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Preface 
 
Welcome to WOMRAD, the Workshop on Music Recommendation and Discovery being 
held in conjunction with ACM RecSys. 
 
In the last twenty years, there has been an amazing transformation in the world of music. 
Portable listening devices have advanced from the Sony Walkman that allowed you to carry 
ten songs in your pocket to the latest iPhone that can put millions of songs in your pocket via 
music subscription services such as Spotify or Rhapsody. Twenty years ago a typical personal 
music collection numbered around a thousand songs. Today, a music listener has access to 
millions of songs, drawn from all styles and genres from all over the world. The seemingly 
infinite choice today’s music listener faces can lead to a rich music listening experience, but 
only if the listener can find music that they want to listen to. 
 
Traditionally, music recommender systems have focused on the somewhat narrow task of 
attempting to predict a set of new artists or tracks for purchase or listening. Commerce sites 
like iTunes use music recommendation as a way to increase sales. Internet radio sites like 
Pandora use music recommendation as a way to offer personalized radio to millions of 
listeners. The success of music recommendation at iTunes and Pandora has led some to 
suggest that ‘music recommendation is solved’. Indeed, for narrow use cases like improving 
sales in a mainstream music store, or for creating satisfactory personalized radio streams, 
music recommendation may be good enough. However, this does not mean that music 
recommendation is solved. As music listeners spend more time interacting with multi-million 
song music collections, the need for tools that help listeners manage their listening will 
become increasingly important. Tools for exploring and discovering music especially in the 
long tail, tools for organizing listening, tools for creating interesting playlists, tools for 
managing group listening will all be essential to the music listening experience. Music 
recommendation technologies will be critical to building these tools. 
 
The WOMRAD workshop focuses on next generation of music recommender systems. 
Accepted papers fall into five categories: 
 

• Time Dependency - 1 paper - explorations in temporal patterns of music listening 
• Social Tagging - 3 papers - how semantic tags can be used to explain, compare and 

steer music recommender systems 
• Human-Computer Interaction - 2 papers - how music listeners interact with music 

and music recommender systems 
• Content-based Recommendation - 2 papers - techniques for recommendation base 

on audio content 
• Long Tail - 2 papers - how can systems make effective recommendations of new or 

unpopular content 
 
We are pleased to offer this selection of papers and hope that it serves as evidence that there 
is much interesting and fruitful research to be done in the area of music recommendation and 
discovery. We offer our thanks to all of the authors who submitted papers to this workshop. 
 
 
 
 The Organizers, October 2010 
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Keynote Presentation 
 
 
The Dark Art: Is Music Recommendation Science a Science? 
  
Michael S. Papish, Product Development Director, Rovi Corporation 

 
Music preferences are emotional, subjective and full of social and cultural meaning. Practical 
experience building industrial recommendation applications suggests that user "trust" (a 
fuzzy concept combining user psychology with UI design and presentation) often 
overshadows actual results. What if making good music recommendations is actually a Dark 
Art and not a foundational problem of Information Retrieval Science? By tracing the 
beginnings of MIR, we present an early attempt at a Philosophy of Recommendation Science 
which tries to answer: 

• Does recommendation science exist only as a practical application? 

• Is it possible ground-truth metrics such as those proposed in the ISMIR 
2001 Resolution don't actually exist? 

• What types of solvable scientific problems should receive academic attention from the 
MIR community? 

• Cee Lo's Teeth: Scariest in the entire history of recorded music? 
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ABSTRACT 
Music listening patterns can be influenced by contextual factors 
such as the activity a listener is involved in, the place one is 
located or physiological constants. As a consequence, musical 
listening choices might show some recurrent temporal patterns. 
Here we address the hypothesis that for some listeners, the 
selection of artists and genres could show a preference for certain 
moments of the day or for certain days of the week. With the help 
of circular statistics we analyze playcounts from Last.fm and 
detect the existence of that kind of patterns. Once temporal 
preference is modeled for each listener, we test the robustness of 
that using the listener’s playcount from a posterior temporal 
period. We show that for certain users, artists and genres, 
temporal patterns of listening can be used to predict music 
listening selections with above-chance accuracy. This finding 
could be exploited in music recommendation and playlist 
generation in order to provide user-specific music suggestions at 
the “right” moment. 

Categories and Subject Descriptors 
H.5.5 Sound and Music Computing – methodologies and 
techniques, modeling. 

General Terms 
Measurement, Experimentation, Human Factors. 

Keywords 
Music context analysis, Playlist generation, User modeling, Music 
metadata, Temporal patterns, Music preference. 

1. INTRODUCTION 
Among the requirements of good music recommenders we can 
point to, not only delivering the right music but, delivering it at 
the right moment. This amounts to consider the context of 
listening as a relevant variable in any user model for music 
recommendation. As existing technologies also make it possible 
to track the listening activity every time and everywhere it is 
happening, it seems pertinent to ask ourselves how this tracking 
can be converted into usable knowledge for our recommendation 

systems. Music listening decisions might seem expressions of free 
will but they are in fact influenced by interlinked social, 
environmental, cognitive and biological factors [21][22].  

Chronobiology is the discipline that deals with time and rhythm in 
living organisms. The influence of circadian rhythms (those 
showing a repetition pattern every 24 hours approximately, 
usually linked to the day-night alternation), but also of ultradian 
rhythms (those recurring in a temporal lag larger than one day like 
the alternation of work and leisure or the seasons), has been 
demonstrated on different levels of organization of many living 
creatures, and preserving some biological cycles is critical to keep 
an optimum health [18]. The observation that human behavior is 
modulated by rhythms of hormonal releases, exposure to light, 
weather conditions, moods, and also by the activity we are 
engaged into [12][3] paves the way to our main hypothesis: there 
are music listening decisions that reflect the influence of those 
rhythms and therefore show temporal patterns of occurrence. The 
connection would be possible because of the existing links 
between music and mood on one side, and between music and 
activity on the other side. In both cases, music has functional 
values either as mood regulator [23] or as an activity regulator 
[13]. Therefore, as mood and activity are subject to rhythmic 
patterns and cycles, music selection expressed in playlists could 
somehow reflect that kind of patterning [26][23]. More 
specifically, in this paper we inquire on the possibility of 
detecting that, for a specific user, certain artists or musical genres 
are preferentially listened to at certain periods of the day or on 
specific days of the week. The practical side of any finding on this 
track would be the exploitation of this knowledge for a better 
contextualized music recommendation. Our research is aligned 
with a generic trend on detecting hidden patterns of human 
behavior at the individual level thanks, mainly, to the spread of 
portable communication and geolocation technologies [4][20]. 

2. RELATED RESEARCH 
While recommendations based on content analysis or on 
collaborative filtering may achieve a certain degree of 
personalization, they do miss the fact that the users interact with 
the systems in a particular context [19]. Furthermore, several 
studies have shown that a change in contextual variables induces 
changes in user’s behaviors and, in fact, when applying contextual 
modelling of the users (i.e., considering the time of the day, the 
performed activity, or the lighting conditions), the performance of 
recommendation systems improves both in terms of predictive 
accuracy and true positive ratings [8][25]. Although context-
based music recommenders were available since 2003 [1], time 
information is a recently-added contextual feature [7][17].  
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A generic approach to the characterization of temporal trends in 
everyday behavior has been presented in [10], where the concept 
of “eigenbehavior” is introduced. Eigenbehaviors are 
characteristic behaviors (such as leaving early home, going to 
work, breaking for lunch and returning home in the evening) 
computed from the principal components of any individual’s 
behavioral data. It is an open research issue if Eigenbehaviors 
could provide a suitable framework for analyzing music listening 
patterns. A model tracking the time-changing behavior of users 
and also of recommendable items throughout the life span of the 
data was developed for the Netfix movie collection [14]. This 
allowed the author to detect concept drifts and the temporal 
evolution of preferences, and to improve the recommendation 
over a long time span. 

Although research on behavioral rhythms has a long and solid 
tradition, we are not aware of many studies about their influence 
on music listening activities. The exception is a recent paper [2] 
where users’ micro-profiles were built according to predefined 
non-overlapping temporal partitions of the day (e.g., “morning 
time slot”,). The goal of the authors was to build a time-aware 
music recommender and their evaluation of the computed micro-
profiles showed their potential to increase the quality of 
recommendations based on collaborative filtering. Most of that 
reported work was, though, on finding optimal temporal 
partitions. As we will see, there are other feasible, maybe 
complementary, options that keep the temporal dimension as a 
continuous and circular one by taking advantage of circular 
statistics. Developed forty years ago and largely used in biological 
and physical sciences, circular statistics has also been exploited in 
personality research for studying temporal patterns of mood 
[15][16]. To our knowledge, it is the first time they are used in the 
analysis of music-related behavior, though applications to music 
have been previously reported [5][9]. 

3. METHODOLOGY 
3.1 Data Collection 
Getting access to yearly logs of the musical choices made by a 
large amount of listeners is not an easy task. Many music playing 
programs store individual users’ records of that, but they are not 
publicly accessible. As a workable solution, we have taken 
advantage of Last.fm API, which makes possible to get the 
playcounts and related metadata of their users. As raw data we 
have started with the full listening history of 992 unique users, 
expressed as 19,150,868 text lines and spanning variable length 
listening histories from 2005 to 2009. The data contained a user 
identifier, a timestamp, Musicbrainz identifiers for the artist and 
track, and a text name for the listened track.  

The artist genre information was gathered from Last.fm using the 
Last.fm API method track.getTopTags(), which returns a list of 
tags and their corresponding weight1.This list of tags, however, 
may relate to different aspects of music (e.g. genre, mood, 
instrumentation, decades...). Since in our case we need a single 
genre per track, we first clean tags in order to remove special 
characters or any other undesirable characters, such as spaces, 
hyphens, underscores, etc. Then irrelevant tags (i.e., those having 

                                                                 
1 Last.fm relevance weight of tag t to artist a, ranging from 0 to 

100. 

a low weight) are removed and the remaining ones are matched 
against a predefined list of 272 unique musical genres/styles 
gathered from Wikipedia and Wordnet. From the genre tags we 
obtained for each song, we select the one with the highest weight. 
If there are several tags with the highest weight, we select the one 
with the least popularity (popularity is computed as the number of 
occurrences of a specific genre in our data-set). 

3.2 Data cleaning 
Data coming from Lastfm.com contain playcounts that cannot be 
attributable to specific listening decisions on the side of users. If 
they select radio-stations based on other users, on tags or on 
similar artists there are chances that songs, artists and genres will 
not recur in a specific user’s profile. In general, even in the case 
of having data coming from personal players obeying solely to the 
user’s will, we should discard (i) users that do not provide enough 
data to be processed, and (ii) artists and genres that only appear 
occasionally. We prefer to sacrifice a big amount of raw data 
provided those we keep help to identify a few of clearly recurring 
patterns, even if it is only for a few users, artists or genres. 

In order to achieve the above-mentioned cleaning goals we first 
compute, for each user, the average frequency of each artist/genre 
in his/her playlist. Then, for each user’s dataset, we filter out all 
those artists/genres for which the playlist length is below the 
user’s overall average playlist length. Finally, in order to get rid of 
low-frequency playing users, we compute the median value of the 
number of artists/genres left after the last filtering step, which we 
will name as “valid” artists/genres. Those users whose number of 
“valid” artists/genres is below the median percentage value are 
discarded.  

3.3 Prediction and Validation Data Sets 
Once we get rid of all the suspected noise, we split our dataset in 
two groups. One will be used to generate the temporal predictions 
while the other one will be used to test them. The test set contains 
all the data in the last year of listening for a given subject. The 
prediction-generation set contains the data coming from two years 
of listening previous to the year used in the test set.  

3.4 Circular Statistics 
Circular statistics are aimed to analyze data on circles where 
angles have a meaning, which is the case when dealing with daily 
or weekly cycles. In fact, circular statistics is an alternative to 
common methods or procedures for identifying cyclic variations 
or patterns, which include spectral analysis of time-series data or 
time-domain based strategies [15]. Although these approaches are 
frequently used, their prerequisites (e.g., interval scaling, regularly 
spaced data, Gaussianity) are seldom met and, as we mentioned 
above, these techniques have rarely been used to analyze music-
related data and therefore we wanted to explore its potential.  
Under the circular statistics framework, variables or data 
considered to be cyclic in nature are meant to have a period of 
measurement that is rotationally invariant. In our case this period 
is referred to the daily hours and the days of the week. Therefore, 
taking into account the rotationally invariant period of analysis 
this would be reflected as daily hours that range from 0 to 24, 
where 24 is considered to be the same as 0. Regarding to the 
weekly rhythm, Monday at 0h would be considered to be the same 
as Sunday at 24h.  
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The first step in circular analysis is converting raw data to a 
common angular scale. We chose the angular scale in radians, and 
thus we apply the following conversion to our dataset: 

k
xπα 2

=  

where x represents raw data in the original scale, α is its angular 
direction (in radians) and k is the total number of steps on the 
scale where x is measured. In fact, we denote α as a vector of N 
directional observations αi  (i ranging from 1 to N). For the daily 
hour case, x would have values between 0 and 24, and k = 24. 
Alternatively, for the weekday analysis, x would have a scale from 
0 (Monday) to 6 (Sunday) and thus, k = 6. As noted, the effect of 
this conversion can be easily transformed back to the original 
scale. Once we have converted our data to angular scale, we 
compute the mean direction (a central tendency measure) by 
transforming raw data into unit vectors in the two-dimensional 
plane by  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

i

i
ir α

α
sin
cos   

After this transformation, vectors ri are vector-averaged by 

r = 1
N

ri
i
∑  

The quantity r  is the mean resultant vector associated to the 
mean direction, and its length R describes the spread of the data 
around the circle. For events occurring uniformly in time R 
values approach 0 (uniform circular distribution) whereas events 
concentrated around the mean direction yield values close to 1 
(see figure 1 for an example). A null hypothesis (e.g., uniformity) 
about the distribution of data can be assessed using Rayleigh’s 
[11] or Omnibus (Hodges-Ajne) tests [27], the latter working well 
for many distribution shapes. Once we have detected significantly 
modally distributed data by means of both tests, we verify that it 
wasn’t completely pointing to a single day or hour. All the 
circular statistics analyses presented here have been performed 
with the CircStat toolbox for Matlab [6]. 

4. RESULTS 
4.1 Data cleaning 
As a consequence of the cleaning process, our working dataset 
now contains data from 466 valid users. The cleaning process has 
kept 62% of their total playcounts, which corresponds to 4,5% of 
the initial amount of artists. This dramatic reduction of the artists 
should not be surprising as many listening records show a “long-
tail” distribution, with just a few of frequently played artists, and  
many of them seldom played. On the other hand, when focusing 
on musical genre listening, the working dataset includes 515 
users, from which 78% of their playcounts has been kept. These 
playcounts comprise 8.6% of the total number of genres. Again, a 
long-tail distribution of the amount of listened genres is observed.  

4.2 Temporal Patterns of Artist Selection 
Once we have cleaned our dataset, we compute the mean circular 
direction and the mean resultant vector length for each artist and 
user. Therefore, these values can be considered as a description of 
the listening tendencies for each artist by each user. Both 
parameters were calculated for the daily and for the weekly data. 

Figure 1. Circular representation of a specific user listening 
behavior for a specific artist along 24 hours. The left side 
diagram shows the daily distribution of listening, and the 
right one the circular histogram. The red line represents the 
mean vector direction and length in both cases.  

In order to assess the relevance of these listening trends, we tested 
that the distribution of playcounts was different from uniform, and 
that it was modally distributed (i.e, showing a tendency around an 
hour or around a day of the week) and discarded those that were 
not fulfilling these requirements (a null hypothesis rejection 
probability p<0.05 was set for the tests). 
In the hour prediction problem, for each listener’s clean dataset 
almost 93% (σ=13) of the artists passed on average the uniformity 
test (i.e., listening to them is meant to be concentrated around a 
specific hour). However, considering the raw dataset, only a per-
user average of 7% (σ=3.2) of the artists show a listening hour 
tendency. For the weekly approach, the per-user average in the 
clean dataset is 99.8% (σ=0.8), indicating that there are some 
artists showing a clear tendency towards a preferred listening day. 
Considering the original raw dataset, they correspond to a 7.5% 
(σ= 3.2) of all the played artists.   
Data from 466 users, including 7820 different songs and a grand 
total of 23669 playcounts were used in the validation of the 
temporal listening patterns of artists. For each user and artist we 
computed a “hit” if the absolute difference between the playing 
day in the prediction and test conditions, expressed as a circular 
mean value in radians, was less than 0.45 (the equivalent to a half-
a-day error). For the time of the day a half-an-hour error was 
accepted, corresponding to a difference between the predicted and 
the observed time of less than 0.13 radians.  

When predicting the day of listening, an overall 32.4% of hits was 
found for the songs in the test collection, which exceeds by far the 
chance expectations (1/7=14.28%). As the final goal of the model 
is providing user-specific contextual recommendation, an 
additional per-user analysis yielded 34.5% of hits (σ=17.8). 
Identical data treatment was done with the time of the day 
yielding an overall 17.1% of hits (chance expectation baseline: 
1/24=4.1%) and a per-user hit rate of 20.5% (σ=16.4). 

4.3 Temporal Patterns of Genre Selection 
Data from 456 users, including more than 5100 songs and 117 
genres, were used for the validation of the genre-related patterns. 
In order to consider a “hit” in the prediction of listening time and 
day for a given genre, we set the same thresholds than for 
evaluating the artist prediction. For the time of the day an overall 
22.6% (and per-user 23.2%) of accurate predictions was found. It 
is interesting to note that relaxing the required accuracy of the 
prediction to plus/minus one hour error we reached 39.9% of 
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average hits and per-user average 41% (σ=28.4). For the day of 
the week, the overall hit percent was 40.9%, while the per-genre 
average and the per-user average were, respectively, 40.7% 
(σ=24.1) and 41.7% (σ=26.3). It is interesting to note that among 
the best predictable genres we find many of infrequent ones but 
also many of the most frequent ones. 

5. CONCLUSIONS 
The present study is, as far as we know, the first one inquiring the 
possibility that our music listening behavior may follow some 
detectable circadian and ultradian patterns, at least under certain 
circumstances. We have discovered that a non-negligible amount 
of listeners tend to prefer to listen to certain artists and genres at 
specific moments of the day and/or at certain days of the week. 
We have also observed that, respectively for artists and for genres, 
20% and 40% time-contextualized music recommendations can be 
successful. In our future work agenda, more sophisticated 
prediction models will be tested, and also ways to implement them 
into existing music recommenders. 
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ABSTRACT
Playlists are a natural delivery method for music recom-
mendation and discovery systems. Recommender systems
offering playlists must strive to make them relevant and en-
joyable. In this paper we survey many current means of gen-
erating and evaluating playlists. We present a means of com-
paring playlists in a reduced dimensional space through the
use of aggregated tag clouds and topic models. To evaluate
the fitness of this measure, we perform prototypical retrieval
tasks on playlists taken from radio station logs gathered from
Radio Paradise and Yes.com, using tags from Last.fm with
the result showing better than random performance when
using the query playlist’s station as ground truth, while fail-
ing to do so when using time of day as ground truth. We then
discuss possible applications for this measurement technique
as well as ways it might be improved.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing]: Signal analysis,
synthesis, and processing; H.5.1 [Multimedia Informa-
tion Systems]: Evaluation/methodology

Keywords
LDA, Topic Models, playlists, music, similarity, information
retrieval, metric space, social tags

1. INTRODUCTION
Inherent to the design of any recommender or retrieval

system is a means of display or delivery of selected content.
For a system that recommends music this means playback
of an audio file. Listening to or playing a piece of music
take the length time of that piece of music. Given this link
between music and time, when considering what information
is relevant for a recommendation it is vital to consider the
context of time; that is, what music has been played before

WOMRAD 2010 Workshop on Music Recommendation and Discovery,
colocated with ACM RecSys 2010 (Barcelona, SPAIN)
Copyright c©. This is an open-access article distributed under the terms
of the Creative Commons Attribution License 3.0 Unported, which permits
unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

or will be played after the current recommended song. Yet
little is understood about how playback order affects the
success or failure of a recommendation of a piece of music.
Whether a system makes user-based, object-based or hybrid
recommendations, a better awareness and use of playback
order will yield an improved music recommender system.

In order to take advantage of the effect of playback order,
it is necessary to have some means of comparing playlists
with one another. While ratings-based generic recommender
strategies could be employed, such techniques could only
be used in systems which allow for the rating of playlists
directly (as opposed to the much more common rating of
member songs).Alternatively, n distance measure between
playlists can be used to facilitate the prediction and gen-
eration of well-ordered lists of song sequences for recom-
mendation. This has the advantage being applicable to the
vast majority of existing playlist generation systems, many
of which do not to collect playlist level ratings from their
users. Further, a measure of playlist distance has a number
of other applications in music recommender and discovery
systems including label propagation, predictive personaliza-
tion and context tuning to name a few.

In this paper we propose an objective distance measure be-
tween playlists. To better understand why such a measure
is needed, Section 2 provides background information in ex-
isting playlist generation and evaluation techniques. While
any sufficiently expressive and low-dimensional feature is
compatible with our playlist measure, we use a novel so-
cial tag-based feature in this paper. This song-level feature
is detailed in Section 3. This is followed by an explanation
of our distance measurement itself in Section 4. Putting
this into practice, we detail some proof of concept evalua-
tion in Section 5. We discuss the results of this evaluation
and possible extensions in Section 6.

2. PLAYLIST AS DELIVERY MECHANISM
In this section we survey the use of playlists in the de-

livery of content in existing recommendation and retrieval
systems. This is followed by a review of current evaluation
methods for generated playlists. These two survey points
will show both the widespread use of playlist generation in
music recommendation and discovery systems and the need
for more quality evaluation of these systems.

While this brief survey is focused on automatic playlist
generation, there is a wealth of both academic and lay work
discussing various aspects manual human-driven playlist con-
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struction that may be of interest to the reader. Work in this
area tends to deal with radio (e.g. [1]) or club and dance disc
jockeys (e.g. [13]), being the two principal areas where the
explicit construction of ordered lists of songs are tied to the
field. It is with these areas of manual playlist construction
in mind that we will examine past efforts in both automatic
playlist construction and evaluation techniques.

2.1 Usage in the Wild
There have been many music recommendation and re-

trieval systems that employ some kind of automatic playlist
construction within their system. Frequently this is done as
a means of content delivery or, less often, as a way of facil-
itating human evaluation of an underlying process such as
content-based music similarity or recommendation. What
follows is a brief survey of existing methods of playlist gen-
eration both with and without human intervention.

A web based system for personalized radio is detailed
in [20]. In this early system users create and publish playlists
facilitated through a process analogous to collaborative fil-
tering. This results in quasi-automatic playlist creation,
with any sequence ordering depending entirely on the user.
Another variation of the social interaction intermediary is
shown in [27], which presents the Jukola system. This sys-
tem creates playlists via democratic vote on every song us-
ing mobile devices of listeners in the same physical space.
Furthering the ideas of collaborative human generation, [25]
shows a system called Social Playlist. This system is based
on the idea of social interaction through playlist sharing,
integrating mobile devices and communal playback.

A fully automatic rule-based system is described in [2].
This system uses existing metadata such as artist name,
song title, duration and beats per minute. The system is
designed from the ground up to be scalable and is shown to
work given a database of 200000 tracks. An approach that
is derived from recommender systems is seen in [4]. Here the
authors use the ratings and personalization information to
derive radio for a group. An attempt to optimize a playlist
based on known user preference as encoded in song selection
patterns is shown in [30]. This effort uses Gaussian process
regression on user preference to infer playlists. The system
uses existing a priori metadata as the features for selection.
A means of using webmining derived artist similarity with
content-based song similarity is used to automatically gener-
ate playlists in [22]. This system combined these two spaces
in such a way as to minimize the use of signal analysis. A
byproduct of this optimization is improved playlist genera-
tion as is shown in a small evaluation with human listeners.

The Poolcasting system is detailed in [5, 6]. Poolcasting
uses dynamic weighting of user preferences within a group of
users who are all listening to a common stream with the goal
of minimizing displeasure across the entire group. This re-
sults in a system that is very similar to popular commercial
radio in terms of its output. A method for created playlists
using an artist social graph, weighted with acoustic similar-
ity is shown in [17]. This method takes a start and end song
and constructs a playlist using maximum flow analysis on the
weighted graph. Another technique for playlist construction
based on the selection of paths between the start and end
songs is shown in [18]. In this system content-based similar-
ity is used to project a set of songs onto a 2-D map, then a
path is found from the start song to the end song with the
goal of minimizing the step size between each member song.

A recent approach uses co-occurrence in n-grams extracted
from the internet radio station Radio Paradise1 to deform
a content-based similarity space [26]. This deformed space
is then used in a manner that is similar to [18] to generate
paths from one song to another, minimizing step distance
throughout the path.

Also of note is [31], which in contrast to most of the pre-
vious systems, uses nearest neighbor co-occurrence in radio
playlist logs to determine song similarity. While the evalua-
tion was preliminary this method shows promise.

2.2 Evaluation Methods
The most prevalent method of evaluation used in playlist

generation systems is direct human evaluation by listening.
The system detailed in [29], a rule-based automatic playlist
generator that uses features derived from metadata, is simi-
lar to [2,30]. Of note in [29] is the thorough human listener
testing which shows the automatic playlist generator per-
forming considerably better than songs ordered randomly.
This evaluation, though better than most, still fails to com-
pare the automatic playlists against human expert playlists.
Additionally, to reduce test time, the evaluation uses arbi-
trary one minute clips from the songs rather than the en-
tirety of the song or an intentionally chosen segment. A
content-based similarity playlist generator with a novel eval-
uation is seen in [28]. Here the authors track the number
times the user presses the skip button to move on from the
currently playing song. All songs that are skipped are con-
sidered false positives and those that are completely played
are treated as true positives. From this many standard in-
formation retrieval techniques can be used in the evaluation,
resulting in a rich understanding of the results. Ultimately,
it is still human user listening evaluation though and its
biggest drawback is playback time. Assuming an average
song length of five minutes it would take an an hour and 40
minutes (per listener) to listen to 20 songs with no time for
the skipped songs. This skip-based evaluation framework is
further used in [12] where existing last.fm user logs (which
include skip behavior) are analyzed using fuzzy set theory to
determine playlist generation heuristics in the system. Ad-
ditionally, many systems of playlist generation lack formal
evaluation all together.

2.3 Summary
While a number of techniques have been employed to cre-

ate playlists for a variety of functions, there exist limited
techniques in the evaluation of generated playlists. These
evaluation techniques rely heavily on time consuming hu-
man evaluation. Beyond that, there is no studied means to
objectively compare one playlist with another. In Section 4
we will propose just such a means. First we will describe a
novel song level feature based on tags. A tag-based feature
will encode socio-cultural data that is missing from analo-
gous content-based features, though social tags bring about
some other problems.

3. TOPIC-MODELED TAG-CLOUDS
In order to encode playlists in a low dimensional repre-

sentation we must first represent their member songs in as a
low dimensional vector. Here we use a Topic-Modeled Tag
Cloud (TMTC) as a pseudo-content-based feature, in a way

1http://radioparadise.com
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Figure 1: The tag cloud for Bohemian Crapsody by Sickboy, from Last.fm.

that is functionally analogous to various pure content-based
methods. Using tags and topic models in this way is novel
and what follows is an explanation of the process of building
this feature.

3.1 Tags as Representation
A tag is a word or phrase used to describe a document

of some kind, typically on the Web. Various kinds of doc-
uments are described using tags on the Web including pho-
tos2, videos3 and music4. An aggregated collection of tags,
weighted by the number of users who ascribe it to a given
object, is commonly referred to as a tag cloud.

