document Length (Bytes)

D
en

si
ty

TREC123
WT2G
WIKIL
WIKIM

Figure 2: Kernel density plot of document lengths
up to 10 Kilobytes for each collection.

The OANC is used as external resource to select a boot-
strap term on the first iteration: we pick a random term out
of the top 25 most-frequent terms (excluding stop words).
TREC123 is for comparison with Callan’s work [7]. WT2G
is a representative subset of the web. It has some deficien-
cies, such as missing inter-server links [2]. However, since
we use only the page data, this is not a major problem for
this experiment.

Our experiment is part of a scenario where many sites
offer searchable content. With this in mind using larger
monolithic collections, like ClueWeb, offers little extra in-
sights. After all: there are relatively few websites that pro-
vide gigabytes or terabytes of information, whereas there is
a long tail that offers smaller amounts. For this purpose we
have included two Wiki collections in our tests: WIKIL and
WIKIM. All Wiki collection were obtained from Wikia, on
October 5th 2009. Wikis contain many pages in addition
to normal content pages. However, we index only content
pages which is the reason the raw sizes of these corpora are
bigger than the indices.

Table 1 shows some properties of the data sets. We have
also included Figure 2 which shows a kernel density plot
of the size distributions of the collections [21]. We see that
WT2G has a more gradual distribution of document lengths,
whereas TREC123 shows a sharper decline near two kilo-
bytes. Both collections consist primarily of many small doc-
uments. This is also true for the Wiki collections. Especially
the WIKIL collection has many very small documents.

2.2 Metrics
Evaluation is done by comparing the complete remote lan-

guage model with the subset local language model each it-
eration. We discard stop words, and compare terms un-
stemmed. Various metrics exist to conduct this compari-
son. For comparability with earlier work we use two metrics
and introduce one new metric in this context: the Jensen-
Shannon Divergence (JSD), which we believe is a better
choice than the others for reasons outlined below.

We first discuss the Collection Term Frequency (CTF)
ratio. This metric expresses the coverage of the terms of the
locally learned language model as a ratio of the terms of the
actual remote model. It is defined as follows [8]:

CTFratio

“
T , T̂

”
=

1

α
·
X

t∈T̂

CTF (t,T ) (1)

where T is the actual model and T̂ the learned model. The

CTF function returns the number of times a term t occurs
in the given model. The symbol α represents the sum of the
CTF of all terms in the actual model T , which is simply
the number of tokens in T . The higher the CTF ratio, the
more of the important terms have been found.

The Kullback-Leibler Divergence (KLD) gives an indica-
tion of the extent to which two probability models, in this
case our local and remote language models, will produce the
same predictions. The output is the number of additional
bits it would take to encode one model into the other. It is
defined as follows [16, p. 231]:

KLD
“
T ‖ T̂

”
=
X

t∈T

P (t | T ) · log
P (t | T )

P
“
t | T̂

” (2)

where T̂ is the learned model and T the actual model. KLD
has several disadvantages. Firstly, if a term occurs in one
model, but not in the other it will produce zero or infinite
numbers. Therefore, we apply Laplace smoothing, which
simply adds one to all counts of the learned model T̂ . This
ensures that each term in the remote model exists at least
once in the local model, thereby avoiding divisions by zero
[3]. Secondly, the KLD is asymmetric, which is expressed
using the double bar notation. Manning [17, p. 304] argues
that using Jensen-Shannon Divergence (JSD) solves both
problems. It is defined in terms of the KLD as [9]:

JSD
“
T , T̂

”
= KLD

 
T ‖T + T̂

2

!
+KLD

 
T̂ ‖T + T̂

2

!

(3)
The Jensen-Shannon Divergence (JSD) expresses how much
information is lost if we describe two distributions with their
average distribution. This distribution is formed by sum-
ming the counts for each term that occurs in either model
and taking the average by dividing this by two. Using the
average is a form of smoothing which avoids changing the
original counts in contrast with the KLD. Other differences
with the KLD are that the JSD is symmetric and finite. Con-
veniently, when using a logarithm of base 2 in the underlying
KLD, the JSD ranges from 0.0 for identical distributions to
2.0 for maximally different distributions.

3. RESULTS
In this section we report the results of our experiments.

Because the queries are chosen randomly, we repeated the
experiment 30 times.

Figure 3 shows our results on TREC123 in the conven-
tional way for query-based sampling: a metric against the
number of iterations on the horizontal axis [7]. We have
omitted graphs for WT2G and the Wikia collections as they
are highly similar in shape.

As the bottom right graph shows, the amount of band-
width consumed when using full documents is much larger
than when using snippets. Full documents downloads each
of the ten documents in the search results, which can be po-
tentially large. Downloading all these documents also uses
many connections to the server: one for the search results
plus ten for the documents, whereas the snippet approach
uses only one connection for transferring the search results
and performs no additional downloads.

The fact that the full documents approach downloads a
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Figure 3: Results for TREC123. Shows CTF, KLD,
JSD and bandwidth usage, plotted against the num-
ber of iterations. Shows both the full document and
snippet-based approach. The legend is shown in the
top left graph.

lot of extra information results in it outperforming the snip-
pet approach for the defined metrics as shown in the other
graphs of Figure 3. However, comparing this way is unfair.
Full document sampling performs better, simply because it
acquires more data in fewer iterations. A more interesting
question is: how effectively do the approaches use band-
width?

3.1 Bandwidth
Figures 4 and 5 show the metrics plotted against band-

width usage. The graphs are 41-point interpolated plots
based on experiment data. These plots are generated in a
similar same way as recall-precision graphs, but they con-
tain more points: 41 instead of 11, one every 25 kilobytes.
Additionally, the recall-precision graphs, as frequently used
in TREC, use the maximum value at each point [11]. We
use linear interpolation instead which uses averages.

Figure 4 shows that snippets outperform the full docu-
ment approach for all metrics. This seems to be more pro-
nounced for WT2G. The underlying data reveals that snip-
pets yield much more stable performance increments per
unit of bandwidth. Partially, this is due to a larger quan-
tity of queries. The poorer performance of full documents is
caused by variations in document length and quality. Down-
loading a long document that poorly represents the under-
lying collection is heavily penalised. The snippet approach
never makes very large ‘mistakes’ like this, because its doc-
ument length is bound to the maximum summary size.

TREC123 and WT2G are very large heterogeneous test
collections as we will show later. The WIKI collections are
more homogeneous and have different document length dis-
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Figure 4: Interpolated plots for all metrics against
bandwidth usage up to 1000 KB. The left graphs
show results for TREC123, the right for WT2G.
Axis titles are shown on the left and bottom graphs,
the legend in the top left graph.

tribution characteristics. In Figure 5 we see that the per-
formance of snippets on the WIKIL corpus is worse for the
JSD, but undecided for the other metrics. For WIKIM per-
formance measured with CTF is slightly better and unde-
cided for the other metrics. Why this difference? We con-
ducted tests on several other large size Wiki collections to
verify our results. The results suggest that there is some
relation between the distribution of document lengths and
the performance of query-based sampling using snippets. In
Figure 2 we see a peak at the low end of documents lengths
for WIKIL. Collections that exhibit this type of peak all
showed similar performance as WIKIL: snippets performing
slightly worse especially for the JSD. In contrast, collections
that have a distribution like WIKIM, also show similar per-
formance: slightly better for CTF. Collections that have a
less pronounced peak at higher document lengths, or a more
gradual distribution appear to perform at least as good or
better using snippets compared to full documents.

The reason for this is that as the document size decreases
and approaches the snippet summary size, the full docu-
ment strategy is less heavily penalised by mistakes. It can
no longer download very large unrepresentative documents,
only small ones. However, this advantage is offset if the
document sizes equal the summary size. In that case the
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Figure 5: Interpolated plots for all metrics against
bandwidth usage up to 1000 KB. The left graphs
show results for WIKIL, the right for WIKIM. Axis
titles are shown on the left and bottom graphs, the
legend in the top left graph.

full document approach would actually use double the band-
width with no advantage: once to obtain the search results,
with summaries, and once again to download the entire doc-
uments which are the same as the summaries in the search
results.

3.2 Homogeneity
While WIKIM has a fairly smooth document length dis-

tribution, the performance increase of snippets over full doc-
uments with regard to the JSD and KLD metrics is not the
same as that obtained with TREC123 and WT2G. This is
likely caused by the homogeneous nature of the collection.
Consider that if a collection is highly homogeneous, only
a few samples are needed to obtain a good representation.
Every additional sample can only slightly improve such a
model. In contrast, for a heterogeneous collection, each new
sample can improve the model significantly.

So, how homogeneous are the collections that we used?
We adopt the approach of Kilgariff and Rose [15] of split-
ting the corpus into parts and comparing those, with some
slight adjustments. As metric we use the Jensen-Shannon
Divergence (JSD) explained in Section 2.2 and also used by
Eiron and McCurley [10] for the same task. The exact pro-
cedure we used is as follows:

Table 2: Collection homogeneity expressed as
Jensen-Shannon Divergence (JSD): Lower scores in-
dicate more homogeneity (n = 100,σ = 0.01).

Collection name µ JSD

TREC123 1.11
WT2G 1.04
WIKIL 0.97
WIKIM 0.85

1. Select a random sample S of 5000 documents from a
collection.

2. Randomly divide the documents in the sample S into
ten bins: s1 . . . s10. Each bin contains approximately
500 documents.

3. For each bin si calculate the Jensen-Shannon Diver-
gence (JSD) between the bigram language model de-
fined by the documents in bin si and the language
model defined by the documents in the remaining nine
bins. Meaning: the language model of documents in
s1 would be compared to that of those in s2 . . . s10, et
cetera. This is known as a leave-one-out test.

4. Average the ten JSD scores obtained in step 3. The
outcome represents the homogeneity. The lower the
number, the more self similarity within the corpus,
thus the more homogeneous the corpus is.

Because we select documents from the collection randomly
in step 1, we repeated the experiment ten times for each
collection. Results are shown in Table 2.

Table 2 shows that the large collections we used, TREC123
and WT2G, are more heterogeneous compared to the smaller
collections WIKIL and WIKIM. It appears that WIKIL is
more heterogeneous than WIKIM, yet snippet-based sam-
pling performs better on WIKIM. We conjecture that this
is caused by the difference in document length distributions
discussed earlier: see Figure 2. Overall, it appears that
query-based sampling using snippets is better suited towards
heterogeneous collections with a smooth distribution of doc-
ument lengths.

4. CONCLUSION
We have shown that query-based sampling using snippets

is a viable alternative for conventional query-based sampling
using entire documents. This opens the way for distributed
search systems that do not need to download documents at
all, but instead solely operate by exchanging queries and
search results. Few adjustments are needed to existing op-
erational distributed information retrieval systems, that use
a central server, as the remote search engines and the cen-
tral server already exchange snippets. Our research implies
that the significant overhead incurred by downloading docu-
ments in today’s prototype distributed information retrieval
systems can be completely eliminated. This also enables
modeling of servers from which full documents can not be
obtained and those which index multimedia content. Fur-
thermore, the central server can continuously use the search
result data, the snippets, to keep its resource descriptions
up to date without imposing additional overhead, naturally
coping with changes in document collections that occur over
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time. This also provides the extra iterations that snippet
query-based sampling requires without extra latency.

Compared to the conventional query-based sampling ap-
proach our snippet approach shows equal or better perfor-
mance per unit of bandwidth consumed for most of the test
collections. The performance also appears to be more sta-
ble per unit of bandwidth consumed. Factors influencing
the performance are document length distribution and the
homogeneity of the data. Snippet query-based sampling per-
forms best when document lengths are smoothly distributed,
without a large peak at the low-end of document sizes, and
when the data is heterogeneous.

Even though the performance of snippet query-based sam-
pling depends on the underlying collection, the information
that is used always comes along ‘for free’ with search results.
No extra bandwidth, connections or operations are required
beyond simply sending a query and obtaining a list of search
results. Herein lies the strength of the approach.

5. FUTURE WORK
We believe that the performance gains seen in the var-

ious metrics leads to improved selection and merging per-
formance. However, this is something that could be further
explored. A measure for how representative the resource
descriptions obtained by sampling are for real-world usage
would be very useful. This remains an open problem, also
for full document sampling, even though some attempts have
been made to solve it [4].

An other research direction is the snippets themselves.
Firstly, how snippet generation affects modeling performance.
Secondly, how a query can be generated from the snippets
seen so far in more sophisticated ways. This could be done
by attaching a different priority to different words in a snip-
pet. Finally, the influence of the ratio of snippet to docu-
ment size could be further investigated.
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ABSTRACT
We consider the problem of processing K-Nearest Neighbor
(KNN) queries over large datasets where the index is jointly
maintained by a set of machines in a computing cluster.
The proposed RankReduce approach uses locality sensitive
hashing (LSH) together with a MapReduce implementation,
which by design is a perfect match as the hashing principle
of LSH can be smoothly integrated in the mapping phase
of MapReduce. The LSH algorithm assigns similar objects
to the same fragments in the distributed file system which
enables a effective selection of potential candidate neighbors
which get then reduced to the set of K-Nearest Neighbors.
We address problems arising due to the different character-
istics of MapReduce and LSH to achieve an efficient search
process on the one hand and high LSH accuracy on the other
hand. We discuss several pitfalls and detailed descriptions
on how to circumvent these. We evaluate RankReduce using
both synthetic data and a dataset obtained from Flickr.com
demonstrating the suitability of the approach.

1. INTRODUCTION
With the success of the Web 2.0 and the wide spread usage

of cell phones and digital cameras, millions of pictures are
being taken and uploaded to portals like Facebook or Flickr
every day1, accumulating to billions of images2. Searching
in these huge amounts of images becomes a challenging task.
While there is an increasing trend to use social annotations,
so-called tags, for image retrieval, next to the traditional im-
age search à la Google/Bing/Yahoo which inspects the text
around the web site holding the picture, there is a vital need
to process similarity queries, where for a given query pic-
ture, the K most similar pictures are returned based on low
level features such as color, texture, and shape [9]. The big
advantage of such low level features is that they are always

∗
This work has been supported by the Cluster of Excellence ”Multi-

modal Computing and Interaction“ (MMCI)
1
http://blog.facebook.com/blog.php?post=2406207130

2
http://blog.flickr.net/en/2009/10/12/4000000000/
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LSDS-IR Workshop, July 2010. Geneva, Switzerland.

available, whereas tags are usually extremely scarce and text
around images can often be misleading. Approaches like the
work by Taneva et al. [24] use both textual and low level
image descriptors to increase the diversity of returned query
results. There exist plenty of fundamental prior works [16,
5, 4] on how to index feature based representations of pic-
tures or, more generally, high dimensional vectors in a way
that allows for inspecting only a small subset of all vectors
to find the most similar ones.

