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ABSTRACT 

The online music industry has been growing at a fast pace, 
especially during the recent years. Even music sales have moved 
from physical sales to digital sales, paving the way for millions of 
digital music becoming available for all users. However, this 
produces information overload, where there are so many items 
available due to, virtually, no storage limitations, it becomes 
difficult for users to find what they are looking for. There have 
been many approaches in recommending music to users to tackle 
information overload. One successful approach is collaborative 
filtering, which is currently widely used in commercial services. 
Although collaborative filtering produces very satisfying results, it 
becomes prone to popularity bias, recommending items that are 
correct recommendations but quite "obvious". In this paper, a new 
recommendation algorithm is proposed that is based on 
collaborative filtering and focuses on producing novel 
recommendations. The algorithm produces novel, yet relevant, 
recommendations to users based on analyzing the users' and the 
entire population's listening behaviors. An online user test shows 
that the system is able to produce relevant and novel 
recommendations and has greater potential with some minor 
adjustments in parameters.  

Categories and Subject Descriptors 
I.1.2 [Computing Methodologies]: Algorithms – Nonalgebraic 
algorithms, analysis of algorithms 

General Terms 
Algorithms 

Keywords 
Recommender systems, collaborative filtering, music 
recommendation 

1. INTRODUCTION 
With advances in the Internet, lower hardware costs, increasing 
peer-to-peer networks, and the popularity of high-storage portable 
media players, the online music industry has been growing 
rapidly, especially during the past few years. Gradually, music 

sales have moved from physical album sales to digital sales from 
online stores. Currently, these services offer millions of tracks to 
users, the catalog growing rapidly in size compared to the size 
when the services were first announced. For instance, Amazon 
offered over 2 million songs to users when the music service 
launched, but now offers over 11.8 million songs as of 2010. 
Some notable online music stores, including Amazon, are 
Amazon MP3 (11,000,000+ songs), iTunes Store (12,000,000+ 
songs) and Rhapsody (9,000,000+ songs). Apart from music 
stores, there are also music streaming services that offer millions 
of songs, such as Lala (8,000,000 songs), Spotify (8,000,000 
songs), and Last.fm (7,000,000 songs). 

These large numbers of songs available to users are a result of the 
Long Tail business model [1], contrary to only products that were 
in demand being sold in stores. However, as a result, although 
paradoxical, users have ended up listening to less music now that 
so much is available, simply because it is hard to find new and 
relevant music. For instance, digital track sales surpassed the 1 
billion sales mark in 2008. However, the Top 200 digital tracks 
alone accounted for 17% of the entire track sales (184 million 
sales) [2]. 

2. RELATED WORK 
2.1 Collaborative Filtering-based 
Recommender Systems 
One of the earliest recommender systems based on collaborative 
filtering is Tapestry [3]. Stemming from the need to handle 
increasing numbers of emails, Tapestry used explicit opinions of 
people in a relatively small group, such as an office workgroup, to 
filter out incoming email for a given user.  However, a drawback 
of this system was that users had to be familiar with the 
preferences and opinions of other people in their network, which 
is why Tapestry worked on small networks like the office.  

A more general collaborative filtering approach was developed by 
Resnick et al. called GroupLens [4]. The basic idea behind 
GroupLens, which aimed to help users find news articles amongst 
the vast available numbers, was that "people who agreed in the 
past will probably agree again". Using this heuristic, the 
GroupLens system was able to predict the ratings of certain news 
articles by a given user. An advantage that this provided was that 
the collaborative filtering could be scaled, unlike Tapestry, 
because a user was not required to actually know other users that 
had similar preferences to him. This was done by the system, 
which gathered information on the ratings of users, naturally 
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creating another advantage of users being anonymous inside the 
whole system.  

Research related to, and including, the above studies focused on 
filtering a vast amount of text, which were in forms of emails, 
news, and messages, to those that were worth reading. Items 
would be given to the user with their prediction scores, aiding the 
user in which item to read next. The next wave of studies focused 
on a more direct approach in recommending items. 

Ringo was a system developed to provide personalized music 
recommendations [5]. It maintained a user's profile, a history of 
ratings on various artists that were essentially explicit labelings on 
which artists the user does or does not enjoy listening to. These 
profiles were matched by the system to calculate 
recommendations on which artists had the highest probabilities of 
being liked by the user.  

While Ringo was focused on music items, Bellcore's 
recommender system focused on movies [6]. Like Ringo, it used a 
database of movie ratings by users and matched rating profiles to 
provide recommendations by finding similar users and the movies 
that they had watched and rated positively. Tests on the reliability 
of the recommender system showed that three out of every four 
recommendations would be rated highly by the user, and also 
showed that the system produced extremely more accurate 
recommendations compared to nationally-known movie critics.  

While there were numerous advances and algorithms related to 
collaborative filtering since then, the most well-known 
collaborative filtering system today, however, is probably the 
system used in Amazon.com, an electronic commerce company 
that sells books, movies, music, etc. Amazon.com offers 
recommendations on items that are similar to the item being 
purchased, rather than finding similar users and then 
recommending the items those users have purchased. This 
method, which is called item-to-item collaborative filtering, scales 
to extremely large datasets and generates satisfiable results.  