Tag clouds get their name from the most common visual-
ization method used with them, where each tag is displayed
with the font size in proportion to the weight, arranged in
a way that resembles a cloud. An example of a tag cloud5

can be seen in Figure 1 As can be seen in this example, tag
clouds provide a rich description of the music it describes.
Tags and collections of tags in various forms provide the ba-
sis for many techniques within music informatics including
recommendation, retrieval and discovery applications [3,23].

In addition to human generated tags being used, there is
some research directed toward the automatic application of
tags and inference of associated weights on unlabeled pieces
of music [7, 9, 16,21].

3.2 Reducing the Dimensionality
There exist some techniques (such as [8]) to determine

semantic clustering within a tag cloud; however, these sys-
tems are built to facilitate browsing and do not create a
sufficiently reduced dimensional representation. The pre-
vious work of [24] comes the closest to the needed dimen-
sional reduction, also dealing with social tags for music. This
work, through the use of aspect models and latent seman-
tic analysis, brings the dimensionality down into the hun-
dreds, while preserving meaning. This order of dimensions
is still too high to compute meaningful distance across multi-
song playlists. A feature with dimensionally of the order 102

would suffer from the curse of dimensionality [33]: because
of its high dimensionality, any attempt to measure distance
becomes dominated by noise. However, a technique devel-
oped for improved modelling in text information retrieval,
topic models provide the reduced dimensional representation

2e.g. http://flickr.com
3e.g. http://youtube.com
4e.g. http://last.fm or http://musicbrainz.org
5This tag cloud is for the track Bohemian Crapsody by the
artist Sickboy. The tags and the rendering both come from
last.fm, available at http://www.last.fm/music/Sickboy/
_/Bohemian+Crapsody/+tags

β

wzθα
N
M

Figure 2: The graphic model of LDA [11]. The repli-
cates are represented as the two boxes. The outer
box M represents the corpus of documents, while
the inner box N represents the repeating choice of
topics and words which make up each document.

we require. Topic models are described in [10] as“probabilis-
tic models for uncovering the underlying semantic structure
of [a] document collection based on a hierarchical Bayesian
analysis of the original text.” In topic modeling, a document
is transformed into a bag of words, in which all of the words
of a document are collected and the frequency of the occur-
rence in recorded. We can use the weighted collection of
tags in a tag cloud as this bag of words, with tags serving
as tokenized words.

There are a few different ways of generating topic models;
for our feature generation we will be using latent Dirichlet
allocation [11], treating each tag cloud as a bag-of-words.
In LDA, documents (in our case tags clouds of songs) are
represented as a mixture of implied (or latent) topics, where
each topic can be described as a distribution of words (or
here, tags).More formally give the hyper-parameter α, and
the conditional multinomial parameter β, Equation 3.2 gives
the joint topic distribution θ, a set of N topics z and a set
of N tags w.

p(θ, z,w|α, β) = p(θ|α)

N∏
n=1

p(zn|θ)p(wn|zn, β) (1)

In Figure 2 LDA is shown as a probabilistic graphical model.
In order to create topic models using LDA, we need to spec-
ify p(θ|α) and p(zn|θ). We estimate our parameters empir-
ically from a given corpus of tag clouds. This estimation
is done using variational EM as described in [11].This al-
lows topic distributions to be generated in an unsupervised
fashion, though the number of topics in a corpus must be
specified a priori.

Once the LDA model is generated, it is used to infer the
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gather tags for all songs

create LDA model describing 
topic distributions

infer topic mixtures for all 
songs

create vector database 
of playlists

Figure 3: The complete process for construction of
a TCTM feature set.

mixture of topics present in the tag cloud for a given song.
This is done via variational inference which is shown in [11]
to estimate the topic mixture of a document by iteratively
minimizing the KL divergence from variational distribution
of the latent variables and the true posterior p(θ, z|w, α, β).

This process in it’s entirety is shown as a block diagram
in Figure 3. Once this process is completed for every song
in our dataset, we will have a single vector with a dimen-
sionality equal to the number of topics in our LDA whose
entries indicate topic occupancy for that song.

4. PLAYLISTS AS A SEQUENCE OF TOPIC
WEIGHTS

Given the single vector per song reduction, we represent
the playlists these song are in as ordered sequences of these
vectors. Thus each playlist is represented as a l×d-dimensional
vector, where l is the number of songs in a given playlist and
d is the number of topics in our LDA model.

4.1 Measuring Distance
To both manage and measure the distance between these

li × d dimensional vectors we use audioDB6. The use of
audioDB to match vectors of this type is detailed in [32].
Briefly, distance is calculated by means of a multidimen-
sional Euclidian measure. Here li is an arbitrary length sub-
sequence of i vectors. In practice, i is Casey:2008selected to
be less than or equal to the smallest sequence length for a

6source and binary available at http://omras2.doc.gold.
ac.uk/software/audiodb/

complete playlist in a dataset. The distance between two
playlists is then the minimum distance between any two
length i sub-vectors drawn from each playlist. One effect of
this technique is easy handling of playlists of unequal length.

This type of distance measurement has been used with
success on sequences of audio frames [14, 15]. The distance
measure in use between vectors can also be changed. In par-
ticular there has been work showing that statistical features
(such as topic models) may benefit from the use of Manhat-
tan distance [19], however for our prototypical evaluation we
have used simple Euclidean distance as seen in equation ??
above.

5. EVALUATION
The goal of our evaluation is to show the fitness of our

distance measurement through preliminary retrieval tests:
searching for playlists that start at the same time of day as
our query playlist and searching for the playlists from the
same station from a database of stations of the same genre.
We examine the logs of a large collection of radio stations,
exhaustively searching example sets. Through precision and
recall we see that our measure organizes playlists in a pre-
dictable and expected way.

5.1 Dataset
In order to test these proposed techniques a collection

of radio station logs were gathered. These logs come from
a collection of broadcast and online stations gathered via
Yes.com7. The logs cover the songs played by all indexed
stations between 19-26 March 2010. For our evaluation task
using this data source we looked at subsets of this com-
plete capture, based on genre labels applied to these sta-
tions. Specifically we examine stations of the genres rock
and jazz. The complete Yes.com dataset also includes sta-
tions in the following genre categories: Christian, Country,
Electronica, Hip-Hop, Latin, Metal, Pop, Punk, R&B/Soul,
Smooth Jazz and World. These labels are applied by the sta-
tions themselves and the categories are curated by Yes.com.
Additionally, the play logs from Radio Paradise8 from 1 Jan-
uary 2007 to 28 August 2008 form a second set. We then
attempted to retrieve tag clouds from Last.fm9 for all songs
in these logs. When tags were not found the song and its
associated playlist were removed from our dataset

These logs are then parsed into playlists. For the radio
logs retrieved via the Yes api, the top of every hour was used
as a segmentation point as a facsimile for the boundary be-
tween distinct programs. This is done under the assumption
that program are more likely than not to start and finish
on the hour in US commercial broadcast. Note that this
method of boundary placement will almost certainly over-
segment radio programs as many radio programs are longer
than one hour. However, given that our distance measure
compares fixed length song sequences across playlists, this
over-segmentation should produce only minimal distortion
in our results. The Radio Paradise logs include all the links
or breaks between songs where the presenter speaks briefly.
For experiments using the Radio Paradise logs these links are
used as playlist boundaries. This leads to a slight difference
in the type of playlist used from Radio Paradise versus Yes.

7http://api.yes.com
8http://www.radioparadise.com/
9http://last.fm
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source St Smt Pt Pavg(time) Pavg(songs)

whole set 885810 2543 70190 55min 12.62
“Rock” stations 105952 865 9414 53min 11.25
“Jazz” stations 36593 1092 3787 55min 9.66
“Radio Paradise” 195691 2246 45284 16min 4.32

Table 1: Basic statistics for both the radio log datasets. Symbols are as follows: St is the total number of
song entries found in the dataset; Smt is the total number of songs in St where tags could not be found; Pt is
total number of playlists; Pavg(time) is the average runtime of these playlists and Pavg(songs) is the mean number
of songs per playlist.

The playlists coming from Radio Paradise represent strings
of continuously played songs, with no breaks between the
songs in the playlists. The playlists from Yes are approxima-
tions of a complete radio program and can therefore contain
some material inserted between songs (e.g. presenter link,
commercials).

Statistics for our dataset can be see in Table 1 we then
use the tags clouds for these songs to estimate LDA topic
models as described in Section 310. For all our experiments
we specify 10 topic models a priori. The five most relevant
tags in each of the topics in models trained on both the rock
and jazz stations can be seen Table 2.

5.2 Daily Patterns
Our first evaluation looks at the difference between the

time of day a given query playlist starts and the start time
for the closest n playlists by our measure. For this evaluation
we looked at the 18 month log from Radio Paradise as well as
the “Rock” and “jazz” labelled stations from Yes.com, each
in turn. Further we used a twelve hour clock to account for
The basis for this test relies on the hypothesis that for much
commercial radio content in the United States, branding of
programs is based on daily repeatable of tone and content
for a given time of day. It should therefore be expected
that playlists with similar contours would occur at similar
times of day across stations competing for similar markets
of listeners.

Figure 4 shows the mean across all query playlists of the
time difference for each result position for the closest n re-
sults, where n is 200 for the Radio Paradise set and 100
for the Yes.com set. The mean time difference across all
three sets is basically flat, with an average time difference
of just below 11000 or about three hours. Given the max-
imum difference of 12 hours, this result is entirely the op-
posite of compelling, with the retrieved results showing no
corespondance to time of day. Further investigation is re-
quired to determine whether this is a failure of the distance
metric or simply an accurate portrail of the radio stations
logs. A deeper examination of some of the Yes.com data
shows some evidence of the latter case. Many of the playlist
queries exactly match (distance of 0) with the entirity of the
200 returned results. Further these exact match playlists are
repeated evenly throughout the day. One of these queries is
shown in Figure 5. The existance of these repeating playlists
throughout the day, ensures this task will not confirm our

10Our topic models are created using the open source imple-
mentation of LDA found in the gensim python package avail-
able at http://nlp.fi.muni.cz/projekty/gensim/ which
in turn is based on Blei’s C implementation available at
http://www.cs.princeton.edu/~blei/lda-c/

hypothesis, perhaps due to progaming with no reliance on
time of day, at least in the case of Radio Paradise.
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Playlist beginning at midnight on 1 January 2007

Figure 5: The time of day difference from the query
playlist for 200 returned results, showing even time
of day spread. Note that all the results show here
have a distance of 0 from the query.

5.3 Inter-station vs. Intra-station
In this evaluation we examined the precision and recall

of retrieving playlists from the same station as the query
playlist. Here we looked at the “Rock” and “Jazz” labelled
stations retrieved via the Yes API, each in turn. Similar to
the first task, it is expected that a given station will have
its own tone or particular feel that should lead to playlists
from that station being more apt to match playlist from
their generating station then with other stations from the
same genre. More formally, for each query we treat returned
playlists as relevant, true positives when they come from
the same station as the query playlist and false positives
otherwise. Based on this relevance assumption, precision
and recall can be calculated using the following standard
equations.

P =
|{relevantplaylists}

⋂
{retrievedplaylists}|

|{retrievedplaylists}| (2)

R =
|{relevantplaylists}

⋂
{retrievedplaylists}|

|{relevantplaylists}| (3)

The precision versus recall for a selection of stations’ playlists
from both the “Rock” and “Jazz” stations are show in Figure
6. When considering the precision and recall performance it
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station label t1 t2 t3 t4 t5

Snow Patrol Bob Marley female vocalists aupa Pete 80s
rumba Feist Anna Nalick whistling new wave

“Rock” 90s john mayer Chicas Triple J Hottest 100 david bowie
green day drunk love playlist 2009 review neuentd
Dynamit feist backing vocals Sarah McLachlan fun as fuck synth pop

motown john mayer 60s Sade Flamenco
soul acoustic jazz - sax deserves another listen tactile smooth jazz

“Jazz” 70s corinne bailey rae acid jazz till you come to me guitar ponder
funk bonnie raitt reggae piano cafe mocha
Disco David Pack 2 cool jazz 2010 wine

station label t6 t7 t8 t9 t10

classic rock TRB reminds me of winter Needtobreathe Krista Brickbauer
60s ElectronicaDance kings of leon plvaronaswow2009 day end

“Rock” 70s mysterious songs that save my life The Script i bought a toothbrush
The Beatles best songs of 2009 songs to travel brilliant music bluegrass
the rolling stones tribute to george Muse van morrison omg

follow-up rnb female vocalists classic rock Smooth Jazz
jazz soul norah jones 80s saxophone

“Jazz” instrumental female vocalists dido rock smooth jazz sax
guitar Neo-Soul jazz 70s contemporary jazz
latin jazz Robin Thicke vocal jazz yacht rock instrumental

Table 2: The five most relevant tags in each topic. Upper model is all the Yes.com Rock stations, lower
model is all Yes.com Jazz stations.

is useful to compare against random chance retrieval. There
are 100 stations labeled“Rock”and 48 labeled“Jazz”. Under
chance retrieval a precision of 0.01 would be seen for “Rock”
and 0.0208 for “Jazz”.

5.4 Summary
Two different evaluation tasks have been run using real

world radio log data to examine the usefulness of our playlist
match technique. The first of these, an examination the
time difference was flat across result length variance. While
this implies lack of discrimination into daily patterns, it is
not possible to determine from the available data whether
this is an accurate reflection of the progamming within the
dataset or distance measure not being sufficient for the task.
The second task shows the performance of retrieving hourly
playlists from a selection of stations using playlists from that
station as a query. Here we see a great deal of promise,
especially when comparing the query results against random
chance, which it outperforms considerably.

6. CONCLUSIONS
Having reviewed recent work in various methods of playlist

generation and evaluation in Section 2, it is apparent that
there is a need for better ways to objectively compare playlists
to one another. We detailed a method of doing so in Section
4, though first, to better filter content-based data through
listeners’ experience we presented a novel tag-based feature,
TMTC, using tags summarized using LDA topic models in
Section 3. This was follow by two task evaluations to exam-
ine out playlist matching technique and song feature on real
world playlist data from radio logs in Section 5.

While our evaluation shows the promise of this technique
on sampled data, there is much room for improvement. Prin-

cipal among these is the exploration of non-Euclidean dis-
tance measures. Manhattan distance (or L1) seems to have
the most direct applicability and its use could prove to be
quite beneficial. Another area for future work is in the use
of the measure on further data and datasets. One of the
best ways to improve here would be in the use of datasets
with a more exact known ground truth, in order to best ap-
ply known recommender and retrieval evaluation methods
to them.

This leads to a further avenue of future work, testing the
measure against direct human evaluation. While our match-
ing technique has many uses with recommendation and dis-
covery, if it proved to align with human evaluation it would
be considerably more useful.
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Figure 4: The mean start time difference, with squared error of the mean.
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Figure 6: Precision versus Recall for six stations when using their hourly playlists to query for other playlists
from the same station. In each query the number of results retrieved is selected to maximize the F1 score.
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ABSTRACT
We investigate the generation of tag clouds using Bayesian
models and test the hypothesis that social network informa-
tion is better than overall popularity for ranking new and
relevant information. We propose three tag cloud genera-
tion models based on popularity, topics and social structure.
We conducted two user evaluations to compare the models
for search and recommendation of music with social net-
work data gathered from ”Last.fm”. Our survey shows that
search with tag clouds is not practical whereas recommenda-
tion is promising. We report statistical results and compare
the performance of the models in generating tag clouds that
lead users to discover songs that they liked and were new to
them. We find statistically significant evidence at 5% confi-
dence level that the topic and social models outperform the
popular model.

1. INTRODUCTION
We investigate mechanisms to explore social network in-

formation. Our current focus is to use contextual tag clouds
as a mean to navigate through the data and control a rec-
ommendation system.

Figure 1 shows the screen of the Web application we de-
veloped to evaluate our models. The goal is to find the
displayed track using the tag cloud. The tag cloud is gener-
ated according to a randomly selected model and the current
query. Participants in the evaluation can add terms to the
query by clicking on tags which generates a new tag cloud
and changes the list of results. Once the track is found, the
user clicks on its title and goes to the next task.

Figure 2 shows the principle of our controlled recommen-
dation experiment. The participant sees a tag cloud, by
clicking a tag she is recommended with a song. Once the
song is rated, a new tag cloud is given according to the pre-
viously selected tags.

This paper is structured as follows. We first discuss re-
lated work in the area of tag cloud-based navigation. We
then detail models for generating context-aware tag clouds

WOMRAD 2010 Workshop on Music Recommendation and Discovery,
colocated with ACM RecSys 2010 (Barcelona, SPAIN)
Copyright c©. This is an open-access article distributed under the terms
of the Creative Commons Attribution License 3.0 Unported, which permits
unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Figure 1: Searching task.

using both social network and topic modeling based ap-
proaches, that we have implemented in our prototype tag
cloud-based navigation system. We then describe the data
we have collected from the ”Last.fm”online music social net-
work, and the evaluation consisting of a pilot user-study, a
user survey and a follow up study.

2. RELATED WORK

2.1 Social Tagging and its Motivations
Research in social tagging is relatively recent with the first

tagging applications appearing in the late nineties [12]. The
system called Webtagger relied on a proxy to enable users
to share bookmarks and assign tags to them. The approach
was novel compared to storing bookmarks in the browser’s
folder in the sense that bookmarks were shared and belonged
to multiple categories (instead of being placed in a single
folder). The creators argued that hierarchical browsing was
tedious and frustrating when information is nested several
layers deep.

By 2004, social tagging had reached a point where it was
becoming more and more popular, initially on bookmarking
sites like Delicious and then later on social media sharing
sites such as Flickr and Youtube. Research in social tagging
started with Hammond [7] who gave an overview of social
bookmarking tools and was continued by Golder et al. [5]
who provided the first analysis of tagging as a process using
tag data from Delicious. They showed that tag data fol-
lows a power law distribution, gave a taxonomy of tagging
incentives, and looked at the convergence of tag descrip-
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Figure 2: Controlled recommendation task.

tions over time for resources on Delicious. The paper lead
to the first workshop on tagging [21], where papers mainly
discussed tagging incentives, tagging applications (in mu-
seums and enterprises), tag recommendation and knowledge
extraction. Following this workshop, research in tagging has
spread in various already established areas namely in Web
search, social dynamics, the Semantic Web, information re-
trieval, human computer interaction and data mining.

Sen et al. [19] examine factors that influence the way peo-
ple choose tags and the degree to which community mem-
bers share a vocabulary. The three factors they focus on are
personal tendency, community influence and the tag selec-
tion algorithm (used to recommend tags). Their study fo-
cuses on the MovieLens system that consists of user reviews
for movies. They categorize tags into three categories: fac-
tual, subjective and personal. They then divided users of
the system into four groups each with a different user inter-
face: the unshared group didn’t see any community tags; the
shared group saw random tags from their group; the popular
group saw the most popular tags; and the recommendation
group used a recommendation algorithm (that selected tags
most commonly applied to the target movie and to simi-
lar movies). They find that habit and investment influence
the users’ tag applications, while the community influences
a user’s personal vocabulary. The shared group produced
more subjective tags, while the popular and recommenda-
tion group produced more factual tags. The authors also
conducted a user survey in which they asked users whether
they thought tagging was useful for different tasks: self-
expression (50%), organizing (44%), learning (23%), finding
(27%), and decision support (21%).

Marlow et al. [14, 15] define a taxonomy of design aspects
of tagging systems that influence the content and useful-
ness of tags, namely tagging rights (who can tag), tagging
support (suggestion algorithms), aggregation model (bag or
set), resource type (web pages, images, etc.), source of con-
tent (participants, Web, etc.), resource connectivity (linked
or not), and social connectivity (linked or not). They also
propose aspects of user incentives expressing the different
motivations for tagging: future retrieval, contribution and

sharing, attracting attention, playing and competition, self
presentation, opinion expression.

Cattuto et al. [2, 1] perform an empirical study of tag
data from Delicious and find that the distribution of tags
over time follows a power law distribution. More specifi-
cally they find that the frequency of tags obeys a Zipf’s law
which is characteristic of self-organized communication sys-
tems and is commonly observed in natural language data.
They reproduced the phenomenon using a stochastic model,
leading to a model of user behavior in collaborative tagging
systems.

2.2 Browsing with Tags
Fokker et al. [4] present a tool to navigate Wikipedia us-

ing tag clouds. Their approach enables the user to select
different views on the tag cloud, such as recent tags, popu-
lar tags, personal tags or friends tags. They display related
tags when the user“mouses over”a tag in the cloud. They do
not, however, generate new contextually relevant tag clouds
when the user clicks on a tag.

In [16], Millen et al. investigate browsing behavior in
their Dogear social bookmarking application. The appli-
cation allows users to browse other peoples’ bookmark col-
lections by clicking on their username. They find that most
browsing activity of the web site is done through explor-
ing peoples’ bookmarks and then tags. They compare the
10 most browsed tags with 10 most used tags applied and
find that there is a strong correlation. While their find-
ings do not show that tagging improves social navigation in
general, they do show that browsing tags helps users to nav-
igate the bookmark collections of others. Following on from
this, Ishikawa et al. [10] studied the navigation efficiency
when browsing other users’ bookmarks. The idea is to de-
cide which user to browse first in order to discover faster
the desired information. While relevant to tag-based nav-
igation, this study does not deal with the problem of how
best to rank tags in order to improve cloud-based navigation
in general.

In [13], Li et al. propose various algorithms to browse
social annotations in a more efficient way. They extract
hierarchies from clusters and propose to browse social anno-
tations in a hierarchical manner. They also propose a way
to browse tags based on time. As discussed by Keller et al.
[12] a single taxonomy is not necessarily the best way to
navigate a corpus, however.

A more comprehensive study was performed by Sinclair
et al. [20] to examine the usefulness of tag clouds for infor-
mation seeking. They asked participants to perform infor-
mation seeking tasks on a folksonomy like dataset, providing
them with an interface consisting of a tag cloud and a search
box. The folksonomy was created by the same participants
who were asked to tag ten articles at the beginning of the
study, leading to a small scale folksonomy. The tag cloud
displayed 70 terms in alphabetical order with varying font
size proportional to the log of its frequency. The authors
give the following equation for the font size:

TagSize = 1 + C
log(fi − fmin + 1)

log(fmax − fmin + 1)
(1)

where C corresponds to the maximum font desired, fi to
the frequency of the tag to be displayed, fmin and fmax

to the minimum and maximum frequencies of the displayed
tags. Clicking on a tag in the cloud brings the user to a
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new page listing articles annotated with that tag and a new
tag cloud of co-occurring tags. Clicking again on a tag re-
stricts the list to the articles tagged with both tags and so
on. The search is based on a TF-IDF ranking. Participants
were asked 10 questions about the articles and then to tell
if they preferred using the search box or the tag cloud and
why. They found that the tag cloud performed better when
people are asked general questions, for information-seeking,
people preferred to use the search box. They conclude that
the tag cloud is better for browsing, enhancing serendip-
ity. The participants commented that the search box allows
for more specific queries. While similar to our study on tag
cloud-based navigation, the work of Sinclair et al. [20] differs
in a number of important ways: (i) Their aim was to com-
pare tag-based navigation directly with search, while ours is
to compare different tag cloud generation methods, based on
social network information and topic modeling techniques.
(ii) In their study the folksonomy was generated by the par-
ticipants and is quite small as result, while we rely on an
external folksonomy for which scaling becomes an impor-
tant issue.

In [8], Hassan-Montero et al. propose an improvement
to tag clouds by ordering the tags according to similarity
rather than alphabetically. They use the Jaccard coefficient
to measure similarity between tags, which is the ratio be-
tween the number of resources in which the two tags both
occur and the number in which either one occurs. If D(w)
denotes all resources (documents) annotated with tag (word)
w, then the similarity is given by:

RC(w1, w2) =
|D(w1) ∩D(w2)|
|D(w1) ∪D(w2)| (2)

The authors then define an additional metric to select
which tags to display in each cloud (so as to maximize the
number of resources “covered by the cloud”). Their method
provided, however, little improvement on the coverage of the
selected tags. The tag cloud layout is based on the similarity
coefficient. The authors also do not provide a user evaluation
of the tag cloud generated.

Kaser et al. [11] propose a different algorithm for dis-
playing tag clouds. Their methods concern how to produce
HTML in various situations. They also give an algorithm
to display tags in nested tables. They do not provide an
evaluation regarding the usefulness of the new visual repre-
sentations.

In [18], Sen et al. investigate the question tag quality.
Tagging systems must often select a subset of available tags
to display to users due to limited screen space. Knowing
the quality of tags helps in writing a tag selection algorithm.
They conduct a study on the MovieLens movie reviews sys-
tem, adding to the interface different mechanisms for users
to rate the quality of tags. All tags can not be rated, there-
fore they look for ways of predicting tag quality, based on
aggregate user behavior, on a user’s own ratings and on ag-
gregate users’ ratings. They find that tag selection methods
that normalize by user, such as the numbers of users who
applied a tag, perform the best.

In [9], Heymann et al. investigate the social tag predic-
tion problem, the purpose of which is to predict future tags
for a particular resource. The ability to predict tag appli-
cations can lead to various enhancements, such as increased
recall, inter-user agreement, tag disambiguation, bootstrap-
ping and system suggestion. They collected tag data from

Delicious and fetched the web pages for each bookmark.
They analyze two methods: The first applies only when the
bookmarked items are web pages (and not images, songs,
videos, etc.). They develop an entropy based metric which
measures how much a tag is predictable. They then extract
association rules based on tag co-occurrence and give mea-
surements of their interest and confidence. They find that
many tags do not contribute substantial additional informa-
tion beyond page text, anchor text and surrounding hosts.
Therefore this extra information are good tag predictors. In
the case of using only tags, predictability is related to gener-
ality in the sense that the more information is known about
a tag (i.e. the more popular it is), the more predictable it
is. They add that these measures could be used by system
designers to improve system suggestion or tag browsing.

Ramage et al. [17] compare two methods to cluster web
pages using tag data. Their goal is to see whether tag-
ging data can be used to improve web document cluster-
ing. This work is based on the clustering hypothesis from
information retrieval, that “the associations between docu-
ments convey information about the relevance of documents
to requests”. The document clusters are used to solve the
problem of query ambiguity by including different clusters
in search results.

All of the above mentioned work differs from our current
study of tag cloud-based navigation in the following ways:
(i) Previous studies have investigated the usefulness of tag
clouds primarily from the basic visualization rather than
the navigation standpoint. (ii) Those studies explicitly in-
vestigating tag cloud based navigation, have concentrated
on simple algorithms for generating tag clouds. (iii) Previ-
ous studies investigating more sophisticated algorithms for
tag prediction have evaluated those algorithms by assessing
prediction accuracy on held-out data rather than “in situ”
evaluation with real users for a particular application (tag
cloud based navigation).

3. TAG CLOUD BASED NAVIGATION
In this section we describe algorithms for generating context-

aware tag clouds and query results list for tag cloud based
navigation. Generating a tag cloud simply involves select-
ing the one hundred tags which are the most probable (to
be clicked on by the user) given the current context (query).
Estimating which terms are most probable depends on the
model used as we discuss below.

3.1 Generating Context Aware Tag Clouds
We now investigate three different models for generating

context-aware tag clouds. For each model we describe first
how an initial context-independent cloud is generated. We
then describe how the context dependent cloud is generated
in such a way as to take the current query (context) tags
into account.