The increasing volume of high dimensional data, however,
poses novel problems to traditional indexing mechanisms
which usually assume an in-memory index or optimize for
local disk access. As a promising approach to process huge
amounts of data on a multitude of machines in a cluster,
MapReduce [10] has been proposed and continuously ex-
plored for many interesting application classes. In this pa-
per, we investigate the usage of MapReduce for searching in
high dimensional data. Although MapReduce was initially
described in a generic and rather imprecise way in terms
of implementation, implementations like Apache’s Hadoop
have proven to provide salient properties such as scalability,
ease of use, and most notably robustness to node failures.
This provides an excellent base to explore MapReduce for its
suitability for large scale management of high dimensional
data.

In this work, we propose RankReduce, an approach to
implement locality sensitive hashing (LSH) [1, 8, 16], an es-
tablished method for similarity search on high dimensional
data, on top of the highly reliable and scalable MapReduce
infrastructure. While this may seem to be straight forward
at first glance, it poses interesting challenges to the inte-
gration: most of the time, we face different characteristics
of MapReduce and LSH which need to be harnessed both
at the same time to achieve both high accuracy and good
performance. As MapReduce is usually used only to process
large amounts of data in an offline fashion and not for query
processing, we carefully investigate its suitability to handle
user defined queries effectively demonstrating interesting in-
sights on how to tune LSH on top of MapReduce.

The remainder of the paper is structured as follows. Sec-
tion 2 gives an overview of related work, Section 3 presents
our framework and gives a brief introduction to LSH and
MapReduce, Section 4 describes the way queries are pro-
cessed, Section 5 presents an experimental evaluation, and
Section 6 concludes the paper and gives an outlook on on-
going work.
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2. RELATED WORK
Processing K-Nearest Neighbor queries in high dimen-

sional data has received a lot of attention by researchers
in recent years. When the dimensionality increases the dis-
tance between the closest and the farthest neighbor decreases
rapidly, for most of the datasets [6], which is also known as
the ’curse of dimensionality’. This problem has a direct im-
pact on exact KNN queries processing based on tree struc-
tures, such as X-Tree [5] and K-D tree [4], rendering these
approaches applicable only to a rather small number of di-
mensions. A better suitable approach for KNN processing
in high dimensions is Locality Sensitive Hashing (LSH) [1,
8, 16]. It is based on the application of locality preserv-
ing hash functions which map, with high probability, close
points from the high dimensional space to the same hash
value (i.e., hash bucket). Being an approximate method,
the performance of LSH highly depends on accurate param-
eter tuning [12, 3]. Work has also been done on decreasing
the number of hash tables used for LSH, while preserving
the precision, by probing multiple buckets per hash table
[20]. In recent years, a number of distributed solutions where
the main emphasis was put on exploring loosly coupled dis-
tributed systems in form of Peer-to-Peer networks (P2P)
such as [11, 13, 14, 17, 23]) have been proposed, cf. the
work by Batko et al. [2] for a discussion on the suitablity of
different P2P approaches to distributed similarity search.

MapReduce is a framework for efficient and fault tolerant
workload distribution in large clusters [10]. The motiva-
tion behind the design and development of MapReduce has
been found in Information Retrieval with its many compu-
tationally expensive, but embarrassingly parallel problems
on large datasets. One of the most basic of those prob-
lems is the inverted index construction, described in [21].
MapReduce has not yet been utilized for distributed process-
ing of KNN queries. Some similarities with KNN processing
can be found in recent work by Rares et al. [22] which de-
scribes a couple of approaches for computing set similarities
on textual documents, but it does not address the issue of
KNN query processing. The pairwise similarity is calculated
only for documents with the same prefixes (prefix filtering),
which can be considered as the LSH min-hashing technique.
Lin [19] describes a MapReduce based implementation of
pairwise similarity comparisons of text documents based on
an inverted index.

3. RANKREDUCE FRAMEWORK
We address the problem of processing K-Nearest Neighbor

queries in large datasets by implementing a distributed LSH
based index within the MapReduce Framework.

An LSH based index uses locality sensitive hash functions
for indexing data. The salient property of these functions is
that they map, with high probability, similar objects (repre-
sented in the d-dimensional vector space) to the same hash
bucket, i.e., related objects are more probable to have the
same hash value than distant ones. The actual indexing
builds several hash tables with different LSH functions to in-
crease the probability of collision for close points. At query
time, the KNN search is performed by hashing the query
point to one bucket per hash table and then to rank all dis-
covered objects in any of these buckets by their distance to
the query point. The closest K points are returned as the
final result.

Figure 1: The RankReduce Framework

In this work, we consider the family of LSH functions
based on p-stable distributions [8] which are most suitable
for lp norms. In this case, for each data point v, the hashing
scheme considers k independent hash functions of the form

ha,B(v) = ba · v + B

W
c (1)

where a is a d-dimensional vector whose elements are chosen
independently from a p-stable distribution, W ∈ IR, and B
is chosen uniformly from [0, W ]. Each hash function maps
a d-dimensional data point onto the set of integers. With k
such hash functions, the final result is a vector of length k
of the form g(v) = (ha1,B1(v), ..., hak,Bk (v)).

In order to achieve high search accuracy, multiple hash
tables need to be constructed. The work by Lv et al. [20]
presents an approach to probe multiple buckets per hash ta-
ble which, however, leads to either sampling a larger fraction
of the dataset or to many fine grained accesses to small buck-
ets. The latter causes a larger number of expensive random
accesses to the underlying infrastructure, as we deal with
file based indexes as opposed to in-memory accesses. Hence,
we opted for using a single probe per hash table.

For maintaining the hash tables over a set of machines in a
cluster, we employ MapReduce [10] which is designed to be
used for large data processing in parallel. It is built on top of
the Distributed File System [15], which enables distributing
the data over the cluster machines in a scalable and fault
tolerant way. This tight integration of MapReduce with the
distributed file system enables it to move calculations where
the data resides, eliminating network bandwidth bottlenecks
caused by data shipping during query processing. Our im-
plementation uses the open source software Hadoop 3, main-
tained by the Apache Foundation, which provides a Java
based implementation of both the MapReduce framework
and the Distributed File System (coined HDFS for Hadoop
Distributed File System). In the last years, Hadoop gained
a lot of popularity in the open source community and is
also part of many research efforts investigating large data
processing.

3
http://hadoop.apache.org/
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MapReduce is a fairly simple programming model, based
on two developer supplied functions: Map and Reduce. Both
functions are based on key-value pairs. The Map function
receives a key-value pair as input and emits multiple (or
none) key-value pairs as output. The output from all Map
functions is grouped by key, and for each such key, all values
are fed to the Reduce function, which then produces the final
output from these values.

In the Hadoop implementation, the input data is grouped
in so-called input splits (which often correspond to blocks
in the distributed file system), and a number of so-called
mapper processes call the Map function for each key-value
pair in such an input split. A number of mappers can run
concurrently on each node in the cluster, and the mapper
processes are in addition distributed over all nodes in the
cluster. Ideally, a mapper is run on the same node where
the input block resides, but this is not always possible due
to workload imbalance. Similarly, after all mappers have
finished, dedicated reducer processes are run on nodes int
the cluster. Each reducer handles a fraction of the output
key space, copies those key-value pairs from all mappers’
outputs (in the so-called shuffle phase), sorts them by key,
and feeds the to the Reduce function. The output of the
reducers is usually considered the final result but can also
be used as input for following MapReduce jobs.

Figure 1 shows an illustration of our LSH integration with
MapReduce. Each hash table in the LSH index is mapped
to one folder in HDFS. For each bucket in such a hash table,
a corresponding file is created in this folder, where the file
name is created by concatenating hash values into a string,
with ’ ’ as separator. This mapping of buckets to HDFS
files enables fast lookup at query time and ensures that only
data that is to be probed is read from the HDFS. Placing the
bucket in one file also enables block based sequential access
to all vectors in one bucket, which is very important as the
MapReduce framework is optimized for such block based
rather than random access processing. Each of the buckets
stores the complete feature vectors of all objects mapped to
this bucket in a binary encoding.

Indexing of new feature vectors to the LSH index in HDFS
is easily done by appending them to the end of the appro-
priate bucket file. This can also be done in parallel with
query processing as long as different buckets are affected; as
HDFS does not include a transaction mechanism, appending
entries to buckets that are being queried would be possible,
but with unclear semantics for running queries. As HDFS
scales well with increasing cluster size, the resulting growth
of the LSH index can easily be supported by adding more
machines to the cluster.

While an LSH index stored in-memory has no limita-
tion on the number of buckets, too many files in HDFS
can downgrade its performance, especially if these files are
much smaller than the block size (which defaults to 64MB).
The number of buckets, and therefore the number of files in
HDFS for the LSH index, is highly dependent on the set up
of LSH parameters as choosing a bad combination of param-
eters can result in a large number of small files.

Inspired by in-memory indexes which can have references
from buckets to materialized feature vectors, we considered
storing only feature vector ids in the buckets instead of the
actual feature vectors, and retrieving the full vectors only
on demand at query time. However, this approach would
result in poor performance due to many random accesses to

the HDFS when retrieving the full vectors, so we decided
to store complete feature vectors. This fact also needs to
be addressed when setting up LSH parameters, while too
many LSH hash tables can dramatically increase index size,
as each feature vector is materialized for each hash table.

4. QUERY PROCESSING
We implemented KNN query processing as a MapReduce

job. Before starting this MapReduce job, the hash values for
the query documents are calculated. These values are then
used for selecting the buckets from the LSH index, which are
to be probed. The selected buckets are provided as input to
the query processing MapReduce job, generating multiple
input splits. The generated input splits are read by a cus-
tom implementation of the InputFormat class, which reads
feature vectors stored in a binary format and provides them
as the key part of the Map function input. Queries are being
distributed to mappers either by putting them in the Dis-
tributed Cache or by putting them in HDFS file with high
number of replicas. They are read once by the InputFor-
mat implementation and reused as value part of the Map
function input between the function invocations.

The input to the Map function consists therefore of the
feature vector to be probed as the key and the list of queries
as the value. The Map function computes the similarity
of the feature vector with all query vectors. While a stan-
dard MapReduce implementation would now emit a result
pair for each combination of feature vector and query vec-
tor, we employ an optimization that delays emitting results
until all feature vectors in the input split have been pro-
cessed. We then eventually emit the final K-Nearest Neigh-
bor for each query vector from this input split in the form
of key-value pairs. Here, the query is the key and a nearest
neighbor together with its distance to the query vector is the
value. To implement this delayed emitting, we store the cur-
rently best K-Nearest Neighbor for each query in-memory,
together with their distances from the query points. The re-
sults are emitted at the end of processing the input split in
Hadoop’s cleanup method4. The Reduce method then reads,
for each query, the K-Nearest Neighbor from each mapper,
sorts them by increasing distance, and emits the best K of
them as the final result for this query.

The final sort in the reducer can even be executed within
Hadoop instead of inside the Reduce method, as a subtask of
sorting keys in the reducer. It is possible to apply a so-called
Secondary Sort that allows, in our application, to sort not
just the keys, but also the values for the same key. Tech-
nically, this is implemented by replacing, for each (query,
(neighbor, distance)) tuple that is emitted by a mapper, the
key by a combined key consisting of the query and the dis-
tance. Keys are then sorted lexicographically first by query
and then by distance. For assigning tuples to a Reduce
method, however, only the query part of the key is taken
into account. The reducer then only needs to read the first K
values for each key, which then correspond to the K-Nearest
Neighbor for that query.

It is worth mentioning that because one feature vector
is placed in multiple hash tables, the same vector can be
evaluated twice for the same query during processing. An

4This feature was introduced in the most recent version 0.20;
before, it was only possible to emit directly from the Map
function
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alternative approach would be to have two MapReduce jobs
for query processing instead of one, which would eliminate
this kind of redundancy. The first MapReduce job would
create a union between buckets that need to be probed, and
the second job would use the union as an input to similarity
search. However, while this would possibly save redundant
computations, it has the major drawback that the results
from the first job need to be written to the HDFS before
starting the second job. As the overhead from multiple eval-
uations of the same feature vector has not been too large in
our experimental evaluation (see Figure 4), we decided that
it is better to probe slightly more data rather than to pay
the additional I/O cost incurred by using two Map Reduce
jobs.

The approach can handle multiple queries at the same
time in one MapReduce job. But it is not suitable for the
cases when the number of queries becomes too large, as prob-
lem of KNN queries processing becomes the problem of set
similarity joins [22].

5. EXPERIMENTAL EVALUATION
For our experiments we have used Hadoop version 0.20.2

installed on three virtual machines with Debian GNU/Linux
5.0 (Kernel version: 2.6.30.10.1) as operating system. Each
of the virtual machines has been configured to have 200GB
hard drive, 5 GB main memory and two processors. VMware
Server version 2.0.2 was used for virtualization of all ma-
chines. The virtual machines were run on a single machine
with Intel Xeon CPU E5530 @2.4 GHz, 48 GB main memory,
4 TB of hard drive and Microsoft Windows Server 2008 R2
x64 as operating system. We used a single machine Hadoop
installation on these virtual machines as described later on.

Datasets
As the performance of the LSH based index is highly de-
pendent on the data characteristics [12], we conducted an
experimental evaluation both on randomly generated (Syn-
thetic Dataset) and real world image data (Flickr Dataset):

Synthetic Dataset:
For the synthetic dataset we used 32-dimensional randomly
generated vectors. The synthetic dataset was built by first
creating N independently generated vector instances drawn
from the normal distribution N(0, 1) (independently for each
dimension). Subsequently, we created m near duplicates for
each of the N vectors, leading to an overall dataset size of
m∗N vectors. The rational behind using the near duplicates
is that we make sure that the KNN retrieval is meaninful at
all. We set m to 10 in the experiments and adapt N to
the desired dataset size depending on the experiment. We
generated 50 queries by using the same procedure as the
original vectors were generated.

Flickr Dataset:
We used the 64-dimensional color structure feature vectors
from crawled Flickr images provided by the CoPhIR data
collection [7] as our real image dataset. We extracted the
color structure feature vectors from the available MPEG-7
features and stored them in a binary format suitable for the
experiments. As the queries, we have randomly selected 50
images from the rest of the CoPhIR data collection

As LSH is an approximate method, we measure the ef-
fectiveness of the nearest neighbor search by its precision,
which is the relative overlap of the true K-Nearest Neigh-
bor with the K-Nearest Neighbor computed by our method.

And for the proximity measure we used Euclidean distance.

