
Efficient Dynamic Pruning with Proximity Support

Nicola Tonellotto
Information Science and Technologies Institute

National Research Council
Via G. Moruzzi 1, 56124 Pisa, Italy

nicola.tonellotto@isti.cnr.it

Craig Macdonald, Iadh Ounis
Department of Computing Science

University of Glasgow
Glasgow, G12 8QQ, UK

{craigm,ounis}@dcs.gla.ac.uk

ABSTRACT
Modern retrieval approaches apply not just single-term weight-
ing models when ranking documents - instead, proximity
weighting models are in common use, which highly score
the co-occurrence of pairs of query terms in close proximity
to each other in documents. The adoption of these prox-
imity weighting models can cause a computational overhead
when documents are scored, negatively impacting the effi-
ciency of the retrieval process. In this paper, we discuss the
integration of proximity weighting models into efficient dy-
namic pruning strategies. In particular, we propose to mod-
ify document-at-a-time strategies to include proximity scor-
ing without any modifications to pre-existing index struc-
tures. Our resulting two-stage dynamic pruning strategies
only consider single query terms during first stage pruning,
but can early terminate the proximity scoring of a docu-
ment if it can be shown that it will never be retrieved. We
empirically examine the efficiency benefits of our approach
using a large Web test collection of 50 million documents
and 10,000 queries from a real query log. Our results show
that our proposed two-stage dynamic pruning strategies are
considerably more efficient than the original strategies, par-
ticularly for queries of 3 or more terms.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

General Terms: Algorithms, Performance, Experimenta-
tion

Keywords: Dynamic Pruning, Efficient Proximity

1. INTRODUCTION
In most information retrieval (IR) systems, the relevance

score for a document given a query follows the general out-
line given by the best match strategy: a score is calculated
for each query term occurring in the document. These scores
are then aggregated by a summation to give the final doc-
ument relevance score. However, there are many queries
where the relevant documents contain the query terms in
close proximity. Hence, modern retrieval systems apply not
just single-term weighting models when ranking documents.
Instead, proximity weighting models are commonly applied,
which highly score the co-occurrence of pairs of query terms
in close proximity to each other in documents [8].

Copyright c© 2010 for the individual papers by the papers’ authors. Copying
permitted only for private and academic purposes. This volume is published
and copyrighted by its editors.
LSDS-IR Workshop, July 2010. Geneva, Switzerland.

Dynamic pruning strategies reduce the scoring of docu-
ments, such that efficient retrieval can be obtained, with-
out impacting on the retrieval effectiveness before rank K
- such strategies are safe-up-to-rank-K. However, when ad-
ditional proximity scores must be calculated for each docu-
ment, the computational overhead impacts the efficiency of
the retrieval process. While pruning techniques have been
studied to efficiently score documents without considering
term proximity [4, 20], there are very few proposals con-
sidering efficient top K retrieval where proximity is consid-
ered [19, 21, 22]. Moreover, these proposals require modifi-
cations of the index structure to implement efficient scoring
strategies. Indeed, such modifications include sorting the
posting lists by frequency or impact [2, 10], or using addi-
tional index structures containing the intersection of pairs
of posting lists [19, 21, 22]. However, these can lead to neg-
ative effects on other aspects of the IR system, such as the
compression of index structures or the impossibility to use
other existing ranking strategies.

This work contributes a study into the behaviour of dy-
namic pruning strategies when combined with proximity
weighting models. In particular, we analyse two existing
document-at-a-time (DAAT) dynamic pruning strategies, na-
mely MaxScore [20] and Wand [4], that can efficiently
score documents without decreasing the retrieval effective-
ness at rank K, nor requiring impact sorted indices. More-
over, we propose a runtime modification of these strate-
gies to take into account proximity scores. We generate at
runtime the posting lists of the term pairs, and transpar-
ently include the processing of these pair posting lists in the
MaxScore and Wand strategies. Next, we propose a re-
organisation of these strategies to increase their efficiency.
Using thorough experiments on a 50 million document cor-
pus and 10,000 queries from a real query log, we evaluate
the proposed modification to determine their efficiency.