3.1.1 Popularity based Cloud Generation Model
The first and simplest tag cloud generation model is based

on the popularity of the tags across all documents in the
corpus. We first describe a query independent tag cloud,
which can be used as the initial cloud for popularity based
navigation.

Ranking tags by popularity on the home page gives users
a global access point to the most prolific sections of the por-
tal. The most popular tags are reachable from the popular
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tag cloud and displayed with a font size proportional to the
amount of activity on that tag. A measure of the popularity
of a tag across the corpus is given in the following:

p(w) =

P
d∈D Nw,dP
d∈D Nd

(3)

where Nw,d is the count of occurrences of tag w for resource
(document) d and Nd =

P
w∈V Nw,d is the total count for

the document.
We can now compute a context sensitive version of the

popular tag cloud quite simply as follows:

p(w|Q) =

P
d∈D(Q)Nw,dP
d∈D(Q)Nd

(4)

Where D(Q) = ∪w∈QD(w) is the union of all resources that
have been tagged with words from the query Q.

3.1.2 Social Network Structure based Cloud Gener-
ation Model

We are interested in taking advantage of additional infor-
mation contained in the social network of users (friendships)
in order to improve the quality of the tag cloud. We assume
that the friends of a user are likely to share similar interests
and thus we can use the tag description of a user’s friends
to smooth the tag description of the user.

We calculate an entry (context independent) social tag
cloud as follows:

p(w) =
X
u∈U

X
u′∈f(u)

Nw,u′P
w∈W Nw,u′

(5)

where f(u) is the set of friends of user u and U denotes the
set of all users in the social network.

We apply a slightly different derivation to calculate the
context dependent social tag cloud. We estimate the proba-
bility p(w|w′) given the context tag w′. These probabilities
are precomputed and combined depending on the query at
run time. We hypothesize that users who are friends on a so-
cial tagging website are likely to have similar interests (likes
& dislikes) and that we can use the social network structure
to improve contextual tag cloud generation. We can lever-
age the social network (by marginalizing out the user u) as
follows:

p(w|w′) =
X
u∈U

p(w, u|w′) (6)

=
X
u∈U

p(w|u)
p(w′|u)p(u)

p(w′)
(7)

Calculating p(w′) and p(u) = Nu/
P

u′∈U Nu′ is straight-
forward. We compute p(w|u) by summing over tag counts
Nw,u′ for users in the social network of the user u:

p(w|u) =

P
u′∈f(u)Nw,u′P
u′∈f(u)Nu′

(8)

Note that since the summation in Equation 7 over all users
involves a very large computation, we perform the summa-
tion only over the top 200 users as ranked according to the
frequency p(w|u).

3.1.3 Topic Model based Cloud Generation Model
Another way to smooth the relative term frequency es-

timates and thereby improve the quality of the tag clouds
generated is to rely on latent topic modeling techniques [6].
Using these techniques we can extract semantic topics rep-
resenting user tagging behavior (aka user interests) from a
matrix of relationships between tags and people. Topic mod-
els are term probability distributions over documents (in this
case users) that are often used to represent text corpora. We
apply a commonly used topic modeling technique called la-
tent Dirichlet allocation (LDA) [6] to extract 100 topics by
considering people as documents (and tags as their content).

The entry (context independent) tag cloud based on topic
modeling is defined as follows:

p(w) =
X
z∈Z

p(w|z)p(z) (9)

Where p(w|z) denotes the probability of the tag w to belong
to (being generated by) topic z, its value is given as an
output of the LDA algorithm. p(z) is the relative frequency
of the topic z across all users in the corpus.

To compute the context aware tag cloud based on topic
modeling, we simply marginalize over topics (instead of users):

p(w|w′) =
X
z∈Z

p(w|z)p(z|w′) (10)

=
X
z∈Z

p(w|z)p(w′|z)p(z)
p(w′)

(11)

3.2 Ranking Resources
We follow a standard Language Modeling [3] approach to

ranking resources (documents) according to a query. Thus
we rank resources according to the likelihood that they would
be generated by the query, namely the probability p(d|Q),
where d is a resource and Q the query as a set of tags. We
give here the derivation of p(d|Q) by applying Bayes’ rule.

p(d|Q) =
p(Q|d)p(d)

p(Q)
(12)

For ranking we can drop the normalization by p(Q) as it is
the same for each resource d, which gives us:

score(d|Q) = p(Q|d)p(d) (13)

We apply the naive Bayes assumption and consider the words
in the query to be independent given the document d. Thus
p(Q|d) factorizes into the product of word probabilities p(w|d):

score(d|Q) = p(Q|d)p(d) ≈ p(d)
Y

w∈Q

p(w|d) (14)

This product is equivalent in terms of ranking to the sum of
the corresponding log probabilities. Thus we compute the
score for a particular tag as follows :

score(d|Q) =ranking log p(d) +
X
w∈Q

log p(w|d) (15)

Computing p(d) is straightforward, we can either use the
length of the tag description of the resource d or the uniform
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distribution p(d) = 1/D where D is the count of documents
in the corpus.

For the browsing experiment, the log probabilities within
the summation are exponentially weighted so as to give pref-
erence to the most recently clicked tags, as follows:

browsing score(d|Q) = log p(d) +

|Q|X
i=1

αi−1 log p(wi|d) (16)

Here wi denotes the ith most recent term in the query Q,
and α is a decay parameter set to 0.8 in our experiments.

3.3 Precomputation
For each model we precompute the values for p(w|w′)

which gives us three matrices of relations between tags. At
run time we rank the tags to generate a contextual tag cloud
according to a query of multiple tags as follows:

p(w|Q) = β log p(w) +
X

w′∈Q

log p(w|w′) (17)

In our experiments we set the parameter β to 0.5.

4. EMPIRICAL SETUP
We choose ”Last.fm” to fetch our experimental dataset.

”Last.fm” is a music sharing online social network which al-
lows one to get social network data and tagging data from
their application programming interface (API). To our knowl-
edge it is the only network which enables researchers to fetch
the friends of any user in the system. Fetching the social
network is essential for experiments with social tag clouds.

We gather tag data by crawling users via their friend re-
lationships. Once a new user is fetched, we download her
own tags and then recursively fetch her friends and so on.
We start by fetching the network of the author. In order
to get a complete subset of the social network of ”Last.fm”,
we apply a breadth first search by exploring recursively the
relations of each user. Once we have a substantial subset
of the social network and tags, we fetch the tracks assigned
to the tags. For each tag fetched, we get the 50 top tracks
annotated with this tag.

Table Size

People 126035
Friends 3523626
Tags 343681
Tracks 435257
Usages 900259
Tag applications 4236024

Table 1: Dataset size

Table 1 reports the size of the main tables of the database.
The database accounts for more than 120 thousand people
having 3.5 million friend relationships which makes an av-
erage of 27 friends per person. These individuals have used
more than 340 thousands unique tags a total of more than
4 million times, which makes an average usage of 12 times
per tag. The total number of usages is over 900 thousand
which makes an average of 3 people using each tag.

Figure 3 shows the degree distribution of the number of
friends. It shows the frequency of people with respect to the
number of friends they have. The plot axes are the log of
the values for better visualization. The plot shows a power
law distribution in the number of friends per person with
a number of friends superior to 10. Below ten friends, we
have not seen enough data to have a good estimation of the
distribution of the number of people with that many friends,
so the distribution is curved. Power laws have been observed
in other social networks and show that social networks are
scale-free. Tag usage also shows a power law distribution.

Figure 3: Plot of the distribution of friends.

Once the data is fetched by the ruby scripts via the ”Last.fm”
Web API, we migrate it to a MySQL database for process-
ing. We precompute various tables to store data that will
be used multiple times in the calculations. For instance we
compute the term frequency of each tag, the term frequency
for each tag and each user, the frequency of the friends of
a user for a tag. From these tables we can then compute
similarity tables between the probability of one tag given
another for each model which corresponds to p(w|w′), we
do this only for the tags used by at least 5 people which
accounts for about twenty thousand tags.

5. EVALUATION
We built a web application to evaluate our models in a

user study. We conducted a pilot study where tag clouds are
used to search tracks, a user survey and a follow-up study
with the search task and a browsing task where participants
used the tag cloud to pilot a recommendation system. We
find statistically significant evidence that the topic model
and the social model perform better to generate tag clouds
that lead to recommend songs that were liked and unknown
by the participants than our base line, the popular model.

5.1 Pilot Study
The pilot study took place at the university of Lugano. We

gathered 17 participants from our Bachelor, Master and Phd
programs. Participants registered on an online form before
the evaluation. They were asked to fill in an entry form and
an exit form to answer general questions. The participants
are asked to perform 20 tasks in which they must find a
particular track. Tracks are selected randomly from a pool
of the 200 most popular tracks. The tag generation method
is also selected randomly for each task.

The evaluation is designed as a within subject study. Each
participant is her own control group as a model is randomly
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selected for each task and the participant is not directly
informed of which model is used. Each action of the partic-
ipants are stored in a log in the database.

Most participants had fun during the experiment. Prob-
ably listening to the music and discovering new music helps
with this fun aspect and keeps the participants motivated.
A participant noticed that quickly he was selecting popular
tags and quickly browsing for the “red link” to stop the task.
This technique had him finish with the second place, we be-
lieve the first finishing participant had the same technique
and was rejecting tasks faster if he couldn’t find it with pop-
ular tags. From the comments given, a participant gives as
advantages “you don’t have to think about the search terms,
you can just pick one”, another one adds“relief from typing”.
It seems to be the major advantage of tag navigation, it is
hard for a person to come up with search terms from the
vocabulary he has in mind, whereas when presented with a
vocabulary, it is simple for him to choose what terms to use.
Multiple participants think it would be simpler for them to
type search keywords when they know before hand what
terms they would use rather than browsing the tag cloud
to find the term they are looking for. Again it seems tag
clouds are good to help remembering terms and when the
participant does not know what terms to use, but in the case
the participant has knowledge of what he is looking for it is
easier for her to type. A participant note “if a tag is not in
the list, I can not use it. Free search would be better from
this point of view”.

Some participants mentioned as an advantage“discovering
new music”. Probably the evaluation process by itself makes
the participant discover new music by selecting randomly a
track from the 100 most popular tracks. Also people dis-
covered new music by reading the list of tracks when they
clicked on tags. A participant mentioned that he would like
a tag cloud to navigate pages from his browsing history in his
web browser. A tag cloud would help remembering topics
he has seen in his browsing life.

Model Started Completed Rel. Frequency (%)
Popular 132 94 71.2 ±3.9
Topic 131 93 71.0 ±4.0
Social 158 116 73.4 ±3.5

Table 2: Completed tasks per model. The rate of
task completion along with the standard error in the
estimate is given in the last column. The models are
not found to be statistically significantly different
from one another.

A total of 302 tasks were completed and 101 were rejected.
Each time a new task is given the model used to generate
the tag cloud is selected randomly from the three models
available. 94 tasks were completed for the popular tag cloud
and 94 as well for the tag cloud based on topic models. The
tag cloud based on social network lead to 116 completed
tasks. Participants completed more often tasks involving
the social tag cloud rather than the two other tag clouds.
Table 2 summarises the number of started and completed
tasks and gives the relative frequency in percentage for each
model. The relative frequency of completed tasks regarding
the number of started tasks for each model is similar.

Figures 4 and 5 give an overview of the results. Figure 4
represents the relative frequency, the number of tasks com-

Figure 4: Histogram of different navigation path
lengths across the three cloud generation models.

Figure 5: Histogram of time taking to complete
tasks for different models.

pleted with that number of tags clicked relative to the total
number of clicks for each model. We see that most of the
tasks were completed after the first click. The tracks to find
were selected from the top 100 popular tracks in our dataset.
These tracks have a high probability of containing a popular
tag.

We have graphed the data to show differences in the dis-
tribution of click-counts (navigation path lengths) and time
to completion (time to find a song). On average, the time
taken to complete a task is slightly shorter for topic-based
tag clouds than the popular one (390 seconds against 400
seconds) and a bit better for the social based tag cloud (320
seconds against 400 seconds). While the distributions do
vary slightly: the topic based model appears to have slightly
lower navigation path lengths, and time to success values,
the differences are minimal and the results are not consid-
ered conclusive nor statistically significant.

5.2 User survey
We conducted a short user survey together with the pilot

study. Table 3 gives the statements that were asked to be
ranked on a likert scale. Figure 6 represents the answers of
the participants for each question.

The answers to question 1 clearly shows that our users are
heavy internet users which you would expect when conduct-
ing a survey in a computer science faculty. Eleven partic-
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Figure 6: Number of participants per statement
(best viewed in colour).

Entry
1. I use the internet regularly
2. I regularly search for music online
3. I often use tagging systems to search for information
4. I often tag items in tagging systems
5. I prefer to navigate tagging systems by clicking on tags

rather than searching (via keyword queries)
6. I am interested in popular music

Exit
7. I like navigating the tag cloud
8. I think it is easy to find items by navigating the tag

cloud
9. I find that managing the selected keywords is easy

10. I think I can find items quickly with the tag cloud
11. I would use the tag cloud to navigate the web
12. I would use the tag cloud to navigate files on my per-

sonal computer
13. I think that tag cloud navigation helps with discovering

new music

Table 3: Study statements

ipants mostly disagree with statement 4 and 8 with state-
ment 3 which are both statements about the usage of tagging
systems, which shows that tagging is still a feature that is
not broadly used by people even in a computer science de-
partment. Answers to statements 5 to 9 are inconclusive,
participants are mostly undecided. No participant strongly
disagree with statement 8 but only 5 mostly agree, finding
items by navigating a tag cloud is a hard task for a human
which shows that improvements regarding searchability are
needed. Eight participants agree with statements 10 and 11
and 9 with statement 12. These three statements are about
using the tag cloud to navigate various resources.

Most participants find it easy to navigate the tag cloud
and would use a tag cloud to navigate the Web or their
personal files. Eight participants out of 17 agree with the
13th statement, 13 mostly agree. This confirms the fact that
tag-based navigation improves discovery of new resources.

5.3 Follow-up study
We conducted a second study for which we adapted the

system based on the comments we received in the pilot study.
We improved the efficiency of the system by precomputing
term relational matrices (p(w|w′)). For this evaluation we
had 20 participants. None of the participants finished the
evaluation, since the search task was harder than in the pilot
study. Less results were given per query which forced people
to use more precise queries.

Model Started Completed Rel. Frequency (%)
Popular 144 30 20.8 ±3.4
Topic 160 32 20.0 ±3.2
Social 148 37 25.0 ±3.6

Table 4: Number of completed tasks per model.
While the social model appears to slightly outper-
form the other models, the difference is not statisti-
cally significant at the 5% confidence level.

Results in Table 4 show our social model slightly outper-
forming the popular and topic models. The results are not
statistically significant.

To complete the tasks participants used multiple tags in
their queries, a total of 54 for the popular model, 66 for the
topic model and 68 for the social model. This suggests that
the social model proposes tags that are more closely related
to each other and therefore enables the user to make longer
queries.

5.4 Experimenting with recommendation
The recommendation experiment consisted of tasks in which

participants had to select a tag from the tag cloud and then
listen to a song recommended from the current query (the
query being composed of the tags selected so far), partici-
pants would rate the song (whether they like it or not) and
then go back to the new tag cloud generated according to
the query and the model.

Model Rated Liked Rel. Frequency (%)
Popular 131 90 68.7 ±4.1
Topic 104 60 57.7 ±4.8
Social 148 75 50.7 ±4.1

Table 5: Relative frequencies of liked ratings. The
popular model significantly outperforms the other
models at the 5% confidence level (according to the
two-proportion unpooled one-sided z-test).

Table 5 shows that the popular model outperforms the
topic model and social model to generate tag clouds that
lead participants to recommended songs that they like. This
can be simply explained. Popular items are liked by the
majority of people. It is most likely that if we recommend
a popular song, it will be liked.

Model Liked Unkown&Liked Rel. Frequency (%)
Popular 90 16 17.8 ±4.0
Topic 60 22 36.7 ±6.2
Social 75 23 30.7 ±5.3

Table 6: Relative frequencies of unkown resources
within liked ratings. Both the topic and social mod-
els tend to lead the user to find more unknown music
that they like than the popular model. Results are
statistically significant at the 5% confidence level.

If we look at the relative frequencies of songs that were
new to the participants within the songs that they liked,
we find that the popular model is the least efficient, intu-
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itively popular items are liked and already known, which is
why they are popular because so many people know them.
Table 6 shows that the topic model is the best model fol-
lowed closely by the social model, both models outperform
quite significantly the popular model. These results support
our thesis that using social relationships enhances the rec-
ommendation of new and relevant information. The topic
model performs better than the social model, we believe that
once the social model is personnalized, i.e. uses the actual
social network of the participant instead of an overall proba-
bility from a social network, the social model would perform
even better.

6. CONCLUSION AND FUTURE WORK
Our work has some limitations, the number of participants

of the pilot study and follow-up study is relatively small (17
and 20 participants) which does not allow us to draw strong
conclusions. We focused our attention on only one dataset
from ”Last.fm” with online music data, the conclusions can
not be generalised to tag cloud based navigation of other
corpora.

Our survey shows that search is not practical with tag
clouds whereas recommendation and discovery of new infor-
mation is. Our follow-up study shows that in the case of
recommendation of items that people liked and were new to
them, the topic and social models perform much better than
the popularity model.

6.1 Future Work
We are working on a new evaluation methodology to lever-

age the social model with social network data from the par-
ticipants. The rest of the evaluation works as the one de-
scribed in this paper. We believe that this personalized so-
cial model will outperform the topic model.
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ABSTRACT
Music folksonomies have an inherent loose and open seman-
tics, which hampers their use in structured browsing and
recommendation. In this paper, we present a method for
automatically obtaining a set of semantic facets underly-
ing a folksonomy of music tags. The semantic facets are
anchored upon the structure of the dynamic repository of
universal knowledge Wikipedia. We illustrate the relevance
of the obtained facets for the description of tags.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Dictionaries, Linguistic processing ;
H.5.5 [Information Storage and Retrieval]: Sound and
Music Computing

General Terms
Algorithms, Experimentation, Languages

Keywords
Music tagging, Last.fm, Wikipedia, Social music

1. INTRODUCTION
Music is a complex phenomenon that can be described

according to multiple facets. Descriptive facets of music are
commonly defined by experts (e.g. stakeholders in the music
industry) in professional taxonomies. Multifaceted descrip-
tions are especially useful for music browsing and recom-
mendation. For instance, recommendations of the Pandora
Internet radio use around 400 music attributes grouped in
20 facets,1 as for instance Roots (e.g. “Afro-Latin Roots”),
Instrumentation (e.g. “Mixed Acoustic and Electric Instru-
mentation”), Recording techniques (e.g. “Vinyl Ambience”),
or Influences (e.g. “Brazilian Influences”).

1http://en.wikipedia.org/wiki/List_of_Music_
Genome_Project_attributes

WOMRAD 2010 Workshop on Music Recommendation and Discovery,
colocated with ACM RecSys 2010 (Barcelona, SPAIN)
Copyright c©. This is an open-access article distributed under the terms
of the Creative Commons Attribution License 3.0 Unported, which permits
unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

However, there exists no consensual taxonomy for music.
Previous research showed the music industry uses inconsis-
tent taxonomies [6], even when restricting to a single and
widespread facet such as the music genre. Also, expert-
defined taxonomies (music-related or not) have two funda-
mental problems. First, they are very likely to be incom-
plete, since it is impossible for a small group of experts to
incorporate in a single structure all the knowledge that is
relevant to a specific domain. Second, since domains are
constantly evolving taxonomies tend to become quickly out-
dated –in music, new genres and techniques are constantly
emerging.

An alternative strategy for describing music consists in
relying on the broadness of the web and making use of
the “wisdom of the crowds”. Many music websites allow
users themselves to assign their own descriptive tags to mu-
sic items (artists, albums, songs, playlists, etc.). For in-
stance, users of the website Last.fm tagged the band Radio-
head as “90s”, “00s”, “alternative”, “post-punk”, “britpop”,
“best band ever”, among other things. The combination of
annotations provided by thousands of music users leads to
the emergence of a large body of domain-specific knowledge,
usually called folksonomy. Due to its informal syntax (i.e.
direct assignment of tags), the tagging process allows the
collective creation of very rich tag descriptions of individual
music items.

When compared to taxonomies defined by experts, music
folksonomies have several advantages. First, completeness,
they ideally encompass all possible “ways to talk about mu-
sic”, including both lay and expert points of view. Second,
due to the continuous nature of the tagging process, folk-
sonomies tend to be well updated. Third, they usually in-
corporate both commonly accepted and generic concepts, as
well as very specific and local ones.

It seems reasonable to assume that folksonomies tend to
encompass various groups of tags that should reflect the un-
derlying semantic facets of the domain including not only
traditional dimensions (e.g. instrumentation), but also more
subjective ones (e.g. mood). However, the simplicity and
user-friendliness of community-based tagging imposes a toll:
there is usually no way to explicitly relate tags with the cor-
responding music facets. For instance, a user may assign a
number of tags related with music genre without ever actu-
ally explicitly specifying that they are about “music genre”.
For providing a flexible browsing experience, this is a sig-
nificant disadvantage of folksonomy-based classification in
relation to classification based on taxonomies, where the in-
formation about which facets are being browsed can be made
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explicitly available to the user.
In this paper, we approach an essential research question

that is relevant to bridging this gap: Is it possible to auto-
matically infer the semantic facets inherent to a given music
folksonomy? A related research question is whether it is
then possible to classify elements of that music folksonomy
with respect to the inferred semantic facets?

We propose an automatic method for (1) uncovering the
set of semantic facets implicit to the tags of a given mu-
sic folksonomy, and (2) classify tags with respect to these
facets. We anchor semantic facets on metadata of the semi-
structured repository of general knowledge Wikipedia. Our
rationale is that as it is dynamically maintained by a large
community, Wikipedia should contain grounded and updated
information about relevant facets of music, in practice.

2. RELATED WORK
Music tags have recently been the object of increasing

attention by the research community [3, 4]. A number of
approaches have been proposed to associate tags to music
items (e.g. a particular artist, or a music piece) based on an
analysis of audio data [1, 9], on the knowledge about tag co-
occurence [5], or on the extraction of tag information from
community-edited resources [8]. However, in most cases,
such approaches consider tags independently, i.e. not as el-
ements in structured hierarchies of different music facets.
When hierarchies of facets are considered, they are usu-
ally defined a priori, and greatly vary according to authors.
For example, [4] groups tags in the following facets: genre,
locale, mood, opinion, instrumentation, style, time period,
recording label, organizational, and social signaling.

To our knowledge, however, few efforts have been dedi-
cated to the particular task of automatically identifying the
relevant facets of music tags. In their work on inferring
models for genre and artist classification, Levy et al. apply
dimensionality reduction techniques to a data set of tagged
music tracks in order to obtain their corresponding com-
pact representations in a low-dimensional space [5]. They
base their approach on tag co-occurrence information. Some
emerging dimensions can be associated to facets such as Era
(e.g. the dimension [90s]). However, most of the dimen-
sions thus inferred are, in fact, a combination of diverse mu-
sic facets, such as for example the dimension [guitar; rock],
which includes concepts of instrumentation and of genre.

Cano et al. use the WordNet ontology to automatically
describe sound effects [2]. Albeit the very large amount of
concepts in WordNet, they report that it accounts for rela-
tively few concepts related to sound and music, and propose
an extension specific to the domain of sound effects. On
the one hand, they illustrate that browsing can indeed be
greatly enhanced by providing multifaceted descriptions of
items. On the other hand however, it is our belief that,
because of their necessary stability, existing ontologies are
not the most adapted tool to describe domains of knowledge
with inherent open and dynamic semantics, such as music.

3. METHOD
Our method consists in using metadata from Wikipedia to

infer the semantic facets of a given music folksonomy. This
is performed in two steps. In the first step, we specialize the
very large network of interlinked Wikipedia pages to the spe-
cific domain of the music folksonomy at hand. This is done

by maximizing the overlap between Wikipedia pages and a
list of frequent tags from the folksonomy. As the resulting
network still represents a very large number of nodes, in a
second step, we focus on the most relevant ones (node rele-
vance being defined as an intrinsic property of the network).
This step also includes additional refinements.

3.1 Obtaining a Music-Related Network
Wikipedia pages are usually interlinked, and we use the

links between two particular types of pages (i.e. articles
and categories) to construct a music-related network. Con-
cretely, we use the DBpedia knowledge base (http://dbpedia.
org/) that provides structured, machine-readable descrip-
tions of the links between Wikipedia pages (DBpedia uses
the SKOS vocabulary, in its 2005 version).2 In particular,
we make use of two properties that connect pages in DBpe-
dia: (1) the property subjectOf, that connect articles to cate-
gories (e.g. the article“Samba”is a subjectOf of the category
“Dance music”, and (2), the property broaderOf, that con-
nect categories in a hierarchical manner (e.g. the category
“Dance”is a broaderOf of the category“Dance music”, which
is a broaderOf of the category “Ballroom dance music”).

We start from the seed category “Music” and explore its
neighbourhood from the top down, checking whether con-
nected categories can be considered relevant to the music
domain. A category is considered relevant if it satisfies any
of the two following conditions:

• It is a tag from the folksonomy, such as for example
“Rock and Roll”. (This condition will be referred to as
isMusical);

• At least one of its “descendants” is a tag from the folk-
sonomy and the substring “music” is included in the
title or the abstract of the corresponding Wikipedia
article. (This condition is further referred to as is-
TextMusical.)

The “descendants” of a category are fetched from DBpe-
dia using the two connecting properties previously described.
These descendants can be either “successors” (i.e. all direct
subjectOf and broaderOf of this category), or successors of
successors, and so on. This iterative search is limited by a
maximum depth, empirically fixed to a value of 4. Indeed,
experiments with smaller values yielded a significant reduc-
tion of the tag coverage, while experiments with greater val-
ues did not increase significantly the coverage.

If any of the previous conditions is satisfied, the cate-
gory, its successors and their edges are added to the net-
work. Otherwise, the category and all incident edges are
removed. The algorithm proceeds iteratively (following a
Breadth-First search approach) until no more categories can
be visited. A summarized version of the method for obtain-
ing a music-related network is described in algorithm 1.

3.2 Finding Relevant Facets
Once the network of music-related categories is built, the

next step is to find the nodes that are potentially more rel-
evant to the network than others.

We invert the direction of the edges of the network in
order to point back in the direction of the most generic cat-
egory, i.e. “Music”, and we compute the PageRank of the

2http://www.w3.org/TR/2005/
WD-swbp-skos-core-spec-20051102/
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Data: C = ∅, a list of categories (a queue, initially
empty); N = (V, E), a directed network with a
set of nodes V and a set of edges E (initially
empty);

Result: N , network with music nodes;
C ← C ∪ “Music”;
while C 6= ∅ do

c← first element of C;
C ← C − c;
if (c isMusical) ∨ ((at least one descendant of c
isMusical) ∧ (c isTextMusical)) then

N

{
V ← V ∪ c ∪ successors(c)

E ← E ∪ edges between c and successors(c)

C ← C ∪ successors(c)
else

N

{
V ← V − c

E ← E − all edges incident in c

end

end
Algorithm 1: Pseudo-code for the creation of a network
of music-related categories from Wikipedia.

resulting network. PageRank [7] is a link analysis algorithm
that measures the relative relevance of all nodes in a net-
work. In PageRank, each node is able to issue a relevance
vote on all nodes to which it points to (thus the need for re-
orienting the edges). The weight of the vote depends on the
relevance of the voting node (i.e. relevant nodes issue more
authoritative votes). The process runs iteratively, and (un-
der certain conditions) converges to a stable relative ranking,
where nodes to which more edges from other relevant nodes
converge (directly or indirectly) are considered more rele-
vant. For initializing the PageRank algorithm, we set the
initial weight of each node to 0.

