
Semantic Wiki Refactoring. A Strategy to Assist

Semantic Wiki Evolution

Martin Rosenfeld, Alejandro Fernández and Alicia Díaz ?

LIFIA, Facultad de Informática,
Universidad Nacional de La Plata, Argentina

{martin.rosenfeld,alejandro.fernandez,alicia.diaz}@lifia.info.unlp.edu.ar

Abstract. The content and structure of a wiki evolve as a result of the
collaborative e�ort of the wiki users. In semantic wikis, this also results
in the evolution of the ontology that is implicitly expressed through the
semantic annotations. Without proper guidance, the semantic wiki can
evolve in a chaotic manner resulting in quality problems in the underly-
ing ontology, e.g. inconsistencies. As the wiki grows in size, the detection
and solution of quality problems become more di�cult. We propose an
approach to detect quality problems in semantic wikis and assist users
in the process of solving them. Our approach is inspired by the key
principles of software refactoring, namely the cataloging and automated
detection of quality problems (bad smells), and the application of quality
improvement transformations (refactorings). In this paper we discuss the
problem of evolving semantic wikis, present the core model of our ap-
proach, and introduce an extensible catalog of semantic wiki bad smells
and an extensible toolkit of semantic wiki refactorings.

1 Introduction

Semantic Wikis [1] enhance the functionality of wikis with mechanisms to express
semantic for the content in the wiki, in the form of semantic annotations. The
synthesis of all semantic annotations in a semantic wiki de�nes its ontology.

Wikis evolve as a result of the collaborative e�ort of its users [2]. However,
the uncoordinated edits of users may result in semantic wikis with poor quality
regarding the underlying ontology. Thus, assistance needs to be provided to check
that quality criteria are met and to minimize the e�ort of improvement.

In software engineering, refactoring techniques are applied to improve pro-
grams quality. The term refactoring [3] refers to the process of making persistent
and incremental changes to a system's internal structure without changing its
external behavior, yet improving the quality of its design. Refactoring is based
on two key concepts: bad smells, that are an informal still useful characterization
of patterns of bad source code, and refactorings, which are piecemeal transforma-
tions of source code that keep the semantics while removing (totally or partly)
a bad smell.
? This work was partially funded by: the PAE 37279-PICT 02203 which is sponsored
by the ANPCyT, Argentina.



A strategy for refactoring consists in the following components: a toolbox
of refactorings, a catalog of bad smells, and detailed instructions on how to
apply refactorings to remove each smell. Additionally, automated tools for the
detection of bad smells and refactoring editors reduce the e�ort of refactoring and
the chance of introducing errors. Environments in which refactoring is a mature
practice (a culture), such as Smalltalk, usually o�er these powerful tools.

Inspired by the principles of refactoring, this paper explores the use of such
strategies to assist the evolution of semantic wikis and incrementally improve
their quality. In this order, we give de�nitions for Semantic Wiki Bad Smell

and Semantic Wiki Refactoring. Then, we adapt each of the components of a
refactoring strategy to the context of semantic wikis. This includes a toolbox of
semantic wiki bad smells, and a catalog of semantic wiki refactorings with their
instructions on how to remove bad smells. Additionally, we discuss how tools
can be used to automate the detection of bad smells and refactoring operations.

The structure of this paper is the following. We discuss in detail the prob-
lem of achieving quality in evolving semantic wikis in Section 2. Afterwards,
in Section 3, we describe the state of the art in works to assist the evolution
of semantic wikis. In Section 4, we present our approach that applies the ideas
of software engineering refactoring in the context of semantic wikis. Finally, in
section 5 we present the conclusions and future work.

2 The problem of evolving semantic wikis

The structure of a wiki, as well as its content, evolves as a result of the col-
laborative e�ort of the wiki users. Usually, wikis are created with very few or
no structure in advance, so that users adjust it as a necessity to express knowl-
edge, ideas, opinions, etc. Mader [4] suggests that the wiki creator should not
try to guess the structure of a wiki in advance, but let it evolve into the optimal
organization of information as people use it.

