
Scaling Out All Pairs Similarity Search with MapReduce

Regular Paper

Gianmarco De Francisci
Morales

IMT Institute for Advanced
Studies

Lucca, Italy
gianmarco.dfmorales@imtlucca.it

Claudio Lucchese
ISTI-CNR
Pisa, Italy

claudio.lucchese@isti.cnr.it

Ranieri Baraglia
ISTI-CNR
Pisa, Italy

ranieri.baraglia@isti.cnr.it

ABSTRACT
Given a collection of objects, the All Pairs Similarity Search
problem involves discovering all those pairs of objects whose
similarity is above a certain threshold. In this paper we
focus on document collections which are characterized by a
sparseness that allows effective pruning strategies.

Our contribution is a new parallel algorithm within the
MapReduce framework. The proposed algorithm is based on
the inverted index approach and incorporates state-of-the-
art pruning techniques. This is the first work that explores
the feasibility of index pruning in a MapReduce algorithm.
We evaluate several heuristics aimed at reducing the com-
munication costs and the load imbalance. The resulting al-
gorithm gives exact results up to 5x faster than the current
best known solution that employs MapReduce.

1. INTRODUCTION
The task of discovering similar objects within a given col-

lection is common to many real world applications and ma-
chine learning problems. To mention a few, recommendation
and near duplicate detection are a typical examples.

Item-based and user-based recommendation algorithms
require to find, respectively, similar objects to those of inter-
est to the user, or other users with similar tastes. Due the
the number of users and objects present in recommender sys-
tems, e.g. Amazon, similarity scores are usually computed
off-line.

Near duplicate detection is commonly performed as a pre-
processing step before building a document index. It may
be used to detect redundant documents, which can therefore
be removed, or it may be a hint for spam websites exploit-
ing content repurposing strategies. Near duplicate detection
finds application also in the area of copyright protection as a
tool for discovering plagiarism, for both text and multimedia
content.

In this paper, we focus on document collections. The rea-
son is that documents are a particular kind of data that

Copyright c© 2010 for the individual papers by the papers’ authors. Copy-
ing permitted only for private and academic purposes. This volume is pub-
lished and copyrighted by its editors.
LSDS-IR Workshop, July 2010. Geneva, Switzerland.

exhibits a significant sparseness: only a small subset of the
whole lexicon occurs in any given document. This sparsity
allows to exploit indexing strategies that reduce the poten-
tially quadratic number of candidate pairs to evaluate.

Furthermore, we are interested in discovering only those
pairs of documents with high similarity. If two documents
are not similar, they usually do not contribute to any of the
applications we mentioned above. By setting a minimum
similarity threshold, we can also embed aggressive pruning
strategies.

Finally, the size of the collection at hand poses new in-
teresting challenges. This is particularly relevant for Web-
related collections, where the number of documents involved
is measured in billions. This implies an enormous number
of potential candidates.

More formally, we address the all pair similarity search
problem applied to a collection D of documents. Let L be
the lexicon of the collection. Each document d is represented
as a |L|-dimensional vector, where d[i] denotes the number of
occurrences of the i-th term in the document d. We adopt
the cosine distance to measure the similarity between two
documents. Cosine distance is a commutative function, such
that cos(di, dj) = cos(dj , di).

Definition 1. Given a collection D = {d1, . . . , dN} of
documents, and a minimum similarity threshold σ, the All
Pairs Similarity (APS) problem requires to discover all those
document pairs di, dj ∈ D, such that:

cos(di, dj) =

∑
0≤t<|L| di[t] · dj [t]

‖di‖‖dj‖
≥ σ

We normalize vectors to unit-magnitude. In this special
case, the cosine distance becomes simply the dot product
between the two vectors, denoted as dot(di, dj).

The main contribution of this work is a new distributed
algorithm that embeds state-of-the-art pruning techniques.
The algorithm is designed within the MapReduce frame-
work, with the aim of exploiting the aggregated computing
and storage capabilities of large clusters.