In order to capture general yet complementary facets of
music, we aim at reducing semantic overlap as much as pos-
sible by applying the following filters:

Stub Filter: We remove all categories with substring“ by ”
and “ from ”. We noticed that many categories in
Wikipedia are actually combinations of two more gen-
eral categories, as for instance “Musicians by genres”,
which is halfways between“Musicians”and“Music genres”
(see also figure 1). Further, we also remove categories
that include“ music(al) groups”(e.g. “Musical groups-
from California” that has hundreds of connected cat-

egories, hence a high PageRank). Most of these cate-
gories are used as stubs, even sometimes explicitly so
we also excluded categories with the word “stub”.

Over-Specialization Filter: We exclude all categories that
include lexically a more relevant category. Many rel-
evant categories are specializations of other more rel-
evant ones, this occurs mostly with concepts related
to anglophone music, which are described in great de-
tail in Wikipedia (e.g. “American Musicians” includes
“Musicians” that has a higher PageRank).

Tag Filter: We remove all categories that are tags. Our
objective is to uncover music facets that are implicit
to the tags that make up a folksonomy. In general, tags
are elements of such facets, not the facets themselves.

Figure 1: Example of subnetwork in our data. Dot-
ted lines correspond to Wikipedia categories that
are also Last.fm tags. Dashed lines correspond to
categories not kept. Plain lines correspond to facets
kept.

4. RESULTS
We experimented our method on a large dataset of artist

tags, gathered from Last.fm during April 2010. The dataset
consists of around 600,000 artists and 416,159 distinct tags.
This dataset was cleaned in order to remove noisy/irrelevant
data: (1) tags were edited in order to remove special char-
acters such as spaces, etc.; (2) tags were filtered by weight3,
only tags with a weight ≥ 1 were kept; and (3) tags were fil-
tered by popularity, keeping only tags with popularity ≥ 10,
i.e. keeping only tags that were assigned to at least 10
artists. As a result, the final dataset consists of 582,502
artists, 39,953 distinct tags, and 9.03 tags per artist.

After running both stages of our method, we obtained a
list of 333 candidate facets. Table 1 contains the top-50
facets, ordered by pagerank (top to bottom, left to right).

Table 1: Top-50 Wikipedia music facets
Music genres Aspects of music

Music geography Hip hop genres
Musical groups Music of California
Music industry Music theory

Musicians Rock and Roll Hall of Fame inductees
Musical culture Musical subcultures

Occupations in music Recorded music
Music people Musical quartets
Record labels Music festivals

Music technology East Asian music
Sociological genres of music Centuries in music
Music publishing companies Musical composition

Musical instruments Musical quintets
Anglophone music Southern European music

Music of United States subdivisions Music software
Western European music Incidental music
American styles of music Years in music

Radio formats Music websites
Music publishing Guitars

Albums Music competitions
Musical techniques Musical eras

Wiki music Music and video
Music history Musical terminology

Music performance Music halls of fame
Music publishers “people” Dates in music

4.1 Assigning facets to tags
In order to assign a set of facets to a given Last.fm tag, we

process the subnetwork of Wikipedia pages specialized to the
Last.fm folksonomy (obtained in section 3.1), as described
in algorithm 2 (Note that this process is restricted to tags
that can be matched to one of the nodes in the network).

3i.e. Last.fm “relevance weight”, which goes from 0 to 100

23



Table 2: Sample of the top tags for various music facets inferred
Music genres Occupations in music Musical instruments Aspects of music

Sufi music Troubadour Melodica Rhythm
Dance music Bandleaders Tambourine Melody
Indietronica Pianist Drums Harmony
Minimalism Singer-songwriter Synthesizers Percussion

Singer-songwriter Flautist Piano Chords
Music software Music websites Music competitions Musical eras

Nanoloop Mikseri.net Nashville Star Baroque music
Scorewriter PureVolume American Idol Ancient music

MIDI Allmusic Melodifestivalen Romantic music
DrumCore Jamendo Star Search Medieval music

Renoise Netlabels Eurovision Song Contest Renaissance music

Data: C = ∅, a list of categories (initially empty); F , a
list of top-N music facets; t, a Last.fm tag;

Result: TF , list of facets applied to tag t;
iter ← 1;
TF = ∅;
while (F 6= ∅) ∨ (iter ≤ maxIter) do

C ← C ∪ predecessors(t);
if (∃f ∈ (F ∩ C)) then

TF ← TF ∪ f
F ← F − f

end
iter ← iter + 1

end
Algorithm 2: Pseudo-code for assigning Wikipedia facets
to Last.fm tags

Given a Last.fm tag t, we look at its “predecessor” cate-
gories c, or more formally:

predecessors(t) = {c|(t broaderOf(c)) ∨ (t subjectOf(c))}.

If any of these predecessors is a top-N facet, it is then as-
signed to t. The process continues iteratively until no more
facets can be assigned to the tag, or a maximum number
of iteration (maxIter) is exceeded. We empirically set this
value to 8. This condition can be interpreted as the maxi-
mum distance in the network between a tag and a facet.

Table 2 presents a small subset of the obtained facets,
followed by a subset of their corresponding list of top tags.
Top tags are chosen based on the distance (in number of
successive edges in the music network) to the given facet.

The relevance Rtf of a music facet f to a tag t is com-
puted as the normalized inverse distance dtf –in number of
successive edges– between t and f :

Rtf =

1
dtf∑
i

1
dti

For example, in figure 1, given the tag bulgarian hip-hop,
our method starts navigating through the predecessors of
this tag until finally reaching two music facets: Music genres
and Music geography :

bulgarian hip-hop: {(Music_genres, 0.4),

(Music_geography, 0.6)}

5. SUMMARY AND FUTURE WORK
Although potentially more complete and up-to-date than

taxonomies, music folksonomies lack structured categories,
a particularly relevant aspect to browsing and recommenda-
tion. In this paper, we addressed the problem of uncovering

the underlying semantic facets of the Last.fm folksonomy,
using Wikipedia as backbone for semi-structured semantic
categories.

There are many avenues for future work. First and fore-
most, we intend to evaluate the relevance of the obtained
facets via systematic evaluations of tag classification. We
will also study the distributions of music facets with respect
to artist popularity. Further work should also relate to eval-
uating the usefulness of the obtained facets in a number of
tasks, such as music recommendation, or tag expansion. We
also intend to release the data (and code used to obtain it)
in order to stimulate its use by fellow researchers.
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Thanks to Òscar Celma (BMAT), Eduarda Mendes Ro-

drigues (FEUP) and anonymous reviewers for useful com-
ments. This work was partly supported by the Ministerio
de Educación in Spain, and the Fundação para a Ciência e
a Tecnologia (FCT) and QREN-AdI grant for the project
Palco3.0/3121 in Portugal.

7. REFERENCES
[1] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere.

Autotagger: A model for predicting social tags from
acoustic features on large music databases. JNMR,
37(2):115–135, 2008.

[2] P. Cano, M. Koppenberger, P. Herrera, O. Celma, and
V. Tarasov. Sound effect taxonomy management in
production environments. In AES, 2004.

[3] O. Celma. Music Recommendation and Discovery - The
Long Tail, Long Fail, and Long Play in the Digital
Music Space. Springer, 2010.

[4] P. Lamere. Social tagging and Music Information
Retrieval. JNMR, 37(2):101–114, 2008.

[5] M. Levy and M. Sandler. Learning latent semantic
models for music from social tags. JNMR,
37(2):137–150, 2008.

[6] F. Pachet and D. Cazaly. A taxonomy of musical
genres. In RIAO, 2000.

[7] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab, 1999.

[8] L. Sarmento, F. Gouyon, and E. Oliveira. Music artist
tag propagation with wikipedia abstracts. In
ECIR-WIRSN, 2009.

[9] D. Turnbull, L. Barrington, D. Torres, and
G. Lanckriet. Semantic annotation and retrieval of
music and sound effects. IEEE TASLP, 2(16):467–476,
2008.

24



 

A Survey of Music Recommendation Aids
Pirkka Åman and Lassi A. Liikkanen 

Helsinki Institute for Information Technology HIIT 
Aalto University and University of Helsinki 

Tel. +358 50 384 1514 
firstname.lastname@hiit.fi 

 
ABSTRACT 
This paper provides a review of explanations, visualizations and 
interactive elements of user interfaces (UI) in music 
recommendation systems. We call these UI features 
“recommendation aids”. Explanations are elements of the 
interface that inform the user why a certain recommendation 
was made. We highlight six possible goals for explanations, 
resulting in overall satisfaction towards the system. We found 
that the most of the existing music recommenders of popular 
systems provide no explanations, or very limited ones. Since 
explanations are not independent of other UI elements in 
recommendation process, we consider how the other elements 
can be used to achieve the same goals. To this end, we 
evaluated several existing music recommenders. We wanted to 
discover which of the six goals (transparency, scrutability, 
effectiveness, persuasiveness, efficiency and trust) the different 
UI elements promote in the existing music recommenders, and 
how they could be measured in order to create a simple 
framework for evaluating recommender UIs. By using this 
framework designers of recommendation systems could 
promote users’ trust and overall satisfaction towards a 
recommender system thereby improving the user experience 
with the system. 
 
Categories and Subject Descriptors 
H5.m. Information interfaces and presentation: Miscellaneous. 
H.5.5 Sound and Music Computing. 
 
Author Keywords 
Recommendation systems, music recommendation, 
explanations, user experience, UI design. 

1. INTRODUCTION 
Recommender systems are a specific type of information 
filtering technique that aims at presenting items (music, news, 
other users, etc.) that user the might be interested in. To do this, 
information about the user is compared to reference 
characteristics, e.g. information on the other users of the system 
(collaborative filtering) or content features, such as genre in the 
case of books or music (content-based filtering). In its most 
common formulation, the recommendation task is reduced to 
the problem of estimating relevance of the items that a user has 
not encountered yet, and then presenting the items that have the 
highest estimated ratings [6]. The importance of recommender 
systems lies in their potential to help users to more effectively 
identify items of interest from a potentially overwhelming set of 
choices [7]. The importance of these mechanisms has become 
evident as commercial services over the Internet have extended 
their catalogue to dimensions unexplorable to a single user. 
However, the overwhelming numbers of content create a 

constant competition and can reduce the usefulness of 
recommendations unless they can persuade the user to try the 
suggested content. Explanations and other recommendation 
aiding UI features are examined in this paper as a way to 
increase the satisfaction towards recommenders among users. 
 
The first interactive systems to have explanations were expert 
systems, including legal and medical databases [4]. Their 
present successors are commercial recommendation systems 
commonly found embedded in various entertainment systems 
such as iTunes [9] or Last.fm [12]. Explanations can be 
described as textual information telling e.g. why and how a 
recommendation was produced to the user. Earlier research 
shows that even rudimentary explanations build more trust 
towards the systems than the so-called “black box” 
recommenders [13]. Explanations also provide system 
developers a graceful way for handling errors that recommender 
algorithms sometimes produce [6]. 
 
The majority of previous recommendation system research has 
been focused on the statistical accuracy of the algorithms 
driving the systems, with little emphasis on interface issues and 
the user experiences [13]. However, it has been noted lately that 
when the new algorithms are compared to the older ones, both 
tuned to the optimum, they all produce nearly similar results. 
Researchers have speculated that we may have reached a level 
where human variability prevents the systems from getting 
much more accurate [7]. This mirrors the human factor: it has 
been shown that users provide inconsistent ratings when asked 
to rate the same item several times [14]. Thereby an algorithm 
cannot be more accurate than the variance in the user’s ratings 
for the same item.  
 
An important aspect for the assessment of recommendation 
systems is to evaluate them subjectively, e.g. how well they can 
communicate their reasoning to users. That’s why user interface 
elements such as explanations, interactive elements and 
visualizations are increasingly important in improving user 
experience. In the past years subjectively perceived aspects of 
recommendations systems have accordingly gained ground in 
their evaluation. 
 
In this paper we want to illustrate the possibilities of user-
evaluation of recommendation supporting features in 
recommendation systems. We do this by performing a review 
on several publicly available music recommenders. Music is 
today one of the most ubiquitous commodities and the 
availability of digital music is constantly growing. Massive 
online music libraries with millions of tracks are easily 
available in the Internet. However, finding new and relevant 
music from those vast collections of music becomes similarly 
increasingly difficult. One approach to tackle the problem of 
finding new, relevant music is developing better (reliable and 
trustworthy) recommendation systems. Music recommenders 
are also easy to access and music has reasonably short process 
in determining the quality of recommendation results. 

 
WOMRAD 2010 Workshop on Music Recommendation and Discovery, 
colocated with ACM RecSys 2010 (Barcelona, SPAIN) 
Copyright (c). This is an open-access article distributed under the terms 
of the Creative Commons Attribution License 3.0 Unported, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original author and source are credited. 
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2. GOALS FOR RECOMMENDATION AIDS 
Tintarev and Masthoff [16] present a taxonomy for evaluating 
goals for explanations. Those are shown slightly modified in the 
Table 1 below. We argue that satisfaction towards a 
recommendation system is an aggregate of the six other 
dimensions, more a goal of itself than the other dimensions. In 
addition, we noticed that the dimensions are not so 
straightforward as Tintarev and Masthoff present them. Some 
of them cannot be evaluated using objective measures, and 
therefore framework for evaluation recommendation aids must 
be drawn from user research. In the following we describe each 
dimension and give examples of how they could be evaluated 
and measured. 
 

Table 1. Dimensions for recommendation explanations. 

Goal Definition 

Transparency Explain how the system works 

Scrutability Allow users to tell the system it is wrong 

Effectiveness Help users make good decisions 

Persuasiveness Convince users to try or buy 

Efficiency Help users make decisions faster 

Trust Increase users’ confidence in the system 

Resulting in  

 
1. An explanation may tell users how or why a recommendation 
was made, allowing them to see behind the UI and thus making 
recommendation transparent. Transparency is also a standard 
usability principle, formulated as a heuristic of ’Visibility of 
System Status’ [13]. Transparency can be measured objectively, 
using binary scale (yes/no), e.g. if a UI provides some kind of 
explanation how a recommendation was made transparency 
gets a vote. However, evaluating transparency subjectively may 
involve users to be asked if they understand how the 
recommendation was made using e.g. Likert scale. 
 
2. Scrutability means that users are allowed to provide feedback 
for the system about the recommendations. Scrutability is 
related to the established usability principle of ‘User Control’ 
[13]. Scrutability can be measured objectively by finding out  if 
there is a way to tell the system it is wrong. To evaluate 
scrutability subjectively, users may be given a task to find a 
way to tell how to stop receiving e.g. recommendations of Elvis 
songs. If users feel they can control the recommendations by 
changing their profile, the UI has the possibility to scrutinize.  
 
3. Effectiveness of an explanation help users make better 
decisions. Effectiveness is highly dependent on the accuracy of 
the recommendation algorithm. An effective explanation would 
help the user evaluate the quality of suggested items according 
to their own preferences [16]. This would increase the 
likelihood that the user discards irrelevant options while helping 
them to recognize useful ones. Unlike travel or film 
recommenders, in the case of music recommenders the process 
of deciding the goodness of a recommendation is done quite 
quickly. 
 
4. Persuasiveness. Explanations may convince users to try or 
buy recommended items. However, persuasion may result in an 
adverse reaction towards the system, if users continuously 
decide to choose bad recommendations. Persuasion could be 
measured according to how much the user actually tries or buys 

items compared to the same user in a system without an 
explanation facility [16] and what kind of persuasion techniques 
are utilized. Persuasion could also  be measured by applying 
click-through rates used in measuring online ads. 
 
5. Efficient explanations help users to decide faster which 
recommendation items are best for their current situation. 
Efficiency can be improved by allowing the user to understand 
the relation between recommended options [12]. A simple way 
to evaluate efficiency is to give users tasks and measure how 
long it takes to find e.g. an artist that is novel and pleasing to 
the user. 
 
6. Increasing users’ confidence in the system results in trust 
towards a recommender. Trust is in the core of any kind of 
recommendation process, and it is perhaps the most important 
single factor leading to better user satisfaction and user 
experience with the interactive system. A study of users’ trust 
(defined as perceived confidence in a recommender system’s 
competence) suggests that users intend to return to 
recommender systems, which they find trustworthy [2]. The 
interface design of a recommender affects its credibility and 
earlier research has shown that in user evaluation of web page 
credibility the largest proportion of users’ comments referred to 
the UI design issues [5]. Trust needs to be measured using 
subjective scales over multiple tasks or questions about the 
recommendation aiding features of a recommender UI. 
 
The ease of use or enjoyment results finally in more satisfaction 
towards a system. Descriptions of recommended items have 
been found to be positively correlated with both the perceived 
usefulness and ease of use of the recommender system [6], 
enhancing users' overall satisfaction. Even though we see 
satisfaction as an aggregate of the dimensions presented above, 
satisfaction with the process could be measured e.g. by 
conducting a user walk-through for a task such as finding a 
satisfactory item. 

3. RELATED EMPIRICAL RESEARCH 
It is widely agreed that expert systems that act as decision-
support systems need to provide explanations and justifications 
for their advice [13]. However, there is no clear consensus on 
how explanations should be designed in conjunction with other 
UI elements or evaluated by users. Studies with search engines 
show the importance of explanations. Koenmann & Belkin [11] 
found that greater interactivity for feedback on 
recommendations helped search performance and satisfaction 
with the system.  Johnson & Johnson [10] note that 
explanations play a crucial role in the interaction between users 
and interactive systems. According to their research, one 
purpose of explanations is to illustrate the relationship between 
cause and effect. In the context of recommender systems, 
understanding the relationship between the input to the system 
(ratings and choices made by user) and output 
(recommendations) allows the user to interact efficiently with 
the system. Sinha and Swearingen [15] studied the role of 
transparency in recommender systems. Their results show that 
users like and feel more confident about recommendations that 
they perceive transparent. Explanations allow users to 
meaningfully revise the input in order to improve 
recommendations, rather than making “shots in the dark.” 
 
Herlocker and Konstan [6] suggest that recommender systems 
have not been used in high-risk decision-making because of a 
lack of transparency. While users might take a chance on an 
opaque movie recommendation, they might be unwilling e.g. to 
commit to a vacation spot without understanding the reasoning 

Satisfaction (increasing the ease of use or enjoyment towards the system) 
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behind such a recommendation. Building an explanation facility 
into a recommender system can benefit the user in various 
ways. It removes the “black box” around the recommender 
system, providing transparency. Some of the other benefits 
include justification. If users understand the reasoning behind a 
recommendation, they may decide how much confidence to 
place in the suggestion. That results in greater acceptance or 
satisfaction of the recommender system as a decision aide, 
since its limits and strengths are more visible and its 
suggestions are justified. 

4. RECOMMENDATION AIDS IN EXISTING 
MUSIC RECOMMENDERS 
We conducted an expert walkthrough of six publicly available 
music systems with recommendation functionalities in order to 
find out which of the six goals explanations, visualizations and 
interactive UI elements promote in the existing music 
recommenders, and how they can be measured in order to 
create a simple framework for evaluating recommenders. The 
walkthrough was conducted by authors listing the UI features 
capable of promoting the goals mentioned above. The reviewed 
systems include Pandora, Amazon, Last.fm, Audiobaba, 
Musicovery and Spotify. We wanted to include the most 
popular online music services, and on the other hand, include a 
variety of different UIs. Each of the evaluated systems provides 
recommendations but not necessarily explanations. Systems 
without textual explanations were also included in order to find 
out what kind of goals or functions similar to verbal 
explanations other recommendation aids provide. 
 
Table 2. The occurrences of recommendation aids in a selection of 

music recommenders 
 Trans. Scrt. Effect. Pers. Effic. Trust  

Amazon 1 2 2 3 1 3 12 
Last.fm - 2 2 1 2 2 9 

Audiobaba 1 1 2 1 1 2 8 
Musicovery 2 2 2 2 2 1 11 

Spotify - - 1 1 1 1 4 
Pandora 2 2 3 3 2 3 15 

 6 9 12 11 9 12  
 
If a recommender has a possibility to promote a goal with 
explanations, visualizations or interactive elements, it gets a 
vote in Table 2. For example, persuasiveness promoted through 
visualizations is potentially possible in all of the interfaces that 
have visualizations, even rudimentary ones, such as an album 
cover. A single user might be persuaded to try or buy by 
presenting a subjectively compelling album cover. From Table 
2 we can see that Pandora, Amazon and Musicovery have the 
greatest number of UI elements able to provide users support 
for sense-making of recommendations. Effectiveness, 
persuasiveness and trust are the most commonly promoted 
goals. In each recommender, each UI element has the potential 
to increase trust towards the systems, but for more accurate 
measurement, it remains to be evaluated by empirical user 
research, to which extent each elements in certain recommender 
interface really promote trust. This applies to most of the six 
goals: without empirical data, it is almost impossible to decide, 
whether the potential for promoting effectiveness, 
persuasiveness and efficiency actually realizes. Only 
transparency and scrutability can be measured using objective 
binary scale of yes/no, but they can be evaluated also using 
subjective (Likert style) scales. We argue that by measuring 
these goals for UI elements together with a set of usability 
guidelines, it is possible to evaluate and design better user 
experiences for recommendation systems. 

Some of the dimensions are easy to connect to certain UI 
elements. For instance, scrutability is usually designed as a 
combination of explanation and interactivity, whereas other, 
more general level dimensions depend strongly on subjective 
experience and are hard to connect with specific UI elements. 
For example, satisfaction or trust towards a system is usually 
combination of different experienced UI dimensions. Therefore 
the most common dimensions promoted in the evaluated 
systems were trust and satisfaction. Those, together with 
persuasiveness, are experienced very subjectively, which means 
that empirical user evaluation is needed for more reliable and 
comparable evaluations of those dimensions. 
 
Obvious example of an explanation providing transparency is 
Amazon’s “Customers with Similar Searches Purchased…”, 
with up to ten albums’ list. Pandora tells a user: “This song was 
recommended to you because it has jazzy vocals, light rhythm 
and a horn section.” Transparency is very hard to achieve 
without textual, explicit explanations. Of the reviewed systems, 
only Musicovery’s UI with several interactive elements, 
graphical visualization of the recommendations and the 
relations between them give users clear clues of why certain 
pieces of music were recommended, without providing 
explanations. 
 
Last.fm offers users scrutability in many ways, e.g. with its 
music player (Figure 1). One of the system’s more sophisticated 
scrutinizing tactics is a social one. Last.fm allows users to turn 
off the registering (called scrobbling) of the listened music. The 
system’s users can  perform identity work by turning scrobbling 
off, if they feel they do not want to communicate what they 
have listened to the other users. Amazon provides “Fix this 
recommendation” option for telling the system to remove 
recommended item from the users browsing history. 
 
 

 
Figure 1: Example of scrutable interactivity: Last.fm player’s love, 
ban, stop and skip buttons give users a tool to control their profiles 
and thereby affect recommendations. 
 
Users can be helped in efficiency and effectiveness, i.e. making 
better and faster decisions by offering appropriate controls with 
interactive elements. For instance, Musicovery’s timeline slider 
is presented in Figure 2. It works in real time with the system’s 
graphical presentation of recommended items. 
 
 

 
Figure 2: Musicovery’s timeline slider:  interactivity promoting 
efficiency, scrutability, and effectiveness, resulting in more trust 
and satisfaction towards the system. 

5. DISCUSSION AND CONCLUSIONS 
We reviewed dimensions of explanations in six music 
recommendation systems and found out that most of the 
reviewed commercial music recommendation systems are 
“black boxes”, producing recommendations without any, or 
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very limited explanations. Most of the dimensions are poorly 
promoted by textual explanations, but can be promoted by other 
means, namely by visualizations and interactive elements, and 
further, by user-generated content and social facilities. From the 
expert walkthrough of the selected music recommendation 
systems we can draw a tentative conclusion that if UI elements 
can fulfill similar functions as explanations, there is necessarily 
no need for textual descriptions. By using non-verbal 
recommendation aids as “implicit” explanations and using them 
in recommendation system design, we can promote better user 
experience. This is the case especially when the user has 
enough cultural capital and therefore competence for “joining 
the dots” between recommended items without explicit 
explanations. On the other hand, if the recommender is used 
e.g. for learning about musical genre, textual explanations may 
be indispensable. 
 
As an example of the dimensions that UI elements other than 
verbal explanations can promote is the overall satisfaction or 
trust towards the systems that can be achieved by 
conversational interaction such as in UI example presented in 
Figure 3, where users are given a chance for optional 
recommendations based on their situational desires and needs. 

 
 
 
 
 
 
 

Figure 3: A recommendation aid with optional inputs. 
 
Last.fm is an example of recommendation system with no 
explanations. However, it has an abundance of other elements 
such as user created biographies, genre tags and pictures of 

artists, not to mention advanced social media features that 
together effectively work towards the same goals as the 
dimensions of explanations. Furthermore, Spotify, a popular 
European music service with very simple recommendation 
facility, does not provide any explanations whatsoever. Its 
popularity relies on providing users a minimalistic UI with 
effective search facility and a functional, high-quality audio 
streaming. Spotify’s usability and functionality work effectively 
towards overall satisfaction of the system, making explanations, 
visualizations or advanced interactivity redundant. Obviously, 
Spotify’s abilities for helping to find new music are limited, 
because of very simple recommendation facility, but it can be 
used as an example of the argument that user trust and 
satisfaction can be promoted by diverse means depending on 
the different users’ various needs and desires. 
 
The next step of our research is to conduct an empirical user 
evaluation of the importance and functions of different UI 
elements in music recommenders. We are looking for feasible 
scales of measurement that are drawn from user evaluation of 
the goals for UI elements in recommenders. User evaluation 
could be done with modified music recommender UIs where 
users are given tasks and comparing e.g. how much taking away 
a UI feature such as an explanation effects to the time the task 
is completed. It would also be interesting to explore how 
different goals can be promoted by combining various UI 
elements, and by assigning unconventional roles for UI 
elements, e.g. creating visualizations that would reveal the logic 
behind a recommendation and at the same time give a user a 
tool to scrutinize. 
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ABSTRACT 
This paper reports on a study on the role people play in music 
information provision for adolescents. Using a qualitative approach 
to social network analysis, this study focuses on the ways in which 
music information is shared across adolescents’ networks. 
Preliminary findings suggest that adolescents primarily discover 
new music through close friends whose social network is 
significantly different from theirs (e.g., those who attend a different 
school). They also indicate that music opinion leaders (i.e., those 
who are most influential in their social network in terms of music) 
are perceived as (1) good communicators, who are (2) highly 
invested in music, and who are (3) willing to share the information 
with their friends. These findings provide developers with ideas for 
the improvement of social filtering algorithms used in music 
recommender systems.     

Categories and Subject Descriptors 
H.1.2. [Models and Principles]: User/Machine Systems---human 
factors; H.5.5. [Information Interfaces and Presentation]: Sound 
and Music Computing---Systems.  

General Terms 
Human Factors. 

Keywords 
Social networks, music information behavior, adolescents, music 
recommender systems, user studies. 