When the wiki is semantic, the wiki evolution also a�ects the formal repre-
sentation of the wiki content, i.e. the underlying ontology. Thus, the ontology
emerges with the wiki, as users add semantic annotations to the wiki content.
Kousetti et. al. [5] use the term Ontology Convergence to mean the process of
the implicit ontology evolving to a single model.

The problem of evolving wikis consists in assuring a good wiki quality through
all the stages of the wiki evolution. If the evolution is not controlled, it is very
possible that the wiki evolves in a chaotic manner. Many problems can arise
as the result of multiple users collaboratively and incrementally editing a wiki.
In traditional wikis, these problems are usually related to the following quality
metrics: readability, structure, navegability, completeness, consistency.

Semantic wikis aim to improve the quality of traditional wikis by allowing
to add semantic knowledge to the wiki content. However, they cannot assure
that the wiki evolves in a correct manner and that a good ontology convergence
is achieved. Kousetti et. al. [5] describe the following quality metrics for the
semantic wiki's implicit ontology:



� Consistency: no sentence can be contradicted.
� Completeness: anything that needs to be in the ontology is explicitly de�ned
or it can be inferred from other de�ned de�nitions and axioms.

� Conciseness: does not contain unnecessary de�nitions or redundancies.
� Expandability: you can easily add more knowledge without requiring to make
major changes to the existing structure.

� Sensitiveness: the ontology is more sensitive if small changes can alter easily
how well-de�ned a de�nition is.

Let's take a motivating example of a semantic wiki being employed to describe
geographical places. In an early stage of evolution, a user creates a category
"City". Later, another user creates a category "Capital city", attempting to form
a more speci�c group for cities that are also capitals. However, this user does not
realize that this category de�nes a subset of the resources of category "City" and,
consequently, should be a subcategory of it. The lack of this semantic relation
between the two categories results in many problems. First of all, it a�ects the
conciseness of the semantic wiki. Every time a user creates a page for a city that
is also a capital city, he will have to categorize it with both categories, so that no
semantic knowledge is lost. Secondly, it a�ects the semantic wiki completeness.
A user asking the wiki for a list of cities will not get as result the resources
categorized with category "Capital City" but not with category "City".

The example above exposes that problems can arise while the evolution of
semantic wikis takes place. Such problems are �nally perceived as a lack of
quality in the product, thus jeopardizing the success of the wiki. This results in
the necessity of an extra work, that consists in periodically checking for problems
in the wiki quality, and making the corresponding modi�cations. This work is
commonly called "wiki gardening"1. However, as the wiki becomes longer, with
many pages and semantic annotations, it becomes more di�cult to detect quality
problems and solve them appropiately.

In this context, where shared ownership and evolution of structure and con-
tent are a plus, assistance needs to be provided to check that quality criteria are
met and to minimize the e�ort of improvement.

3 State of the art

Wikis are groupware. Peter and Trudy Johnson-Lenz [6] identify two prevailing
approaches to groupware: mechanism, the use of explicit forms and procedures,
and context or open space, to allow groups to self organize. Wikis are by nature
closer to the later approach. There are semantic wiki tools, such as Project

Halo2, that support the de�nition of the ontology upfront (thus stressing the
"mechanism"' approach). Those wikis are usually called Semantic Data Wikis.
In contrast, our research focuses on wikis created with very few or no structure
in advance, so that users incrementally create the ontology.