The rest of this paper is organized as follows: in Sec-
tion 2 we introduce a few concepts needed for the descrip-
tion of the proposed algorithm. We also describe the two
most relevant contributions to our work. Section 3 incre-
mentally describes our proposed algorithm and heuristics,
highlighting the strengths and weaknesses for each strategy.
Section 4 presents the results of our experimental evalua-
tion. Finally, in Section 5 we summarize our contribution
and present some ideas for future work.

8th Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS-IR’10)

25

2. BACKGROUND

A serial solution. The most efficient serial solution to
the APS problem was introduced in [3]. The authors use
an inverted index of the document collection to compute
similarities. An inverted index stores an inverted list for
each term of the lexicon, i.e. the list of documents containing
it, together with the weight of the term in each document.
More formally, the inverted list of the term t is defined as
It = {〈di, di[t]〉|di[t] > 0}.

It is evident that two documents with non-zero similarity
must occur in the same inverted list at least once. Therefore,
given a document di, by processing all the inverted lists It

such that di[t] > 0, we can detect all those documents dj

that have at least one term in common with di, and therefore
similarity greater than 0.

This is analogous to information retrieval systems, where
a query is submitted to the inverted index to retrieve match-
ing/similar documents. In this case, a full document is used
as a query.

Actually, index construction is performed incrementally,
and simultaneously to the search process. The matching
and indexing phase are performed one after the other. The
current document is first used as a query to the current in-
dex. Then it is indexed, and it will be taken into account to
answer subsequent document similarity queries. Each doc-
ument is thus matched only against its predecessors, and
input documents can be discarded once indexed.

Usually the matching phase dominates the computation
because its complexity is quadratic with respect to the length
of the inverted lists. In order to speed-up the search pro-
cess, various techniques to prune the index have been pro-
posed [2, 3].

We focus on the first technique proposed in [3]. Let d̂ be

an artificial document such that d̂[i] = maxd∈D d[i]. The

document d̂ is an upper-bounding pivot: given a document
di, if cos(di, d̂) < σ then there is no document dj ∈ D be-

ing sufficiently similar to di. This special document d̂ is
exploited as follows.

Before indexing the current document di, the largest b
such that

∑
0≤t<b di[t] · d̂[t] < σ is computed. The terms t <

b of a document are stored in a remainder collection named
DR, and only the terms t ≥ b of the current document are
inserted into the inverted index. The pruned index provides
partial scores upon similarity queries.

The authors prove that for each document di currently
being matched, their algorithm correctly generates all the
candidate pairs (di, dj) using only the indexed components
of each dj . For such documents the remainder portion of dj

is retrieved from DR to compute the final similarity score.
Finally, the authors propose to leverage the possibility of

reordering the terms in the lexicon. By sorting the terms in
each document by frequency in descending order, such that
d[0] refers to the most frequent term, most of the pruning
will involve the longest lists.

A parallel solution.
When dealing with large datasets, e.g. collections of Web

documents, the costs of serial solutions are still not accept-
able. Furthermore, the index structure can easily outgrow
the available memory. The authors of [5] propose a parallel
distributed solution based on the MapReduce framework [4].

MapReduce is a distributed computing paradigm inspired

by concepts of functional languages. More specifically, MapRe-
duce is based on two higher order functions: Map and Re-
duce. The Map function applies a User Defined Function
(UDF) to each key-value pair in the input, which is treated
as a list of independent records. The result is a second list of
intermediate key-value pairs. This list is sorted and grouped
by key, and used as input to the Reduce function. The Re-
duce function applies a second UDF to every intermediate
key with all its associated values to produce the final result.

The signatures of the functions that compose the phases
of a MapReduce computation are as follows:

Map : [〈k1, v1〉] → [〈k2, v2〉]
Reduce : {k2 : [v2]} → [〈k3, v3〉]

where curly braces “{ }′′ square brackets “[]” and angle
brackets “〈 〉” indicate respectively a map/dictionary, a list
and a tuple.