1. INTRODUCTION 
For many years, it has been common practice for people, especially 
adolescents, to share music. While yesterday’s young adults 
exchanged CDs and tapes, or prepared music compilations for one 
another, today’s adolescents share music files through peer-to-peer 
file sharing systems and push music information to their friends 
using instant messaging or social networking sites. If the media 
have changed, the motivations remain unchanged: music sharing 
strengthens social bonds [1] and represents one of the most efficient 
ways of discovering new music [2, 3]. Indeed, acting as filters 
between music and their friends, people provide highly 
personalized recommendations, specially tailored to their friends’ 
tastes.  
Considering the effectiveness of people as sources of music 
recommendations, it comes with no surprise that when developers 
tried to automate the process of recommending music, many 
decided to use social filtering. As a matter of fact, although a few 
successful music recommender systems use content-based filtering 
(e.g. Pandora), most systems exploit feedback from other users to 

offer personalized recommendations (e.g. Last.fm). What makes 
each of these systems unique is the type of information they use to 
generate recommendations: implicit feedback (e.g., listening habits, 
purchases) and/or explicit feedback (e.g., user ratings, lists of 
favorite artists) [4].  
By providing a rich description of the role people play in music 
information acquisition in adolescents’ daily lives, this study 
contributes to our understanding of the music information behavior 
of young adults and highlights potential avenues for the 
development of more efficient collaborative filtering algorithms for 
music recommender systems.  

2. RELATED WORK 
2.1 People as Information Providers 
Research performed by information scientists has shown that 
people (relatives, friends, colleagues, and other acquaintances) play 
a primary role in information provision. This phenomenon seems to 
be particularly prevalent in everyday life contexts [6-8], for 
instance to acquire hobby-, health- or job-related information. 
People rely on their social network for information or 
recommendations for a variety of reasons. One’s close personal 
network is usually considered the most accessible source of 
information. Family and close friends are generally close by and 
willing to share information, both spontaneously and on demand 
[9]. Additionally, people appreciate the relevance of the 
information they acquire this way.  By asking people who know 
them well and whom they trust and consider to have good 
judgment, they obtain information that has been filtered especially 
for them [10]. Information sharing between individuals is also 
socially and emotionally motivated: (1) it helps build and maintain 
relationships, and (2) sharing information is a gratifying activity 
[11].  
The few studies that have been conducted on music information 
behavior in everyday life revealed that people play perhaps an even 
more important role than in other contexts. Studies by Laplante [2] 
and Tepper & Hargittai [12] showed that one’s social network 
represent the most important source of music discovery. Similarly, 
Sinha & Swearingen [13], who compared music recommendations 
provided by friends and online systems, found that the former 
consistently performed better than the latter from the user’s 
perspective.  

2.2 Music and Identity 
If people rely so extensively on their social network to discover 
new music, it might be because of the close link that exists between 
music and identity. Research in music sociology and psychology 
has long established that music played a significant role in the 
formation of one’s identity, particularly in adolescence [14, 15]. 
Young people use music as a social badge which communicates 
who they are (or who they wish they were) individually and as a 
group [16]. Indeed, adolescents’ music tastes develop in a highly 
social environment: their music preferences are usually similar to 
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Research has shown that from the user’s perspective, one of the most 
important criteria of a good recommender system is its capacity to propose 
new, not-yet-experienced items [5]. In this paper, we present the 
preliminary results of a project whose primary objective is to examine who 
in an adolescent’s social network is more likely to provide this type of 

29



those of their friends or of people they wish to emulate. Thus, it is 
common practice for adolescents to scan the music collections of 
their most estimated friends to check for new suggestions, as well 
as to look at the collections of newcomers or potential love interests 
to ensure that they “fit” [15]. This also explains why sub-cultures, 
by which groups of adolescents often define themselves and to 
which opinions, attitudes and values are associated, usually form 
around music genres [16].  

As a matter of fact, adolescents do not only use music tastes to 
express who they are but also to judge their peers. Hence, most 
consider that there are social repercussions associated with the fact 
of exposing their music preferences [15]. For instance, research 
revealed that those who express a preference for music genres that 
are considered prestigious by their peers are more likely to be 
perceived positively [14]. In the same way, those who demonstrate 
a high level of knowledge of popular music were found to have 
more chances of being perceived as popular by their peers [17]: 
music being one of the most important conversation topics among 
adolescents, one can assume that good music knowledge facilitates 
social interactions with others.  

Considering that adolescents use music preferences to make 
inferences about others, it comes with no surprise that most seek to 
“perform” through their music tastes: the values and attitudes 
associated with the music genres they publicly admit liking must 
correspond to what they want to convey about themselves [14]. And 
the advent of social networking sites such as MySpace or Facebook, 
which allow them to list their interests in terms of music, cinema, 
television series and books on the social network profile, has 
emphasized this phenomenon [18].  

3. METHODOLOGY 
Qualitative methodologies have dominated the research on 
everyday life information behavior, with interviews, diaries and 
observation being the most common data collection methods. These 
methods have proven to be effective in providing thick descriptions 
of the phenomenon from the user’s perspective and in capturing the 
richness of the context into which it occurs. For this project, a 
qualitative approach to social network analysis has been adopted. 
Social network analysis (SNA) focuses on “relationships among 
social entities, and on the patterns and implications of these 
relationships,” [19] in particular on the flow of resources (e.g., 
information) among actors. It provides a set of techniques and 
theoretical concepts and properties researchers can use to analyze 
and describe social networks. First developed and employed by 
sociologists, it is now used in many other disciplines, including 
information science [20]. 
For this study, an egocentric approach to social networks has been 
adopted. This approach consists in examining the social network of 
focal persons (called “egos”). Egos are asked to name the persons 
which whom they maintain relationships (called “alters”). Egos are 
then asked to provide information about their ties to alters as well 
as about ties between alters in their social network [19]. 
Researchers also commonly ask proxy reports about alters [21].  

3.1 Participants 
This study is designed to run from May 2010 to April 2011 with the 
expectation of recruiting 25 participants. The population studied is 
composed of French-speaking adolescents (15-18 year-old) living 
in the Quebec province (Canada). This paper presents the 
preliminary findings derived from the six interviews conducted to 
date, which represent a total of 486 minutes of recording. 
Participants were selected following the maximum variation 
sampling strategy as described in [22]. Among the six participants, 

four were female. At the time of the interview, five were full-time 
high-school students and one was a full-time college student.   

3.2 Data Collection and Analysis 
Data are collected through in-depth interviews. Social network 
theory, together with a review of related works on everyday life 
information behavior and on music and identity, provided a useful 
theoretical background for the development of the data collection 
instrument. The resulting instrument is composed of an adaptation 
of the social network-mapping tool developed by Todd and 
described in [23], followed by a traditional interview schedule. The 
social network map is filled by the participant with the help of the 
researcher. To elicit the names to be included on the map, 
participants are asked to think about how they could group people 
around them (e.g., school, relatives, neighbors), to note these 
groups on the map, and then to name the persons they feel close to 
in each group (the alters). Participants are invited to place alters on 
the map, using the concentric circles to indicate the strength of their 
relationship with each of them, as well as to draw lines to indicate 
relationships between alters (the strength of the tie being 
represented by the thickness of the line). Participants are then asked 
to add on the map any other person with whom they share music 
information. They are asked (1) to draw a circle around those with 
whom they discuss music most often, (2) to mark with an asterisk 
the persons whom they trust the most for music recommendations, 
and (3) to draw a box around the name of those with whom they 
maintain a relationship essentially based on music (see figure 1 for 
an example of a social network map filled by a participant). 
Participants are requested to provide information about each alter 
and their relationship with them, including information about their 
music tastes, the nature of the music information they exchange 
with them if any, and the influence they have on their own music 
preferences and on those of their group. The interviews also include 
general questions on participants’ music tastes and listening habits.  
All interviews are recorded. Both the interview and the resulting 
social network map are transcribed into computer files. Interviews 
are analyzed using NVivo by QSR, a software package designed 
specifically for the encoding and analysis of qualitative data.  

 
Figure 1. Example of a participant’s social network map 
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4. FINDINGS 
4.1 The Influence of Others on Music Tastes 
4.1.1 Recent Changes in Music Tastes 
In the introduction of the interviews, participants were asked if their 
music tastes had changed significantly in the last three years. 
Perhaps unsurprisingly considering the fact that adolescence is a 
period characterized by changes, all affirmed that their music tastes 
had greatly evolved. But the most interesting aspect of their 
answers resided in the reasons they gave to explain it: all were 
related to changes in their social network. One mentioned that she 
had discovered a new music genre because of her new boyfriend; 
three explained that they had changed school and, as a result, had 
made new friends through which they had discovered new music 
(“You start high school and the people, what they make you listen 
to, it’s not the same type of music. And then, by listening to this 
music, you start liking it too.”); and two were just not very 
interested in music before, but because it was such an important 
topic of discussion at school, music had slowly taken a more 
important place in their lives.  

4.1.2  Opinion Leaders 
“Opinion leaders” are defined as individuals who have developed 
an expertise in a specific domain. Because of this expertise, people 
are more likely to turn to them for information or recommendations, 
which makes them influential in their environment. During the 
interviews, participants were asked to identify who in their social 
network exerted more influence on others in terms of music. Three 
self-identified (two girls and one boy) as being an opinion leader 
for music in their group. Music opinion leaders were generally not 
considered as being influential in other domains. Indeed, in every 
densely knit group, each member seems to have his/her domain of 
influence, whether it is music, fashion, movies, television series or 
books. The analysis revealed that music opinion leaders were 
perceived as (1) good communicators, who are (2) highly invested 
in music, and who are (3) willing to share the information with their 
friends. Their desire to have unique knowledge and to be a resource 
person for others leads them to constantly look for new music. 
Hence, describing an influential friend, one participant says: 
“[Anthony] just got a satellite radio, so he picks up loads of 
stations. When they are playing a tune, he sends you the title. And 
then, he takes notes of everything. And when he finds a good song, 
he gives it to me.” However, opinion leadership is only possible if 
one is surrounded by people who have similar music tastes. One 
participant, whose social network was mostly composed of 
heterophilous relationships, particularly in terms of music 
preferences, explained that her tastes were too unusual for an 
adolescent and therefore very unlikely to meet her friends’ tastes. 
As a result, she did not feel it was relevant to share any music 
information with them.  

4.2 The Strength of Weak Ties? 
In a highly cited journal article, Granovetter proposed in 1973 the 
Strength of Weak Ties [24], a theory that has proven to be 
particularly useful to understand the role people play in information 
provision. According to this theory, weak ties (acquaintances) 
would be more instrumental than strong ties (friends and family) to 
obtain new information because of the high degree of overlap that 
generally exists between the social networks of strong ties. In other 
words, my close friends, who generally know the same people I 
know, are more likely to have access to information to which I also 
have access; whereas acquaintances, who usually have a social 
network significantly different from mine, are more likely to have 
access to different information [25]. Following this theory, we 
could expect that weak ties would be more useful to discover new 

music. However, participants’ accounts suggest that weak ties 
might not be as instrumental in music discovery as they are in other 
contexts, such as when people are looking for a job.  

4.2.1 The Role of Weak Ties   
In some occasions, participants’ accounts fit the theory perfectly. 
Indeed, two participants identified a few weak ties as being 
important sources of music discovery for them. In these cases, the 
weak ties were people who were much older than they were (their 
parents’ age) and their relationship with them was mostly based on 
music (i.e., music is their main conversation topic when they meet). 
They were considered by participants as experts in music, 
sometimes for a specific music genre: one had extensive knowledge 
in classical music, two had very large music collections, another 
was an amateur musician who loved blues, and one was a music 
teacher specialized in jazz (the last two are represented in Figure 1 
as Dany and Sylvain). Music information mostly flowed in one 
direction: while they admit being influenced by these people, they 
did not consider they were influential for them.  
Weak ties, however, were not considered instrumental by the four 
other participants for the acquisition of music information. A 
possible explanation would be that music preferences are 
considered too personal and subjective to trust recommendations 
from someone one does not know well. What is more, considering 
that adolescents are conscious of being judged on their music 
preferences, following advices from weak ties might be considered 
too risky from a social point of view. But Granovetter’s theory 
nevertheless provided an interesting theoretical framework to 
understand who in their network were more likely to represent a 
good source for discovering new music. According to the theory of 
the Strength of Weak Ties, weak ties are crucial in information 
provision because the overlap between their social network and the 
Ego’s social network is less important than it is between strong ties. 
Although the main sources of music discovery were not weak ties, 
the strong ties from whom they were more likely to seek 
recommendations were almost always those whose social network 
were more different from theirs, mostly those who were going to a 
different school. For instance, one participant explained making 
new discoveries mainly through her friends with whom she skies 
“because we don’t hang out with the same gang at school.”  
Exchanging music information with weaker ties also seemed to be 
socially motivated. Indeed, music seems to be to adolescents what 
weather is to adults: the default conversation topic. Hence, one 
participant reported that “at school, everybody has a iPod. So 
you’re there, during lunchtime, and everybody has earplugs, so it’s 
easy to stop and say ‘hey, what tunes do you have?’” Music can 
also be at the origin of a relationship. For instance, one participant 
reports having realized through Facebook that some people she did 
not know well had music tastes that were similar to hers. This 
realization had led her to engage in conversations about music with 
them and, as a result, to become closer to them. 

4.2.2 The Role of Strong Ties 
A lesser-known aspect of Granovetter’s theory concerns the value 
of strong ties in information provision. According to the theory, 
“strong ties have greater motivation to be of assistance and are 
typically more easily available” [25]. They also have greater 
influence and more credibility. This corresponds to the accounts 
provided by our participants. Strong ties, including those with 
whom they share most of their social network, play a crucial but 
different role in music information acquisition than weaker ties do. 
In addition to the role of strong ties in music discovery, it emerges 
from the analysis that music information was shared with strong 
ties also for two other reasons: (1) to maintain or reinforce a 
relationship, and (2) to legitimate our tastes. For instance, one 
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participant describes that she shares music (or lyrics) with her 
friends to show that she understands how they feel. Thus, 
depending on what they confide in her, she suggests music she 
believes will help them go through what they are experiencing. 
Another participant reports that when he discovers something new, 
he asks his best friend to listen to it so they can talk about it, which, 
he will weakly admit, helps him form an opinion about the music.  
And which are the strong ties through which music information is 
exchanged? Of course, close friends were often mentioned. These 
close friends were usually those who have music tastes that are 
similar to theirs and who are perceived as having good judgment in 
terms of music (i.e., those who have good music knowledge and are 
considered to be “independent thinkers”). Hence, one participant 
reported trusting a friend who is a musician and explained: “There 
are people, you know they are into music, so it’s really something 
they know well. So when they talk, you know they don’t give you 
titles just to give you titles.” The same participant later added that 
she did not trust one of her best friends, although they had similar 
music tastes: “[She] doesn’t want to stand out. She does what 
everybody else does. She won’t influence you, you’re always the 
one who influences her. You tell her you like something, the day 
after, she will have downloaded it.” If close friends were pivotal in 
the acquisition of music information, older siblings and even 
parents were too. As a matter of fact, all participants reported being 
influenced by at least one of their parents in terms of music. One 
participant explained: “The songs you grew up with, whether you 
want it or not, you always end up listening to them again.” Another 
said: “I’ve heard [their music] so many times that I listen to it and I 
like it really.” This supports the findings of music sociologists who 
found that familiarity often leads to appreciation [26].   

5. CONCLUSION 
Considering the small size of the sample, the results presented here 
should be interpreted carefully. However, by providing rich 
descriptions of the ways in which music is shared within the social 
networks of some adolescents, this study provides a first glance at 
the role people play in music information acquisition in 
adolescence, while shedding some light on the process through 
which young adults discover new music through friends, relatives 
or other acquaintances. Results suggest that further research on the 
characteristics of the structure and the ties of which social networks 
are composed, and the impact of these characteristics on the flow of 
music information could help inform the design of music 
recommender systems. 
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ABSTRACT
Recommending relevant and novel music to a user is one
of the central applied problems in music information re-
search. In the present work we propose three content-based
approaches to this task. Starting from an explicit set of mu-
sic tracks provided by the user as evidence of his/her music
preferences, we infer high-level semantic descriptors, cover-
ing different musical facets, such as genre, culture, moods,
instruments, rhythm, and tempo. On this basis, two of
the proposed approaches employ a semantic music similarity
measure to generate recommendations. The third approach
creates a probabilistic model of the user’s preference in the
semantic domain. We evaluate these approaches against two
recommenders using state-of-the-art timbral features, and
two contextual baselines, one exploiting simple genre cate-
gories, the other using similarity information obtained from
collaborative filtering. We conduct a listening experiment to
assess familiarity, liking and further listening intentions for
the provided recommendations. According to the obtained
results, we found our semantic approaches to outperform
the low-level timbral baselines together with the genre-based
recommender. Though the proposed approaches could not
reach a performance comparable to the involved collabora-
tive filtering system, they yielded acceptable results in terms
of successful novel recommendations. We conclude that the
proposed semantic approaches are suitable for music discov-
ery especially in the long tail.

Categories and Subject Descriptors
H.3.3 [Information Storage And Retrieval]: Informa-
tion Search and Retrieval—information filtering, selection
process, retrieval models; H.5.5 [Information Interfaces
And Presentation]: Sound and Music Computing—mod-
eling, systems

General Terms
Algorithms, Measurement, Human Factors
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1. INTRODUCTION
Rapid growth of digital technologies, the Internet, and the

multimedia industry has provoked a huge information over-
load and a necessity of effective information filtering sys-
tems, and in particular recommendation systems. In the
case of the digital music industry, current major Internet
stores contain millions of tracks, which complicates search,
retrieval, and discovery of music relevant for a user. At
present, the majority of industrial systems provide means
for contextual manual search based on information about
artist names, album or track titles, and additional seman-
tic properties, which are mostly limited to genres. Using
this information music collections are becoming browsable
by textual queries and tags.

Besides, current research within the music information re-
trieval (MIR) community achieved relative success in the
task of measuring music similarity [7], striving for facilita-
tion of manual search, and automatization of music rec-
ommendation. To this extent, music tracks can be rep-
resented in a certain feature space filled in with contex-
tual information, extracted from available metadata, user
ratings [18], and social tags [12] (i.e. the contextual ap-
proach), or with information, extracted from audio con-
tent itself [4, 6, 16, 17, 21] (i.e. the content based approach).
Thus, it becomes possible to define many similarity mea-
sures (or distances1) between tracks in a music collections,
and therefore to browse collections and to recommend music
using queries-by-example. Still the majority of the content-
based distances employ solely rough timbral information,
such as Mel frequency cepstral coefficients (MFCCs), and
sometimes temporal information. Additionally, current sys-
tems provide basic means for personalization, obtaining a
user’s profile in form of consuming statistics, music rat-
ings, and other types of behavioral information, and op-
erating with this information generally in a collaborative
filtering manner [2, 8, 9]. While more sophisticated person-
alization approaches which explore the nature of preference
behavior using both contextual information and audio con-
tent information are necessary, they are still in their in-
fancy [13–15,19,22] and require more research attention.

Generally, we can discern two types of user interaction

1We will pragmatically use the term distance to refer to any
dissimilarity measurement between tracks.
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with a music retrieval system: (i) music search, when a user
has an initial idea of what he/she wants, and operates with
metadata to query for a specific artist, album, genre, etc., or
provides a query-by-example in the case of similarity-based
retrieval, and (ii) music discovery, when a user does not know
his/her exact needs and prefers to browse an available music
collection on purpose to discover music which is relevant in
respect to his/her musical preferences. Querying by example
requires a user to explicitly define the “direction of search”,
and is not perfectly suited for discovery. On the other hand,
querying by broad semantic categories (such as genres) can
provide an excessive amount of potentially relevant data,
containing thousands of tracks. While for both types of
interaction contextual information can be used, it is found
that contextual approaches perform well on popular items,
but fail in the long tail due to the lack of available user
ratings, social tags, and metadata for unpopular items [8].
Instead, content-based information extracted from audio can
help to overcome this problem.

We focus the present work on content-based music recom-
mendation, concerning both relevance and novelty (i.e. dis-
covery) aspects. We do not consider the issue of balancing
both aspects according to a user’s current needs. Instead,
we present a way to infer user preferences from audio con-
tent, and a number of recommendation approaches, which
are challenged to provide both relevant and novel recommen-
dations to a user. We propose a procedure to generate such
recommendations based on an explicit set of music tracks
defined by a given user as evidence of his/her musical prefer-
ences. Up to our knowledge this recommendation approach
has never been evaluated before. We ask the user to provide
such a preference set (Sec. 2.1) in order to extract low-level
audio features as well as infer high-level semantic informa-
tion from the audio of each of the tracks (Sec. 2.2). We then
consider three different approaches operating on a semantic
domain to summarize the retrieved descriptions and gen-
erate music recommendations. Two of them have a music
similarity measure in their core (Secs. 2.3.1, and 2.3.2), while
the third approach applies a probabilistic model to infer the
underlying structure of the user’s preferences (Sec. 2.3.3).
Alternatively, in order to evaluate the generated recommen-
dations, we employ two approaches, which apply the same
ideas on low-level timbral features (Secs. 2.3.4, and 2.3.5),
and two contextual ones including a state-of-the-art collab-
orative filtering recommendation system (Sec. 2.3.6), and a
naive genre-based recommender baseline (Sec. 2.3.7). We
evaluate all considered approaches by gathering music data
from 12 participants (Sec. 3.1), and carrying out a listening
experiment to assess familiarity, liking and further listen-
ing intentions of the provided recommendations (Sec. 3.2),
and present the obtained results (Sec. 3.3). Finally, we draw
conclusions about the proposed procedure and discuss future
research directions (Sec. 4).

2. METHODOLOGY

2.1 Preference Examples Collection
As a first step, we ask the user to gather the minimal

set of music tracks sufficient to grasp or convey her/his mu-
sic preferences [10] (the user’s preference set). We do not
promise or mention giving music recommendations in the
future, which could bias the selection of representative mu-
sic. The user provides a folder with the selected tracks in

audio format (e.g. mp3), and all the needed information to
unambiguously identify and retrieve each track (i.e. artist,
piece title, edition, etc.). For the content-based approaches
which we will consider, single music pieces are informative
by themselves without any additional context, such as artist
names and track titles. Still we ask the user to provide this
context to be able to make comparison with contextual ap-
proaches. We also ask the user for additional information,
including personal data (gender, age, interest for music, mu-
sical background), a description of the strategy followed to
select the music pieces, and the way he/she would describe
his/her musical preferences. This information will help us
for further analysis.

2.2 Audio Content Analysis
We now describe the procedure of obtaining meaningful

low-level and high-level descriptions of each music track from
the user’s preference set within the used audio content anal-
ysis system. We follow [6] to obtain such descriptions. To
this extent, for each track we calculate a low-level feature
representation using an in-house audio analysis tool2. In
total it provides over 60 commonly used low-level audio fea-
tures, characterizing global properties of the given tracks, in-
cluding timbral, temporal, and tonal features among others.
They include inharmonicity, odd-to-even harmonic energy
ratio, tristimuli, spectral centroid, spread, skewness, kur-
tosis, decrease, flatness, crest, and roll-off factors, MFCCs,
spectral energy bands, zero-crossing rate, spectral and tonal
complexities, transposed and untransposed harmonic pitch
class profiles, key strength, tuning, chords, beats per minute
and onsets.

We do not use the described low-level features explicitly in
the approaches we will consider, except for MFCCs, used to
construct two of the baseline systems. Instead, we use them
to infer semantic descriptors. For that reason, we perform a
regression by suitably trained classifiers producing different
semantic dimensions such as genre, culture, moods, and in-
strumentation. We use standard multi-class support vector
machines (SVMs) [20], employ 14 ground truth music collec-
tions (including full tracks and excerpts) and execute 14 clas-
sification tasks corresponding to these data. The regression
results form a high-level descriptor space, which contains
the probability estimates for each class of each SVM classi-
fier. With the described procedure we obtain 56 high-level
descriptors, including categories of genre, culture, moods,
instruments, rhythm and tempo. For more detailed informa-
tion regarding the list of low-level features, the collections
used for regression, and SVM implementation see [6] and
references therein.

2.3 Recommendation Approaches
We now consider different approaches to music recommen-

dation, which are based on the retrieved descriptions of the
user’s preference set. The approaches we propose include
three methods working on semantic descriptors. In compar-
ison, we consider two low-level baseline approaches working
on MFCCs, and two contextual ones.

All approaches are used to retrieve 20 music tracks from a
given music collection as the recommendations for the user
except one of the contextual approaches (Sec. 2.3.6), which
operates on Last.fm3 music collection.

2http://mtg.upf.edu/technologies/essentia
3http://last.fm
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2.3.1 Semantic distance from the mean (SEM-MEAN)
As the simplest approach, we propose the representation

of the user as a single point in the semantic descriptor space.
As such, we compute the mean point for the user’s prefer-
ence set. We employ the semantic distance, presented and
validated in [6]. It has been shown to perform with positive
user satisfaction, being comparable to well-known low-level
timbral distances, based on MFCCs, while operating in a
high-level semantic space. More concretely, the distance op-
erates directly on the retrieved semantic descriptors, and
is defined as a weighted Pearson correlation distance [1, 6].
Given a music collection, we rank the tracks according to
the semantic distance to the user point (i.e. the mean point
of the user’s preference set) and return 20 nearest tracks as
recommendations.

2.3.2 Semantic distance from all tracks (SEM-ALL)
Alternatively, we do not simplify the user representation

to one point but instead consider all tracks from the user’s
preference set. We use the same semantic distance as for
SEM-MEAN. For each track from the user’s preference set,
we compute the distances to the tracks in a given music
collection, and mark 20 nearest tracks as candidates. We
then rank all selected candidates according to the obtained
distances, omit possible duplicates, and return the tracks
corresponding to the lowest 20 distances as recommenda-
tions. In this case, we take into account all possible areas of
preferences, explicitly specified by the user, while searching
for the most similar tracks.

2.3.3 Semantic Gaussian mixture model (SEM-GMM)
Finally, we propose the representation of the user as a

probability density of his/her preferences on the semantic
space. For that purpose, we use the retrieved semantic de-
scriptors, and employ a Gaussian mixture model (GMM) [5],
which estimates a probability density as a weighted sum of
a given number of simple Gaussian densities (components).
We initialize the GMM by k-mean clustering, and train the
model using the expectation-maximization algorithm. The
number of centers for the k-means are estimated by Bayesian
information criterion [5]. For computational reasons, we
consider a number of components in the range between 1
and 20. Once we have our model trained, we compute prob-
ability density for each of the tracks in a given music collec-
tion. We rank the tracks according to the obtained density
values, and return 20 most probable tracks as recommenda-
tions under the assumption of a uniform distribution of the
tracks in the universe within the semantic space.

The advantage of SEM-GMM approach is that the model
takes the relevance of the semantic attributes within the
user’s preferences into account, accenting areas preferred by
the user in the semantic space. Thus, the recommended
tracks would generally comprise of the most characteris-
tic semantic properties, inferred from the user’s preference
set. Meanwhile, SEM-ALL is blind to the underlying se-
mantic structure of preferences, and SEM-MEAN only pro-
vides very rough approximation. Still, in the case when the
user’s tracks are evenly distributed in the semantic space,
SEM-GMM may have insufficient expressive power due to
the assigned limit of Gaussian components, discriminating
certain preference areas. Nonetheless we assume gaussianity
of the user’s preference patterns.

2.3.4 Timbral distance from all tracks (MFCC-ALL)
For comparison purposes and as our first baseline we mod-

ify the SEM-ALL approach to use a common low-level tim-
bral distance [16] instead of the semantic one. To this ex-
tent, we use MFCCs and model each music track as a single
Gaussian with full covariance matrix. A closed form sym-
metric approximation of the Kullback-Leibler divergence is
then used as a distance. Thereby, we can regard the MFCC-
ALL approach as a counterpart of the distance-based ap-
proach to music recommendation proposed by Logan [14] in
which the Earth-Mover’s Distance between MFCC clusters
is used as a distance measure.