1 http://www.wikisym.org/ws2008/index.php/What_are_the_tasks_of_a_wiki_gardener%3F
2 http://www.mediawiki.org/wiki/Extension:Halo_Extension



In the �eld of ontologies, the problem of ontology evolution is one of the
current topics of the research agenda. Djedidi et. al. [7] and Haase et. al. [8]
focus on consistency achievement when a change in the ontology is performed.
They employ resolution mechanisms to recover from four levels of inconsisten-
cies: structural, logical, conceptual and domain dependent. Moreover, the former
presents a list of metrics to evaluate the quality of an ontology. Baumeister and
Seipel [9] describe a set of anomalies in the design of the ontology that may
a�ect its mantainability, usability and understandability, and propose refactor-
ing methods to eliminate them. They distinguish four categories of anomalies:
redundancy, circularity, inconsistency and de�ciency. Although these approaches
make signi�cant contributions to the �eld of ontologies, the domain of semantic
wikis presents new challenges. Firstly, the collaborative way of editing a wiki in-
crements the possibilities of generation of di�erent kind of anomalies. Secondly,
the combination of semantic annotations with wiki's tacit knowledge (i.e. text,
images, etc.) has to be considered.

An approach to assist the evolution of semantic wikis is MOCA [5], which is
a Semantic Mediawiki (SMW) [10] extension. It is a support system that assists
wiki authoring and contribution to the background ontology. MOCA provides as-
sistance in the edit page of the wiki, giving help with recommendations for types
using the background ontology, and insertion of annotations without knowledge
of the syntax. A similar approach is taken by the Project Halo, which is also an
extension of SMW that provides intuitive graphical interfaces that facilitate the
authoring, retrieval, navigation and organization of semantic data.

Although these two works assist the evolution of semantic wikis by helping
users in the creation of content, they do not aim to neither �nd quality problems
nor solve them. SMW+3 is actually an approach to accomplish part of this.
SMW+ is a semantic wiki built on top of SMW, aimed at the enterprise market.
In addition to assisting users in authoring using the Halo Extension, SMW+
o�ers gardening functionality. It comprises a set of programmable tasks (called
bots) to automate or assist users in the process of improving the quality of the
wiki content. For example, there are bots to �nd pages without annotations, or
to �nd artifacts on schema or annotation level which indicate a bad modeling.

Although the contribution of the gardening functionality of SMW+ should
be recognized, it is strongly biased towards the identi�cation of quality problems.
It does not provide support for the implementation of the changes required to
remove them and, thus, to improve the quality of the semantic wiki.

4 Refactoring semantic wikis

In this section we will see how each of the components of a refactoring strategy,
that were described in section 1, are applied to the context of semantic wikis.
But �rst of all, in section 4.1, we will need to de�ne the model of the artifact
that will serve as the base to de�ne each of them.

3 http://wiki.ontoprise.de/smwforum/index.php/MainPage



4.1 Core model

In order to de�ne refactorings and bad smells, we need a model of a semantic
wiki that will serve as a base. We call it the core model, which is shown in �gure
1. It is de�ned as an OWL ontology, and we use UML diagrams to visualize it.

Fig. 1: Core Model: a conceptual model of a semantic wiki

The core model is a conceptual model of a semantic wiki and is inspired on
the knowledge base of SMW. However, it can be customized and extended to
support new features, so that new refactorings and smells could be de�ned in
terms of them.

A Resource is anything that can be described in a wiki: Concept, that repre-
sents individuals in the wiki; Category, which allows to group resources; Property,
that describes the semantic of relationships between resources; and Type, that
is used to specify the object type of properties. Each of the resources can have
a wiki Page or Article that describes it. Pages can be also directly related to
other pages using untyped links.

Semantic Annotation is subclassi�ed in Categorization and Property Anno-
tation. A Categorization describes a relation of membership of a resource in a
category. A subcategory relationship between categories is de�ned when the sub-
ject resource of a categorization is a category. In this case, the subject category
is a subcategory of the object category.

A Property Annotation is composed by three elements: a subject, that can
be any resource; a property, which is an individual of Property; and an object.
Relationship Annotations are those property annotations whose object is another
resource, while the object of Attribute Annotations are end values of a data
type. Categorizations could be restated as relationship annotations in which the
property describes the belongs to semantic, and the object is allways a category.