The remainder of this paper is structured as follows: In
Section 2, we describe the state-of-the-art approaches to ef-
ficient ranking and the current existing solutions taking into
account proximity scoring. In Section 3, we describe in de-
tail the proposed framework to support proximity scores in
DAAT strategies, and in Section 4, we evaluate the effi-
ciency of the proposed modification. We provide concluding
remarks in Section 5.

2. BACKGROUND
In the following, we outline the state-of-the-art strategies

of dynamic pruning, followed by a discussion on proximity
weighting models.

8th Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS-IR’10)

31

2.1 Dynamic Pruning
The algorithms to match and score documents for a query

fall into two main categories [16]: in term-at-a-time (TAAT)
scoring, the query term posting lists are processed and scored
in sequence, so that documents containing query term ti gain
a partial score before scoring commences on term ti+1. In
contrast, in document-at-a-time (DAAT) scoring, the query
term postings lists are processed in parallel, such that all
postings of document dj are considered before scoring com-
mences on dj+1. Compared to TAAT, DAAT has a smaller
memory footprint than TAAT, due to the lack of maintain-
ing intermediate scores for many documents, and is report-
edly applied by large search engines [1]. An alternative strat-
egy to DAAT and TAAT is called score-at-a-time [2], how-
ever this is suitable only for indices sorted or partially sorted
by document importance, which must be calculated before
the actual query processing. The algorithms from the family
of threshold algorithms [10] work similarly.

Efficient dynamic pruning strategies do not rank every
document in the collection for each user query; they manage
to rank only the documents that will have a chance to enter
in the top-K results returned to the users. These strate-
gies are safe-up-to-rank-K [20], meaning that the ranking
of documents up to rank K will have full possible effective-
ness, but with increased efficiency. Dynamic pruning strate-
gies rely on maintaining, at query scoring time, a threshold
score that documents must overcome to be considered in the
top-K documents. To guarantee that the dynamic pruning
strategy will provide the correct top-K documents, an upper
bound for each term on its maximal contribution to the score
of any document in its posting list is used. In this paper, we
focus on two state-of-the-art safe-up-to-rank-K DAAT dy-
namic pruning strategies, namely MaxScore and Wand.

The MaxScore strategy maintains, at query scoring time,
a sorted list containing the current top-K documents scored
so far. The list is sorted in decreasing order of score. The
score of the last top-K document is a threshold score that
documents must overcome to be considered in the top-K
documents. A new document is given a partial score while
the posting lists with that document are processed. A docu-
ment scoring can terminate early when it is possible to guar-
antee that the document will never obtain a score greater
than that of the current threshold. This happens when the
current document score plus the upper bounds of terms yet
to be scored is not greater than the threshold.

The Wand strategy maintains the same top-K documents
list and the threshold score, but, for any new document,
it calculates an approximate score, summing up some up-
per bounds for the terms associated with the document. If
this approximate score is greater than the current threshold,
then the document is fully scored. It is then inserted in the
top-K candidate document set if this score is greater than
the current threshold, and the current threshold is updated.
If the approximate score check fails, the next document is
processed. The selection of the next document to score is
optimised [4] – however, for our purposes, it is of note that
the set of postings lists are sorted by the document identifier
(docid) they currently represent. More details on the Wand
document selection strategy, which uses the skipping [16] of
postings in the posting lists to reduce disk IO and increase
efficiency, is presented in Appendix A.

The MaxScore and Wand dynamic pruning strategies
can both enhance retrieval efficiency, whilst ensuring that
the top K documents are fully scored – i.e. that the re-
trieval effectiveness at rank K is not at all negatively im-

pacted. Generally, speaking, Wand is more efficient [14],
due to its ability to skip postings for unimportant query
terms. Note that both strategies examine at least one term
from each document, and hence cannot benefit efficiency for
single term queries.