The Map and Reduce function are purely functional and
thus without side effects. For this reason they are easily
parallelizable. Fault tolerance is easily achieved by just re-
executing the failed function. MapReduce has become an
effective tool for the development of large-scale applications
running on thousand of machines, especially with the release
of the open source implementation Hadoop [1].

Hadoop is an open source MapReduce implementation
written in Java. Hadoop provides also a distributed file
system called HDFS, that is used as a source and sink for
MapReduce executions. HDFS deamons run on the same
machines that run the computations. Data is split among
the nodes and stored on local disks. Great emphasis is
placed on data locality: the scheduler tries to run mappers
(task executing the Map function) on the same nodes that
hold the input data. This helps to reduce network traffic.

Mappers sort and write intermediate values on the local
disk. Each reducer (task executing the Reduce function)
pulls the data from various remote disks. Intermediate key-
value pairs are already partitioned and sorted by key by the
mappers, so the reducer just merge-sorts the different par-
titions to bring the same keys together. This phase is called
shuffle, and is the most expensive in terms of I/O operations.
The MapReduce data flow is illustrarted in Figure 1.

DFS
Input 1

Input 2

Input 3

MAP

MAP

MAP

REDUCE

REDUCE

DFS

Output 1

Output 2

Shuffle

Merge &
GroupPartition &

Sort

Figure 1: Data flow in a MapReduce job

Since building and querying incrementally a single shared
index in parallel is not a scalable solution, a two phase al-
gorithm is proposed in [5]. In the first phase an inverted
index of the collection is built (indexing phase), and in the
second phase the similarity score is computed directly from

LSDS-IR’10 Scaling Out All Pairs Similarity Search with MapReduce

26

the index (similarity phase). Each phase is implemented as
a MapReduce execution.

We describe this algorithm in more detail in the following
section. The algorithm is used throughout the paper as a
baseline for the evaluation of our proposed solutions. Indeed,
the authors of [5] propose an algorithm for computing the
similarity of every pair of documents. For this reason, we
add a final filtering phase that discards the documents that
do not satisfy the threshold.

3. ALGORITHM
In this section we describe the algorithm used to solve the

APS problem using the MapReduce framework. We start
from a basic algorithm and propose variations to reduce its
cost. The main idea we try to exploit is that many of the
pairs are not above the similarity threshold, so they can
be pruned early from the computation. This fact is already
exploited in state-of-the-art serial algorithms [2, 3]. Our goal
is to embed these techniques into the MapReduce parallel
framework.

3.1 Indexed Approach (Version 0)
A simple solution to the pairwise document similarity

problem [5] can be expressed as two separate MapReduce
jobs:

1. Indexing: for each term in the document, the mapper
emits the term as the key, and a tuple consisting of
document ID and weight as the value, i.e. the tuple
〈d, d[t]〉. The MapReduce runtime automatically han-
dles the grouping by key of these tuples. The reducer
then writes them to disk to generate the inverted lists.

2. Similarity: for each inverted list It, the mapper emits
pairs of document IDs that are in the same list as keys.
There will be m×(m−1)/2 pairs where m = |It| is the
inverted list length. The mapper will associate to each
pair the product of the corresponding term weights.
Each value represents a single term’s contribution to
the final similarity score. The MapReduce runtime
sorts and groups the tuples and then the reducer sums
all the partial similarity scores for a pair to generate
the final similarity score.

This approach is very easy to understand and implement,
but suffers from various problems. First, it generates and
evaluates all the pairs that have one feature in common, even
if only a small fraction of them are actually above the simi-
larity threshold. Second, the load is not evenly distributed.

The reducers of the similarity phase can only start af-
ter all the mappers have completed. The time to process
the longest inverted list dominates the pair generation per-
formed by the mappers. With real-world data, which follows
a Zipfian or Power-law distribution, this means that the re-
ducers usually have to wait for a single mapper to complete.
This problem is exacerbated by the quadratic nature of the
problem: a list twice as long takes about four times more to
be processed.