We assume the existence of a set of built-in properties with special meanings.
One of them is the Subproperty of Property. When used as the property of a
relationship annotation between two properties, it describes a subproperty rela-



tionship between the subject property and the object property. Another built-in
property is the Has type Property that indicates the object Type of a Property.

4.2 A toolbox of semantic wiki refactorings

Semantic wiki refactorings are transformations in the semantic structure of a se-
mantic wiki knowledge base, that allow to improve the implicit ontology quality.
Refactorings describe an ordered way of appropiately performing such transfor-
mations, so that new inconsistencies, redundancies and other quality problems
are avoided. Each refactoring is de�ned by: a name; a description, which sum-
marizes the refactoring in informal language; and the mechanics, which are a
series of mechanical transformations in the model of the wiki.

In the following we describe in detail the refactoring called Create subcategory
relationship as an example. As it is not the objective of this paper to de�ne a
complete catalog of refactorings, we will later list other refactorings for which
we will only mention their name and description.

Create subcategory relationship refactoring describes a transformation in which
an existent category turns to be a subcategory of another one. De�ning such re-
lationship helps improve the quality of search results, the conciseness and com-
pleteness of the semantic wiki.

Following the example described in section 2, applying this refactoring would
mean to make "Capital City" a subcategory of "City". The �rst step to appropi-
ately accomplish this, must consist in actually making "Capital City" subcate-
gory of "City". This is the basic step to create the subcategory relationship. Sec-
ondly, the categorizations of category "City" in each resource that also belongs
to category "Capital City" have to be removed. This is because it is now im-
plicit that every resource that belongs to "Capital City" also belongs to "City".
Applying this step avoids redundant categorizations. The last step consists in
eliminating redundancies in the categorization chain. Supose the existence of a
category "Geographical place", that is supercategory of both categories. Then,
the subcategory relationship that states that "Capital City" is subcategory of
"Geographical place" is now redundant and, thus, has to be eliminated.

The following is the formalization of this refactoring. Applied to the exam-
ple, the category "City" plays the role of supercategory, "Capital City" is the
subcategory, and "Geographical place" is the super-supercategory :

Name Create subcategory relationship.
Description Make an existent category subcategory subcategory of another ex-

istent category supercategory.
Mechanics

1. Make supercategory supercategory of subcategory.
2. For each resource that belongs to subcategory remove its categorization

of supercategory.
3. For each category super-supercategory that is supercategory of subcate-

gory : if it is also a supercategory of supercategory, remove it as super-
category of subcategory.



Note that the steps de�ned in the mechanics of the refactoring are not bound
to any semantic wiki implementation. The concrete actions that has to be done
to actually perform the steps, depend on the way each semantic wiki implemen-
tation implements each of the semantic wiki features. In this way, refactorings
are able to be reused in any semantic wiki implementation.

Table 1 presents a list of other possible semantic wiki refactorings. This
list can be extended and customized. Furthermore, if the implementation of the
semantic wiki supported new features, it could be extended to make use of them.

Name Description

Move annotation Change the subject of an annotation from one resource to another.

Unify categories Unify two existent categories categoryA and categoryB. A new category
categoryC is created and replace both of them. Existent categorizations
of the two uni�ed categories have to be replaced to the new one.

Split property Split a property propertyA into two new properties propertyB and prop-
ertyC. The semantic annotations that have propertyA as property, have
to appropiately change it to propertyB or propertyC.

Extract concept A concept conceptA describes more than one real concept. A new con-
cept conceptB is created. All the semantic annotations that have con-
ceptA as subject or object, have to be placed appropiately.

Create subprop-
erty relationship

Create a subproperty relationship between two existent properties.

Rename concept Rename a concept and, consequently, the page that describes it. All the
semantic annotations and untyped links that point to the concept, have
to be updated.

Remove category Remove an existent category. All its categorizations have to be also
removed.