2.2 Proximity
There are many queries where the relevant documents

contain the query terms in close proximity. Hence, modern
retrieval systems apply not just single-term weighting mod-
els when ranking documents. Instead, proximity weighting
models are commonly applied, which highly score the co-
occurrence of pairs of query terms in close proximity to each
other in documents [8]. Hence, some scoring proximity (or
term dependence) models have recently been proposed that
integrate single term and proximity scores for ranking doc-
uments [5, 15, 18]. In this manner, the basic ranking model
of an IR system for a query Q can be expressed as:

scoreQ(d,Q) = ω S(d) + κ
X

t∈Q

score(tfd, ∗d, t) + φprox(d,Q)

where S(d) is the combination of some query independent
features of document d (e.g. PageRank, URL length), and
score(tfd, ∗d, t) is the application of a weighting model to
score tfd occurrences of term t in document d. ∗d denotes
any other document statistics required by a particular weight-
ing model (e.g. document length). prox(d,Q) represents
some proximity document scoring function. The influence of
the various features is influenced using weights ω, κ and φ.

However, none of the proximity weighting models pro-
posed have been designed for efficient document scoring.
The main approaches to integrate proximity weighting mod-
els into pruning strategies require modifications to the in-
dex structure to include information on the proximity scores
upper bounds. In [19, 21, 22], the authors detail several
approaches to leverage early termination when proximity
scores are included in the ranking model. While these strate-
gies alter the index structure (e.g. by adding term-pair
inverted indices), we aim to exploit the proximity scores
without modifying the index structure (other than keeping
position occurrence information in the standard inverted in-
dex posting list). In particular, we use the sequential term
dependence model of Markov Random Fields (MRF) [15],
which has been shown to be effective at modelling the prox-
imity of query term occurrences in documents. In MRF, the
proximity score is calculated as follows:

prox(d,Q) =
X

p=(ti,ti+1)∈Q

“
score

`
pf(ti, ti+1, d, k1), ld, p

´

+ score
`
pf(ti, ti+1, d, k2), ld, p

´”

where pf(ti, ti+1, d, k) represents the number of occurrences
of the pair of sequential query terms (ti, ti+1) occurring in
document d in windows of size k (abbreviated as pair fre-
quency pfd). Following [15], we set κ = 1, φ = 0.1, and
k1 = 2 and k2 = 8 to account for the proximity of two
terms as an exact phrase, and proximity at distance 8, re-
spectively. score(pfd, ld, p) is implemented using Dirichlet
language modelling [11], but where pair frequency takes the
role of term frequency. However, for the background statis-
tics of the language model, in contrast to term weighting,
when using proximity weighting, it is common to assume a
constant frequency for the pair in the collection [13]1.

1As implemented by the authors of MRF in the Ivory re-
trieval system, see www.umiacs.umd.edu/~jimmylin/ivory

LSDS-IR’10 Efficient Dynamic Pruning with Proximity Support (Best Paper)

32

3. FRAMEWORK
The integration of proximity weighting models within ef-

ficient dynamic pruning strategies requires the materialisa-
tion of term pair posting lists and their integration into the
existing dynamic pruning decision mechanism. In the fol-
lowing we discuss how we proposed to address both aspects.

3.1 Term pair posting lists
Most dynamic pruning algorithms use posting list itera-

tors – object-oriented interfaces to a posting list, allowing a
posting to be read, or to be moved on to the next posting.
With a standard inverted index, one posting list’s iterator
represents the documents in which a single query term oc-
curs, ordered by docid.

Proximity weighting models require knowledge of the oc-
currence of pairs of query terms in a document. The post-
ing list of pairs of terms can be constructed either statically
(i.e., at indexing time, calculating the intersections of all
pairs of term posting lists) or dynamically (i.e., at retrieval
time, generating term pair postings on the fly). Previous ap-
proaches [19, 21, 22] investigated different methodologies to
statically calculate these intersections. However, the static
approach has two drawbacks. Firstly, storing new posting
lists requires additional space on disk, and secondly, the
pairs of terms whose posting lists must be intersected must
be known in advance (e.g. by identifying popular phrases
in the corpus [22]), to avoid generating a large number of
new, potentially useless posting lists. While these draw-
backs may be lightened by caching solutions to store paired
posting lists [12], even in this case, there is always a relative
consumption of disk or memory resources.