2.3.5 Timbral Gaussian mixture model (MFCC-GMM)
Alternatively, as in the SEM-GMM approach, we con-

struct a probabilistic model using a GMM. Instead of the
semantic descriptors, we use a population of mean MFCC
vectors (one vector per track) to train the model.

2.3.6 Collaborative filtering with Last.fm (LASTFM)
In addition to the described content-based approaches, we

consider a contextual baseline approach based on music sim-
ilarity inferred from collaborative filtering information. We
did not have at hand any data of this kind on our own,
and therefore we opted for the usage of black box recom-
mendations, provided by Last.fm. It is an established mu-
sic recommender with an extensive number of users, and a
large music collection, providing means for both monitoring
listening statistics and social tagging [11].

We manually generate a list of recommendations browsing
Last.fm. The procedure we follow for that purpose partially
emulates human user behavior while discovering new mu-
sic. During the retrieval procedure we did not open any
account for Last.fm, therefore we consider such recommen-
dations unbiased to possible personalization, which can be
provided for the registered accounts. We randomly preselect
20 music tracks from the user’s preference set, and query
the Last.fm website for each of the preselected tracks. To
this extent, for each query track, we search a corresponding
Last.fm track page4. If the track page is found, we pass to
the ”Similar Music” page5. This page provides a ranked list
of tracks similar to the query track. From the list we select
the first track which is available for pre-listen online, by a
different artist than the query track. Otherwise, if the cor-
responding track page is not found, or the ”Similar Music”
page is not available for the query track due to insufficient
collaborative filtering data (e.g., when the query track is an
unpopular long-tail track with low number of listeners), we
search for the corresponding artist page6 and proceed to the
”Similar Artists” page7. This page provides a ranked list of
artists, similar to the artist of the query track. We apply
an artist filter to the list as the query artist name can have
variations. Thereafter we select the top-ranked artist from
the list, go to the corresponding artist page, and select the
first track, which is available for pre-listen online, from the
“Top Tracks” section. This section provides two lists of the
most popular tracks by the artist, relying on short-term last

4for example, see http://www.last.fm/music/Mastodon/_/
The+Czar
5http://www.last.fm/music/Mastodon/_/The+Czar/
+similar
6http://www.last.fm/music/Baby+Ford/
7http://www.last.fm/music/Baby+Ford/+similar

35

http://www.last.fm/music/Mastodon/_/The+Czar
http://www.last.fm/music/Mastodon/_/The+Czar
http://www.last.fm/music/Mastodon/_/The+Czar/+similar
http://www.last.fm/music/Mastodon/_/The+Czar/+similar
http://www.last.fm/music/Baby+Ford/
http://www.last.fm/music/Baby+Ford/+similar


week period, or long-term last 6 months period of listening
statistics. We opted for the last 6 months period. If no pre-
listens are found, we proceed iteratively to the next similar
artist’s top tracks, until we find one. If no similar artist
contains previewable tracks, we skip the query track.

2.3.7 Random tracks by the same genre (GENRE)
Finally, as a simple and low-cost contextual baseline, we

provide random recommendations, which rely on genre cate-
gories of the user’s tracks. As in the LASTFM approach, we
preselect 20 music tracks from the user’s preference set. For
each of the tracks we obtain a genre category of this track
from the Last.fm track page, or artist page. As such, we
select the first genre tag we encounter, which is presented
in a given music collection (we assume, that all tracks are
tagged with a genre category). Thereafter, we return a ran-
dom track of this genre tag from the collection.

3. EXPERIMENTS AND RESULTS

3.1 User Data Analysis
We worked with a group of 12 users (8 males and 4 fe-

males). They were aged between 25 and 45 years old (av-
erage µ = 32.75 years old and standard deviation σ = 5.17
years old) and showed a very high interest in music (rating
around µ = 9.58, with σ = 0.67, where 0 means no interest
in music and 10 means passionate about music). Ten of the
twelve users play at least one musical instrument, including
violin, piano, guitar, singing, synthesizers and ukulele.

The number of tracks selected by the users to convey their
musical preferences was very varied, ranging from 19 to 178
music pieces (µ = 73.25, σ = 46.07). The time spent for
this task also differed a lot, ranging from half an hour to
180 hours (µ = 30.41, σ = 54.19).

It is interesting to analyze the provided verbal descrip-
tions about the strategy followed to select the music tracks.
Some of the users were selecting one song per artist, while
some others did not apply this restriction. They also cov-
ered various uses of music such as listening, playing, singing
or dancing. Other users mentioned musical genre, mood,
expressivity, musical parameters, lyrics and chronological
order as driving parameters for selecting the tracks. Fur-
thermore, some users implemented an iterative strategy by
gathering a very large amount of music pieces from their mu-
sic collection and performing a further refinement to obtain
the final selection.

Finally, each user provided a set of labels to define their
musical preferences. Most of them were related to genre,
mood and instrumentation, some of them to rhythm and
few to melody, harmony or expressivity. Other labels were
attached to lyrics, year and duration of the piece. The users’
preferences covered a wide range of musical styles (from clas-
sical to country, jazz, rock, pop, electronic, folk) and musical
properties (e.g. acoustic vs. synthetic, calm vs. danceable,
tonal and dissonant).

3.2 Recommendation Evaluation
In order to evaluate the considered approaches, we per-

formed subjective listening tests on our 12 subjects. The
entire process used an in-house collection of 100K music ex-
cerpts (30 sec.) by 47K artists (approximately 2 tracks per
artist) covering a wide range of musical dimensions (differ-
ent genres, styles, arrangements, geographic locations, and

Table 1: The percent of fail, trust, hit, and unclear
categories per recommendation approach. Note that
the results for the LASTFM approach were obtained
on a different underlying music collection.

Approach fail hit trust unclear

SEM-MEAN 49.167 31.250 2.500 17.083
SEM-ALL 42.500 34.583 3.333 19.583
SEM-GMM 48.750 30.000 2.500 18.750
MFCC-ALL 64.167 15.000 2.083 18.750
MFCC-GMM 69.583 11.667 1.250 17.500
LASTFM 16.667 41.250 25.417 16.667
GENRE 53.750 25.000 1.250 20.000

epochs). For each user we generated 7 recommendation
playlists, using each of the three proposed approaches and
two low-level plus two contextual baseline approaches. Each
playlist consisted of 20 music tracks, returned by the re-
spective approach specifics (Sec. 2.3). No playlist contained
more than one song from the same artist. All playlists were
merged into a single list of 140 tracks, with all the tracks ran-
domly ordered to avoid any response bias because of presen-
tation order or because of recommendation approach. The
file names were anonymized, and all metadata was deleted
from the files as well, to make contextual identification of
the tracks impossible. Also the participants were not aware
of the amount of recommendation approaches, their names
and their rationales.

A questionnaire was given for the subjects to express dif-
ferent subjective impressions related to the recommended
music. A “familiarity” rating ranged from the identification
of artist and title (4) to absolute unfamiliarity (0), with in-
termediate steps for knowing the title (3), the artist (2),
or just feeling familiar with the music (1). A “liking” rating
measured the enjoyment of the presented music with 0 and 1
covering negative liking, 2 being a kind of neutral position,
and 3 and 4 representing increasing liking for the musical
excerpt. A rating of “listening intentions” measured pref-
erence, but in a more direct and behavioral way than the
“liking” scale, as an intention is closer to action than just
the abstraction of liking. Again this scale contained 2 posi-
tive and 2 negative steps plus a neutral one. Finally, an even
more direct rating was included with the name“gimmemore”
allowing just 1 or 0 to respectively indicate a request for, or
a reject of, more music like the one presented. The users
were also asked to provide title and artist for those tracks
rated high in the familiarity scale. We manually corrected
this scale when the given artist/title was wrong (hence a
familiarity rating of “3” or, more frequently, “4”, was some-
times lowered to 1. These corrections represented just 3%
of the total familiarity judgments.

3.3 Results
Considering the subjective scales used, a good recom-

mendation system should provide high-liking/listening in-
tentions/request for the greater part of retrieved tracks and
in particular for low-familiarity tracks. Therefore, we re-
coded the user’s ratings into 3 main categories, referring to
the type of the recommendation: hits, fails and trusts. Hits
were those tracks having a low familiarity rating (< 2) and
a high (> 2) liking rate. Fails were those tracks having a
low (< 3) liking rating. Trusts were those tracks that got a
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high familiarity (> 1) and a high (> 2) liking rate. Trusts,
provided their overall amount is low, can be useful for a user
to feel that the recommender is understanding his/her pref-
erences [3] (i.e., a user could be satisfied by getting a trust
track from time to time, but annoyed if every other track is
a trust). Using the liking, the intentions and the “gimmem-
ore”Boolean rating we respectively computed three different
recommendation outcome measures. Then we combined the
three into a final recommendation outcome that required ab-
solute coincidence of them in order to consider it to be a hit,
a fail or a trust. A 18.3% of all the recommendations were
then considered as “unclear” (e.g., a case that, using the lik-
ing, it was a hit, but using the other two indexes it was a
fail), and were excluded from further analyzes. An interest-
ing additional result is that many of the unclear outcomes
correspond to high-liking ratings that turned into 0 in the
gimmemore scale. This pattern was more frequent for the
recommendations generated using the GMM-MFCC (6.6%)
than for any other approaches, being the GENRE the least
changed (2.9%). Contrastingly, the opposite change (low-
liking becoming positive ”gimmemore”) was nearly absent
in the ratings.

The percent of each category per recommendation ap-
proach is presented in Table 1. An inspection of it reveals
that the approach yielding more hits (41.2%) and trusts
(25.4%) is LASTFM (not surprisingly the trusts found with
other approaches were scarce, below 4%). The three ap-
proaches based on semantic descriptors (SEM-ALL, SEM-
MEAN and SEM-GMM) yielded more than 30% of hits,
and the remaining ones could not supply more than 25%.
The existence of an association between recommendation
approach and the outcome of the recommendation could be
accepted, according to the result of the Pearson chi-square
test (χ2(18) = 351.7, p < 0.001).

Additionally, three separate between-subjects ANOVA were
performed in order to test the effects of the recommendation
approaches on the three subjective ratings. The effect was
confirmed in all of them (F (6, 1365) = 55.385, p < 0.001
for the liking rating, F (6, 1365) = 48.89, p < 0.001 for the
intentions rating, and F (6, 1365) = 43.501, p < 0.001 for the
“gimmemore” rating). Pairwise comparisons using Tukey’s
test revealed the same pattern of differences between the
recommendation approaches, irrespective of the 3 tested in-
dexes. This pattern highlights the LASTFM approach as
the one getting the highest overall ratings, it also groups to-
gether the MFCC-GMM and MFCC-ALL approaches (those
getting the lowest ratings), and the remaining approaches
also clustered in-between.

Finally, a measure of the quality of the hits was computed
doing (liking − familiarity) ∗ intentions. Selecting only the
hits, an ANOVA on the effect of recommendation method
on this quality measure revealed no significant differences
attributable to the method. Therefore, once a hit is selected,
there is no recommendation method granting better or worst
recommendations than any other. The same pattern was
revealed by solely using the liking as a measure of the quality
of the hits.

4. CONCLUSIONS
In this work we presented three content-based approaches

to music recommendation, which are based on an explicit set
of music tracks provided by a user as evidence of his/her mu-
sical preferences (the user’s preference set). Our approaches

work on semantic descriptors (inferred from low-level audio
features in diverse classification tasks) covering musical di-
mensions such as genre and culture, moods and instruments,
and rhythm and tempo. More concretely, we proposed two
approaches which apply a high-level semantic distance to
retrieve tracks from a given collection. These approaches
compute the distance either from the mean point of the pref-
erence set, or from all tracks in the preference set. Alter-
natively, we proposed a model-based approach, which cre-
ates a probabilistic model to infer the underlying structure
of the user’s preferences. For that purpose, we employed a
GMM to model the preferences within the semantic domain.
We evaluated the proposed approaches against a number
of baselines in a subjective evaluation with 12 users. As
such baselines, we considered two approaches operating on
low-level timbral features (MFCCs) instead of the proposed
semantic descriptors. The first approach employs a state-
of-the-art timbral distance, while the second one creates a
GMM within the timbral domain. Moreover, in contrast
to the content-based methods, we included two contextual
recommenders in our evaluation. One of them naively re-
trieves random tracks from a given music collection by a
genre criterion. The other employs Last.fm as a source for
collaborative filtering information about music similarity.

The evaluation results revealed the user’s preference of
the proposed semantic approaches over the low-level timbral
baselines. This concerns both the compared distance-based
approaches as well as the probabilistic models. Regarding
the semantic distance employed in our approaches, this fact
supports and complements the outcomes from the previous
research on semantic music similarity measures [6], in which
a number of similarity measures were evaluated in a subjec-
tive experiment but on a set of random tracks not necessarily
preferred by participants. In that experiment a comparable
performance of the semantic and low-level timbral distances
was revealed, meanwhile the semantic distance surpassed
the other methods in objective evaluations. Considering
these previous results and the present outcomes, we may
conclude that the high-level semantic description outper-
forms the low-level timbral description in the task of music
recommendation.

In contrast, the proposed approaches are found to be infe-
rior to the considered collaborative filtering recommender in
terms of both the number of successful novel recommenda-
tions (hits) and the trusted recommendations. This result
can be partly explained by the fact that the recommenda-
tions generated by the latter approach used the Last.fm mu-
sic collection, which could entail an evaluation bias. Consid-
ering this fact, we can hypothesize a lower performance of
the collaborative filtering approach on our in-house collec-
tion. Still the collaborative filtering approach yielded only
7% more hits than our best proposed semantic method. In
particular, we expect the proposed approaches to be suitable
for music discovery in the long tail which has a lack of con-
textual information, and incorrect or incomplete metadata.

Interestingly, the naive genre-based recommender, while
being worse than our proposed approaches, still outperformed
the timbre-based baselines. This could be partially explained
by the fact that genre was one of the driving criteria for se-
lecting users’ preference sets, and that genre entails more in-
formation and diversity than timbral information extracted
from MFCCs. We also did not find benefits of using our
semantic GMM-based approach comparing to the semantic
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distance-based approaches, probably due to the insufficient
size of training data (only one mean MFCC vector per track
was computed in our experiments).

In general, we conclude that though the considered content-
based approaches to music recommendation do not reach
the satisfaction and novelty degree of the collaborative fil-
tering approach, the difference in performance diminishes to
a great extent while using semantic descriptors. We may
hypothesize a better performance, comparable with the col-
laborative filtering approach, once the amount and quality
of semantic descriptors is increased. Consequently, future
research will be devoted to the extension of the inherent se-
mantic descriptor space, used by the proposed approaches,
as well as the improvement of the underlying classifiers, and
the distance measure. Furthermore, we plan to assess the
potential benefit of user profiling by explicitly given pref-
erence examples in form of music tracks over more broad
contextual categories (favorite artists, albums, genres, and
even activities), and implicit information such as listening
behavior statistics.
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ABSTRACT
In this paper we investigate the capabilities of constrained
clustering in application to active exploration of music col-
lections. Constrained clustering has been developed to im-
prove clustering methods through pairwise constraints. Al-
though these constraints are received as queries from a noise-
less oracle, most of the methods involve a random procedure
stage to decide which elements are presented to the oracle.
In this work we apply spectral clustering with constraints
to a music dataset, where the queries for constraints are
selected in a deterministic way through outlier identifica-
tion perspective. We simulate the constraints through the
ground-truth music genre labels. The results show that con-
strained clustering with deterministic outlier identification
method achieves reasonable and stable results through the
increment of the number of constraint queries.
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H.3 [Information Systems]: Information Storage and Re-
trieval; H.5.5 [Information Systems]: Sound and Music
Computing—methodologies and techniques

General Terms
Theory, Experimentation, Algorithms

Keywords
Constrained clustering, outlier identification, spectral clus-
tering, active semi-supervised learning, music information
retrieval
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1. INTRODUCTION
During recent years the scientific and commercial inter-

est in Music Information Retrieval (MIR) has significantly
increased. Stimulated by the ever-growing availability and
the size of digital music collections, automatic music index-
ing and retrieval systems has been identified as an increas-
ingly important means to aid convenient exploration of large
music catalogs. In order to supply the users with more ac-
curate and robust music exploration systems, automatically
extracted metadata like “music genre”, “style”or “mood” can
be added to the conventional metadata e.g. artist name, al-
bum name and track title. Commonly this automatically
extracted metadata is derived by means of collaborative fil-
tering or is generated by statistical classifiers that are pre-
trained on the restricted amount of labeled ground-truth
data. The exploration intentions of the end-user might not
be expressed by the available training data. Hence the de-
sirable exploration facets might stay unreachable.

An alternative way of music exploration is to visualize the
music collection or a part of it by placing similar songs close
to each other and non-similar songs far away from each other
in some low-dimensional space projection. A comprehensive
overview of the existing up to date systems and methods
can be found in [18]. Similar goals can also be reached
with clustering algorithms that cluster (group) songs in a
way that similar songs are joined in clusters and non-similar
songs appear in different clusters. Obviously, music has too
many facets (aspects) for one “static” clustering that allows
to use only one definition of similarity. In this paper we con-
sider clustering with constraints as a complimentary fashion
to music collection exploration. Here the user can express
a particular point to clusterability of his/her music collec-
tion by providing some feedback information in the form of
constraints. Clustering with constraints has been already
applied to a music collection by Peng et al. [15]. They simu-
lated the generation of constraints by choosing random con-
straint pairs from the classes in artist similarity graph. We
propose to avoid using random constraints. In contrast, we
determine the optimal songs to be constrained via outlier
identification methods.
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The reminder of the paper is organized as follows. Sec. 2
provides some theoretic background on applied clustering
and outlier identification methods. The conception of the
conducted experiments is presented in Sec. 3. In Sec. 4 we
bring some details on audio features, utilized dataset, eval-
uation scenarios and evaluation measures. The results are
presented and discussed in Sec. 5 and Sec. 6 concludes the
paper and brings some insights to the future research direc-
tions.

2. MATHEMATICAL BACKGROUND
In this section we present the fundamental concepts and

methods used in this paper. We will always consider a data
set X of n elements such that X = {x1, x2, . . . , xn}, where
xi ∈ R

m. See Sec. 4 for details on the used dataset.

2.1 Graph Laplacian
The fundamental tool related to spectral methods is the

graph Laplacian. We present it briefly.
Let S ∈ R

n be a similarity matrix related to dataset X,
G = (E, V ) a similarity graph where E and V are the sets
of edges and vertexes, respectively and W its corresponding
weighted adjacency matrix. Let D be the degree matrix,
which has dii =

∑n
j=1

wij and zero elsewhere. Then, the un-

normalized (L), Symmetric (Lsym) and Random Walk (Lrw)
Laplacians are:

L = D − W

Lsym = D−1/2LD−1/2

Lrw = D−1L .

(1)

Some of the properties that the Laplacians hold are:

1. They are symmetric positive semi-definite.

2. They have n real non-negative eigenvalues

3. The multiplicity of the smallest eigenvalue, which is
always zero, is equal to the number of connected com-
ponents of G

2.2 Spectral Feature Selection
The properties of Laplacian operators have been already

extended to feature selection methods. In particular Zhao
et al. [22] have developed a filter method based on properties
of Laplacians. We present it briefly.

Given a graph G, its corresponding weighted adjacency
matrix W and degree matrix D, let λj and ξj be the eigenval-
ues and eigenvectors of the corresponding symmetric Lapla-
cian Lsym with 0 ≤ λ1 ≤ · · · ≤ λn. Then the score of the
feature Fi can be measured through the following function:

ϕ(Fi) =

k∑

j=2

(γ(2) − γ(λj))α
2
j , (2)

where γ is a rational function, k is a number of clusters and
αj is a cosine of the angle between the eigenvector ξj and

the weighted feature f̂ i which is defined as

f̂ i =
D1/2f i

‖ D1/2f i ‖
, (3)

where f i is the feature vector corresponding to Fi.
Score function in eq. (2) considers the same criteria as

spectral clustering, where the first k eigenvectors are the

most relevant ones. This function assigns high values to
features which give better separability for a given number
of clusters in the graph G. Therefore, features should be
ranked in descending ordered through the given feature score.

2.3 Clustering Methods
In this part we present two fundamental approaches con-

sidered in this paper: constrained clustering and spectral
clustering.

2.3.1 Constrained Clustering
It is not always possible to get true labels, even for just a

portion of a dataset. In some circumstances it may be pos-
sible to get information between pairs of elements. Wagstaff
et al. [21] proposed the addition of information through pair-
wise constraints. They introduced two types of pairwise con-
straints: namely Must Links (ML) if two elements should
be in the same cluster, and Cannot Links (CL) if two ele-
ments should be in different clusters. This fundamental idea
has been already applied for center initialization through
weighted farthest traversal heuristic by Basu et al. [4] and
even generalized to kernel and graph methods by Kulis et
al. [11]. In particular, they exposed the manner in which
the information from given constraints can be added to this
clustering methods. Given an affinity matrix W and sets of
ML and CL, we define T as the constraint matrix, where for
each pair of points (xi, xj)

T = {tij} : tij =






mij , for a ML,
−mij , for a CL,

0, otherwise,
(4)

where each mij is an arbitrary scalar. Then, the matrix
which summarizes the side information is

W
′ = W + T (5)

and can be used for both kernel and graph clustering meth-
ods.

2.3.2 Spectral clustering
Spectral clustering has received a considerable amount of

attention, due to its surprising results and easy implementa-
tion. We present the general framework related to Random
Walk and Symmetric Laplacians. For more details, we refer
to Luxburg [14].

Let G and W be respectively the similarity graph and its
weighted adjacency matrix obtained from a given similarity
matrix. Depending on the type of Laplacian, the Matrix U

is obtained as following:

• for Random Walk Laplacian we get the first k general-
ized eigenvectors u1, . . . , uk from the generalized eigen-
value problem Lu = λDu and store them column-wise
in a matrix U ∈ R

n×k.

• for Symmetric Laplacian we get the first k eigenvectors
u1, . . . , uk of Lsym, store them column-wise in a matrix
U ∈ R

n×k and normalize each row of U .

Afterwards, k-means algorithm is applied to cluster the rows
of matrix U , where each row is the embedding of the ele-
ments of the given dataset.

40



2.4 Outlier Identification Methods
Application of the outlier identification is motivated by

the intrinsic nature of music, that is in some sense full of
outliers. Clustering constrained on extremes rather than
“randoms”, covers more of the problematic pieces. In this
study we apply the following outlier identification methods:

LOF Local Outlier Factor (LOF) was proposed by Breunig
et al. [6]. It can be interpreted as an outlierness degree
and gives the possibility to rank the items through it.
As the name suggests, the outlierness of each element
is restricted to local neighborhoods.

RRS Ramaswamy et al. [16] considered that the distance
of each point to its kth nearest neighbor determines if
it is an outlier or not. Hence, the larger the distance,
the more chances for the item to be an outlier. Further
we address this outlier detection method as RRS.

Both methods provide the possibility to rank the items
through their outlier degree. This allows to choose the order
in which the elements will be exposed to be constrained.

3. CONCEPTION OF EXPERIMENTS
In this section we explain the integration of the exposed

concepts and the setup of the experiments. The process
steps described in this section are summarized in Figure 1.

Given a data set X and a set of pairwise constraints in
all experiments we aim to get the cluster assignments. Each
item in the dataset is represented with a feature vector xi,
i = 1, . . . , n, where n is a number of elements in the dataset.
Not all dimensions in xi are equally profitable for the sim-
ilarity relations between the items in the dataset. In order
to select the most appropriate feature dimensions, we ap-
ply a spectral feature selection method as stated in Sec. 2.2.
In our experiments the rational function in eq. (2) is set to
γ(x) = x4. Given a data set related to the selected features,
the similarity relations between the items are captured via
the correlation coefficient kernel K, where K(xi,xj) is equal
to the Pearson correlation coefficient between vectors xi and
xj as

K(xi,xj) =

∑
k(xi,k − x̄i)(xj,k − x̄j)√∑

k(xi,k − x̄i)2
√∑

k(xj,k − x̄j)2
, (6)

where x̄i and x̄j are the empirical means of vectors xi and xj

respectively. The matrix related to the kernel is symmetric
positive semi-definite.

The correlation coefficient kernel K is utilized to deter-
mine the K Nearest Neighbors matrix (KNN), where in-
deed the neighborhood of each song is conformed by the
K most correlated songs. Here the parameter K was chosen
as K = log2(n), where n is the number of elements (songs)
in the dataset. In addition to the KNN matrix we calculate
the Symmetric K Nearest Neighbors matrix (SKNN), where
the KNN matrix is symmetrized through the insertion of
missing non-mutual neighbor connections. The KNN ma-
trix is utilized by the outlier detection methods introduced
in Sec. 2.4. At this stage we also consider the possibility of
getting outliers random-wise just for the sake of comparison
of traditional presented scores in the literature.

For a set of identified outliers we get constraints from
a noiseless oracle and through the corresponding extended

Figure 1: Flow chart diagram of experiments (see
Sec. 3 for details)

Must-Link sets. The corresponding weighted adjacency ma-
trix is defined as

W = SKNN + T , (7)

where T is the corresponding constraint matrix pointed in
eq. (4). Here the elements tij of the constraint matrix T

are set to the maximal (out of main diagonal) value of ad-
jacency matrix W for ML, and to tij = −wij for CL. Next,
we use either the Symmetric or Random Walk Laplacian
(see eq. (1)) and apply spectral clustering (see Sec. 2.3.2),
receiving cluster assignments as outputs.

For our work we consider the following six experiments
where outlier identification methods and particular Lapla-
cians are combined as presented in Table 1.

Table 1: Configuration of experiments

Short name Laplacian Outlier Identification
Sym RAW Symmetric Random
Sym LOF Symmetric LOF
Sym RSS Symmetric RRS
RW RAW Random Walk Random
RW LOF Random Walk LOF
RW RSS Random Walk RRS
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4. EVALUATION SETUP
In this section we provide some details on the evaluation

setup. First of all, we briefly introduce audio features used
for compact and informative representation of audio tracks.
Afterwards, we describe musical dataset involved in the ex-
periments. Finally, we bring some insights to the evaluation
scenarios and the evaluation measures used to estimate the
effectiveness of proposed clustering algorithms.

4.1 Audio Features
We utilize a broad palette of low-level acoustic features

and several mid-level representations [5]. These mid-level
features are computed on 5.12 seconds excerpts and observe
the evolution of the low-level features. With the help of mid-
level representations, timbre texture [19] can be captured by
descriptive statistics as well as by including additional mu-
sical knowledge. To facilitate an overview the audio feature
are subdivided in three categories by covering the timbral,
rhythmic and tonal aspects of sound.

Although the concept of timbre is still not clearly defined
with respect to music signals, it proved to be very useful for
automatic music signal classification. To capture timbral
information, we use Mel-Frequency Cepstral Coefficients,
Spectral Crest Factor, Audio Spectrum Centroid, Spectral
Flatness Measurement, and Zero-Crossing Rate. In addi-
tion, modulation spectral features [1] are extracted from the
aforementioned features to capture their short term dynam-
ics. We applied a cepstral low-pass filtering to the modula-
tion coefficients to reduce their dimensionality and to decor-
relate them as described in [7].