Table 1: List of semantic wiki refactorings

4.3 A catalog of semantic wiki bad smells

Refactorings describe how to appropiatelly perform transformations in the wiki.
However, they say nothing about when they should be applied. Fowler [3] a�rms
that "deciding when to start refactoring, and when to stop, is just as important
to refactoring as knowing how to operate the mechanics of a refactoring".

De�ning bad smells may help determine when to apply each refactoring. A
semantic wiki bad smell is a symptom in the semantic structure of a semantic
wiki that possibly indicates a deeper problem, and suggests that a refactoring
should be applied. It must be said that the detection of a bad smell does not
necessarily implies a real problem. It must be analyzed in the current context
and decide whether it should be applied or not a refactoring.

Each bad smell is de�ned with: a name; a description, which describes the
bad smell in informal language; the related refactorings that should be applied



to remove the smell; and a detection mechanism. The detection mechanism may
simply involve the execution of a query to the wiki knowledge base, or may apply
more sophisticated methods such as data minning techniques.

As with refactorings, it is not the objective of this paper to de�ne a complete
catalog of bad smells. We will �rst describe as an example the Twin categories

bad smell and then present a preliminar list of other possible ones.
The Twin categories bad smell describes the case when two categories appear

together in categorizations very frequently. The �rst reason why this bad smell
can be detected, is if two categories have the same semantic but di�erent names.
This case is intrinsic to the collaborative way of semantic wikis. This situation
can arise because a user does not know a category already exists, or because
of users belonging to di�erent professional stu� or speaking di�erent languages.
The consequence of this problem is that a category is duplicated.

The second possible cause is that the twin categories de�ne a subcategory
relationship. The example presented in section 2 describes this situation. Because
of the lack of the subcategory relationship between the categories "Capital City"
and "City", every time a resource is categorized with category "Capital City",
it should be also categorized with category "City". To remove the bad smell in
this case, the "Create subcategory relationship" refactoring should be applied.

The following is the full de�nition of this bad smell:

Name Twin categories
Description Categorizations of two categories categoryA and categoryB appear

together very frequently.
Related Refactorings

1. Unify categories
Cause: The two categories describe the same category.
Example: categoryA = "LIFIA", categoryB = "LIFIA Lab"

2. Create subcategory relationship
Cause: The two categories describe a subcategory relationship.
Example: categoryA = "Capital city", categoryB = "City"

Detection Mechanism In this case, we decided to use a semantic query as the
detection mechanism. The semantic query is expressed in SPARQL query
language, and is based on "SPARQL 1.1 Query"4 speci�cation.

SELECT DISTINCT ?categoryA ?categoryB

WHERE { ?categorizationA has_subject ?subjectA

?categorizationB has_subject ?subjectA

?categorizationA has_object ?categoryA

?categorizationB has_object ?categoryB.

FILTER ((? categorizationA != ?categorizationB)

&& (? categoryA != ?categoryB ))

}

GROUP BY ?categoryA ?categoryB

HAVING (count (*) > PARAM)

Table 2 presents a list of other possible semantic wiki bad smells.

4 http://www.w3.org/TR/2009/WD-sparql11-query-20091022/



Name Description

Concept too catego-
rized

A concept belongs to too many categories. This symptom may ex-
pose the fact that the concept describes more than one real concept.

Divergent property Instances of a property diverge in range and domain. A property is
used with many semantics.

Twin properties Annotations of two properties appear together in the same resources
very frequently.

Resource with no se-
mantic annotations

A resource is not subject of any semantic annotation.

Large category A category is object of too many categorizations.

Table 2: List of semantic wiki bad smells

4.4 Automating the detection of bad smells and refactoring

operations

Automating the detection of smells is a necessity as the wiki grows in size and
semantic knowledge. De�ning a detection mechanism such as a semantic query
for each smell, makes it possible to �nd all the occurrences of a bad smell auto-
matically. Integrating a tool for the detection of bad smells in the semantic wiki
would allow users to look for quality problems with less e�ort.