Instead, the pair posting lists can be built dynamically.
Given two single term iterators on postings lists, there is a
valid term pair posting each time they point to the same
docid. In order to transparently include these pair postings
in existing DAAT strategies, we must be sure that they are
ordered by docid. A pair posting list is illustrated in Fig-
ure 1, based on the postings for terms t1 and t2. In our
proposed approach, to avoid additional I/O operations at
runtime, only the single term posting lists are responsible
for reading from disk and decompressing the single post-
ings, while the pair posting docid is updated each time a
new single posting is read with the minimum of the current
single term docids. The pair posting is valid only when the
docids of the underlying single term posting lists are equal
(i.e., in Figure 1, only two valid postings exist, namely do-
cid 1 and docid 8.). When a term posting list ends, all the
associated pair posting lists end as well. Overall, the pair
posting list is docid-sorted and cannot skip over potentially
useful term pair postings, however, a number of invalid pair
postings will occur (e.g. (8,2) and (9,14) in Figure 1).

t1 1 8 9

1 2 8

1
1

t2

t1
t2

✕

14

8
2

8
8

9
14

✕

14

disk

Figure 1: The dynamic creation of a pair posting
list for terms t1 and t2. Bold entries are valid pair
postings, while × indicates the end of a posting list.

3.2 Dynamic pruning with proximity
The dynamic pair posting lists can be directly put into

work in existing DAAT strategies without modification. When
a term pair posting is selected for scoring, it is necessary to
calculate the exact value for the pair frequency at window
size k, by comparing the lists of positions stored in both term
postings. With dynamic pruning strategies (MaxScore and
Wand), this computation can be avoided if the posting is not
considered for scoring. Moreover, both the MaxScore and
Wand pruning strategies require upper bounds on the score
contributions of single terms. Hence, when using proximity,
we need also to provide upper bounds on the score contri-
butions of pairs as well. In [4], the authors proposed using
a dynamic estimation of the inverse document frequency of
pairs to determine the upper bound (the particular proxim-
ity weighting model is not defined, but assumed to be similar
to [5]). In [14], we proposed a new approximation for upper
bounds of the Markov Random Fields, requiring only the
knowledge of the maximum term frequency of the postings
in the two term posting lists.

We now describe how proximity weighting is achieved us-
ing the dynamic pruning strategies. In particular, the Max-
Score strategy must always know the minimum docid in the
currently processed posting lists set (which can be obtained
by maintaining a heap), while the Wand strategy must have
access to the posting lists sorted by docid (i.e., in the worst
case, every posting in each posting list must be removed and
inserted in a sorted set). However, when proximity is con-
sidered, many extra pair postings must be considered (i.e.,
|Q| single term postings, plus an additional 2(|Q| − 1) pair
postings) – causing the efficiency of Wand to be hindered.
Moreover, both strategies must make additional checks to
ensure that only ‘valid’ pair postings are considered, which
can cause a performance bottleneck.

To deal with these limitations, we propose a modification
that can be applied to both MaxScore and Wand pruning
strategies, whereby the processing of single terms is sepa-
rated from that of term pairs during each document scor-
ing. We refer to these two-stage strategies as MaxScoreP
and WandP. In particular, if a pair posting is updated after
each term posting update, we will generate two potentially
invalid pair postings. With the proposed modification, we
update the pair postings only after all single terms have
been moved to their respective next posting. This implies
that we can generate only one pair posting instead of two
each time both of the single term posting iterators advance.
Hence, MaxScoreP and WandP process the single term
posting lists according to their respective algorithms, how-
ever the term pairs are subsequently processed in a second
stage using early termination, according to the MaxScore
strategy. The use of early termination of proximity scoring
is motivated by the fact that the pair frequency of a pair
posting is expensive to compute (in comparison to term fre-
quency, which is directly recorded in the posting) – hence
early termination can reduce the unnecessary pair frequency
and proximity score calculations.