A document frequency cut has been proposed to help re-
ducing the number of candidate pairs [5]. This technique
removes the 1% most frequent terms from the computation.
The rationale behind this choice is that because these terms
are frequent, they do not help in discerning documents. The
main drawback of this approach is that the resulting simi-
larity score is not exact.

3.2 Pruning (Version 1)
To address the issues in the previous approach, we em-

ploy the pruning technique described in Section 2. As a
result, during the indexing phase, a smaller pruned index
is produced. On the one hand, this reduces the number of
candidate pairs produced, and therefore the volume of data
handled during the MapReduce shuffle. On the other hand,
by sorting terms by their frequency, the pruning significantly
shortens the longest inverted lists. This decreases the cost
of producing a quadratic number of pairs from these lists.

This pruning technique yields correct results when used in
conjunction with dynamic index building. However, it also
works when the index is built fully before matching, and
only the index is used to generate candidate pairs. To prove
this, we show that this approach generates every document
pair with similarity above the threshold.

Let di, dj be two documents and let bi, bj be, respectively,
the first indexed features for each document. bi and bj are
the boundaries between the pruned and indexed part as
shown in Figure 2. Without losing generality, let bj � bi
(recall that features are sorted in decreasing order of fre-
quency, so bj is less frequent than bi). We can compute the
similarity score as the sum of two parts:

dot(di, dj) =
∑

0≤t<bj

di[t] · dj [t] +
∑

bj≤t<|L|
di[t] · dj [t]

While indexing, we keep an upper bound on the similarity
between the document and the rest of the input. This means
that ∀ḋ ∈ D, ∑

0≤t<bj
ḋ[t] · dj [t] < σ. Thus, if the two doc-

uments are above the similarity threshold dot(di, dj) ≥ σ,
then it must be that

∑
bj≤t<|L| di[t] · dj [t] > 0. If this is

the case, then ∃ t � bj | (di ∈ It ∧ dj ∈ It). Therefore, our
strategy will generate the pair (di, dj) when scanning list It.

Pruned Indexed

Pruned Indexed

di

dj

bi bj

|L|0

Figure 2: Pruned Document Pair: the left part
(orange/light) has been pruned, the right part
(blue/dark) has been indexed.

The Reduce function in the similarity phase receives a re-
duced number of candidate pairs, and computes a partial
similarity score. Due to index pruning, no partial scores
will be produced from the inverted lists {It | 0 ≤ t < bj},
since these inverted lists will not contain both documents.
Therefore, the reducer will have to retrieve the original doc-
uments, and compute the contribution up to term bj in order

LSDS-IR’10 Scaling Out All Pairs Similarity Search with MapReduce

27

to produce the exact similarity score.
We chose to distribute the input locally on every node1.

The performance penalty of distributing the input collection
is acceptable for a small number of nodes, but can become
a bottleneck for large clusters. Furthermore, the input is
usually too big to be kept in memory, so we still have to
perform 2 random disk I/O per pair.

Finally, to improve the load balancing we employ a sim-
ple bucketing technique. During the indexing phase, we
randomly hash the inverted lists to different buckets. This
spreads the longest lists uniformly among the buckets. Each
bucket will be consumed by a different mapper in the similar-
ity phase. While more sophisticated strategies are possible,
we found that this one works well enough in practice.

3.3 Flagging (Version 2)
In order to avoid the distribution of the full document col-

lection, we propose a less aggressive pruning strategy. Our
second approach consists in flagging the index items instead
of pruning them. At the same time, the flagged parts of the
documents are written as a side effect file by the mappers
of the indexing phase. This “remainders” file is then dis-
tributed to all the nodes, and made available to the reducers
of the similarity phase. The remainders file is normally just
a fraction of the size of the original input (typically 10%),
so distributing it is not a problem. During pair generation
in the similarity phase, a pair is emitted only if at least one
of the two index items is not flagged.