The mechanics of the refactorings describe an ordered way of applying trans-
formations, consisting in a series of simple actions. However, it could become
tedious and time-consuming to execute those actions by hand. Moreover, the
chances of making mistakes and introducing new errors are increased. For wiki
refactoring to be a productive strategy to assist semantic wiki evolution, e�ort
and risk must be minimized.

Fortunately, many times it is possible to have a refactoring automation tool.
Take for example the Create subcategory relationship refactoring. You have sev-
eral changes to make and check for correctness if you do it by hand. With a
refactoring automation tool, one simply selects both categories (subcategory and
supercategory) and launches the refactoring. The refactoring tool applies all the
steps of the mechanics as part of the same single transaction. The whole process
takes seconds instead of several minutes. Moreover, the refactoring operation
ensures that no action is lost and no bugs are introduced.

5 Conclusions and future work

Semantic wiki refactoring is an approach to detect quality problems in seman-
tic wikis and assist users in the process of solving them. It is inspired by the
key principles of software refactoring. We have discussed the problem of evolv-
ing semantic wikis, presented the core model of our approach, and introduced
extensible catalogs of semantic wiki bad smells and refactorings.

As future work to complete and extend this investigation, it remains to com-
plete the catalogs of semantic wiki bad smells and refactorings. A categorization



should be de�ned to achieve a better understanding. In other respects, the tools
to automate the semantic wiki refactoring operations and semantic wiki detection
of smells should be developed. It will allow to carry out experimental evaluations
to check the e�ect of a refactoring strategy in the evolution of semantic wikis.

In other sense, as wikis have a strong social component, it can be investi-
gated the social factor in a semantic wiki refactoring strategy. In this order,
collaborative detection of smells and collaborative testing of refactorings should
be studied. The �rst one arises as a necessity because some bad smells are dif-
�cult to be detected by automated detection mechanisms, e.g. a bad smell to
detect inappropiate names for categories. We propose a social detection mecha-
nism in which users could collaboratively agree the presence of a bad smell. The
second takes the idea from software engineering agile methods. They advocate
the use of automated unit testing to ensure that no bugs were introduced and
the success of a refactoring. Adapting this idea, we propose a social testing in
which wiki users could collaboratively state if a refactoring was successful or not.

Finally, future work will deal with refactoring of wiki's tacit knowledge. Tacit
knowledge should be considered in the refactoring operations, and could also be
the source of bad smells.

References

1. Scha�ert, S., Bry, F., Baumeister, J., Kiesel, M.: Semantic wikis. IEEE Software
25(4) (2008) 8�11

2. Leuf, B., Cunningham, W.: The Wiki way: quick collaboration on the Web.
Addison-Wesley (2001)

3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston, MA, USA (1999)

4. Mader, S.: Wikipatterns. Wiley Publishing (2007)
5. Kousetti, C., Millard, D., Howard, Y.: A study of ontology convergence in a se-

mantic wiki. In: WikiSym 2008. (2008)
6. Johnson-Lenz, P., Johnson-Lenz, T.: Post-mechanistic groupware primitives:

rhythms, boundaries and containers. Int. J. Man-Mach. Stud. 34(3) (1991) 395�417
7. Djedidi, R., Aufaure, M.A.: Onto-evoal an ontology evolution approach guided

by pattern modeling and quality evaluation. In Link, S., Prade, H., eds.: FoIKS.
Volume 5956 of Lecture Notes in Computer Science., Springer (2009) 286�305

8. Haase, P., Stojanovic, L.: Consistent evolution of owl ontologies. In: Proceedings
of the Second European Semantic Web Conference, Heraklion, Greece. (2005)

9. Baumeister, J., Seipel, D.: Veri�cation and refactoring of ontologies with rules.
In: EKAW'06: Proceedings of the 15th International Conference on Knowledge
Engineering and Knowledge Management. (2006) 82�95

10. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic wikipedia.
Journal of Web Semantic 5(4) (2007) 251�261