In summary, we propose to implement proximity scoring
using only normal index structures at retrieval time, and
in such a way to integrate directly with existing DAAT dy-
namic pruning strategies. Moreover, we propose a modifica-
tion to these dynamic pruning strategies, where the single
terms are processed first according to the original dynamic
pruning strategy, while the terms pairs are processed ac-
cording to the MaxScore strategy. This can significantly

LSDS-IR’10 Efficient Dynamic Pruning with Proximity Support (Best Paper)

33

reduce the performance impact of additional data structures
required at runtime, and, as will be shown in Section 4,
leads to improved retrieval efficiency. Moreover, both of the
MaxScoreP and WandP modified strategies remain safe-
up-to-rank-K.

4. EVALUATION
In the following experiments, we want to evaluate the ben-

efits of the proposed modification of the dynamic pruning
strategies. We are mainly interested in efficiency, because
all strategies are safe-up-to-rank-K – hence have no impact
on effectiveness. We tackle the following research questions:

1. How do MaxScore and Wand compare when apply-
ing the Markov Random Fields proximity weighting
model?

2. Do the proposed modifications benefit the efficiency
when applying proximity?

3. What impact does the length of the query have?

Experiments are performed using a 230GB 50 million En-
glish document subset of the TREC ClueWeb 09 (CW09B)
corpus [6]. Documents are ranked using the Dirichlet LM
weighting model [11] (with parameter setting µ = 4000)
and the Markov Random Fields proximity weighting (see
Section 2.2). No query-independent features are used (i.e.,
ω = 0). CW09B is indexed using the Terrier IR plat-
form [17]2, applying Porter’s English stemmer and removing
standard stopwords. In the posting list, docids are encoded
using Elias Gamma-encoded deltas [9] and term frequencies
using Elias Unary [9]. The positions of occurrences of the
term within the document are also recorded in each posting,
using Elias Gamma-encoded deltas. Each posting list also
includes skip points [16], one every 10,000 postings. The
resulting size of the inverted index is 72GB.

For testing retrieval efficiency, we extract a stream of user
queries from a real search engine log. In particular, we se-
lect the first 10,000 queries of the MSN 2006 query log [7],
applying Porter’s English stemmer and removing standard
stopwords (empty queries are removed). The experiments
measure the average query response time for each dynamic
pruning strategy, broken down by the number of query terms
(1, 2, 3, 4 and more than 4). The number of documents re-
trieved for each query is K = 1, 000. All experiments are
made using a dual quad-core Intel Xeon 2.6GHz, with 8GB
RAM and a 2TB SATA2 disk containing the index.

In the following, we compare five strategies, namely: an
exhaustive “Full” DAAT strategy, which fully scores every
posting for all query terms and pairs; the original Max-
Score and Wand dynamic pruning strategies without any
modification; and the proposed two-stage MaxScoreP and
WandP dynamic pruning strategies which integrate the mod-
ification proposed in Section 3.2. Every strategy uses dy-
namic pair posting lists, as discussed in Section 3.1.

Table 1 details the average query response time for both
the original and two-stage strategies per number of query
terms. From this table, we note that the average response
time are reduced by approximately 22%-30% by applying
the original MaxScore, but for the original Wand the av-
erage response times are worse than for Full DAAT scoring.
This counters the normal efficiency of Wand, and supports

2http://terrier.org

of query terms
1 2 3 4 > 4

queries 3456 3149 1754 853 550
Full 0.53 2.76 5.57 9.95 16.42

Original strategies
MaxScore 0.53 2.07 3.92 6.45 12.68
Wand 0.53 3.01 5.78 10.67 18.42

Two-stage strategies
MaxScoreP 0.53 1.90 3.32 5.27 8.51
WandP 0.53 1.67 2.73 4.46 7.77

Table 1: Average response times (in seconds), orig-
inal strategies and two-stage strategies.