Our pair generation strategy emits all the pairs for the fea-
tures from bi to |L|, so we just need to add the dot product
of the remainders. The remainders file is small enough to be
easily loaded in memory in one pass during the setup of the
reducer. Thus, for each pair we only need to perform two
in-memory lookups and compute their dot product. This
process involves no I/O, so it is faster than the previous
version.

The main drawback of this version is that it generates
more pairs than version 1. This leads to unnecessary evalu-
ation of pairs and consequently to wasted effort.

3.4 Using Secondary Sort (Version 3)
This version tries to achieve the benefits of both previous

versions. Observe that for every pair (di, dj) one of the two
documents has been pruned up to a term that precedes the
other (remember that features are sorted according to their
frequency). Let this document be the LPD (Least Pruned
Document) of the pair. Let the other document be the MPD
(Most Pruned Document). In Figure 2, di is the LPD and
dj is the MPD.

We use version 1 pair generation strategy and version 2
remainder distribution and loading. To generate the partial
scores we lack (from 0 to bj), we just need to perform the
dot product between the whole LPD and the remainder of
the MPD. The catch is to have access to the whole LPD
without doing random disk I/O and without keeping the
input in memory.

Our proposed solution is to shuffle the input together with
the generated pairs and route the documents where they are
needed. In order to do that, we employ Hadoop’s Secondary
Sort feature. Normally, MapReduce sorts the intermediate
records by key before starting the reduce phase. Using sec-
ondary sort we ask Hadoop to sort the records also by a

1using Hadoop’s Distributed Cache feature

secondary key while the grouping of values is still performed
only by primary key. Instead of using the whole pair as a
key, we use the LPD as the primary key and the MPD as
the secondary key.

As a result, input values for the reducer are grouped by
LPD, and sorted by both LPD and MPD, so that partial
scores that belong to the same pair are adjacent. The LPD
document from the original input that we shuffled together
with the pairs is in the same group. In addition, we impose
the LPD document itself to sort before every other pair us-
ing a fake minimum secondary key. This allows us to have
access to the document before iterating over the values, and
therefore to perform the dot products on the fly. This is a
representation of the input for the reduce of the similarity
phase:

〈di〉; 〈(di, dj),WA
ij 〉; 〈(di, dj),WB

ij 〉; 〈(di, dk),WA
ik〉; . . .︸ ︷︷ ︸

group by key di

〈dj〉; 〈(dj , dk),WA
jk〉; 〈(dj , dk),WB

jk〉; 〈(dj , dl),W
A
jl 〉; . . .︸ ︷︷ ︸

group by key dj

First, we load the document di in memory. Then, for each
stripe of equal consecutive pairs (di, dj), we sum the partial
scores WX

ij for each common term X. Finally, we compute
the dot product between the LPD and the remainder of the
MPD, which is already loaded in memory from the remain-
ders file. We repeat this cycle until there are no more values.
After that we can discard the LPD from memory and pro-
ceed to the next key-values group.

4. EXPERIMENTAL RESULTS
In this section we describe the performance evaluation of

the proposed algorithms. We ran the experiments on a 5-
node cluster. Each node is equipped with two Intel Xeon
E5520 CPUs clocked at 2.27GHz. Each CPU features 4 cores
and Hyper-Threading for a total of 40 virtual cores. Each
node has a 2TiB disk, 8GiB of RAM, and Gigabit Ethernet.

On each node, we installed Ubuntu 9.10 Karmic, 64-bit
server edition, Sun JVM 1.6.0 20 HotSpot 64-bit server, and
Hadoop 0.20.1 from Cloudera (CDH2).

We used one of the nodes to run Hadoop’s master daemons
(Namenode and JobTracker), and the rest were configured
as slaves running Datanode and TaskTracker daemons. Two
of the cores on each slave machine where reserved to run the
daemons, the rest were equally split among map and reduce
slots (7 each), for a total of 28 slots for each phase.

We tuned Hadoop’s configuration in the following way:
we allocated 1GiB of memory to each daemon and 400MiB
to each task, we changed the HDFS block size to 256MiB
and the file buffer size to 128KiB. We also disabled spec-
ulative execution and enabled JVM reuse and map output
compression.