All rhythmic features used in the current setup are derived
from the energy slope in excerpts of the different frequency-
bands of the Audio Spectrum Envelope feature. These com-
prise the Percussiveness [20] and the Envelope Cross-
Correlation (ECC). Further mid-level features [7] are derived
from the Auto-Correlation Function (ACF). In the ACF,
rhythmic periodicities are emphasized and phase differences
annulled. Thus, we compute also the ACF Cross-Correlation
(ACFCC). The difference to ECC again captures useful in-
formation about the phase differences between the different
rhythmic pulses. In addition, the log-lag ACF and its de-
scriptive statistics are extracted according to [10].

Tonality descriptors are computed from a Chromagram
based on Enhanced Pitch Class Profiles (EPCP) [12], [17].
The EPCP undergoes a statistical tuning estimation and
correction to account for tunings deviating from the equal
tempered scale. Pitch-space representations as described in
[8] are derived from the Chromagram as mid-level features.
Their usefulness for audio description has been shown in [9].

Clustering music tracks that are described with a set of
audio features having different time resolution still remains
a challenging task. The feature matrices of different songs
can be hardly involved in clustering algorithm directly. To
tackle this issue, we model each feature dimension of one
song following a so called “bag-of-features” approach [2].
Here feature values for each dimension are modeled by a
single Gaussian, so that each feature dimension within a
song is represented by the sample mean and standard devi-
ation of the feature values. In addition, for each dimension
of low-level and mid-level features we calculate the differ-
ences between the neighbor frames. This forms so called
delta features that have already proved their efficiency for
MFCCs. We likewise model each dimension of delta features

Table 2: ISMIR 2004 benchmark dataset

Genre Number of songs
Classical 320
Electronic 115
Jazz and Blues 26
Metal and Punk 45
Rock and Pop 101
World music 122

with a single Gaussian. In addition, each feature dimension
is normalized by mean and standard deviation. All in all,
each music track is represented with a feature vector having
2342 feature dimensions.

4.2 Dataset Description
In our experiments we use the “Training” part of the

ISMIR2004 Audio Description Contest Dataset1. This data-
set includes 729 music tracks that are manually subdivided
into 6 genre categories as presented in Table 2.

In the context of this work genre labels are not directly
employed in the traditional classification scenario. Instead
of that we use the genre labels to generate constraints for
the clustering algorithm. As such, two songs belonging to
the same genre are considered to be connected with a must-
link constraint. Likewise two songs that belong to different
genres are connected with a cannot-link constraint. The
details on the choice of the constrained songs are provided
in Sec. 3.

4.3 Evaluation Scenarios
Traditionally constrained clustering is evaluated on the

entire dataset – both on constrained and on non-constrained
part – and the improvement of performance is shown over
the number of pairwise constraints (see e.g. Basu et al. [3]).
This approach is not optimal for the estimation of general-
ization capabilities of the clustering algorithm. Seeing the
evaluation scores for the entire dataset, it is rather hard
to estimate if the improvement is coming through the ris-
ing amount of constrained songs or through the general im-
provement of clustering quality. In addition to the common
scores for the entire dataset (further denoted as All dataset)
we perform the evaluation on the part of the dataset that
is not involved in any constraints (further denoted as Test
dataset).

Interpretation of the number of pairwise constraints is also
not trivial. For instance, ten pairwise constraints can involve
just five songs if the constraints are provided in a manner of a
complete graph. On the other hand, ten pairwise constraints
can also concern twenty songs if each constraint connects a
distinct pair of songs. Instead of the number of the pairwise
constraints we account for the percentage of the dataset in-
volved in constraints.

4.4 Evaluation Measures
We have applied several metrics for cluster evaluation.

One of the most traditional evaluation measures for clus-
tering [3] is normalized mutual information (NMI). NMI is
an information-theoretic measure which shows the amount

1http://ismir2004.ismir.net/genre_contest/index.
htm
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of information shared by ground-truth cluster assignments
(represented with a random variable Y ) and estimated clus-
ter assignments (represented with a random variable Z):

NMI =
2 · I(Y ; Z)

H(Y ) + H(Z)
, (8)

where I(Y ; Z) = H(Y )−H(Y |Z) is the mutual information
between Y and Z, H(Y ) is a marginal entropy of Y , and
H(Y |Z) is the conditional entropy of Y given Z.

As additional information-theoretic evaluation measures
we use the normalized conditional entropies by Lukashe-
vich [13] developed for evaluating song segmentation. These
scores – in the context of this paper named over-clustering
(So) and under-clustering (Su) – give some insights to the
origin of the clustering errors. The errors caused by the frag-
mentation of true clusters are captured by over-clustering So

defined as

So = 1 −
H(Z|Y )

log2NZ
, (9)

and erroneous connection of elements of different clusters
into one cluster is reflected by under-clustering Su

Su = 1 −
H(Y |Z)

log2NY
, (10)

where NY and NZ is a number of clusters in ground-truth
and estimated cluster assignments respectively.

Pairwise F-measure is defined as the harmonic mean of
pairwise precision and pairwise recall. Let MY be a set
of song pairs that are in the same cluster in the ground-
truth clustering, ex. pairs of songs having the same genre
label. Likewise let MZ be a set of identically labeled song
pairs that are in the same cluster according to the estimated
cluster assignments. Then pairwise precision (Pp), pairwise
recall (Rp), and pairwise F-measure (Fp) are defined as

Pp =
|MZ ∩ MY |

|MZ |
,

Rp =
|MZ ∩ MY |

|MY |
,

Fp =
2 · Pp · Rp

Pp + Rp
, (11)

where | · | denotes the number of the corresponding pairs.
Note that Basu et al. [3] used a slightly modified definition
of pairwise F-measure, where they considered only the pairs
of points that do not have explicit constraints between them.
In our case we do not embed this information explicitly into
pairwise F-measure. In contrast, we make difference between
two evaluation scenarios – entire dataset and test part not
involved in constraints – as described in Sec. 4.3.

To simplify the comparison with the work of Peng et al. [15]
we additionally take into consideration accuracy and purity
performance measures.

5. RESULTS
In this section we present the results for the experiments

stated in Table 1 of Sec. 3. Each of the experiments is run
over the following quantities of features: 16, 32, 64, 128,
256 and 512 determined through the powers of two. This
log-line scale is used considering that improvement is more

significant when we only have a small number of features.
For a given number of features, the percentage of songs in-
volved in constraints is augmented by five percent in each
step, starting with 0 and stopping at 75.

Its worth to note, that all experiments with random se-
lection of songs to be constrained, have been run 10 times,
and that all clustering evaluation measures are the means of
these runs. In addition, a random base line clustering was
used as a reference, where the items of each ground-truth
class were randomly uniformly distributed over k estimated
clusters. Resulting values of normalized mutual informa-
tion are presented in Fig. 3. It is possible to note that the
RAW scores tend to be more smooth over the incrementing
size of the constrained set than scores for the outlier iden-
tification methods. Clustering results of LOF and RRS for
small number of constraints – constrained data set smaller
than 30% – from both Symmetric and Random Walk Lapla-
cians are comparable to the clustering results with random
constraints. On the other hand, for the high number of
constraints and the high amount of features, the cluster-
ing results of both LOF and RRS and for both Laplacians
are significantly better than clustering results with random
constraints, bringing an improvement of up to 0.22 points of
NMI.

In fact, with more than 32 features the results are con-
siderably better for almost all sets of constraints. Cluster-
ing with RRS seems to suffer from some instability, yet the
differences between RRS an RAW with the Random Walk
Laplacian are considerable while taking into account more
than 32 features.

We present the scores of clustering evaluation measures for
all experiments in Fig. 2. As a representative example we
look at the clustering results with 512 feature dimensions.
Here the scores for Symmetric Laplacian with RAW and
with LOF are considerably lower. On the other hand, the
best results are obtained from RRS with both Random Walk
and Symmetric Laplacians.

6. CONCLUSIONS
In this paper we presented a system for the active explo-

ration of music collections via spectral clustering with con-
straints. For the experiments we simulated the constraints
through the ground-truth class labels of the audio genre
dataset. Alongside with determining the constraint candi-
dates in a random manner, we investigated two different
outlier identification methods. Additionally we looked into
a spectral feature selection method and proved the perfor-
mance of clustering for two versions of Laplacian for spectral
clustering.
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Figure 3: Normalized Mutual Information (Y axis) versus the percentage of the dataset that is involved in at least one constraint (X axis),
different number of selected features and different evaluated subsets (All data set and Test set). Each row is related to a particular outlier
identification method. The two first columns are related to the Symmetric Laplacian and the following two columns to the Random Walk
Laplacian. Results of columns 1 and 3 are related to the All data set, while columns 2 and 4 are related only to the Test data set.
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Figure 2: Values of several evaluation measures versus the percentage of the dataset that is involved in at
least one constraint (X axis). Evaluation measures, starting from upper left plot and going to lower right
plot: Normalized Mutual Information, Accuracy, Purity, Pairwise F-measure, Over-Clustering and Under-
Clustering. In each of these plots experiments presented in Table 1 are evaluated. The number of selected
features is fixed to 512. Curves plotted with ‘crosses’ state for random baseline clustering.
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ABSTRACT 

The online music industry has been growing at a fast pace, 
especially during the recent years. Even music sales have moved 
from physical sales to digital sales, paving the way for millions of 
digital music becoming available for all users. However, this 
produces information overload, where there are so many items 
available due to, virtually, no storage limitations, it becomes 
difficult for users to find what they are looking for. There have 
been many approaches in recommending music to users to tackle 
information overload. One successful approach is collaborative 
filtering, which is currently widely used in commercial services. 
Although collaborative filtering produces very satisfying results, it 
becomes prone to popularity bias, recommending items that are 
correct recommendations but quite "obvious". In this paper, a new 
recommendation algorithm is proposed that is based on 
collaborative filtering and focuses on producing novel 
recommendations. The algorithm produces novel, yet relevant, 
recommendations to users based on analyzing the users' and the 
entire population's listening behaviors. An online user test shows 
that the system is able to produce relevant and novel 
recommendations and has greater potential with some minor 
adjustments in parameters.  

Categories and Subject Descriptors 
I.1.2 [Computing Methodologies]: Algorithms – Nonalgebraic 
algorithms, analysis of algorithms 

General Terms 
Algorithms 

Keywords 
Recommender systems, collaborative filtering, music 
recommendation 

1. INTRODUCTION 
With advances in the Internet, lower hardware costs, increasing 
peer-to-peer networks, and the popularity of high-storage portable 
media players, the online music industry has been growing 
rapidly, especially during the past few years. Gradually, music 

sales have moved from physical album sales to digital sales from 
online stores. Currently, these services offer millions of tracks to 
users, the catalog growing rapidly in size compared to the size 
when the services were first announced. For instance, Amazon 
offered over 2 million songs to users when the music service 
launched, but now offers over 11.8 million songs as of 2010. 
Some notable online music stores, including Amazon, are 
Amazon MP3 (11,000,000+ songs), iTunes Store (12,000,000+ 
songs) and Rhapsody (9,000,000+ songs). Apart from music 
stores, there are also music streaming services that offer millions 
of songs, such as Lala (8,000,000 songs), Spotify (8,000,000 
songs), and Last.fm (7,000,000 songs). 

These large numbers of songs available to users are a result of the 
Long Tail business model [1], contrary to only products that were 
in demand being sold in stores. However, as a result, although 
paradoxical, users have ended up listening to less music now that 
so much is available, simply because it is hard to find new and 
relevant music. For instance, digital track sales surpassed the 1 
billion sales mark in 2008. However, the Top 200 digital tracks 
alone accounted for 17% of the entire track sales (184 million 
sales) [2]. 

2. RELATED WORK 
2.1 Collaborative Filtering-based 
Recommender Systems 
One of the earliest recommender systems based on collaborative 
filtering is Tapestry [3]. Stemming from the need to handle 
increasing numbers of emails, Tapestry used explicit opinions of 
people in a relatively small group, such as an office workgroup, to 
filter out incoming email for a given user.  However, a drawback 
of this system was that users had to be familiar with the 
preferences and opinions of other people in their network, which 
is why Tapestry worked on small networks like the office.  

A more general collaborative filtering approach was developed by 
Resnick et al. called GroupLens [4]. The basic idea behind 
GroupLens, which aimed to help users find news articles amongst 
the vast available numbers, was that "people who agreed in the 
past will probably agree again". Using this heuristic, the 
GroupLens system was able to predict the ratings of certain news 
articles by a given user. An advantage that this provided was that 
the collaborative filtering could be scaled, unlike Tapestry, 
because a user was not required to actually know other users that 
had similar preferences to him. This was done by the system, 
which gathered information on the ratings of users, naturally 

WOMRAD 2010 Workshop on Music Recommendation and Discovery, 
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creating another advantage of users being anonymous inside the 
whole system.  

Research related to, and including, the above studies focused on 
filtering a vast amount of text, which were in forms of emails, 
news, and messages, to those that were worth reading. Items 
would be given to the user with their prediction scores, aiding the 
user in which item to read next. The next wave of studies focused 
on a more direct approach in recommending items. 

Ringo was a system developed to provide personalized music 
recommendations [5]. It maintained a user's profile, a history of 
ratings on various artists that were essentially explicit labelings on 
which artists the user does or does not enjoy listening to. These 
profiles were matched by the system to calculate 
recommendations on which artists had the highest probabilities of 
being liked by the user.  

While Ringo was focused on music items, Bellcore's 
recommender system focused on movies [6]. Like Ringo, it used a 
database of movie ratings by users and matched rating profiles to 
provide recommendations by finding similar users and the movies 
that they had watched and rated positively. Tests on the reliability 
of the recommender system showed that three out of every four 
recommendations would be rated highly by the user, and also 
showed that the system produced extremely more accurate 
recommendations compared to nationally-known movie critics.  

While there were numerous advances and algorithms related to 
collaborative filtering since then, the most well-known 
collaborative filtering system today, however, is probably the 
system used in Amazon.com, an electronic commerce company 
that sells books, movies, music, etc. Amazon.com offers 
recommendations on items that are similar to the item being 
purchased, rather than finding similar users and then 
recommending the items those users have purchased. This 
method, which is called item-to-item collaborative filtering, scales 
to extremely large datasets and generates satisfiable results.  

2.2 Collaborative Filtering-based 
Recommender Systems for Music  
Although the collaborative filtering-based approaches above were 
designed on specific items, the algorithms can be generalized and 
applied to music recommendation. Hence, the results of such 
algorithms applied to music are not much different than applied to 
the original items.  

Apart from recommender systems that use data on the ratings 
and/or purchases of items, there are other collaborative filtering-
based recommender systems that take advantage of metadata 
produced by users that are found in music.  

[7] presents some examples of metadata used in such algorithms, 
which include reviews, lyrics, blogs, social tags, bios, and 
playlists. Examples of commercial services that use such 
approaches are Rate Your Music (reviews), The Hype Machine 
(blogs), last.fm (social tags), and playlist.com (playlists).  

Social tags, a representative product of online collaboration, has 
been used heavily in music recommendation systems. Hu and 
Downie explored the mood metadata associated with songs and 
their relationships with music genre, artist, and usage metadata 
[8]. They found that the genre-mood relationships and artist-mood 
relationships showed consistencies, showing the potential of being 
utilized in automated mood classification tasks. Eck et. al 

proposed a method for generating social tags for music that lack 
such tags [9]. Audio features of songs were analyzed and mapped 
to tags, using a set of boosted classifiers. These were then utilized 
on untagged songs, populating them with the associated social 
tags depending on the musical content. This enables unpopular 
songs and/or new songs that have no social tags to be used in 
music recommenders that use a social algorithm. It also tackles 
the cold start problem, a problem found in collaborative filtering-
based recommender systems. Symeonidis et. al analyzed social 
tags in order to tackle the problem of the multimodal use of music 
[10]. They developed a framework that modeled users, tags, and 
items, altogether. This was then used in recommending musical 
items (artists, songs, and albums) to users by performing latent 
semantic analysis and dimensionality reduction according to each 
user's multimodal perception of music. Levy and Sandler inspect 
the seemingly ad hoc and informal language of tagging as a high-
volume source of semantic metadata for music. Results show that 
tags establish a low-dimensional semantic space, being extremely 
polished at the track level, especially by artist and genre. Using 
these results, the authors also introduce an interface for users to 
browse by mood, through a two-dimensional subspace that 
represents musical emotion. 

Celma introduces a system that recommends music and the 
relevant information associated with the recommended music 
[11]. The proposed system uses the Friend of a Friend and RSS 
vocabularies for creating recommendations, taking in 
consideration the user's musical tastes and listening habits. The 
FOAF project provides protocols and a language to describe 
homepage-like content and social networks, ultimately providing 
the proposed system with the user's profile. The RSS vocabulary 
provides the system with syndicated content, which includes data 
such as new album releases, album reviews, podcast sessions, 
upcoming gigs, etc. Thus, the proposed system improves the 
existing recommendation systems by understanding the users 
through psychological factors (personality, demographic 
preferences, socioeconomics, situation, social relationships) and 
explicit music preferences.  

3. LIMITATIONS OF COLLABORATIVE 
FILTERING 
3.1 Popularity Bias 
Collaborative filtering-based recommender systems produce good 
results and are used widely in commercial services such as 
Amazon.com and Last.fm. However, collaborative filtering has 
some common limitations that occur naturally due to its roots 
lying in the wisdom of crowds. One of the largest problems of 
collaborative filtering is popularity bias [12, 13].  

This happens when a popular item is associated with many other 
related items. Users that interact with these items are then 
recommended the popular item. The system recommends the 
popular item often, leading to item purchases (or any other form 
of positive input from user) and as this item is purchased more, it 
is also recommended more. This loop, in which the rich become 
richer, creates popularity bias.  

Naturally, as a result of the above feedback loop, the 
recommender system tends to bias its recommendations towards 
popular items. Thus, the recommendations lose their novelty [12, 
13] and make it extremely difficult to recommend lesser-known 
artists.  
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In Amazon.com, in which collaborative filtering is heavily used, 
the popularity bias can be seen when viewing the 
recommendations that are offered when searching for popular 
items. For instance, the 98 recommendations that appear when 
searching for Harry Potter includes The Da Vinci Code, To Kill a 
Mockingbird and 28 other Harry Potter books and DVDs. In the 
case of music, searching for The Beatles' Revolver album results 
in 33 albums from The Beatles, out of a total of 97 
recommendations, as shown in Figure 1. The other recommended 
items show well-known artists that user's, who are interested in 
The Beatles, will most likely have heard of already such as The 
Rolling Stones, Led Zeppelin, and Neil Young. These 
recommended artists are correct recommendations but fail to be 
novel recommendations. 

 
Due to this popularity bias, a large portion of the recommended 
items result in obvious recommendations that may be relevant to 
easy-going, casual listeners, but not so helpful for enthusiastic 
music listeners, who have a high probability of already being 
knowledgeable on the artists being recommended. 
The number of high quality, or "correct", recommended items that 
are produced with collaborative filtering is verified by [14]. 
However, the problem of popularity bias was also verified as the 
amount of novel recommendations given to a user was the lowest 
for collaborative filtering in an experiment comparing 
collaborative filtering, content-based, and hybrid methods [14]. 
Thus, it was confirmed that collaborative filtering results in less 
percentage of novel songs but of higher quality.  

4. ALGORITHM 
In this section, we provide an algorithm that is based on 
collaborative filtering, yet overcomes popularity bias, a natural 
problem that arises from CF. Also, the algorithm focuses on 
providing recommendations that are novel to the user, while also 
remaining relevant.  

To implement this algorithm, user data from Last.fm, an Internet 
service that provides users with streaming music via radio 
stations, was used. Reasons for selecting Last.fm was the readily 
available developer API and the various, massive amount of data 
that was available such as user playlists, playcounts for artists and 
individual songs, artist information, song information, and most 
importantly, the worldwide popularity of the site. 

4.1 Concept of Recommendation Algorithm 
4.1.1 Changing Perspectives on Novel 
Recommendations 
While the goal of recommenders in general is to provide 
recommendations that are novel and relevant to the user, as stated 
beforehand social-based recommendations, although relevant, fail 
in providing novel recommendations to users. In contrast, content-
based recommender systems work better in providing novel 
recommendations because they are not affected by popularity or 
any other social influence [15]. 

Another method to provide novel recommendations to users is to 
use the long tail popularity distribution of the artists [7]. This idea 
can be applied to both content-based and social-based algorithms. 
Content-based algorithms can use the long tail distribution to 
recommend similar items based on content-analysis and also 
found in the tail portion of the distribution. For social-based 
algorithms, or collaborative filtering, the idea can be applied by 
first obtaining the full list of recommendations and then removing 
the recommendations that lie in the head portion of the 
distribution. This would result in recommendations being novel to 
the user, since it is unlikely that artists residing in the tail portion 
of the distribution are known to the user.  

However, although strictly recommending artists from the long 
tail and avoiding recommending those that are obvious (those that 
are located in the head portion of the distribution) have a high 
probability of being novel recommendations, we need to take in 
consideration that novel recommendations are relative to the user. 
In other words, it is naive to assume that the user will be aware of 
certain artists just because they are in the head portion of the long 
tail distribution. Thus, the fact that even popular artists have a 
possibility of being novel recommendations to certain users must 
not be overlooked.  

4.1.2 User Listening Behavior 
As shown in Figure 2, which shows a random Last.fm user's 
playlist in descending order of playcount, the listening behavior 
shows a distribution that is similar to that of long-tail 
distributions. Users tend to listen to an extremely small portion of 
their playlists often while the remaining songs seldom get played. 
Due to the data available, which is the top 500 played songs in the 
user's playlist, all of the songs in the graph are played at least 
once.  

4.1.3 Defining Experts and Novices 
Using this long-tailed distribution of users' listening behaviors, the 
users can be divided into two groups: experts and novices. Here, 
users are considered "experts" regarding the songs/artists that they 
listen to often, i.e. songs/artists that lie in the head portion of the 
long-tailed listening behavior. On the other hand, users are 
considered "novices" regarding the songs that reside in the tail 
portion.  

Figure 1. Recommendations from Amazon.com, which 
are all quite "obvious" recommendations, although 

they are correct recommendations. 

Figure 2. The listening behavior of a user and his/her entire 
playlist. Although not exact, the graph shows a long-tailed 

distribution where the majority of tracks are seldom played. 

49



4.1.4 The Mystery of Unpopular “Loved” Songs 
Last.fm provides users with an option to mark songs "loved" 
(Figure 3). This kind of feedback from users explicitly shows that 
a user enjoys a particular song. One would expect that these 
"loved" songs would all lie in the head portion of the listening 
behavior distribution. However, these songs that are marked 
"loved" can be found scattered throughout the entire distribution. 
Here, a paradox can be found: Why are some songs marked 
"loved" lying at the tail end of the playcount distribution? One 
would assume that a "loved" song would have a high playcount, 
but a quick inspection shows that this is not the case. Thus, an 
assumption that is made here, a key assumption in this algorithm, 
is that songs are marked "loved", yet remain in the tail, because 
the user is unfamiliar with that song/artist/genre, i.e. is a novice, 
but happened to stumble upon that particular song and liked it.  

Among the 21,688 users whose data was used for the algorithm, 
78.3%, or 16,973 users, used the "love" function provided in 
Last.fm. Among the 16,973 users who utilized the "love" function, 
77.8% of the users had "loved" songs in the tail portion of their 
playlist's song distribution sorted by playcount.  

Upon closer inspection of the random user in Figure 3, the 
songs/artists in the "head" portion came from various genres such 
as electronic, hip-hop, and reggae. What they did have in 
common, however, was that they were all German artists, 
including the user herself. Looking at the songs that were marked 
"loved" but were not played often, we can see that they too come 
from different genres, but are both artists from the U.S.  

The previously mentioned assumption that fuels this algorithm 
was made after observing such occurrences in users' playlists. 
According to our assumption, we assume that the user, who is 
German, is a novice in artists from the U.S. and stumbled across 
several songs that she liked. However, she did not get to venture 
similar songs and/or artists because she was unaware of which 
artists/songs were similar.   

4.1.5 The Big Picture 
Once the basic assumptions are made and the new definition of 
novices and experts are established, the concept of the 
recommendation algorithm can be explained. As shown in Figure 
4, recommendations can be made to novices of certain song sets 
using the information that can be obtained by a group of experts 
that have those song sets in the head portion of their listening 
behavior distribution.  

By using the listening behavior of experts to provide 
recommendations to novices, the recommended items will be 
novel to the user, contrasting to other recommendation systems 
that simply recommended artists/songs from the tail of the 
popularity distribution of items. In other words, while remaining 
novel to the specific user, the recommended items may or may not 
be in the far, unpopular end of the popularity distribution. In fact, 
even popular items that reside in the head of the popularity 
distribution may be recommended, but the user may not be aware 
of the recommended item since the recommendations were based 
on the user's tail portion of her listening behavior distribution, in 
which the user was considered a novice.  
In addition to being novel recommendations, the recommended 
items will also be relevant to the user since the recommendations 
were found using songs that the user had marked "loved", 
explicitly stating the user's view on that particular item, and then 
using collaborative filtering to find experts on those "loved" songs 
to find relevant recommendations.  

4.2 Data 
User data was collected in order to test the algorithm and evaluate 
the results of the recommendations from early March to late April 
in 2010. Data was collected from the Last.fm website using a 
custom web crawler and the Last.fm API. The user data that was 
collected included the songs that the user had listened to overall, 
meaning the songs that the user listened to from the day he/she 
registered at Last.fm up until the day the data was collected. It 
also included the playcount for each song, song title, artist name, 
user ID, rank, and whether it was marked "loved" or not. The data 
that was collected is summarized below in Table 1. 

Table 1. Summary of amount of data collected 
Data Count 

Users 21,681 

Unique Songs 2,001,324 

Songs from All Playlists 9,073,681 

 

Figure 4. The overview of the algorithm showing the 
concept of novices and experts. 

Figure 3. The "tail" portion of  a random user’s playlist.  
There are two songs marked "loved" by the user, but have 

only been played three times. 
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4.2.1 Last.fm API 
All the collected information, except the playlist history, was 
gathered via the Last.fm API. Although the algorithm could have 
queried the information in real-time, it was decided that having 
local data would facilitate in quicker results. After fetching the 
data, we had song titles and corresponding artist names of 
approximately 2 million songs.  

In addition to the user and song data collected with the Last.fm 
API, artist popularity was also measured indirectly via the API. 
Because the Last.fm API did not provide the artist ranking 
directly through the API, we had to collect the number of 
Listeners and Plays, which were offered through the API. By 
having the Listeners and Plays of a given artist, we would be able 
to determine the overall ranking of popularity of the artists. This 
will be further explained in the next section. 

4.2.2 User Data Crawler 
Unfortunately, the Last.fm API query for a given user's listening 
history returns the top 50 songs ordered by playcount. This was 
not adequate enough since the algorithm needed the entire playlist 
in order to utilize the long tail of the playcount distribution. 

In order to solve this problem, a custom crawler was implemented 
to collect the users' listening history (referred to as ‘playlist’ in 
this paper) and playcount information. Although this returned a 
maximum of 500 results (Last.fm displays only top 500 songs in 
the playlist), the data was adequate to be divided into the short 
head and long tail and used in the algorithm. 

Data on a total of 21,681 random users were crawled. The 
playlists and the according information were also stored for each 
user, resulting in 21,681 playlists with a total of 9,073,681 songs. 
Because playlists from different users contain lots of duplicate 
entries, the number of unique songs that were crawled, as stated 
above, was 2,001,324 unique songs. 