5.1 LSH Setup
Before starting the evaluation we needed to understand

how to set up LSH and what consequence it may have on
the index size and query performance. In our setup we con-
sider the number of hash tables and the bucket size as LSH
parameters to be tuned. The bucket size can be changed ei-
ther by changing the number of concatenated hash values or
by changing the parameter W in Formula 1. Because W is a
continuous variable and provides a subtle control over bucket
size, we first fix the number of concatenated hash values and
then vary parameter W [12]. These two parameters together
determine which subset of the data needs to be accessed to
answer a query (one bucket per hash table). We varied the
bucket size by varying parameter W for a different number
of hash tables and then measured data subset probed and
precision, shown in Figure 2 for synthetic dataset and in
Figure 3 for the Flickr dataset. These measurements were
done using 50 KNN queries for k = 20 on both datasets,
but with reduced sizes to 100,000 feature vectors indexed.
The results show that increasing the number of hash tables
can decrease the data subset that needs to be probed to
achieve a certain precision, resulting in less time needed for
the query execution.

Realizing that each new table creates another copy of data
and we may have only limited storage available, we need to
tradeoff storage cost vs. execution time. Additionally, when
only a fixed subset of the data should be accessed, a larger
number of hash tables results in a large number of small
sized buckets, which is not a good scenario for HDFS (it
puts additional pressure on Hadoop’s data node that man-
ages all files). On one hand, we would like to increase the
number of hash tables and to decrease the probed data sub-
set. On the other hand, we would like to use less storage
space and a smaller number of files for storage and probing.
Figure 3 shows that the number of hash tables has smaller
impact on precision in case of real image data. Thus, as a
general rule we suggest a smaller number of hash tables with
larger bucket sizes, still set to satisfy the precision thresh-
old. Therefore we settle for a setup of four hash tables and
a bucket size that allow us to get at least 70% precision.

5.2 Evaluation
We evaluate our approach and compare it to the linear

scan over all data, also implemented as a MapReduce job.
As we did not have a real compute cluster at hand for run-
ning the experiments, we simulate the execution in a large
cluster by running the mappers and reducers sequentially
on our small machine. We measure run times of their exe-
cutions and the number of mappers started for each query
job. To avoid the possible bottleneck of a shared hard drive
between virtual machines [18], we run each experiment on
a single machine Hadoop installation with one map task al-
lowed per task tracker. This results in sequential execution
of map tasks so there is no concurrent access to a shared
hard drive by multiple virtual machines.

Considering that the workload for the reducers is really
small for both linear scan and LSH, we only evaluate map
execution times and the number of mappers run per query
job. We measured the map execution times for all jobs and
found that they are approximately constant, with average
value per mapper being 3.256 seconds and standard devia-
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Figure 2: LSH characteristics on generated data.

tion of 1.702 seconds. Taking into account that each mapper
has an approximately same data input size, defined by the
HDFS’ block size, approximately constant mapper execution
time is well expected.

Measures of Interest
Because the execution time of the mappers is almost con-
stant, the load of a query execution can be represented as
number of mappers per query. We measured the number of
mappers per query and precision for 50 KNN queries, with
K=20, for both datasets, with 2GB, 4GB, and 8GB of in-
dexed data (∼4000, ∼8000, and ∼16000 feature vectors for
the real image dataset and ∼8000, ∼16000, and ∼32000 fea-
ture vectors for the synthetic dataset, respectively). The
number of mappers per query for synthetic dataset is shown
in Figure 5. And as we can see the number of mappers is
about 3 times smaller for LSH than for linear scan. Also we
can see in Figure 6, which shows the number of mappers per
query for the Flickr dataset, that the difference in the num-
ber of mappers between LSH and linear scan is even bigger.
The number of mappers per query is 4 to 5 times smaller
for LSH than for linear scan in this case. The precision,
shown in Figure 7, for generated data is over the threshold
of 70% for 2GB and 4GB of indexed data, but drops down to
63.8% for 8GB. For real image data, the precision is almost
constant, varying slightly around 86%.

6. CONCLUSION
In this work we described RankReduce, an approach for

processing large amounts of data for K-Nearest Neighbor
(KNN) queries. Instead of dealing with standard issues in
distributed systems such as scalability and fault tolerance,
we implement our solution with MapReduce, which provides
these salient properties out of the box. The key idea of
the presented approach is to use Locality Sensitive Hashing
(LSH) in the Map phase of MapReduce to assign similar ob-
jects to the same files in the underlying distributed file sys-
tem. While this seemed to be straight forward at first glance,
there was a nontrivial conflict of opposing criteria and con-
straints caused by LSH and MapReduce which we had to
solve to achieve accurate results with an acceptable query
response time. We have demonstrated the suitability of our
approach using both a synthetic and a real world dataset.

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40  45

P
re

ci
si

on
 %

Data subset probed %

LSH characteristics [Real Image Data]

4 Hash tables
8 Hash tables

16 Hash tables
32 Hash tables

Figure 3: LSH characteristics on picture data.

 0

 5

 10

 15

 20

 25

 30

 35

 200  250  300  350  400  450  500  550

D
at

a 
su

bs
et

 p
ro

be
d 

%

Bucket size, W parameter

Overhead without using union for 4 hash tables

Data subset probed without union
Data subset probed with union

Figure 4: Overhead without using union.

Our presented approach on large scale data processing is,
however, not limited to KNN search over images, but can
be extended to a variety of other interesting applications,
such as near duplicate detection, document classification, or
document clustering.

As a first step in our future work plan to evaluate our
approach on a real compute cluster, which we are currently
building up, with large scale data in the order of several TB.
We furthermore plan to extend our approach to video and
music retrieval.
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and Amr El Abbadi. Content-based similarity search
over peer-to-peer systems. In DBISP2P, 2004.

[24] Bilyana Taneva, Mouna Kacimi, and Gerhard
Weikum. Gathering and ranking photos of named
entities with high precision, high recall, and diversity.
In WSDM, 2010.

LSDS-IR’10 RankReduce - Processing K-Nearest Neighbor Queries on Top of MapReduce

18



Topic-based Index Partitions for
Efficient and Effective Selective Search

Anagha Kulkarni and Jamie Callan
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
anaghak, callan@cs.cmu.edu

ABSTRACT
Indexes for large collections are often divided into shards
that are distributed across multiple computers and searched
in parallel to provide rapid interactive search. Typically, all
index shards are searched for each query. This paper inves-
tigates document allocation policies that permit searching
only a few shards for each query (selective search) without
sacrificing search quality. Three types of allocation poli-
cies (random, source-based and topic-based) are studied. K-
means clustering is used to create topic-based shards. We
manage the computational cost of applying these techniques
to large datasets by defining topics on a subset of the collec-
tion. Experiments with three large collections demonstrate
that selective search using topic-based shards reduces search
costs by at least an order of magnitude without reducing
search accuracy.

Categories and Subject Descriptors
H.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval

Keywords
selective searching, federated search, document clustering

1. INTRODUCTION
Traditionally, searching a collection of documents was a

serial task accomplished using a single central index. How-
ever, as the document collections increased in size, it be-
came necessary and a common practice to partition collec-
tions into multiple disjoint indexes (shards) [2, 1]. These
distributed indexes facilitate parallelization of search which
in turn brings down the query processing time. However,
even in this architecture the cost associated with searching
large-scale collections is high. For organizations with mod-
est resources this becomes a challenge and potentially limits
the scale of the collections that they can experiment with.

Copyright c⃝ 2010 for the individual papers by the papers’ authors. Copy-
ing permitted only for private and academic purposes. This volume is pub-
lished and copyrighted by its editors.
LSDS-IR Workshop, July 2010. Geneva, Switzerland.

Our goal is to organize large collections into shards such
that the shards facilitate a search setup where only a subset
of the shards are searched for any query (selective search)
and yet provide a performance that is at par with that pro-
vided by exhaustive search. The amount of work required
per query is naturally much lower in the selective search
setup and thus it does not necessitate availability of large
computing clusters to work with large document collections.

We experiment with three document allocation policies
random, source-based and topic-based to partition the col-
lections into shards (Section 3). One of the main challenges
that we tackle in this work is to scale the organization poli-
cies to be able to process large collections. Some of the above
policies are naturally efficient but for others we propose an
approximation technique that is efficient and can parallelize
the partitioning process. We also establish that the approxi-
mation would not lead to any significant loss in effectiveness.
The other contribution of this work is the introduction of a
simple yet more accurate metric for measuring the search
cost incurred for each query (Section 6.2).

2. RELATED WORK
There have been few other studies that have looked at par-

titioning of collections into shards. Xu and Croft [16] used a
two-pass K-means clustering algorithm and a KL-divergence
distance metric to organize a collection into 100 topical clus-
ters. They also experiment with source-based organization
and demonstrate that selective search performed as well as
exhaustive search, and much better than a source-based or-
ganization. The datasets used in this work are small and
thus it not clear whether the document organization algo-
rithms employed in this work would scale and be effective
for large-scale datasets such as the ones used in our work.
Secondly, it has been a common practice in previous work
to compute search cost by looking at the number of shards
searched for a query which is what is used by Xu and Croft.
However, in most setups the shards are of non-uniform sizes
and thus this formulation of search cost does not enable an
accurate analysis of the trade-off between search cost and
accuracy. We remedy this by factoring in the individual
shard sizes into the search cost formulation.

Larkey et al. [7] studied selective search on a dataset com-
posed of over a million US Patents documents. The dataset
was divided into 401 topical units using manually assigned
patent categories, and into 401 chronological units using
dates. Selective search was more effective using the topi-
cal organization than the chronological organization.
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Puppin et al. [12] used query logs to organize a docu-
ment collection into multiple shards. The query log covered
a period of time when exhaustive search was used for each
query. These training queries and the documents that they
retrieved were co-clustered to generate a set of query clusters
and a set of corresponding 16 document clusters. Documents
that could not be clustered because they were not retrieved
by any query (50% of the dataset) were put in a 17th (fall-
back) cluster. Selective search using shards defined by these
clusters was found to be more effective than selective search
using shards that were defined randomly. The number of
shards is relatively very small for a large dataset and the
distribution of documents across the shards using this ap-
proach is skewed. The inability of the algorithm to partition
documents that have not appeared in the query log make this
technique’s performance highly dependent on the query-log
used for the partitioning.

Once the collection has been organized into shards, de-
ciding which index shards to search from the given set of
shards is a type of resource selection problem [3]. In prior
research [4, 14, 13] , the resources were usually indepen-
dent search engines that might be uncooperative. Selec-
tively searching the shards of a large index is however an
especially cooperative federated search problem where the
federated system can define the resources (shards) and ex-
pect complete support from them.

3. DOCUMENT ALLOCATION POLICIES
Our goal is to investigate document allocation policies

that are effective, scalable, and applicable in both research
and commercial environments. Although we recognize the
considerable value of query logs and well-defined categories,
they are not available in all environments, thus our research
assume access only to the document contents to develop the
allocation techniques. This work studies random, source-
based, and topic-based allocation policies.

3.1 Random Document Allocation
The random allocation policy assigns each document to

one of the shards at random with equal probability. One
might not expect a random policy to be effective, but it was
a baseline in prior research [12]. Our experimental results
show that for some of the datasets random allocation is more
effective than one might expect.

3.2 Source-based Document Allocation
Our datasets are all from the Web. The source-based

policy uses document URLs to define shards. The docu-
ment collection is sorted based on document URLs, which
arranges documents from the same website consecutively.
Groups of M/K consecutive documents are assigned to each
shard (M : total number of documents in the collection, K:
number of shards). Source-based allocation was used as a
baseline in prior research [16].

3.3 Topic-based Document Allocation
The Cluster Hypothesis states that closely associated doc-

uments tend to be relevant to the same request [15]. Thus if
the collection is organized such that each shard contains a
similar set of documents, then it is likely that the relevant
documents for any given query will be concentrated in just
a few shards. Cluster-based and category-based document
allocation policies were effective in prior research [16, 12, 7].

We adapt K-means clustering [8] such that it would scale
to large collections and thus provide an efficient approach to
topical sharding of datasets.

Typically, a clustering algorithm is applied to the entire
dataset in order to generate clusters. Although the computa-
tional complexity of the K-means algorithm [8] is only linear
in the number of documents (M), applying this algorithm
to large collections is still computationally expensive. Thus,
we sample a subset (S) of documents from the collection
(|S| << |M |), using uniform sampling without replacement.
The standard K-means clustering algorithm is applied to S
and a set of K clusters is generated. The remaining doc-
uments in the collection (M − S) are then projected onto
the space defined by the K clusters. Note that the process
of assigning the remaining documents in the collection to
the clusters is parallelizable. Using this methodology large
collections can be efficiently partitioned into shards.

We use the negative Kullback-Liebler divergence (Equa-
tion 1) to compute the similarity between the unigram
language model of a document D (pd(w)), and that of a
cluster centroid Ci (pi

c(w)). (Please refer to [11] for the
derivation.) Using maximum likelihood estimation (MLE),
the cluster centroid language model computes to, pi

c(w) =
c(w, Ci)/

∑
w′ c(w′, Ci) where c(w, Ci) is the occurrence

count of w in Ci. Following Zhai and Lafferty [17], we
estimate pd(w) using MLE with Jelinek-Mercer smooth-
ing which gives pd(w) = (1 − λ) c(w, D)/

∑
w′ c(w′, D) +

λ pB(w). The term pB(w) is the probability of the term w
in the background model. The background model is an av-
erage of the K centroid models. Note that the background
model plays the role of inverse document frequency for the
term w.

KL(Ci||D) =
∑

w∈Ci
∩

D

pi
c(w) log

pd(w)

λ pB(w)
(1)

We found this version of KL-divergence to be more effective
than the variant used by Xu and Croft [16].

4. SHARD SELECTION
After index shards are defined, a resource selection algo-

rithm is used to determine which shards to search for each
query. Our research used ReDDE [14], a widely used algo-
rithm that prioritizes shards by estimating a query specific
distribution of relevant documents across shards. To this
end, a centralized sample index, CS, is created, one that
combines samples from every shard R. For each query, a
retrieval from the central sample index is performed and the
top N documents are assumed to be relevant. If nR is the
number of documents in N that are mapped to shard R then
a score sR for each R is computed as sR = nR ∗ wR, where
the shard weight wR is the ratio of size of the shard |R| and
the size of its sample. The shard scores sR are then nor-
malized to obtain a valid probability distribution which is
used to rank the shards. In this work, we used a variation
of ReDDE, which produced better results in preliminary ex-
periments. Rather than weight each retrieved sampled doc-
ument equally, we use the document score assigned by the
retrieval algorithm to weight the document.