For each algorithm, we wrote an appropriate combiner to
reduce the shuffle size (a combiner is a reduce-like function
that runs inside the mapper to aggregate partial results). In
our case, the combiners perform the sums of partial scores in
the values, according to the same logic used in the reducer.
We also implemented raw comparators for every key value
used in the algorithms in order to get better performance
(raw comparators are used to compare keys during sorting
without deserializing them into objects).

LSDS-IR’10 Scaling Out All Pairs Similarity Search with MapReduce

28

documents 17,024 30,683 63,126
terms 183,467 297,227 580,915
all pairs 289,816,576 941,446,489 3,984,891,876
similar pairs 94,220 138,816 189,969

algorithm version v0 v1 v2 v3 v0 v1 v2 v3 v0 v1 v2 v3
evaluated pairs (M) 109 65 82 65 346 224 272 224 1,519 1,035 1,241 1,035
partial scores (M) 838 401 541 401 2,992 1,588 2,042 1,588 12,724 6,879 8,845 6,879
index size (MB) 46.5 40.9 46.5 40.9 91.8 82.1 91.7 82.1 188.6 170.3 188.6 170.3
remainder size (MB) 4.7 4.7 8.2 8.2 15.6 15.6
running time (s) 3,211 1,080 625 554 12,796 4,692 3,114 2,519 61,798 24,124 17,231 12,296
avg. map time (s) 413 197 272 177 2,091 1,000 1,321 855 10,183 5,702 7,615 5,309
stdv. map time (%) 137.35 33.53 34.97 25.74 122.18 31.52 34.08 35.27 129.65 24.52 30.27 24.43
avg. reduce time (s) 57 558 35 79 380 2,210 191 220 1,499 11,330 1,112 1,036
stdv. reduce time (%) 18.76 5.79 13.59 14.66 48.00 5.62 23.56 14.61 13.55 2.46 8.37 9.51

Table 1: Statistics for various versions of the algorithm

We used different subsets of the TREC WT10G Web cor-
pus. The dataset has 1,692,096 english language documents.
The size of the entire uncompressed collection is around
10GiB.

We performed a preprocessing step to prepare the data
for analysis. We parsed the dataset, removed stopwords,
performed stemming and vectorization of the input. We ex-
tracted the lexicon and the maximum weight for each term.
We also sorted the features inside each document in decreas-
ing order of document frequency, as required by the pruning
strategy.

4.1 Running Time
We evaluated the running time of the different algorithm

versions while increasing the dataset size. For all the algo-
rithms, the indexing phase took always less than 1 minute
in the worst case. Thus we do not report indexing times,
but only similarity computation times, which dominate the
whole computation.

We set the number of mappers to 50 and the number
of reducers to 28, so that the mappers finish in two waves
and all the reducers can run at the same time and start
copying and sorting the partial results while mappers are
still running. For all the experiments, we set the similarity
threshold to 0.9.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000

T
im

e
 (

s
e
c
o
n
d
s
)

Number of vectors

Running time

v0
v1
v2
v3

Figure 3: Computation times for different algorithm
versions with varying input sizes

Figure 3 shows the comparison between running times
for the different algorithms. The algorithms are all still
quadratic, so doubling the size of the input roughly mul-
tiplies by 4 the running time. All the advanced versions
outperform the basic indexed approach. This can easily be
explained once we take into accounts the effects of of the
pruning and bucketing techniques we applied.

 1

 10

 100

 1000

 100 1000

N
u
m

b
e
r

o
f
lis

ts

Inverted list length

max=6600

Version 0

 1

 10

 100

 1000

N
u
m

b
e
r

o
f
lis

ts

max=1729

Version 3

Figure 4: Index size distribution with and without
pruning

Figure 4 shows the effects of pruning. The maximum
length of the inverted lists is drastically reduced in version 3
compared to version 0. This explains their different running
times, as the algorithm is dominated by the traversal of the
longest inverted list. Figure 5 shows the effects of bucketing.
The load is evenly spread across all the mappers, so that the
time wasted waiting for the slowest mapper is minimized. It
is evident also from Table 1 that the standard deviation of
map running times is much lower when bucketing is enabled.