4.3 Algorithm 
As shown in Listing 1, the user that will receive the 
recommendations, whom we will call "novice" according to the 
algorithm's concept, is given as input to the algorithm. Then, the 
listening behavior for the novice is retrieved using data available 
at Last.fm. As long as the user is not a new user and has been 
listening to his/her playlist, the playcount distribution of his/her 
playlist is more than likely to show a long-tailed distribution, in 
which a small set of songs have been listened with a heavily 
biased frequency while the remaining songs listened only 
occasionally. Since we are interested in the songs/artists that the 
given user is a novice on (i.e. songs marked “loved” in the long 
tail), we discard the head portion of the distribution and from the 
remaining songs, which are songs in the tail portion, we discard 
all songs except those that are explicitly labeled "loved" by the 
novice. These remaining songs, denoted by ‘S_1’, will be the song 
set that will be used to create recommendations. 

Next, using the listening behavior of the other users from our 
database, we find those that listen to the songs in song set S. In 
other words, we find the "experts" on song set S by finding users 
that have a subset of song set S in the head portion of their 
listening behavior distribution. If such users exist, we compare the 
songs in the “head” of their playcount distribution with song set S 
and use the remaining, non-overlapping songs as recommendation 
candidates and assign the weight for those items according to the 

strength of the match between the songs in the expert's "head" and 
song set S. 

These recommendation candidates are accumulated in the global 
song set REC, and the weight of the candidate are incremented as 
they are recommended to REC. Finally, the recommendations are 
given to the user in the order of their weights. 

4.4 Parameters 
The algorithm is quite flexible as it has many parameters that can 
be changed, which greatly influences the recommended items to 
the user. Parameters that play a crucial role in the overall quality 
of the recommendations include: 

• The size of the “head” of experts 
• The size of the “tail” of novices 
• Weights of recommended items 
 

4.4.1 Expert Parameter 
The parameter that influences the outcome most is the size of the 
"head" portion of the expert's listening behavior distribution. For 
example, if the value for this parameter is set to "10", a user is 
considered an expert only if the top ten songs that s/he listened to 
contains any number of songs from the set of songs that are 
marked "loved" in the novice's "tail" portion of his/her listening 
distribution. In other words, this parameter determines the 
qualification strictness on which users are considered experts. 

The lower the value, the harder it is for a given user to be 
considered an expert. Also, as the value is lower, the resulting 
recommendations are more novel, in contrast to when the values 
are higher, in which the resulting recommendations become those 
that are well-known. As the value is set higher, the 
recommendations represent those that are from the existing music 
recommendations that are offered using traditional collaborative-
filtering methods. 

4.4.2 Novice Parameter 
The parameter that can be varied for the novice users is the size of 
the "tail" portion of the novice's listening behavior distribution. 

begin Recommendations REC (aGivenUser U1); 
   do 
      Result R1 := retrieveListeningBehaviorDistribution(U1); 
      SongSet S1 := getSongsInLongTail(R1); 
      S1_loved := filterLovedSongs(S1); 
      for i := 2 to n (n: number of users) step 1 do 
         Result Ri := retrieveListeningBehaviorDistribution(Ui) 
         SongSet Si := getSongsInHead(Ri); 
         if (Si ∩ S1 ≠ ∅) do 

            CandidateSongSet CSi := (Si ∪ S1) – (Si ∩ S1); 

            incrementWeight(CSi); 
            REC += CSi;   od 
         od 
      od 
      printRecommendations(); 
   end; Listing 1. Pseudoalgorithm for proposed recommender 

system. 
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Opposite of the expert parameter, the novice parameter sets the 
range of songs in the user's playlist that the user is a novice on. 
Using loved songs that lay near the "head" portion may result in 
songs that the user is aware of, leading to the recommendations 
being less novel to the novice. However, this parameter does not 
have as much influence as the expert parameter has because once 
the novice parameter is set, the entire range of songs are not used, 
but only those that are explicitly marked "loved" by the user. 
 
4.4.3 Weights of Recommended Items 
A formal set of rules and equations to assign weights to the 
recommended items can greatly change the songs that will be 
presented to the user as recommendations. This is important 
because it is inappropriate to present the entire collection of songs 
that result from the algorithm, as the number may vary depending 
on the two parameters above. Among the final song set that 
contains hundreds of candidate songs for recommendations, only 
a subset, namely the top N songs are presented to the user. Thus, 
assigning the appropriate weights for these candidates can 
ultimately influence the outcome of the recommended items. 
Currently, the algorithm uses a simple approach in which the 
weight is equal to the number of times a song is a member of both 
the head of an expert and tail of the novice.  
 

5. USER TEST & EVALUATION 
There are many ways to evaluate a recommender system, both 
offline and online. A common online method to evaluate a 
recommender system is to generate test sets to be evaluated later 
[16]. Another popular method is to use cross-validation, in which 
the data is partitioned and used as test sets [17]. 
 

5.1 Difficulties in Evaluating Novel 
Recommendations  
However, offline evaluations are not appropriate for recommender 
systems where the recommendations of novel items are important. 
This is because when a truly novel item is actually recommended 
to a user, meaning that the user does not already know about this 
item, it is extremely difficult for the user to evaluate the unknown 
item without providing any additional information [18]. Because 
of this, measuring novelty in the recommended items is a rather 
challenging task, leaving no option but to carry out live user 
studies where the users explicitly indicate whether the provided 
recommendations were novel or not [19]. 

Thus, in order to measure the novelty and relevance of the 
recommended items, an online user test was carried out using a 
fully functional website, including a section for explicit user 
feedback regarding the recommendations given to the users. 

5.2 Design 
A fully functional website was created in order to perform an 
online evaluation of the recommendations for random users. On 
the website, a user has to sign-up and input his/her Last.fm ID. 
After receiving a new ID, the server runs the recommendation 
algorithm on that particular Last.fm ID. Meanwhile, the user was 
requested to come back shortly afterwards, while the 
recommendations were being processed. The algorithm had to be 
run in real-time online because of the nature of it being heavily 
dependent on the user information. Also, pre-calculating the 
recommendations for users in the local database offline and then 
providing them online was unrealistic as the probability that a new 

user would also be one that was pre-calculated was extremely 
low. When the user returns, he/she is presented with two sets of 
recommendations.  

Recommendation Set 1 was the results of the algorithm with the 
Expert Parameter, the parameter that determines the size of the 
"head" portion of the expert, set to 5. A value of 5 for the Expert 
Parameter means that the algorithm is being very strict about 
which users are qualified to be experts. This produces dense novel 
items. Recommendation Set 2 was the results with the Expert 
Parameter set to 10. A value of 10 tends to mix novel 
recommendations and well-known recommendations, so is more 
of a general setting that aims to resemble recommendations from 
Last.fm. After the user views the recommendations, a survey page 
was available to provide explicit feedback on the quality of the 
recommendations given to them.  

 
Since the goal of the algorithm is to provide novel 
recommendations, there had to be an easy way for the user to 
evaluate the recommended items, since it is assumed that if the 
recommended items are indeed novel, then the user has no 
knowledge about the item. Thus, each recommended item was 
hyperlinked to the according page in Last.fm, as shown in Figure 
5. Through these links, users were able to evaluate the 
recommended items that were novel to them by visiting the linked 
pages. Last.fm provides related information regarding specific 
songs, which include music videos, song previews, and even a 
radio for the song's artist. By utilizing these pages, users were able 
to listen to the songs that were recommended to them. 
 

5.3 Survey 
On the survey page, a set of five questions were given to the user, 
each regarding one of the two sets of recommendation results that 
were produced by the algorithm. The questions were answered on 
a five-point Likert item. The final question was a subjective 
question, asking for any comments or feedbacks on the 
recommendations. The questions used in the survey are shown in 
Table 2. 
 
 

Figure 5. Screenshot of the recommended items at the user-
test website. Each facet of the recommended items are linked 

to pages at Last.fm for supplementary information 
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Table 2. Questions used in the user survey. 

Q. 1 How would you rate the relevance of items? 
Q. 2 How would you rate the novelty of the recommended 

items? 
Q. 3 How would you rate the serendipity of the recommended 

items? 
Q. 4 How would you rate the recommendations overall? 
Q. 5 Provide any comments/feedback about the 

recommendations that were given to you. 
 

6. RESULTS & DISCUSSION 
A user survey was carried out online accompanying the online 
music recommendation service because of the difficulties in 
measuring novelty. A total of 24 users tested the 
recommendations offered to them on the website. These users 
were random Last.fm users that had received private messages 
(advertising the user test) through the Last.fm messaging system. 
The new recommendation system was also advertised on various 
Last.fm groups whose interests were in finding new music or 
those who were unsatisfied with current recommender systems 
and their quite obvious recommendations. However, because the 
users had to answer two surveys for two different sets, some 
appeared to have quit abruptly after finishing the first set. As a 
result, only 11 users out of 24 completed the second survey.  

The private messages were sent to random Last.fm users who 
satisfied two conditions: 1) the user used the “loved” function 
with his/her playlist, 2) The last time the user logged in was not 
more than two weeks ago from the day the private messages were 
sent. Despite the advertisements and private messages, the 
response rate was extremely low (< 10 %). The results are shown 
in Figures 6-8.  

 

 
Figure 6. Comparison of the relevance ratings for the two sets 

 
 

 
Figure 7. Comparison of the novelty ratings for the two sets 

 

 
Figure 8. Comparison of the overall ratings for the two sets. 

The results of the user test on the recommendations produced by 
the proposed algorithm are generally positive. The mean value for 
the relevance of the items was 3.417 (on a 5 point scale) with a 
confidence interval of 0.390 (with alpha value of 0.05). The mean 
values of novelty and serendipity were also on the positive side 
with 3.667 and 3.625, respectively. The confidence intervals were 
0.436 (alpha = 0.05) for novelty and 0.350 (alpha = 0.05) for 
serendipity. The overall rating of the recommender system had a 
mean value of 3.458 with a confidence interval of 0.263 (alpha = 
0.05). In general, the results show that the proposed system has 
positive ratings and could be refined to produce better results. 

The proposed system was rated higher in both novelty and 
serendipity, compared to the second set of recommendations, 
which was a set of recommendations that was intended to imitate 
existing systems such as Last.fm. 

For this study, the parameters of the system were set with values 
that we thought produced the desired results after several 
iterations of the algorithm. However, a full study focused on 
finding the optimal values for the parameters would be an 
excellent follow-up study and would greatly enhance the 
recommendations of the system. 

The score for the novelty of recommended items could have been 
higher, because the algorithm did not check whether the 
recommended songs existed in the user's library before being 
offered. Thus, the user would see some artists that they were 
aware of. As implied above, it is quite easy to increase the 
percentage of novel items in the entire recommendation list: 
simply check whether the artist exists in the user's library and if it 
does, exclude it from the recommendations. However, this step 
was excluded from the algorithm deliberately to increase the 
confidence of the users on the proposed system. The basis for this 
was [20], in which the authors found that users liked to see 
familiar items in the recommendations, which ultimately led to an 
increase of user confidence in the system. Checking to see if the 
user is familiar with the recommended item would produce more 
"dense" novel recommendations. 

Regarding the novelty of items, an unforeseen problem was 
revealed after the user test. One user commented, "I have most of 
the bands recommended on my computer, I just haven't given 
them much of a listen to. Grizzly Bear in particular..." The 
problem here is whether, in this user's case, Grizzly Bear is a 
novel recommendation. The user states that s/he did not listen to 
many of the recommended artists, although those artists were in 
his/her library. Because the algorithm depends on the playcount of 
the songs in a user's library it is totally blind to tracks that reside 
in the library but have a playcount of 0. Thus, it recommends 
songs that it believes to be novel to the user, when it could in fact 
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exist in the library already. Unsurprisingly, the novelty and 
serendipity ratings from this user were low (a score of 2 for each), 
but the rating on the overall system was positive (a score of 4). 
Clarifying such issues on what a novel item is would help 
improve the algorithm and the user's perception of the system. 
 

7. FUTURE RESEARCH 
The most urgent and important future work on this particular 
study would be to find the ideal parameter settings to produce the 
desired recommendations. Due to the available time frame for this 
study, much of the algorithm analysis including the settings of the 
parameters, were done manually, simply by iterating through 
different settings and observing the results. By finding the 
optimized values on parameters such as Expert Head Size, User 
Tail Size, and Item Weights, the quality of the recommendations 
in novelty and relevance would be greatly enhanced. 

Work on expanding the flexibility of the algorithm can also be 
done, creating additional parameters that bring changes to the 
recommendations. More parameters would mean that the 
algorithm could be suited for each user's needs, bringing the 
possibility of creating an evermore-personalized set of 
recommendations.  

The overall system itself could be further developed to integrate 
content-based analysis for better results. Although the proposed 
method is at its infancy, we believe that the only way to improve 
it further (after it has fully developed independently) will be to 
incorporate a content-based algorithm to improve on its remaining 
weaknesses as an algorithm that is based on user profiles. 

8. CONCLUSION 
In this paper, a novel approach to recommending unfamiliar artists 
relative to each user was proposed in order to tackle the problem 
of the high density of obvious items in the list of 
recommendations found in today's recommender systems. The key 
concept in this approach was that novel items did not always have 
to be items that reside in the long tail of the popularity 
distribution. Although novel or unfamiliar items, more often than 
not, do indeed reside in the long tail of the popularity distribution, 
it is important to acknowledge that even well-known artists could 
be unknown to users who are (a) interested in different genres and 
(b) are in different cultures and/or countries. 

A system that produced recommendations was implemented and 
was available online for users to use and rate. The 
recommendations were produced using data collected from 
Last.fm. Results of the user surveys show that the proposed 
system succeeds in providing novel recommendations to users, 
while keeping those items also relevant. This study shows the 
potential of such an approach to recommending novel items, while 
maintaining a collaborative filtering algorithm without the support 
from content-based algorithms.  
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ABSTRACT
Using a dataset of 7 billion recent submissions to the Last.fm
Scrobble API1, we investigate possible popularity bias in
Last.fm’s recommendations and streaming radio services. In
particular we compare the recent listening of users who lis-
ten regularly to Last.fm streaming services with those who
listen less often or never. Finally we describe a new service
explicitly designed to make recommendations from the long
tail, and analyse popularity effects across the recommenda-
tions which it suggests.

1. INTRODUCTION
Music lovers today have access to a previously undreamed

of quantity and variety of recordings. Music is available
through an increasing number of digital channels, including
free online streaming services, “all you can eat” subscrip-
tion services, and paid downloads, not to mention via ille-
gal downloading and more traditional physical media. In
one well publicised view [2], this proliferation in availability
should lead to a reduction in the dominance of hits in our
musical culture. With the development of advanced tools for
search and recommendation, we should expect to see listen-
ers discovering and enjoying a huge range of music that may
be less popular overall, sitting somewhere in the so-called
Long Tail of sales ranks, but which offers a good match for
their own personal tastes.

The original long tail speculation was that it would be-
come increasingly profitable to “sell less of more” by mak-
ing large numbers of niche items easily available. Empirical
studies of consumer behaviour suggest that this is indeed
true, provided that enough choice is available, and that ef-
fective search and recommendation systems are provided to
help users find their way around large inventories [4, 3]. A
large recent study of consumer preference data, including
user ratings for movies and music, shows that while not all
users consume items in the long tail, “the vast majority of

1http://www.last.fm/api/submissions

WOMRAD 2010 Workshop on Music Recommendation and Discovery,
colocated with ACM RecSys 2010 (Barcelona, SPAIN)
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users are a little bit eccentric, consuming niche products at
least some of the time”, in particular reporting high average
ratings for niche music [9].

Two lines of research suggest, however, that the utopian
vision in which niche movies and music increasingly usurp
the dominance of hits may not be borne out in practice. A
recent study of the Netflix catalogue of movies shows that,
on the contrary, demand for hits appears to rise, while that
for niche products falls, as the number of available titles
increases [12]. Meanwhile hit products continue to domi-
nate the consumption of movies and music even for users
who regularly explore the long tail [6]. Secondly, a num-
ber of studies of the very recommender systems which are
supposed to support discovery in the long tail suggest that
such systems are frequently prone to popularity bias, recom-
mending globally popular items ahead of niche products [5,
7, 1].

In this paper we present an empirical study of the rec-
ommendations actually made by the widely-used Last.fm
music recommender system, in particular via its streaming
radio service, and set them in the context of wider music
listening. As well as assessing the degree of popularity bias
in these recommendations, we also compare the listening
habits of a large group of music lovers regularly exposed to
Last.fm’s streaming radio with those of a second group who
have no exposure to it. Finally we outline the design of a
recommender system expressly designed to make recommen-
dations from the long tail, and assess the popularity bias of
a sample of the recommendations it produces.

The remainder of this paper is organised as follows: Sec-
tion 2 briefly reviews previous work on popularity bias in
recommender systems; Section 3 describes the data used as
the basis for this study; Section 4 investigate the presence
of popularity bias in Last.fm’s radio streams, and Section 5
attempts to uncover any corresponding influence on users’
wider listening habits; Section 6 outlines a music recom-
mender explicitly designed to make recommendations in the
long tail, and Section 7 draws conclusions.

2. PREVIOUS WORK
Three recent studies identify potential bias in recommender

systems, particularly those based on collaborative filtering
(CF). In [1] recommendations are generated using various
well-established CF algorithms based on movie ratings from
the MovieLens and Netflix datasets2. Over 84% of the Movie-
Lens recommendations were for movies in the top 20% by

2http://www.grouplens.org, http://www.netflixprize.com
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number of ratings. No comparable figure is given for the
Netflix recommendations, but the authors suggest that in
both cases large gains in the diversity of recommendations
can be achieved, with little cost to relevance, by suitable
reranking techniques applied to the CF output.

The effect of recommendations on user behaviour is stud-
ied in a completely simulated setting in [7]. In the simulation
users receive and consume recommendations from a CF rec-
ommender over a series of timesteps, so that over time the
recommendations they receive are influenced by the previ-
ously recommended items which were added to their profile
in previous rounds. The simulation was run repeatedly, with
differing outcomes, but led in the great majority of runs to
a decrease in the overall diversity of consumption.

CF recommendations are studied indirectly in [5], which
considers the network defined by Last.fm’s similar artist re-
lationships. These relationships provide one of the sources
of data used in Last.fm’s recommender system, and can also
be directly navigated as links on the Last.fm website, pro-
viding an active form of music discovery. Besides observing
that Last.fm’s similar artist lists are dominated by other
artists with a similar level of popularity, [5] computes vari-
ous network metrics to support the assertion that “CF tends
to reinforce popular artists, at the expense of discarding less-
known music”, essentially by showing that navigation from
popular to long tail artists often involves traversing a large
number of artist links.

While all three of these papers discuss the effects of CF
recommender systems, none of them considers a dataset
of real recommendations made by a deployed system. In
this paper we use Last.fm submissions data, defined fully in
the next Section, to study the effect of a large-scale recom-
mender system in practice.

3. DATA
Last.fm allows music lovers to scrobble details of their mu-

sic listening. Scrobbling is available from media players and
streaming services either though native support or via a suit-
able plugin, and is built in to some hardware devices. The
Scrobble API3 supports the submission of various events: in
this paper we distinguish between radio listens, which record
the act of playing a track via one of Last.fm’s own streaming
radio stations, and scrobbles, where the track played comes
from any source other than Last.fm. In both cases the sub-
mitted metadata includes an artist name: for a scrobble
this is typically drawn from the ID3 tags of the track being
played.

Last.fm provides various types of streams, including Sim-
ilar Artists and Tag radio, launched by supplying a seed
artist or tag respectively, available to anyone, and Recom-
mendation and Library radio, available to any user regis-
tered for scrobbling. Recommendation radio plays tracks by
artists selected for the user by Last.fm’s recommender, while
Library radio plays tracks by artists previously scrobbled by
the user. Users typically listen to Last.fm’s radio stations
through the flash player on the Last.fm website, or via a
client program on their computer, phone or games console.
In each case, information is displayed about the artist of
the current track, including links to the artist’s page on the
Last.fm website, lists of similar artists, etc. While Recom-
mendation radio is clearly an explicit recommendation ser-

3http://www.last.fm/api/submissions

Figure 1: Artist popularity amongst Last.fm users.

vice, all the stations can be considered as offering implicit
recommendations, with Similar Artists radio in particular
relying on underlying similarity data which also forms part
of the input to Last.fm’s recommender system. Even Library
radio can be regarded as providing a form of non-novel rec-
ommendation, as it may remind the user of artists whom
they like but have not listened to for some time.

In the following analysis we therefore pay special attention
to Recommendation radio, but also consider the influence of
Last.fm streaming radio as a whole. For the time being we
neglect the influence of the recommendations displayed on
users’ Last.fm home pages and dedicated recommendation
pages. The dataset used consists of over 7 billion submis-
sions to the Scrobble API received between January and
May 2010.

4. POPULARITY BIAS
The most widely-used measure of the diversity or, con-

versely, concentration of a set of products consumed by a
group of users is the Gini coefficient [8], and this has also
been applied to measure popularity bias within recommen-
dations [7]. The Gini coefficient is computed from the area
bounded by the Lorenz curve, which, in the case of artist
recommendations, plots the proportion of the total number
of recommendations made cumulatively for the bottom x%
of artists recommended. The Gini coefficient is not ideal for
our purposes here, as it depends on artist ranks within the
set of recommendations being evaluated, i.e. it would show
high concentration for a recommender that overwhelmingly
recommended a small number of artists, even if all the artists
it recommended belonged to the long tail. In the Sections
that follow we therefore show plots similar to Lorenz curves,
but showing the cumulative proportion of recommendations
made in relation to artist ranks according to their global pop-
ularity, based simply on the overall total number of scrobbles
received at the time of writing, shown in Fig. 1. We can also
use this data to define what we mean by a “long tail” artist.
Fitting Kilkki’s informal model [10] suggests that this is any
artist below rank 20,000; Fig. 1 shows, however, that in re-
ality popularity flatlines slightly further down the tail, and
that a reasonable definition of a long tail artist is one at
rank 50,000 or below.
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Figure 2: Popularity bias in Last.fm radio. Cumula-
tive plays by artist rank for Recommendation radio
and for all Last.fm radio stations. For comparison
we also show the cumulative proportion of all scrob-
bles received during the same period.

Fig. 2 shows the distribution of ranks for artists played
on Last.fm Recommendation radio, and on all Last.fm ra-
dio stations, compared with the distribution for all tracks
scrobbled in same period. We observe that Last.fm radio is
somewhat biased away from hit artists in comparison to the
listening of Last.fm users as a whole, while Last.fm’s rec-
ommendations are even more strongly biased towards lower
ranking artists. In particular we see that artists in the top-
1000 of overall listening make up 40% of scrobbles but only
20% of plays on Recommendation radio. Recommendation
radio plays the same proportion of long tail artists as are
listened to overall, but includes fewer plays of the lowest
ranked artists: it is reasonable to assume, however, that
artists scrobbled at those ranks include many whose tracks
are not readily available for streaming, as well as spurious
artists based on submissions with incorrect metadata that
is not repaired by Last.fm’s automatic correction system.

5. INFLUENCE
To expose the possible influence of Last.fm recommenda-

tions on users, we first create a set of active listeners by
taking all users who registered during the five months under
consideration and then scrobbled at least 500 but no more
than 20,000 tracks during that time. The upper limit re-
moves spammers and other technically-minded enthusiasts
whose scrobbles represent a superhuman quantity of listen-
ing within that period, while the lower limit ensures that
we have a reasonable amount of listening data for all of the
users under consideration. We then draw two samples from
this set of listeners. The first contains all users who had
no exposure to any Last.fm radio station within the period
(or indeed at any stage, as we include only newly-registered
users). The second group contains all users for whom radio
listens made up 25-75% of their submissions, i.e. these lis-
teners are highly exposed to Last.fm radio, but also make a
significant number of scrobbles for listening outside Last.fm.

Fig. 3 shows the distribution of artists scrobbled by each
of these groups in the first five months of 2010, again com-
pared with that for all tracks scrobbled during the same

Figure 3: Possible influence of Last.fm radio. The
plots show the cumulative proportion of scrobbles
received by artist rank for two groups of users, one
regularly exposed to Last.fm radio and the other
completely unexposed to it.

period. We observe a bias towards more popular artists in
the mid region for the group of radio listeners, but it is
small compared with the biases in artist popularity for ra-
dio plays shown in Fig. 1, and, more importantly, clearly not
correlated with them. To control for demographic or other
systematic differences between users who listen frequently to
radio and those who never do so, in Fig. 4 we compare scrob-
bles for users with low exposure to radio, making up 10-50%
of their scrobbles, to those with radio making up 50-90% of
their scrobbles. In contrast to Fig. 3, this shows a slight
bias towards the long tail in users with higher exposure to
radio. We can conclude that there is no evidence that radio
and recommendations cause a systematic bias towards more
popular artists.

6. LONG TAIL RECOMMENDATIONS
We build a prototype recommender for long tail artists us-

ing conventional item-based CF. We first identify a suitable
candidate pool of long tail artists from which to draw our
recommendations. For each artist in our overall catalogue
we then find the most similar k artists within the pool, based
on scores computed by comparing both scrobbles and tags
applied to each artist. When a user u requests recommen-
dations, we create a profile of artist weights Wu based on
their scrobbles, and build up a candidate set containing the
top-k similar artists in the pool for each artist in Wu. We
then score each candidate artist a based on their similarity
to artists in the user’s profile, computing a score Pu,a using
the well-known weighted sum method [11], finally returning
the top-N highest scoring artists:

Pu,a =
∑

a′∈Wu

sim(a, a′)wu(a′) (1)

where sim(a, a′) is the similarity between a and a′, and
wu(a′) is the weight assigned to a′ in the the user profile.

To obtain a suitable pool of long tail artists, we start with
all artists with tracks currently available in the Last.fm“Play
direct from artist” scheme, under which unsigned artists or
labels holding suitable rights can make tracks available for
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Figure 4: Scrobbles received for users with low and
high exposure to Last.fm radio respectively.

free streaming from their Last.fm pages. This scheme is
aimed at niche and new artists, but to be sure that artists
in the pool are indeed from the long tail, we also apply a
hard cutoff on current overall reach, removing any artists
with more than 10,000 listeners. Finally to mitigate prob-
lems with artist disambiguation in the long tail, where new
or niche artists have the same names as more popular artists,
we mine Last.fm wiki entries for key phrases indicating mul-
tiple artists with the same name, removing any affected
artists from the pool. The resulting set of long tail artists is
updated daily, but at the time of writing contains 118,000
artists.

To study the popularity distribution amongst artists sug-
gested by this new system, we generate 50 recommendations
for each of a sample of 100,000 active Last.fm users, defined
as users who have visited the Last.fm website within the last
week. Fig. 5 shows the resulting distribution, compared to
that for plays on the main Recommendation radio station
during the first five months of 2010. Approximately 90% of
the sampled recommendations are for artists in the mid to
long tail, with ranks 25,000 to 100,000, with the remaining
10% being for the lowest ranking artists. While the previ-
ous Section suggests that the influence of recommendations
may be limited, we can reasonably hope that the prototype
recommender will gradually stimulate increased interest in
the long tail.

7. CONCLUSIONS
A comparative analysis of artists chosen by Last.fm’s rec-

ommender system and a large body of listening data suggests
that, contrary to claims in the literature based on laboratory
experiments, real world music recommenders do not neces-
sarily exhibit strong popularity bias. Our results suggest
that, in any event, the influence of such a recommender on
users’ general listening may be limited. Finally we sketch
the design of a prototype recommender designed explicitly
to suggest artists from the long tail. Future work includes a
user evaluation of the prototype system, which is now pub-
licly available4.

4http://playground.last.fm/demo/directrecs

Figure 5: Long tail recommendations vs plays on the
main Recommendation radio.
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