Selective search of index shards is a cooperative environ-
ment where global statistics of each shard are readily avail-
able. Thus merging the document rankings generated by
searching the top ranked shards is straightforward.
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Table 1: Datasets and Query Sets
Number Number Vocabulary Avg Query Avg Avg Number

of of Words Size Doc Set Qry of Rel Docs
Dataset Documents (billion) (million) Len Len Per Qry
Gov2 25,205,179 23.9 39.2 949 701-850 3.1 179 (+/- 149)
Clue-CatB 50,220,423 46.1 96.1 918 TREC09:1-50 2.1 80 (+/- 49 )
Clue-CatA-Eng 503,903,810 381.3 1,226.3 757 TREC09:1-50 2.1 114 (+/- 64 )

5. DATASETS
Three large datasets were used in this work: Gov2, the

CategoryB portion of ClueWeb09 (Clue-CatB) and the En-
glish portion of ClueWeb09 (Clue-CatA-Eng). The sum-
mary statistics of these datasets are given in Table 1.

The Gov2 TREC corpus [5] consists of 25 million docu-
ments from the US government domains, such as .gov and
.us, and also from government related websites, such as,
www.ncgov.com and www.youroklahoma.com 1. TREC top-
ics 701-850 were used for evaluation with this dataset. The
statistics for these queries are provided in the Table 1.

The ClueWeb09 is a newer dataset that consists of 1 billion
web pages that were crawled between January and February
2009. Out of the 10 languages present in the dataset we use
the English portion in this work. The Clue-CatB dataset
consists of the first 50 million English pages and the Clue-
CatA-Eng consists of all the English pages in the dataset
(over 500 million). For evaluation with both Clue-CatB and
Clue-CatA-Eng datasets we use the 50 queries that were
used in the Web track at TREC 2009.

6. EXPERIMENTAL METHODOLOGY
The three datasets were converted to Indri2 indexes after

stoplisting and stemming with the Krovetz stemmer.

6.1 Sample size and OOV terms
Using a subset instead of the entire collection to learn the

clusters reduces the computational cost however it also in-
troduces the issue of out-of-vocabulary (OOV) terms during
inference. Depending upon the size of the subset (S) that
was used for learning, the remaining documents in the col-
lection are bound to contain terms that were not observed
in S and thus are absent from the learned clusters or topic
models. In such a situation, inference must proceed using
the seen terms and ignore the OOV terms. However, the
inference quality can potentially degrade because of the dis-
counting of the OOV terms. It is important to select a
sample size that leads to a small percentage of OOV terms
per document.

Figure 1 (x-axis in log domain) demonstrates that the av-
erage percentage of OOV terms per document is low even for
small sample sizes. Note that the drop in the average values
isn’t linear in the sample size; as more documents are seen,
the percentage of unseen terms does not decrease propor-
tionately. Heaps’ law [6] offers an explanation for this trend
– when examining a corpus, the rate at which vocabulary is
discovered tapers off as the examination continues. Thus af-
ter a certain point increasing the sample size has little effect
on the percentage of OOV terms per document.

We leverage these observations to make our experimental

1http://www.mccurley.org/trec/
2http://www.lemurproject.org/indri/
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Figure 1: Sample size vs. percentage of OOV
terms per document, on average, for the Clue-CatB
Dataset.

methodology efficient. For Gov2 and Clue-CatB datasets we
sample 0.1% (25K and 50K documents) and for Clue-CatA-
Eng dataset we sample 0.01% (50K documents) of the entire
collection using uniform sampling. These samples are used
by K-means for cluster learning.

6.2 Setup
The Gov2 and Clue-CatB datasets were each partitioned

into 100 shards while the Clue-CatA-Eng dataset was or-
ganized into 500 shards using each of the document alloca-
tion techniques. The top 10 terms for nine of the 100 top-
ical shards of the Clue-CatB dataset are given in Table 2.
These are the terms that explain the majority of the proba-
bility mass in the language models for each of these topical
clusters. For these nine shards and for most of the other
91 shards a semantically coherent topic emerges from these
terms.

A language modeling and inference network based re-
trieval model, Indri [9], was used for our experiments. Mod-
eling dependencies among the query terms has been shown
to improve adhoc retrieval performance [10]. We investigate
if this holds for selective search as well. Thus document re-
trieval was performed using the simple bag-of-words query
representation and also with the full-dependence model
query representation. The Indri query language, which sup-
ports structured queries, was used for the dependence model
queries. For each query the set of shards was ranked us-
ing the variant of ReDDE algorithm described in Section 4
and the top T shards were searched to generate the merged
ranked list of documents.

The precision at rank 10 metric (P10) was used to compare
the search accuracy of exhaustive search with that of selec-
tive search. We define the search cost of a query to be the
percentage of documents that were searched. For exhaustive
search the cost is 100% while for selective search the cost de-
pends on the number of shards that were searched and the
fraction of documents that were present in these shards.
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Table 2: Top terms from topical shards of the Clue-CatB dataset.
Topic A Topic B Topic C Topic D Topic E Topic F Topic G Topic H Topic I

state policy recipe music game law entertain price health
politics privacy food record play patent com accessory care
election information cook song casino attorney news com center
party terms com album free com sports size service
war service home wikipedia online legal advertise product school
america site new edit com lawyer home clothing child
government rights make rock puzzle www blog item home
vote copyright make com download california list ship program
new return oil band poker home business home educate
president com cup video arcade case search costume parent

Table 3: P10 values for selective search on Gov2 with
bag-of-words query. L denotes significantly worse
P10 than exhaustive search (p < 0.05).
Exhaustive search: P10=0.530, Cost=100%

Rand Source K-means

1 Shard L 0.169 L0.236 0.491
Cost (%) 1.00 1.00 1.24
3 Shards L0.302 L0.419 0.511
Cost (%) 3.00 3.00 3.62
5 Shards L0.338 L0.456 0.520
Cost (%) 5.00 5.00 6.00
10 Shards L0.384 L0.492 0.533
Cost (%) 10.00 10.00 11.38
15 Shards L0.411 0.507 0.530
Cost (%) 15.00 15.00 15.40

7. RESULTS AND DISCUSSION
The selective search results for the Gov2 dataset with bag-

of-words query representation are provided in Table 3.
Selective search on shards defined by K-means provides

search accuracy that is statistically indistinguishable from
that of exhaustive search when the search cost is 1.24% of
that of exhaustive search. For source-based shards the top
15 shards have to be searched to obtain comparable search
accuracy, however, even this leads to an order of magnitude
reduction in search cost.

Recall that the samples that were used to define the
K-means clusters were quite small, 0.1% and 0.01% of the
collection. These results show that an exact clustering solu-
tion that uses the entire collection is not necessary for selec-
tive search to perform at par with the exhaustive search. An
efficient approximation to topic-based techniques can parti-
tion large collection effectively and facilitate selective search.

Table 4 provides selective search results for the Gov2
dataset with dependence model queries. As observed by
Metzler and Croft in [10], the dependence model queries
lead to better search performance than bag-of-words queries
– an improvement of 10% is obtained for exhaustive search
and for many of the selective search settings as well. Se-
lective search proves to be as capable as exhaustive search
in leveraging the information about query term dependence.
The trends observed in Table 4 are similar to those observed
in Table 3 – topic-based shards provide the cheapest setup
for obtaining selective search accuracies that are comparable
to those of exhaustive search. However, the absolute search
cost for the selective search to be statistically indistinguish-

Table 4: P10 values for selective search on Gov2
with dependence model query. L denotes signifi-
cantly worse P10 than exhaustive search (p < 0.05).
Exhaustive search: P10=0.580, Cost=100%

Rand Source K-means

1 Shard L0.165 L0.255 L0.504
Cost(%) 1.00 1.00 1.26
3 Shards L0.304 L0.443 L0.552
Cost (%) 3.00 3.00 3.62
5 Shards L0.357 L0.491 0.575
Cost (%) 5.00 5.00 6.00
10 Shards L0.419 0.556 0.583
Cost (%) 10.00 10.00 11.38
15 Shards L0.442 0.560 0.584
Cost (%) 15.00 15.00 15.63

able from exhaustive search goes up from 1.24% (bag-of-
words) to 6%. Nevertheless, the search cost (6%) is still
an order of magnitude smaller than the cost for exhaustive
search. In the interest of space we report only dependence
model results henceforth, due to their higher accuracy.

Results for the Clue-CatB dataset and the Clue-CatA-Eng
datasets are provided in Tables 5 and 6. The topic-based
technique perform as well as the exhaustive search by search-
ing only the top ranked shard which is less than 2% and
0.5% of the documents for Clue-CatB and Clue-CatA-Eng,
respectively. Searching the top 3 shards provides nearly 10%
and 30% improvement over exhaustive search for Clue-CatB
and Clue-CatA-Eng, respectively, and the latter is found to
be statistically significant. To the best of our knowledge
these results provide an evidence for the first time that selec-
tive search can consistently improve over exhaustive search
while searching a small fraction of the collection.

For both the datasets, selective search loses this advantage
over the exhaustive search by searching more shards. This
indicates that a smaller but tightly focused search space can
be better than a larger search space. This also implies that
searching a fixed number of shards for each query might not
be ideal. This is an interesting topic for future research in se-
lective search. The source-based shards continue to provide
a competitive baseline for both the datasets.

A query-level analysis of the effectiveness of different
methods at minimizing the number of queries harmed by
selective search revealed that 86% or more queries did as
well or improved over exhaustive search accuracy when per-
forming selective search using topic-based shards. While for
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Table 5: P10 values for selective search on Clue-
CatB with dependence model query. L denotes
significantly worse P10 than exhaustive search and
K denotes significantly better P10 than exhaustive
search (p < 0.05).
Exhaustive search: P10=0.300, Cost=100%

Rand Source K-means

1 Shard L0.080 L0.156 0.302
Cost (%) 1.00 1.00 1.63
3 Shards L0.180 0.244 0.330
Cost (%) 3.00 3.00 4.99
5 Shards L0.212 0.278 0.314
Cost (%) 5.00 5.00 7.85
10 Shards 0.252 0.304 0.292
Cost (%) 10.00 9.80 14.69
15 Shards 0.254 0.306 0.294
Cost (%) 15.00 15.00 21.84

Table 6: P10 values for selective search on Clue-
CatA-Eng with dependence model query. L denotes
significantly worse P10 than exhaustive search and
K denotes significantly better P10 than exhaustive
search (p < 0.05).
Exhaustive search: P10=0.142, Cost=100%

Rand Source K-means

1 Shard L0.024 L0.056 0.152
Cost (%) 0.20 0.20 0.32
3 Shards L0.046 0.112 K0.182
Cost (%) 0.60 0.60 1.12
5 Shards L0.066 0.120 0.174
Cost (%) 1.00 1.00 2.08
10 Shards L0.088 0.168 0.160
Cost (%) 2.00 2.01 4.81
15 Shards 0.114 0.174 0.146
Cost (%) 3.00 3.00 7.40

source-based 60% or more queries were found to perform
well with selective search.

The selective search performance for the Clue datasets
becomes comparable to that of exhaustive search much ear-
lier in terms of shard cutoff than that for the Gov2 dataset.
We believe this could be an artifact of the differences in the
topical diversity of the datasets – the ClueWeb-09 dataset is
much more diverse than the Gov2 dataset. As a result the
topical shards of the ClueWeb-09 dataset are more dissimilar
to each other than those for the Gov2 dataset. This could
have an effect of concentrating similar documents in fewer
shards for Clue datasets. Thus searching the top ranked
shard is sufficient to retrieve most of the relevant documents.
The topical diversity and the topically focused shards must
also help reduce the errors during shard ranking.

The Clue datasets and the Gov2 dataset are also different
in terms of the level of noise that is present in these datasets.
Clue datasets have high percentage of noise while Gov2 is
relatively clean. This could be one of the reasons why selec-
tive search is able to provide a significant improvement over
exhaustive search for the Clue datasets. Selective searching
of shards provides a natural way to eliminate some of the
noise from the search space which improves the search ac-
curacy by reducing the false positives from the final results.

More generally, these results reveal that each of the doc-
ument allocation policies, more or less, converges to the
exhaustive search performance, however, at very different
rates. Topic-based converges the fastest and random con-
verges the slowest.

8. CONCLUSIONS
This work demonstrated that exhaustive search of docu-

ment collection is not always necessary to obtain compet-
itive search accuracy. To enable this we partitioned the
dataset into distributed indexes or shards, and then selec-
tively searched a small subset of these shards. An important
step in this process is the allocation of documents to various
shards. We investigated three types of document allocation
policies: random, source-based and topic-based.

Empirical results on three large datasets demonstrated
that selective search of topic-based shards provides at least
an order of magnitude reduction in search costs with no loss
of accuracy, on average. 86% or more queries did as well
or improved over exhaustive search accuracy when perform-
ing selective search using topic-based shards for all the three
datasets. Although previous work hasn’t reported this num-
ber anecdotal results suggest that this is much more stable
than prior research. The results also demonstrate for the
first time that selective search can consistently improve over
exhaustive search while searching only a small fraction of
the collection if a good document allocation policy has been
employed to create the shards.

The topic-based document allocation technique studied in
this work has two useful properties – scalability and gener-
ality. Scalability is achieved by using sampling-based ap-
proximation of K-means clustering to efficiently partition a
large collection into topical shards. Our experiments show
that even relatively small samples provide good coverage
and statistics of corpus vocabulary. Generality is provided
by the K-means clustering used to define topics, because it
does not require any specific resources such as training data,
query logs, click-through data, or predefined categories. Ex-
isting techniques such as caching that make use of resources
like query-logs and click-through data to reduce search cost,
can be used in combination with the techniques studied in
this paper to further lower the search cost.
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ABSTRACT
Given a collection of objects, the All Pairs Similarity Search
problem involves discovering all those pairs of objects whose
similarity is above a certain threshold. In this paper we
focus on document collections which are characterized by a
sparseness that allows effective pruning strategies.

Our contribution is a new parallel algorithm within the
MapReduce framework. The proposed algorithm is based on
the inverted index approach and incorporates state-of-the-
art pruning techniques. This is the first work that explores
the feasibility of index pruning in a MapReduce algorithm.
We evaluate several heuristics aimed at reducing the com-
munication costs and the load imbalance. The resulting al-
gorithm gives exact results up to 5x faster than the current
best known solution that employs MapReduce.

1. INTRODUCTION
The task of discovering similar objects within a given col-

lection is common to many real world applications and ma-
chine learning problems. To mention a few, recommendation
and near duplicate detection are a typical examples.

Item-based and user-based recommendation algorithms
require to find, respectively, similar objects to those of inter-
est to the user, or other users with similar tastes. Due the
the number of users and objects present in recommender sys-
tems, e.g. Amazon, similarity scores are usually computed
off-line.

Near duplicate detection is commonly performed as a pre-
processing step before building a document index. It may
be used to detect redundant documents, which can therefore
be removed, or it may be a hint for spam websites exploit-
ing content repurposing strategies. Near duplicate detection
finds application also in the area of copyright protection as a
tool for discovering plagiarism, for both text and multimedia
content.