‐20% 

‐10% 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

2  3  4  >4 

%
 im

pr
ov
em

en
t o

ve
r 
Fu
ll 
D
A
AT

 

# of query terms 

MaxScore (original) 

Wand (orginal) 

MaxScoreP (two‐stage) 

WandP (two‐stage) 

Figure 2: The relative impact on the average re-
sponse time of the proposed strategies w.r.t. the
Full DAAT strategy.

our assertion that Wand is not suitable for proximity scor-
ing in its normal form. Indeed, when using the pair posting
lists, there is a higher number of posting lists to maintain
in the docid sorted set of posting lists used by Wand, in
addition to the check that each pair posting is valid.

In contrast, the two-stage pruning strategies perform bet-
ter in comparison to their original versions. MaxScoreP
exhibits improvements of average response times varying
from 31% for two terms, up to 48% for more than four
terms, while WandP benefits vary from 39% to 58%. More-
over, we note that WandP exhibits better efficiency than
MaxScoreP, in common with MaxScore versus Wand
for non-proximity queries [14]. For single term queries, no
proximity is applied, and, as expected, all dynamic pruning
strategies are equally efficient to Full DAAT scoring.

Figure 2 summarises the percentage differences of the dy-
namic pruning strategies with respect to the Full DAAT
scoring, for varying lengths of query. As already reported,
the two-stage MaxScoreP and WandP strategies outper-
form their original equivalents. Moreover, their benefits in-
crease as the length of the queries (and hence pairs of terms)
increase, up to 40-55% improvements for queries with 3 or
more terms.

5. CONCLUSIONS
In this work, we examined how to efficiently score doc-

uments using dynamic pruning strategies when using the
Markov Random Field proximity weighting model [15]. In
particular, we discussed how pair posting lists could be used
to allow proximity scoring without changes to the underlying

LSDS-IR’10 Efficient Dynamic Pruning with Proximity Support (Best Paper)

34

index. Moreover, the most efficient way to score documents
using DAAT dynamic pruning strategies was discussed. We
proposed that dynamic pruning should be performed in a
two-stage process (as exemplified by the MaxScoreP and
WandP strategies), whereby only single query terms are
processed and pruned in the first stage. The pair posting
lists are only considered during a second stage, since they
are omitted from consideration in the first stage.

We performed large-scale experiments comparing the orgi-
nal and proposed two-stage dynamic pruning strategies, us-
ing a corpus of 50 million documents, and 10,000 user queries
from a real query log. Our results demonstrated the bene-
fit of the two-stage versions of the dynamic pruning strate-
gies, particularly for queries of 3 or more terms, and are a
promising start for the future efficient examination of other
proximity weighting models.

Dynamic pruning techniques have previously been shown
to be readily appliable in distributed retrieval settings [3].
Similarly, we infer that our strategies can also be applied in
distributed retrieval without requiring adaptation.

6. REFERENCES
[1] A. Anagnostopoulos, A. Z. Broder and D. Carmel.

Sampling search-engine results. In Proc. of WWW
2005, 245–256.

[2] V. N. Anh and A. Moffat. Pruned query evaluation
using pre-computed impact scores. In Proc. of SIGIR
2006, 372–379.

[3] R. Baeza-Yates, A. Gionis, F. Junqueira,
V. Plachouras and L. Telloli. On the feasibility of
multi-site web search engines. In Proc. of CIKM 2009,
425–434.

[4] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer and
J. Zien. Efficient query evaluation using a two-level
retrieval process. In Proc. of CIKM 2006, 426–434.

[5] S. Büttcher, C. L. A. Clarke and B. Lushman. Term
proximity scoring for ad-hoc retrieval on very large
text collections. In Proc. of SIGIR 2006, 621–622.

[6] C. L. A. Clarke, N. Craswell and I. Soboroff. Overview
of the TREC 2009 Web track. In Proc. of TREC 2009.