On the largest input, version 3 is 5x faster than version 0,
2x faster than version 1 and 1.4x faster than version 2. This
is caused by the fact that version 3 does not access the disk
randomly like version 1 and evaluates less pairs than ver-
sion 2. Exact times are reported in Table 1.

Version 3 outperforms all the others in almost all aspects.
The number of evaluated pairs and the number of partial
scores are the lowest, together with version 1. Version 3 has
also the lowest average map times. The standard deviation

LSDS-IR’10 Scaling Out All Pairs Similarity Search with MapReduce

29

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 10 20 30 40 50

T
im

e
 (

s
e

c
o
n

d
s
)

Mapper

Map times (threshold=0.9)

Version 0
Version 3

Figure 5: Map time distribution with and without
bucketing

of map times for versions 1, 2 and 3 is much lower than
version 0 thanks to bucketing.

For average reduce time, things change with different in-
put sizes. For small inputs the overhead of version 3 does not
pay back, and version 2 has the best trade-off between al-
gorithm complexity and number of partial scores. For large
inputs the smaller number of partial scores of version 3 gives
it an edge over other versions. Version 1 is the slowest be-
cause of disk access and version 0 also scales poorly because
of the large number of partial scores.

5. CONCLUSIONS AND FUTURE WORK
The All Pairs Similarity Search problem is a challenging

problem that arises in many applications in the area of in-
formation retrieval, such as recommender systems and near
duplicate detection. The size of Web-related problems man-
dates the use of parallel approaches in order to achieve rea-
sonable computing times. In this

We presented a novel exact algorithm for the APS prob-
lem. The algorithm is based on the inverted index approach
and is developed within the MapReduce framework. To the
best of our knowledge, this is the first work to exploit well
known pruning techniques from the literature adapting them
to the MapReduce framework. We evaluated several heuris-
tics aimed at reducing the cost of the algorithm. Our pro-
posed approach runs up to 5x faster than the simple algo-
rithm based on inverted index.

In our work we focused on scalability with respect to the
input size. We believe that the scalability of the algorithm
with respect to parallelism level deserves further investiga-
tion. In addition, we believe that more aggressive pruning
techniques can be embedded in the algorithms. Adapting
these techniques to a parallel environment such as MapRe-
duce requires further study. We also want to investigate
the application of our algorithm to other kinds of real world
data, like social networks.

6. ACKNOWLEDGEMENTS
This work was partially supported both by the EU-FP7-

215483 (S-Cube) and the POR-FESR 2007-2013 (VISITO
Tuscany) projects.

References
[1] Apache Software Foundation. Hadoop: A framework for

running applications on large clusters built of commodity
hardware, 2006.

[2] A. Awekar and N. F. Samatova. Fast Matching for All
Pairs Similarity Search. In WI-IAT ’09: Proceedings of
the 2009 IEEE/WIC/ACM International Joint Confer-
ence on Web Intelligence and Intelligent Agent Technol-
ogy, pages 295–300. IEEE Computer Society, 2009.

[3] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In WWW ’07: Proceedings of
the 16th international conference on World Wide Web,
pages 131–140. ACM, 2007.

[4] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In OSDI ’04: Proceedings
of the 6th Symposium on Opearting Systems Design and
Implementation, pages 137–150. USENIX Association,
December 2004.

[5] T. Elsayed, J. Lin, and D. W. Oard. Pairwise document
similarity in large collections with MapReduce. In HLT
’08: Proceedings of the 46th Annual Meeting of the As-
sociation for Computational Linguistics on Human Lan-
guage Technologies, pages 265–268. Association for Com-
putational Linguistics, 2008.

LSDS-IR’10 Scaling Out All Pairs Similarity Search with MapReduce

30