In this paper, we focus on document collections. The rea-
son is that documents are a particular kind of data that

Copyright c© 2010 for the individual papers by the papers’ authors. Copy-
ing permitted only for private and academic purposes. This volume is pub-
lished and copyrighted by its editors.
LSDS-IR Workshop, July 2010. Geneva, Switzerland.

exhibits a significant sparseness: only a small subset of the
whole lexicon occurs in any given document. This sparsity
allows to exploit indexing strategies that reduce the poten-
tially quadratic number of candidate pairs to evaluate.

Furthermore, we are interested in discovering only those
pairs of documents with high similarity. If two documents
are not similar, they usually do not contribute to any of the
applications we mentioned above. By setting a minimum
similarity threshold, we can also embed aggressive pruning
strategies.

Finally, the size of the collection at hand poses new in-
teresting challenges. This is particularly relevant for Web-
related collections, where the number of documents involved
is measured in billions. This implies an enormous number
of potential candidates.

More formally, we address the all pair similarity search
problem applied to a collection D of documents. Let L be
the lexicon of the collection. Each document d is represented
as a |L|-dimensional vector, where d[i] denotes the number of
occurrences of the i-th term in the document d. We adopt
the cosine distance to measure the similarity between two
documents. Cosine distance is a commutative function, such
that cos(di, dj) = cos(dj , di).

Definition 1. Given a collection D = {d1, . . . , dN} of
documents, and a minimum similarity threshold σ, the All
Pairs Similarity (APS) problem requires to discover all those
document pairs di, dj ∈ D, such that:

cos(di, dj) =

∑
0≤t<|L| di[t] · dj [t]

‖di‖‖dj‖
≥ σ

We normalize vectors to unit-magnitude. In this special
case, the cosine distance becomes simply the dot product
between the two vectors, denoted as dot(di, dj).

The main contribution of this work is a new distributed
algorithm that embeds state-of-the-art pruning techniques.
The algorithm is designed within the MapReduce frame-
work, with the aim of exploiting the aggregated computing
and storage capabilities of large clusters.

The rest of this paper is organized as follows: in Sec-
tion 2 we introduce a few concepts needed for the descrip-
tion of the proposed algorithm. We also describe the two
most relevant contributions to our work. Section 3 incre-
mentally describes our proposed algorithm and heuristics,
highlighting the strengths and weaknesses for each strategy.
Section 4 presents the results of our experimental evalua-
tion. Finally, in Section 5 we summarize our contribution
and present some ideas for future work.
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2. BACKGROUND

A serial solution. The most efficient serial solution to
the APS problem was introduced in [3]. The authors use
an inverted index of the document collection to compute
similarities. An inverted index stores an inverted list for
each term of the lexicon, i.e. the list of documents containing
it, together with the weight of the term in each document.
More formally, the inverted list of the term t is defined as
It = {〈di, di[t]〉|di[t] > 0}.

It is evident that two documents with non-zero similarity
must occur in the same inverted list at least once. Therefore,
given a document di, by processing all the inverted lists It

such that di[t] > 0, we can detect all those documents dj

that have at least one term in common with di, and therefore
similarity greater than 0.

This is analogous to information retrieval systems, where
a query is submitted to the inverted index to retrieve match-
ing/similar documents. In this case, a full document is used
as a query.

Actually, index construction is performed incrementally,
and simultaneously to the search process. The matching
and indexing phase are performed one after the other. The
current document is first used as a query to the current in-
dex. Then it is indexed, and it will be taken into account to
answer subsequent document similarity queries. Each doc-
ument is thus matched only against its predecessors, and
input documents can be discarded once indexed.

Usually the matching phase dominates the computation
because its complexity is quadratic with respect to the length
of the inverted lists. In order to speed-up the search pro-
cess, various techniques to prune the index have been pro-
posed [2, 3].

We focus on the first technique proposed in [3]. Let d̂ be

an artificial document such that d̂[i] = maxd∈D d[i]. The

document d̂ is an upper-bounding pivot: given a document
di, if cos(di, d̂) < σ then there is no document dj ∈ D be-

ing sufficiently similar to di. This special document d̂ is
exploited as follows.

Before indexing the current document di, the largest b
such that

∑
0≤t<b di[t] · d̂[t] < σ is computed. The terms t <

b of a document are stored in a remainder collection named
DR, and only the terms t ≥ b of the current document are
inserted into the inverted index. The pruned index provides
partial scores upon similarity queries.

The authors prove that for each document di currently
being matched, their algorithm correctly generates all the
candidate pairs (di, dj) using only the indexed components
of each dj . For such documents the remainder portion of dj

is retrieved from DR to compute the final similarity score.
Finally, the authors propose to leverage the possibility of

reordering the terms in the lexicon. By sorting the terms in
each document by frequency in descending order, such that
d[0] refers to the most frequent term, most of the pruning
will involve the longest lists.

A parallel solution.
When dealing with large datasets, e.g. collections of Web

documents, the costs of serial solutions are still not accept-
able. Furthermore, the index structure can easily outgrow
the available memory. The authors of [5] propose a parallel
distributed solution based on the MapReduce framework [4].

MapReduce is a distributed computing paradigm inspired

by concepts of functional languages. More specifically, MapRe-
duce is based on two higher order functions: Map and Re-
duce. The Map function applies a User Defined Function
(UDF) to each key-value pair in the input, which is treated
as a list of independent records. The result is a second list of
intermediate key-value pairs. This list is sorted and grouped
by key, and used as input to the Reduce function. The Re-
duce function applies a second UDF to every intermediate
key with all its associated values to produce the final result.

The signatures of the functions that compose the phases
of a MapReduce computation are as follows:

Map : [〈k1, v1〉] → [〈k2, v2〉]
Reduce : {k2 : [v2]} → [〈k3, v3〉]

where curly braces “{ }′′ square brackets “[ ]” and angle
brackets “〈 〉” indicate respectively a map/dictionary, a list
and a tuple.

The Map and Reduce function are purely functional and
thus without side effects. For this reason they are easily
parallelizable. Fault tolerance is easily achieved by just re-
executing the failed function. MapReduce has become an
effective tool for the development of large-scale applications
running on thousand of machines, especially with the release
of the open source implementation Hadoop [1].

Hadoop is an open source MapReduce implementation
written in Java. Hadoop provides also a distributed file
system called HDFS, that is used as a source and sink for
MapReduce executions. HDFS deamons run on the same
machines that run the computations. Data is split among
the nodes and stored on local disks. Great emphasis is
placed on data locality: the scheduler tries to run mappers
(task executing the Map function) on the same nodes that
hold the input data. This helps to reduce network traffic.

Mappers sort and write intermediate values on the local
disk. Each reducer (task executing the Reduce function)
pulls the data from various remote disks. Intermediate key-
value pairs are already partitioned and sorted by key by the
mappers, so the reducer just merge-sorts the different par-
titions to bring the same keys together. This phase is called
shuffle, and is the most expensive in terms of I/O operations.
The MapReduce data flow is illustrarted in Figure 1.

DFS
Input 1

Input 2

Input 3

MAP

MAP

MAP

REDUCE

REDUCE

DFS

Output 1

Output 2

Shuffle

Merge & 
GroupPartition &

Sort

Figure 1: Data flow in a MapReduce job

Since building and querying incrementally a single shared
index in parallel is not a scalable solution, a two phase al-
gorithm is proposed in [5]. In the first phase an inverted
index of the collection is built (indexing phase), and in the
second phase the similarity score is computed directly from
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the index (similarity phase). Each phase is implemented as
a MapReduce execution.

We describe this algorithm in more detail in the following
section. The algorithm is used throughout the paper as a
baseline for the evaluation of our proposed solutions. Indeed,
the authors of [5] propose an algorithm for computing the
similarity of every pair of documents. For this reason, we
add a final filtering phase that discards the documents that
do not satisfy the threshold.

3. ALGORITHM
In this section we describe the algorithm used to solve the

APS problem using the MapReduce framework. We start
from a basic algorithm and propose variations to reduce its
cost. The main idea we try to exploit is that many of the
pairs are not above the similarity threshold, so they can
be pruned early from the computation. This fact is already
exploited in state-of-the-art serial algorithms [2, 3]. Our goal
is to embed these techniques into the MapReduce parallel
framework.

3.1 Indexed Approach (Version 0)
A simple solution to the pairwise document similarity

problem [5] can be expressed as two separate MapReduce
jobs:

1. Indexing: for each term in the document, the mapper
emits the term as the key, and a tuple consisting of
document ID and weight as the value, i.e. the tuple
〈d, d[t]〉. The MapReduce runtime automatically han-
dles the grouping by key of these tuples. The reducer
then writes them to disk to generate the inverted lists.

2. Similarity: for each inverted list It, the mapper emits
pairs of document IDs that are in the same list as keys.
There will be m×(m−1)/2 pairs where m = |It| is the
inverted list length. The mapper will associate to each
pair the product of the corresponding term weights.
Each value represents a single term’s contribution to
the final similarity score. The MapReduce runtime
sorts and groups the tuples and then the reducer sums
all the partial similarity scores for a pair to generate
the final similarity score.

This approach is very easy to understand and implement,
but suffers from various problems. First, it generates and
evaluates all the pairs that have one feature in common, even
if only a small fraction of them are actually above the simi-
larity threshold. Second, the load is not evenly distributed.

The reducers of the similarity phase can only start af-
ter all the mappers have completed. The time to process
the longest inverted list dominates the pair generation per-
formed by the mappers. With real-world data, which follows
a Zipfian or Power-law distribution, this means that the re-
ducers usually have to wait for a single mapper to complete.
This problem is exacerbated by the quadratic nature of the
problem: a list twice as long takes about four times more to
be processed.

A document frequency cut has been proposed to help re-
ducing the number of candidate pairs [5]. This technique
removes the 1% most frequent terms from the computation.
The rationale behind this choice is that because these terms
are frequent, they do not help in discerning documents. The
main drawback of this approach is that the resulting simi-
larity score is not exact.

3.2 Pruning (Version 1)
To address the issues in the previous approach, we em-

ploy the pruning technique described in Section 2. As a
result, during the indexing phase, a smaller pruned index
is produced. On the one hand, this reduces the number of
candidate pairs produced, and therefore the volume of data
handled during the MapReduce shuffle. On the other hand,
by sorting terms by their frequency, the pruning significantly
shortens the longest inverted lists. This decreases the cost
of producing a quadratic number of pairs from these lists.

This pruning technique yields correct results when used in
conjunction with dynamic index building. However, it also
works when the index is built fully before matching, and
only the index is used to generate candidate pairs. To prove
this, we show that this approach generates every document
pair with similarity above the threshold.

Let di, dj be two documents and let bi, bj be, respectively,
the first indexed features for each document. bi and bj are
the boundaries between the pruned and indexed part as
shown in Figure 2. Without losing generality, let bj � bi
(recall that features are sorted in decreasing order of fre-
quency, so bj is less frequent than bi). We can compute the
similarity score as the sum of two parts:

dot(di, dj) =
∑

0≤t<bj

di[t] · dj [t] +
∑

bj≤t<|L|
di[t] · dj [t]

While indexing, we keep an upper bound on the similarity
between the document and the rest of the input. This means
that ∀ḋ ∈ D, ∑

0≤t<bj
ḋ[t] · dj [t] < σ. Thus, if the two doc-

uments are above the similarity threshold dot(di, dj) ≥ σ,
then it must be that

∑
bj≤t<|L| di[t] · dj [t] > 0. If this is

the case, then ∃ t � bj | (di ∈ It ∧ dj ∈ It). Therefore, our
strategy will generate the pair (di, dj) when scanning list It.

Pruned Indexed

Pruned Indexed

di

dj

bi bj

|L|0

Figure 2: Pruned Document Pair: the left part
(orange/light) has been pruned, the right part
(blue/dark) has been indexed.

The Reduce function in the similarity phase receives a re-
duced number of candidate pairs, and computes a partial
similarity score. Due to index pruning, no partial scores
will be produced from the inverted lists {It | 0 ≤ t < bj},
since these inverted lists will not contain both documents.
Therefore, the reducer will have to retrieve the original doc-
uments, and compute the contribution up to term bj in order
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to produce the exact similarity score.
We chose to distribute the input locally on every node1.

The performance penalty of distributing the input collection
is acceptable for a small number of nodes, but can become
a bottleneck for large clusters. Furthermore, the input is
usually too big to be kept in memory, so we still have to
perform 2 random disk I/O per pair.

Finally, to improve the load balancing we employ a sim-
ple bucketing technique. During the indexing phase, we
randomly hash the inverted lists to different buckets. This
spreads the longest lists uniformly among the buckets. Each
bucket will be consumed by a different mapper in the similar-
ity phase. While more sophisticated strategies are possible,
we found that this one works well enough in practice.

3.3 Flagging (Version 2)
In order to avoid the distribution of the full document col-

lection, we propose a less aggressive pruning strategy. Our
second approach consists in flagging the index items instead
of pruning them. At the same time, the flagged parts of the
documents are written as a side effect file by the mappers
of the indexing phase. This “remainders” file is then dis-
tributed to all the nodes, and made available to the reducers
of the similarity phase. The remainders file is normally just
a fraction of the size of the original input (typically 10%),
so distributing it is not a problem. During pair generation
in the similarity phase, a pair is emitted only if at least one
of the two index items is not flagged.

Our pair generation strategy emits all the pairs for the fea-
tures from bi to |L|, so we just need to add the dot product
of the remainders. The remainders file is small enough to be
easily loaded in memory in one pass during the setup of the
reducer. Thus, for each pair we only need to perform two
in-memory lookups and compute their dot product. This
process involves no I/O, so it is faster than the previous
version.

The main drawback of this version is that it generates
more pairs than version 1. This leads to unnecessary evalu-
ation of pairs and consequently to wasted effort.

3.4 Using Secondary Sort (Version 3)
This version tries to achieve the benefits of both previous

versions. Observe that for every pair (di, dj) one of the two
documents has been pruned up to a term that precedes the
other (remember that features are sorted according to their
frequency). Let this document be the LPD (Least Pruned
Document) of the pair. Let the other document be the MPD
(Most Pruned Document). In Figure 2, di is the LPD and
dj is the MPD.

We use version 1 pair generation strategy and version 2
remainder distribution and loading. To generate the partial
scores we lack (from 0 to bj), we just need to perform the
dot product between the whole LPD and the remainder of
the MPD. The catch is to have access to the whole LPD
without doing random disk I/O and without keeping the
input in memory.

Our proposed solution is to shuffle the input together with
the generated pairs and route the documents where they are
needed. In order to do that, we employ Hadoop’s Secondary
Sort feature. Normally, MapReduce sorts the intermediate
records by key before starting the reduce phase. Using sec-
ondary sort we ask Hadoop to sort the records also by a

1using Hadoop’s Distributed Cache feature

secondary key while the grouping of values is still performed
only by primary key. Instead of using the whole pair as a
key, we use the LPD as the primary key and the MPD as
the secondary key.