[7] N. Craswell, R. Jones, G. Dupret and E. Viegas. Proc.
of the Web Search Click Data Workshop at WSDM
2009.

[8] W. B. Croft, D. Metzler and T. Strohman. Search
Engines: Information Retrieval in Practice Addison
Wesley, 2009.

[9] P. Elias. Universal codeword sets and representations
of the integers. Information Theory, IEEE
Transactions on, 21(2):194–203, 1975.

[10] R. Fagin, A. Lotem and M. Naor. Optimal
aggregation algorithms for middleware. J. Comput.
Syst. Sci. 66(4):614–656, 2003.

[11] J. Lafferty and C. Zhai. A study of smoothing
methods for language models applied to information
retrieval. In Proc. of SIGIR 2001, 334–342.

[12] X. Long and T. Suel. Three-level caching for efficient
query processing in large web search engines. In Proc.
of WWW 2005, 257–266.

[13] C. Macdonald and I. Ounis. Global Statistics in
Proximity Weighting Models. In Proc. of Web N-gram
Workshop at SIGIR 2010.

[14] C. Macdonald, N. Tonellotto and I. Ounis. Upper
Bound Approximations for Dynamic Pruning.
Manuscript submitted for publication, 2010.

[15] D. Metzler and W. B. Croft. A Markov random field
model for term dependencies. In Proc. of SIGIR 2005,
472–479.

[16] A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. Transactions on Information
Systems, 14(4):349–379, 1996.

[17] I. Ounis, G. Amati, V. Plachouras, B. He,
C. Macdonald and C. Lioma. Terrier: a high
performance and scalable information retrieval
platform. In Proc. of OSIR Workshop at SIGIR 2006.

[18] J. Peng, C. Macdonald, B. He, V. Plachouras and
I. Ounis. Incorporating term dependency in the DFR
framework. In Proc. of SIGIR 2007, 843-844.

[19] R. Schenkel, A. Broschart, S. Hwang, M. Theobald
and M. Gatford. Efficient text proximity search. In
Proc. of SPIRE 2007, 287–299.

[20] H. Turtle and J. Flood. Query evaluation: strategies
and optimizations. Information Processing and
Management, 31(6):831–850, 1995.

[21] M. Zhu, S. Shi, M. Li and J.-R. Wen. Effective top-k
computation in retrieving structured documents with
term-proximity support. In Proc. of CIKM 2007,
771–780.

[22] M. Zhu, S. Shi, N. Yu and J.-R. Wen. Can phrase
indexing help to process non-phrase queries? In Proc.
of CIKM 2008, 679–688.

APPENDIX
A. WAND NEXT DOCUMENT SELECTION

t12

1

4

3

11 13 24

11 22 26

22 23 27

23 25 27

4 current docid 6 current threshold

t2

t3

t4 t1

1

4

3

2 24

22 26

22 23 27

23 25 27

t2

t3

t4 t1

4

3

2

1

24

26

23 27

23 25 27

t2

t3

t4

pivot term pivot documentterm upper bound

Figure 3: How the WAND strategy selects the next
document to score

The selection of the next document performed in the Wand
strategy is explained with the help of Figure 3. The post-
ing lists are maintained in increasing order of docid. Then
a pivot term is computed, i.e. the first term for which the
accumulated sum of upper bounds of preceding terms and
itself exceeds the current threshold (e.g., term t3 with accu-
mulated score of 7). The corresponding docid identifies the
pivot document, i.e. the smallest docid having a chance to
overcome the current threshold. If the current docids of the
previous terms are equal to the pivot document docid, the
document is fully scored. Otherwise, one of the preceding
terms posting list is moved to the pivot document docid, and
the procedure is repeated. In the example, at the third step
a good candidate document is found (23) and it is fully pro-
cessed. This implementation can benefit from skipping every
posting list to a particular document, however the selection
of the right document requires some additional CPU time.

LSDS-IR’10 Efficient Dynamic Pruning with Proximity Support (Best Paper)

35