As a result, input values for the reducer are grouped by
LPD, and sorted by both LPD and MPD, so that partial
scores that belong to the same pair are adjacent. The LPD
document from the original input that we shuffled together
with the pairs is in the same group. In addition, we impose
the LPD document itself to sort before every other pair us-
ing a fake minimum secondary key. This allows us to have
access to the document before iterating over the values, and
therefore to perform the dot products on the fly. This is a
representation of the input for the reduce of the similarity
phase:

〈di〉; 〈(di, dj),WA
ij 〉; 〈(di, dj),WB

ij 〉; 〈(di, dk),WA
ik〉; . . .︸ ︷︷ ︸

group by key di

〈dj〉; 〈(dj , dk),WA
jk〉; 〈(dj , dk),WB

jk〉; 〈(dj , dl),W
A
jl 〉; . . .︸ ︷︷ ︸

group by key dj

First, we load the document di in memory. Then, for each
stripe of equal consecutive pairs (di, dj), we sum the partial
scores WX

ij for each common term X. Finally, we compute
the dot product between the LPD and the remainder of the
MPD, which is already loaded in memory from the remain-
ders file. We repeat this cycle until there are no more values.
After that we can discard the LPD from memory and pro-
ceed to the next key-values group.

4. EXPERIMENTAL RESULTS
In this section we describe the performance evaluation of

the proposed algorithms. We ran the experiments on a 5-
node cluster. Each node is equipped with two Intel Xeon
E5520 CPUs clocked at 2.27GHz. Each CPU features 4 cores
and Hyper-Threading for a total of 40 virtual cores. Each
node has a 2TiB disk, 8GiB of RAM, and Gigabit Ethernet.

On each node, we installed Ubuntu 9.10 Karmic, 64-bit
server edition, Sun JVM 1.6.0 20 HotSpot 64-bit server, and
Hadoop 0.20.1 from Cloudera (CDH2).

We used one of the nodes to run Hadoop’s master daemons
(Namenode and JobTracker), and the rest were configured
as slaves running Datanode and TaskTracker daemons. Two
of the cores on each slave machine where reserved to run the
daemons, the rest were equally split among map and reduce
slots (7 each), for a total of 28 slots for each phase.

We tuned Hadoop’s configuration in the following way:
we allocated 1GiB of memory to each daemon and 400MiB
to each task, we changed the HDFS block size to 256MiB
and the file buffer size to 128KiB. We also disabled spec-
ulative execution and enabled JVM reuse and map output
compression.

For each algorithm, we wrote an appropriate combiner to
reduce the shuffle size (a combiner is a reduce-like function
that runs inside the mapper to aggregate partial results). In
our case, the combiners perform the sums of partial scores in
the values, according to the same logic used in the reducer.
We also implemented raw comparators for every key value
used in the algorithms in order to get better performance
(raw comparators are used to compare keys during sorting
without deserializing them into objects).
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# documents 17,024 30,683 63,126
# terms 183,467 297,227 580,915
# all pairs 289,816,576 941,446,489 3,984,891,876
# similar pairs 94,220 138,816 189,969

algorithm version v0 v1 v2 v3 v0 v1 v2 v3 v0 v1 v2 v3
# evaluated pairs (M) 109 65 82 65 346 224 272 224 1,519 1,035 1,241 1,035
# partial scores (M) 838 401 541 401 2,992 1,588 2,042 1,588 12,724 6,879 8,845 6,879
index size (MB) 46.5 40.9 46.5 40.9 91.8 82.1 91.7 82.1 188.6 170.3 188.6 170.3
remainder size (MB) 4.7 4.7 8.2 8.2 15.6 15.6
running time (s) 3,211 1,080 625 554 12,796 4,692 3,114 2,519 61,798 24,124 17,231 12,296
avg. map time (s) 413 197 272 177 2,091 1,000 1,321 855 10,183 5,702 7,615 5,309
stdv. map time (%) 137.35 33.53 34.97 25.74 122.18 31.52 34.08 35.27 129.65 24.52 30.27 24.43
avg. reduce time (s) 57 558 35 79 380 2,210 191 220 1,499 11,330 1,112 1,036
stdv. reduce time (%) 18.76 5.79 13.59 14.66 48.00 5.62 23.56 14.61 13.55 2.46 8.37 9.51

Table 1: Statistics for various versions of the algorithm

We used different subsets of the TREC WT10G Web cor-
pus. The dataset has 1,692,096 english language documents.
The size of the entire uncompressed collection is around
10GiB.

We performed a preprocessing step to prepare the data
for analysis. We parsed the dataset, removed stopwords,
performed stemming and vectorization of the input. We ex-
tracted the lexicon and the maximum weight for each term.
We also sorted the features inside each document in decreas-
ing order of document frequency, as required by the pruning
strategy.

4.1 Running Time
We evaluated the running time of the different algorithm

versions while increasing the dataset size. For all the algo-
rithms, the indexing phase took always less than 1 minute
in the worst case. Thus we do not report indexing times,
but only similarity computation times, which dominate the
whole computation.

We set the number of mappers to 50 and the number
of reducers to 28, so that the mappers finish in two waves
and all the reducers can run at the same time and start
copying and sorting the partial results while mappers are
still running. For all the experiments, we set the similarity
threshold to 0.9.
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Figure 3: Computation times for different algorithm
versions with varying input sizes

Figure 3 shows the comparison between running times
for the different algorithms. The algorithms are all still
quadratic, so doubling the size of the input roughly mul-
tiplies by 4 the running time. All the advanced versions
outperform the basic indexed approach. This can easily be
explained once we take into accounts the effects of of the
pruning and bucketing techniques we applied.
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Figure 4: Index size distribution with and without
pruning

Figure 4 shows the effects of pruning. The maximum
length of the inverted lists is drastically reduced in version 3
compared to version 0. This explains their different running
times, as the algorithm is dominated by the traversal of the
longest inverted list. Figure 5 shows the effects of bucketing.
The load is evenly spread across all the mappers, so that the
time wasted waiting for the slowest mapper is minimized. It
is evident also from Table 1 that the standard deviation of
map running times is much lower when bucketing is enabled.

On the largest input, version 3 is 5x faster than version 0,
2x faster than version 1 and 1.4x faster than version 2. This
is caused by the fact that version 3 does not access the disk
randomly like version 1 and evaluates less pairs than ver-
sion 2. Exact times are reported in Table 1.

Version 3 outperforms all the others in almost all aspects.
The number of evaluated pairs and the number of partial
scores are the lowest, together with version 1. Version 3 has
also the lowest average map times. The standard deviation
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of map times for versions 1, 2 and 3 is much lower than
version 0 thanks to bucketing.

For average reduce time, things change with different in-
put sizes. For small inputs the overhead of version 3 does not
pay back, and version 2 has the best trade-off between al-
gorithm complexity and number of partial scores. For large
inputs the smaller number of partial scores of version 3 gives
it an edge over other versions. Version 1 is the slowest be-
cause of disk access and version 0 also scales poorly because
of the large number of partial scores.

5. CONCLUSIONS AND FUTURE WORK
The All Pairs Similarity Search problem is a challenging

problem that arises in many applications in the area of in-
formation retrieval, such as recommender systems and near
duplicate detection. The size of Web-related problems man-
dates the use of parallel approaches in order to achieve rea-
sonable computing times. In this

We presented a novel exact algorithm for the APS prob-
lem. The algorithm is based on the inverted index approach
and is developed within the MapReduce framework. To the
best of our knowledge, this is the first work to exploit well
known pruning techniques from the literature adapting them
to the MapReduce framework. We evaluated several heuris-
tics aimed at reducing the cost of the algorithm. Our pro-
posed approach runs up to 5x faster than the simple algo-
rithm based on inverted index.

In our work we focused on scalability with respect to the
input size. We believe that the scalability of the algorithm
with respect to parallelism level deserves further investiga-
tion. In addition, we believe that more aggressive pruning
techniques can be embedded in the algorithms. Adapting
these techniques to a parallel environment such as MapRe-
duce requires further study. We also want to investigate
the application of our algorithm to other kinds of real world
data, like social networks.
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ABSTRACT
Modern retrieval approaches apply not just single-term weight-
ing models when ranking documents - instead, proximity
weighting models are in common use, which highly score
the co-occurrence of pairs of query terms in close proximity
to each other in documents. The adoption of these prox-
imity weighting models can cause a computational overhead
when documents are scored, negatively impacting the effi-
ciency of the retrieval process. In this paper, we discuss the
integration of proximity weighting models into efficient dy-
namic pruning strategies. In particular, we propose to mod-
ify document-at-a-time strategies to include proximity scor-
ing without any modifications to pre-existing index struc-
tures. Our resulting two-stage dynamic pruning strategies
only consider single query terms during first stage pruning,
but can early terminate the proximity scoring of a docu-
ment if it can be shown that it will never be retrieved. We
empirically examine the efficiency benefits of our approach
using a large Web test collection of 50 million documents
and 10,000 queries from a real query log. Our results show
that our proposed two-stage dynamic pruning strategies are
considerably more efficient than the original strategies, par-
ticularly for queries of 3 or more terms.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

General Terms: Algorithms, Performance, Experimenta-
tion

Keywords: Dynamic Pruning, Efficient Proximity

1. INTRODUCTION
In most information retrieval (IR) systems, the relevance

score for a document given a query follows the general out-
line given by the best match strategy: a score is calculated
for each query term occurring in the document. These scores
are then aggregated by a summation to give the final doc-
ument relevance score. However, there are many queries
where the relevant documents contain the query terms in
close proximity. Hence, modern retrieval systems apply not
just single-term weighting models when ranking documents.
Instead, proximity weighting models are commonly applied,
which highly score the co-occurrence of pairs of query terms
in close proximity to each other in documents [8].

Copyright c© 2010 for the individual papers by the papers’ authors. Copying
permitted only for private and academic purposes. This volume is published
and copyrighted by its editors.
LSDS-IR Workshop, July 2010. Geneva, Switzerland.

Dynamic pruning strategies reduce the scoring of docu-
ments, such that efficient retrieval can be obtained, with-
out impacting on the retrieval effectiveness before rank K
- such strategies are safe-up-to-rank-K. However, when ad-
ditional proximity scores must be calculated for each docu-
ment, the computational overhead impacts the efficiency of
the retrieval process. While pruning techniques have been
studied to efficiently score documents without considering
term proximity [4, 20], there are very few proposals con-
sidering efficient top K retrieval where proximity is consid-
ered [19, 21, 22]. Moreover, these proposals require modifi-
cations of the index structure to implement efficient scoring
strategies. Indeed, such modifications include sorting the
posting lists by frequency or impact [2, 10], or using addi-
tional index structures containing the intersection of pairs
of posting lists [19, 21, 22]. However, these can lead to neg-
ative effects on other aspects of the IR system, such as the
compression of index structures or the impossibility to use
other existing ranking strategies.

This work contributes a study into the behaviour of dy-
namic pruning strategies when combined with proximity
weighting models. In particular, we analyse two existing
document-at-a-time (DAAT) dynamic pruning strategies, na-
mely MaxScore [20] and Wand [4], that can efficiently
score documents without decreasing the retrieval effective-
ness at rank K, nor requiring impact sorted indices. More-
over, we propose a runtime modification of these strate-
gies to take into account proximity scores. We generate at
runtime the posting lists of the term pairs, and transpar-
ently include the processing of these pair posting lists in the
MaxScore and Wand strategies. Next, we propose a re-
organisation of these strategies to increase their efficiency.
Using thorough experiments on a 50 million document cor-
pus and 10,000 queries from a real query log, we evaluate
the proposed modification to determine their efficiency.

The remainder of this paper is structured as follows: In
Section 2, we describe the state-of-the-art approaches to ef-
ficient ranking and the current existing solutions taking into
account proximity scoring. In Section 3, we describe in de-
tail the proposed framework to support proximity scores in
DAAT strategies, and in Section 4, we evaluate the effi-
ciency of the proposed modification. We provide concluding
remarks in Section 5.

2. BACKGROUND
In the following, we outline the state-of-the-art strategies

of dynamic pruning, followed by a discussion on proximity
weighting models.
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2.1 Dynamic Pruning
The algorithms to match and score documents for a query

fall into two main categories [16]: in term-at-a-time (TAAT)
scoring, the query term posting lists are processed and scored
in sequence, so that documents containing query term ti gain
a partial score before scoring commences on term ti+1. In
contrast, in document-at-a-time (DAAT) scoring, the query
term postings lists are processed in parallel, such that all
postings of document dj are considered before scoring com-
mences on dj+1. Compared to TAAT, DAAT has a smaller
memory footprint than TAAT, due to the lack of maintain-
ing intermediate scores for many documents, and is report-
edly applied by large search engines [1]. An alternative strat-
egy to DAAT and TAAT is called score-at-a-time [2], how-
ever this is suitable only for indices sorted or partially sorted
by document importance, which must be calculated before
the actual query processing. The algorithms from the family
of threshold algorithms [10] work similarly.

Efficient dynamic pruning strategies do not rank every
document in the collection for each user query; they manage
to rank only the documents that will have a chance to enter
in the top-K results returned to the users. These strate-
gies are safe-up-to-rank-K [20], meaning that the ranking
of documents up to rank K will have full possible effective-
ness, but with increased efficiency. Dynamic pruning strate-
gies rely on maintaining, at query scoring time, a threshold
score that documents must overcome to be considered in the
top-K documents. To guarantee that the dynamic pruning
strategy will provide the correct top-K documents, an upper
bound for each term on its maximal contribution to the score
of any document in its posting list is used. In this paper, we
focus on two state-of-the-art safe-up-to-rank-K DAAT dy-
namic pruning strategies, namely MaxScore and Wand.

The MaxScore strategy maintains, at query scoring time,
a sorted list containing the current top-K documents scored
so far. The list is sorted in decreasing order of score. The
score of the last top-K document is a threshold score that
documents must overcome to be considered in the top-K
documents. A new document is given a partial score while
the posting lists with that document are processed. A docu-
ment scoring can terminate early when it is possible to guar-
antee that the document will never obtain a score greater
than that of the current threshold. This happens when the
current document score plus the upper bounds of terms yet
to be scored is not greater than the threshold.

The Wand strategy maintains the same top-K documents
list and the threshold score, but, for any new document,
it calculates an approximate score, summing up some up-
per bounds for the terms associated with the document. If
this approximate score is greater than the current threshold,
then the document is fully scored. It is then inserted in the
top-K candidate document set if this score is greater than
the current threshold, and the current threshold is updated.
If the approximate score check fails, the next document is
processed. The selection of the next document to score is
optimised [4] – however, for our purposes, it is of note that
the set of postings lists are sorted by the document identifier
(docid) they currently represent. More details on the Wand
document selection strategy, which uses the skipping [16] of
postings in the posting lists to reduce disk IO and increase
efficiency, is presented in Appendix A.

The MaxScore and Wand dynamic pruning strategies
can both enhance retrieval efficiency, whilst ensuring that
the top K documents are fully scored – i.e. that the re-
trieval effectiveness at rank K is not at all negatively im-

pacted. Generally, speaking, Wand is more efficient [14],
due to its ability to skip postings for unimportant query
terms. Note that both strategies examine at least one term
from each document, and hence cannot benefit efficiency for
single term queries.

2.2 Proximity
There are many queries where the relevant documents

contain the query terms in close proximity. Hence, modern
retrieval systems apply not just single-term weighting mod-
els when ranking documents. Instead, proximity weighting
models are commonly applied, which highly score the co-
occurrence of pairs of query terms in close proximity to each
other in documents [8]. Hence, some scoring proximity (or
term dependence) models have recently been proposed that
integrate single term and proximity scores for ranking doc-
uments [5, 15, 18]. In this manner, the basic ranking model
of an IR system for a query Q can be expressed as:

scoreQ(d,Q) = ω S(d) + κ
X

t∈Q

score(tfd, ∗d, t) + φprox(d,Q)

where S(d) is the combination of some query independent
features of document d (e.g. PageRank, URL length), and
score(tfd, ∗d, t) is the application of a weighting model to
score tfd occurrences of term t in document d. ∗d denotes
any other document statistics required by a particular weight-
ing model (e.g. document length). prox(d,Q) represents
some proximity document scoring function. The influence of
the various features is influenced using weights ω, κ and φ.

However, none of the proximity weighting models pro-
posed have been designed for efficient document scoring.
The main approaches to integrate proximity weighting mod-
els into pruning strategies require modifications to the in-
dex structure to include information on the proximity scores
upper bounds. In [19, 21, 22], the authors detail several
approaches to leverage early termination when proximity
scores are included in the ranking model. While these strate-
gies alter the index structure (e.g. by adding term-pair
inverted indices), we aim to exploit the proximity scores
without modifying the index structure (other than keeping
position occurrence information in the standard inverted in-
dex posting list). In particular, we use the sequential term
dependence model of Markov Random Fields (MRF) [15],
which has been shown to be effective at modelling the prox-
imity of query term occurrences in documents. In MRF, the
proximity score is calculated as follows:

prox(d,Q) =
X

p=(ti,ti+1)∈Q

“
score

`
pf(ti, ti+1, d, k1), ld, p

´

+ score
`
pf(ti, ti+1, d, k2), ld, p

´”

where pf(ti, ti+1, d, k) represents the number of occurrences
of the pair of sequential query terms (ti, ti+1) occurring in
document d in windows of size k (abbreviated as pair fre-
quency pfd). Following [15], we set κ = 1, φ = 0.1, and
k1 = 2 and k2 = 8 to account for the proximity of two
terms as an exact phrase, and proximity at distance 8, re-
spectively. score(pfd, ld, p) is implemented using Dirichlet
language modelling [11], but where pair frequency takes the
role of term frequency. However, for the background statis-
tics of the language model, in contrast to term weighting,
when using proximity weighting, it is common to assume a
constant frequency for the pair in the collection [13]1.

1As implemented by the authors of MRF in the Ivory re-
trieval system, see www.umiacs.umd.edu/~jimmylin/ivory
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3. FRAMEWORK
The integration of proximity weighting models within ef-

ficient dynamic pruning strategies requires the materialisa-
tion of term pair posting lists and their integration into the
existing dynamic pruning decision mechanism. In the fol-
lowing we discuss how we proposed to address both aspects.

3.1 Term pair posting lists
Most dynamic pruning algorithms use posting list itera-

tors – object-oriented interfaces to a posting list, allowing a
posting to be read, or to be moved on to the next posting.
With a standard inverted index, one posting list’s iterator
represents the documents in which a single query term oc-
curs, ordered by docid.

Proximity weighting models require knowledge of the oc-
currence of pairs of query terms in a document. The post-
ing list of pairs of terms can be constructed either statically
(i.e., at indexing time, calculating the intersections of all
pairs of term posting lists) or dynamically (i.e., at retrieval
time, generating term pair postings on the fly). Previous ap-
proaches [19, 21, 22] investigated different methodologies to
statically calculate these intersections. However, the static
approach has two drawbacks. Firstly, storing new posting
lists requires additional space on disk, and secondly, the
pairs of terms whose posting lists must be intersected must
be known in advance (e.g. by identifying popular phrases
in the corpus [22]), to avoid generating a large number of
new, potentially useless posting lists. While these draw-
backs may be lightened by caching solutions to store paired
posting lists [12], even in this case, there is always a relative
consumption of disk or memory resources.

Instead, the pair posting lists can be built dynamically.
Given two single term iterators on postings lists, there is a
valid term pair posting each time they point to the same
docid. In order to transparently include these pair postings
in existing DAAT strategies, we must be sure that they are
ordered by docid. A pair posting list is illustrated in Fig-
ure 1, based on the postings for terms t1 and t2. In our
proposed approach, to avoid additional I/O operations at
runtime, only the single term posting lists are responsible
for reading from disk and decompressing the single post-
ings, while the pair posting docid is updated each time a
new single posting is read with the minimum of the current
single term docids. The pair posting is valid only when the
docids of the underlying single term posting lists are equal
(i.e., in Figure 1, only two valid postings exist, namely do-
cid 1 and docid 8.). When a term posting list ends, all the
associated pair posting lists end as well. Overall, the pair
posting list is docid-sorted and cannot skip over potentially
useful term pair postings, however, a number of invalid pair
postings will occur (e.g. (8,2) and (9,14) in Figure 1).

t1 1 8 9

1 2 8

1
1

t2

t1 
t2

✕

14

8
2

8
8

9
14

✕

14

disk

Figure 1: The dynamic creation of a pair posting
list for terms t1 and t2. Bold entries are valid pair
postings, while × indicates the end of a posting list.

3.2 Dynamic pruning with proximity
The dynamic pair posting lists can be directly put into

work in existing DAAT strategies without modification. When
a term pair posting is selected for scoring, it is necessary to
calculate the exact value for the pair frequency at window
size k, by comparing the lists of positions stored in both term
postings. With dynamic pruning strategies (MaxScore and
Wand), this computation can be avoided if the posting is not
considered for scoring. Moreover, both the MaxScore and
Wand pruning strategies require upper bounds on the score
contributions of single terms. Hence, when using proximity,
we need also to provide upper bounds on the score contri-
butions of pairs as well. In [4], the authors proposed using
a dynamic estimation of the inverse document frequency of
pairs to determine the upper bound (the particular proxim-
ity weighting model is not defined, but assumed to be similar
to [5]). In [14], we proposed a new approximation for upper
bounds of the Markov Random Fields, requiring only the
knowledge of the maximum term frequency of the postings
in the two term posting lists.

We now describe how proximity weighting is achieved us-
ing the dynamic pruning strategies. In particular, the Max-
Score strategy must always know the minimum docid in the
currently processed posting lists set (which can be obtained
by maintaining a heap), while the Wand strategy must have
access to the posting lists sorted by docid (i.e., in the worst
case, every posting in each posting list must be removed and
inserted in a sorted set). However, when proximity is con-
sidered, many extra pair postings must be considered (i.e.,
|Q| single term postings, plus an additional 2(|Q| − 1) pair
postings) – causing the efficiency of Wand to be hindered.
Moreover, both strategies must make additional checks to
ensure that only ‘valid’ pair postings are considered, which
can cause a performance bottleneck.

To deal with these limitations, we propose a modification
that can be applied to both MaxScore and Wand pruning
strategies, whereby the processing of single terms is sepa-
rated from that of term pairs during each document scor-
ing. We refer to these two-stage strategies as MaxScoreP
and WandP. In particular, if a pair posting is updated after
each term posting update, we will generate two potentially
invalid pair postings. With the proposed modification, we
update the pair postings only after all single terms have
been moved to their respective next posting. This implies
that we can generate only one pair posting instead of two
each time both of the single term posting iterators advance.
Hence, MaxScoreP and WandP process the single term
posting lists according to their respective algorithms, how-
ever the term pairs are subsequently processed in a second
stage using early termination, according to the MaxScore
strategy. The use of early termination of proximity scoring
is motivated by the fact that the pair frequency of a pair
posting is expensive to compute (in comparison to term fre-
quency, which is directly recorded in the posting) – hence
early termination can reduce the unnecessary pair frequency
and proximity score calculations.

In summary, we propose to implement proximity scoring
using only normal index structures at retrieval time, and
in such a way to integrate directly with existing DAAT dy-
namic pruning strategies. Moreover, we propose a modifica-
tion to these dynamic pruning strategies, where the single
terms are processed first according to the original dynamic
pruning strategy, while the terms pairs are processed ac-
cording to the MaxScore strategy. This can significantly
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reduce the performance impact of additional data structures
required at runtime, and, as will be shown in Section 4,
leads to improved retrieval efficiency. Moreover, both of the
MaxScoreP and WandP modified strategies remain safe-
up-to-rank-K.

4. EVALUATION
In the following experiments, we want to evaluate the ben-

efits of the proposed modification of the dynamic pruning
strategies. We are mainly interested in efficiency, because
all strategies are safe-up-to-rank-K – hence have no impact
on effectiveness. We tackle the following research questions:

1. How do MaxScore and Wand compare when apply-
ing the Markov Random Fields proximity weighting
model?

2. Do the proposed modifications benefit the efficiency
when applying proximity?

3. What impact does the length of the query have?

Experiments are performed using a 230GB 50 million En-
glish document subset of the TREC ClueWeb 09 (CW09B)
corpus [6]. Documents are ranked using the Dirichlet LM
weighting model [11] (with parameter setting µ = 4000)
and the Markov Random Fields proximity weighting (see
Section 2.2). No query-independent features are used (i.e.,
ω = 0). CW09B is indexed using the Terrier IR plat-
form [17]2, applying Porter’s English stemmer and removing
standard stopwords. In the posting list, docids are encoded
using Elias Gamma-encoded deltas [9] and term frequencies
using Elias Unary [9]. The positions of occurrences of the
term within the document are also recorded in each posting,
using Elias Gamma-encoded deltas. Each posting list also
includes skip points [16], one every 10,000 postings. The
resulting size of the inverted index is 72GB.

For testing retrieval efficiency, we extract a stream of user
queries from a real search engine log. In particular, we se-
lect the first 10,000 queries of the MSN 2006 query log [7],
applying Porter’s English stemmer and removing standard
stopwords (empty queries are removed). The experiments
measure the average query response time for each dynamic
pruning strategy, broken down by the number of query terms
(1, 2, 3, 4 and more than 4). The number of documents re-
trieved for each query is K = 1, 000. All experiments are
made using a dual quad-core Intel Xeon 2.6GHz, with 8GB
RAM and a 2TB SATA2 disk containing the index.

In the following, we compare five strategies, namely: an
exhaustive “Full” DAAT strategy, which fully scores every
posting for all query terms and pairs; the original Max-
Score and Wand dynamic pruning strategies without any
modification; and the proposed two-stage MaxScoreP and
WandP dynamic pruning strategies which integrate the mod-
ification proposed in Section 3.2. Every strategy uses dy-
namic pair posting lists, as discussed in Section 3.1.

Table 1 details the average query response time for both
the original and two-stage strategies per number of query
terms. From this table, we note that the average response
time are reduced by approximately 22%-30% by applying
the original MaxScore, but for the original Wand the av-
erage response times are worse than for Full DAAT scoring.
This counters the normal efficiency of Wand, and supports

2http://terrier.org

# of query terms
1 2 3 4 > 4

# queries 3456 3149 1754 853 550
Full 0.53 2.76 5.57 9.95 16.42

Original strategies
MaxScore 0.53 2.07 3.92 6.45 12.68
Wand 0.53 3.01 5.78 10.67 18.42

Two-stage strategies
MaxScoreP 0.53 1.90 3.32 5.27 8.51
WandP 0.53 1.67 2.73 4.46 7.77

Table 1: Average response times (in seconds), orig-
inal strategies and two-stage strategies.
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Figure 2: The relative impact on the average re-
sponse time of the proposed strategies w.r.t. the
Full DAAT strategy.

our assertion that Wand is not suitable for proximity scor-
ing in its normal form. Indeed, when using the pair posting
lists, there is a higher number of posting lists to maintain
in the docid sorted set of posting lists used by Wand, in
addition to the check that each pair posting is valid.

In contrast, the two-stage pruning strategies perform bet-
ter in comparison to their original versions. MaxScoreP
exhibits improvements of average response times varying
from 31% for two terms, up to 48% for more than four
terms, while WandP benefits vary from 39% to 58%. More-
over, we note that WandP exhibits better efficiency than
MaxScoreP, in common with MaxScore versus Wand
for non-proximity queries [14]. For single term queries, no
proximity is applied, and, as expected, all dynamic pruning
strategies are equally efficient to Full DAAT scoring.

Figure 2 summarises the percentage differences of the dy-
namic pruning strategies with respect to the Full DAAT
scoring, for varying lengths of query. As already reported,
the two-stage MaxScoreP and WandP strategies outper-
form their original equivalents. Moreover, their benefits in-
crease as the length of the queries (and hence pairs of terms)
increase, up to 40-55% improvements for queries with 3 or
more terms.

5. CONCLUSIONS
In this work, we examined how to efficiently score doc-

uments using dynamic pruning strategies when using the
Markov Random Field proximity weighting model [15]. In
particular, we discussed how pair posting lists could be used
to allow proximity scoring without changes to the underlying
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index. Moreover, the most efficient way to score documents
using DAAT dynamic pruning strategies was discussed. We
proposed that dynamic pruning should be performed in a
two-stage process (as exemplified by the MaxScoreP and
WandP strategies), whereby only single query terms are
processed and pruned in the first stage. The pair posting
lists are only considered during a second stage, since they
are omitted from consideration in the first stage.

We performed large-scale experiments comparing the orgi-
nal and proposed two-stage dynamic pruning strategies, us-
ing a corpus of 50 million documents, and 10,000 user queries
from a real query log. Our results demonstrated the bene-
fit of the two-stage versions of the dynamic pruning strate-
gies, particularly for queries of 3 or more terms, and are a
promising start for the future efficient examination of other
proximity weighting models.

Dynamic pruning techniques have previously been shown
to be readily appliable in distributed retrieval settings [3].
Similarly, we infer that our strategies can also be applied in
distributed retrieval without requiring adaptation.
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APPENDIX
A. WAND NEXT DOCUMENT SELECTION
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Figure 3: How the WAND strategy selects the next
document to score

The selection of the next document performed in the Wand
strategy is explained with the help of Figure 3. The post-
ing lists are maintained in increasing order of docid. Then
a pivot term is computed, i.e. the first term for which the
accumulated sum of upper bounds of preceding terms and
itself exceeds the current threshold (e.g., term t3 with accu-
mulated score of 7). The corresponding docid identifies the
pivot document, i.e. the smallest docid having a chance to
overcome the current threshold. If the current docids of the
previous terms are equal to the pivot document docid, the
document is fully scored. Otherwise, one of the preceding
terms posting list is moved to the pivot document docid, and
the procedure is repeated. In the example, at the third step
a good candidate document is found (23) and it is fully pro-
cessed. This implementation can benefit from skipping every
posting list to a particular document, however the selection
of the right document requires some additional CPU time.
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ABSTRACT
The performance evaluation of an IR system is a key point
in the development of any search engine, and specially in the
Web. In order to get the performance we are used to, Web
search engines are based on large-scale distributed systems
and to optimise its performance is an important aspect in
the literature.

The main methods, that can be found in the literature, to
analyse the performance of a distributed IR system are: the
use of an analytical model, a simulation model and a real
search engine. When using an analytical or simulation model
some details could be missing and this will produce some dif-
ferences between the real and estimated performance. When
using a real system, the results obtained will be more pre-
cise but the resources required to build a large-scale search
engine are excessive.

In this paper we propose to study the performance by
building a scaled-down version of a search engine using vir-
tualization tools to create a realistic distributed system.
Scaling-down a distributed IR system will maintain the be-
haviour of the whole system and, at the same time, the com-
puter requirements will be softened. This allows the use of
virtualization tools to build a large-scale distributed system
using just a small cluster of computers.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed systems; H.3.4 [Information Stor-
age and Retrieval]: Systems and Software—Performance
evaluation (efficiency and effectiveness)

General Terms
Information Retrieval
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Keywords
Distributed Information Retrieval, Performance evaluation,
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1. INTRODUCTION
Web search engines have changed our perspective of the

search process because now we consider normal being able to
search through billions of documents in less than a second.
For example, we may not quite understand why we have to
wait so long in our council for a certificate as they just have
to search through a ”few” thousand/million records.

However, Web search engines have to use a lot of com-
putational power to get the performance we are used to.
This computational power can only be achieved using large-
scale distributed architectures. Therefore, it is extremely
important to determine the distributed architectures and
techniques that allow clear improvements in the system per-
formance.

The performance of a Web search engine is determined
basically by two factors:

• Response time: the time it takes to answer the query.
This time includes the network transfer times that, in
Internet, will take a few hundred milliseconds; and the
processing time in the search engine, that is usually
limited to 100 milliseconds.

• Throughput: the number of queries the search engine
is able to process per second. This measure usually
has to maintain a constant ratio, but also deals with
peak loads.

From the user’s point of view, only the response time is
visible and it is the main factor, keeping constant the quality
of the results: the faster the search engine is able to answer
the better. From the search engine point of view both mea-
sures are important. Once an upper limit has been set up
for the response time (e.g. a query should be answered in
less than 100 milliseconds), the objective is to maximise the
throughput.

From the search engine point of view another two factors
have to be taken into account:

• Size: the number of documents indexed by the search
engine. Not so long ago, Google published in its main
page the number of Web pages indexed. Nowadays, the
main commercial search engines do not make public
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detailed figures, although the estimations are in the
order of 20 billion documents.

• Resources: the number of computers used by the search
engine. This could be considered from the economical
perspective as the cost of the distributed system. In [2]
Baeza-Yates et al. estimate that, a search engine will
need about 30 thousand computers to index 20 billion
documents and obtain a good performance.

If we want to compare different distributed indexing mod-
els or test some new techniques for a distributed search en-
gine (e.g. a new cache policy), usually we will fix the size
of the collection and the resources and then, measure the
performance in terms of response time and throughput.

Ideally, we would need a replica of a large-scale IR sys-
tem (for example, one petabyte of data and one thousand
computers) to measure performance. However, this would
be extremely expensive and no research group, or even com-
mercial search engine, can devote such amount of resources
only to evaluation purposes.

In this article we present a new approach for performance
evaluation of large-scale IR systems based on scaling-down.
We consider that, creating a scaled-down version of an IR
system, will produce valid results for the performance anal-
ysis, using very few resources. This is an important point
for commercial search engines (from the economical point
of view), but it is more important for the research groups
because this could open the experimentation on large-scale
IR to nearly any group.

The rest of the paper is organised as follows. In Section 2
we present the main approaches for performance evaluation.
Section 3 analyses our proposal and Section 4 concludes this
work and describes some ideas for future works.

2. PERFORMANCE EVALUATION
In the literature there are many articles that evaluate the

performance of a search engine or one of its components. We
do not intend to present an exhaustive list of papers about
performance evaluation but to present the main methods
used by the researchers, specially of a large-scale IR system.

The main methods to test the performance of a search
engine are the following:

• An analytical model.

• A simulation model.

• A real system or part of a real system.

A clear example of study based on an analytical model
can be found in [6]. In this work, Chowdhury et al. use
the queueing network theory to model a distributed search
engine. The authors model that the processing time in a
query server is a function of the number of documents in-
dexed. They build a framework in order to analyse dis-
tributed architectures for search engines in terms of response
time, throughput and utilization. To show the utility of this
framework, they provide a set of requirements and study
different scalability strategies.

There are many works based on simulation that study the
performance of a distributed IR system. [3] is one of the first.
In this work, Burkowski uses a simple simulation model to
estimate the response time of a distributed search engine,
and uses one server to estimate the values for the simulation

model (e.g. the reading time from disk is approximated as
a Normal distribution). Then, the simulation model repre-
sents a clusters of servers and estimates the response times
using local index organisation (named uniform distribution).
However, the network times are not considered in the simu-
lation model.

Tomasic and Garcia-Molina [12] also used a simulation
model to study the performance of several parallel query
processing strategies using various options for the organi-
zation of the inverted index. They use different simulation
models to represent the collection documents, the queries,
the answer set and the inverted lists.

Cacheda et al. in [4] include also a network model to
simulate the behaviour of the network in a distributed IR
system. They compare different distribution architectures
(global and local indexing), identify the main problems and
present some specific solutions, such as, the use of partial
result sets or the hierarchical distribution for the brokers.

Other authors use a combination of both approaches. For
example, in [10], Ribeiro-Neto and Barbosa use a simple
analytical model to estimate the processing time in a dis-
tributed system. This analytical model calculates the seek
time for a disk, the reading time from disk of an inverted list,
the time to compare and swap two terms and the transfer
time from one computer to another. In their work, they in-
clude a small simulator to represent the interference among
the various queries in a distributed environment. They com-
pare the performance of a global index and a local index and
study the effect of the network and disk speed.

Some examples of works experimenting with a real IR sys-
tem could be [1] or [9]. In the first work, Badue et al. study
the imbalance of the workload in a distributed search engine.
They use a configuration of 7 index servers and one broker
to index a collection of 10 million Web pages. In their work,
the use of a real system for testing was important to detect
some important factors for imbalance in the index servers.
They state that the correlations between the term frequency
in a query log and the size of its inverted list lead to imbal-
ances in query execution times, because these correlations
affect the behaviour of the disk caching.

Moffat et al. in [9] study a distributed indexing technique
named pipelined distribution. In a system of 8 servers and
one broker, they index the TREC Terabyte collection [7]
to run their experiments. The authors compare three dis-
tributed architectures: local indexing (or document parti-
tioning), global indexing (or term partitioning) and pipelin-
ing. In their experiments the pipelined distribution outper-
forms the term partitioning, but not the document partition-
ing due to a poor workload balancing. However, they also
detect some advantages over the document distribution: a
better use of memory and fewer disk seeks and transfers.

The main drawback for an analytical model is that it can-
not represent all the characteristics of a real IR system.
Some features have to be dropped to keep the model simple
and easy to implement.

Using a simulation model, we can represent more complex
behaviours than an analytical model. For example, instead
of assuming a fixed transfer time for the network, we can
simulate the behaviour of the network (e.g. we could detect
a network saturation). But, again, not all the features of a
real system could be implemented. Otherwise, we will end
up with a real IR system and not a simulation model.

In both cases, it is important to use a real system to esti-
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mate the initial values of the model (analytical or simulated)
and, in fact, this is a common practise in all the research
works. In a second step, it is also common to compare the
results of the model with the response obtained from a real
system, using a different configuration, in order to validate
the model.

However, when the models are used to extrapolate the
behaviour of a distributed IR system, for example increasing
the number computers, the results obtained may introduce
a bigger error than expected. For example, a simulation
model of one computer, when compared with a real system,
has an accuracy of 99% (or an error of 1%). But, what is the
expected error when simulating a system with 10 computers:
1% or 10%?

This problem is solved by using a real system for the per-
formance evaluation. But, in this case, the experiments will
be limited by the resources available in the research groups.
In fact, many researchers run their experiments using 10-20
computers. Considering the size of data collections and the
size of commercial search engines, this could not be enough
to provide interesting results for the research community. In
this sense, the analytical or simulation models allow us to
go further, at the risk of increasing the error ratio of our
estimations.

3. OUR PROPOSAL
In this article we propose to use a scaled-down version of

a search engine to analyse the performance of a large-scale
search engine.

Scaling down has been successfully applied in many other
disciplines, and it is specially interesting when the develop-
ment of a real system is extremely expensive. For example,
in the shipping industry the use of scale models in basins
is an important way to quantify and demonstrate the be-
haviour of a ship or structure, before building a real ship
[5].

The use of a wind tunnel is also quite common in the
aeronautical or car industries. Specially in the former, the
scaled-down models of planes or parts of a plane are impor-
tant to analyse the performance of the structure [13]. Also
in architecture scaled-down models are used to test and im-
prove the efficiency of a building [8].

In the world of search engines, is it possible to build a
scaled-down version of a search engine?

Let us say that we want to study the performance of a
large-scale search engine, composed of 1000 computers, with
the following parameters:

• The size of the collection is 1 petabyte.

• Each computer has a memory of 10 gigabytes.

• Each computer has a disk of 1 terabyte.

• The computers are interconnected using a high speed
network (10Gbits/second).

From our point of view, maintaining the 1000 computers
as the core of the distributed system, if we apply a scale
factor of 1:1000 we will have a scaled-down version of the
search engine with the following parameters:

• The size of the collection is 1 gigabyte.

• Each computer has a memory of 10 megabytes.

• Each computer has a disk of 1 gigabyte.

• The computers are interconnected using a high speed
network (10Mbits/second).

One important point is that the scale factor does not ap-
ply to the number of computers. The computers constitute
the core of the distributed system and therefore cannot be
diminished, instead they are scaled-down. This is equivalent
to build a scaled-down version of a building: the beams are
scaled-down but not diminished.

In this way, we expect to obtain a smaller version of the
large-scale search engine, but with the same drawbacks and
benefits.

The next step is how to build this scaled-down version of
a search engine.

The first and trivial solution is to use 1000 computers with
the requirements stated previously. These would be very
basic computers nowadays but, anyway, it could be quite
complicated to obtain 1000 computers for a typical research
group. It could be a little bit easier for a commercial search
engine if they could have access to obsolete computers from
previous distributed systems, but it is not straightforward.

A more interesting solution would be to use virtualization
tools to create the cluster of computers. Virtualization is a
technology that uses computing resources to present one or
many operating systems to user. This technology is based on
methodologies like hardware and software partitioning, par-
tial or complete machine simulation and others [11]. In this
work, we are interested in the virtualization at the hardware
abstraction layer to emulate a personal computer. Some
well-known commercial PC emulators are KVM1, VMware2,
VirtualBox3 or Virtual PC4.

With this technology it could be possible to virtualize a
group of scaled-down computers using just one real com-
puter. In this way, with a small cluster of computers (e.g.
20 computers) we could virtualize the whole scaled-down
search engine.

For example, using a cluster of 20 computers, will re-
quire that each computer virtualizes 50 computers with 10
megabytes of memory and 1 gigabyte of disk. Roughly
speaking, this would take half a gigabyte of memory and
50 gigabytes of disk from the real machine, which should be
easily handled by any modern computer.

To the best of our knowledge, all the virtualization tools
allow you to set the size of memory and disk for the virtual-
ized host. Also, some of them (e.g. VMware) can set a limit
for the network usage, in terms of average or peak, and for
the CPU speed.

From our point of view, these requirements should be
enough to scale-down a host of a distributed search engine.
Some other parameters could also be considered when scal-
ing down a search engine, such as, disk or memory speed.
We are aware of some solutions in this sense5, but these low
level parameters could be quite hard to virtualize. How-
ever, we doubt about the usefulness of these parameters in
the performance analysis, while the performance of the real
computer is not degraded. In any case, in future works it

1http://www.linux-kvm.org/
2http://www.vmware.com/
3http://www.virtualbox.org/
4http://www.microsoft.com/windows/virtual-pc/
5http://sourceforge.net/apps/trac/ioband/
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would be interesting to study in depth the effect of these
low level parameters in the performance analysis of a scaled-
down search engine.

The use of virtualization is not only interesting to reduce
the resources required to build a scaled-down version of a
search engine. It could be very appealing to test the effect
of new technologies in the performance of a large-scale search
engine. For example, let us say that we want to compare the
performance of the new SSD (Solid State Drive) memories
versus the traditional hard drives. To build a whole search
engine using SSD memories would be a waste of resources
until the performance has been tested. But, buying a cluster
of computers with SSD memory and building a scaled-down
version of the search engine is feasible and not very expen-
sive. In this way, we could test and compare the performance
of this new technology.

4. CONCLUSIONS
This paper presents a new approach to the performance

evaluation of large-scale search engines based on a scaled-
down version of the distributed system.

The main problem, when using an analytical or simulation
model for evaluation purposes, is that some (important) de-
tails could be missing in order to make the model feasible
and so, the estimations obtained could differ substantially
from the real values.

If we use a real search engine for performance evaluation,
the results obtained will be more precise but will depend
on the resources available. A distributed system composed
of a few computers does not constitute a large-scale search
engine and the resources required to build a representative
search engine are excessive for most researchers.

We suggest to build a scaled-down version of a search
engine using virtualization tools to create a realistic cluster
of computers. By using a scaled-down version of a computer
we expect to maintain the behaviour of the whole distributed
system at the same time that the hardware requirements are
softened. This would be the key to use the virtualization
tools to build a large distributed system using a small cluster
of computers.

This research is at an early stage, but we strongly believe
that this would be a valid technique to analyse the perfor-
mance of a large-scale distributed IR system.

In the near future we plan to develop a scaled-down search
engine using a small cluster of computers. We would like to
compare the performance of the scaled-down search engine
with an equivalent real search engine to test the accuracy of
this methodology.
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