2.2 Collaborative Filtering-based 
Recommender Systems for Music  
Although the collaborative filtering-based approaches above were 
designed on specific items, the algorithms can be generalized and 
applied to music recommendation. Hence, the results of such 
algorithms applied to music are not much different than applied to 
the original items.  

Apart from recommender systems that use data on the ratings 
and/or purchases of items, there are other collaborative filtering-
based recommender systems that take advantage of metadata 
produced by users that are found in music.  

[7] presents some examples of metadata used in such algorithms, 
which include reviews, lyrics, blogs, social tags, bios, and 
playlists. Examples of commercial services that use such 
approaches are Rate Your Music (reviews), The Hype Machine 
(blogs), last.fm (social tags), and playlist.com (playlists).  

Social tags, a representative product of online collaboration, has 
been used heavily in music recommendation systems. Hu and 
Downie explored the mood metadata associated with songs and 
their relationships with music genre, artist, and usage metadata 
[8]. They found that the genre-mood relationships and artist-mood 
relationships showed consistencies, showing the potential of being 
utilized in automated mood classification tasks. Eck et. al 

proposed a method for generating social tags for music that lack 
such tags [9]. Audio features of songs were analyzed and mapped 
to tags, using a set of boosted classifiers. These were then utilized 
on untagged songs, populating them with the associated social 
tags depending on the musical content. This enables unpopular 
songs and/or new songs that have no social tags to be used in 
music recommenders that use a social algorithm. It also tackles 
the cold start problem, a problem found in collaborative filtering-
based recommender systems. Symeonidis et. al analyzed social 
tags in order to tackle the problem of the multimodal use of music 
[10]. They developed a framework that modeled users, tags, and 
items, altogether. This was then used in recommending musical 
items (artists, songs, and albums) to users by performing latent 
semantic analysis and dimensionality reduction according to each 
user's multimodal perception of music. Levy and Sandler inspect 
the seemingly ad hoc and informal language of tagging as a high-
volume source of semantic metadata for music. Results show that 
tags establish a low-dimensional semantic space, being extremely 
polished at the track level, especially by artist and genre. Using 
these results, the authors also introduce an interface for users to 
browse by mood, through a two-dimensional subspace that 
represents musical emotion. 

Celma introduces a system that recommends music and the 
relevant information associated with the recommended music 
[11]. The proposed system uses the Friend of a Friend and RSS 
vocabularies for creating recommendations, taking in 
consideration the user's musical tastes and listening habits. The 
FOAF project provides protocols and a language to describe 
homepage-like content and social networks, ultimately providing 
the proposed system with the user's profile. The RSS vocabulary 
provides the system with syndicated content, which includes data 
such as new album releases, album reviews, podcast sessions, 
upcoming gigs, etc. Thus, the proposed system improves the 
existing recommendation systems by understanding the users 
through psychological factors (personality, demographic 
preferences, socioeconomics, situation, social relationships) and 
explicit music preferences.  

3. LIMITATIONS OF COLLABORATIVE 
FILTERING 
3.1 Popularity Bias 
Collaborative filtering-based recommender systems produce good 
results and are used widely in commercial services such as 
Amazon.com and Last.fm. However, collaborative filtering has 
some common limitations that occur naturally due to its roots 
lying in the wisdom of crowds. One of the largest problems of 
collaborative filtering is popularity bias [12, 13].  

This happens when a popular item is associated with many other 
related items. Users that interact with these items are then 
recommended the popular item. The system recommends the 
popular item often, leading to item purchases (or any other form 
of positive input from user) and as this item is purchased more, it 
is also recommended more. This loop, in which the rich become 
richer, creates popularity bias.  

Naturally, as a result of the above feedback loop, the 
recommender system tends to bias its recommendations towards 
popular items. Thus, the recommendations lose their novelty [12, 
13] and make it extremely difficult to recommend lesser-known 
artists.  



In Amazon.com, in which collaborative filtering is heavily used, 
the popularity bias can be seen when viewing the 
recommendations that are offered when searching for popular 
items. For instance, the 98 recommendations that appear when 
searching for Harry Potter includes The Da Vinci Code, To Kill a 
Mockingbird and 28 other Harry Potter books and DVDs. In the 
case of music, searching for The Beatles' Revolver album results 
in 33 albums from The Beatles, out of a total of 97 
recommendations, as shown in Figure 1. The other recommended 
items show well-known artists that user's, who are interested in 
The Beatles, will most likely have heard of already such as The 
Rolling Stones, Led Zeppelin, and Neil Young. These 
recommended artists are correct recommendations but fail to be 
novel recommendations. 

 
Due to this popularity bias, a large portion of the recommended 
items result in obvious recommendations that may be relevant to 
easy-going, casual listeners, but not so helpful for enthusiastic 
music listeners, who have a high probability of already being 
knowledgeable on the artists being recommended. 
The number of high quality, or "correct", recommended items that 
are produced with collaborative filtering is verified by [14]. 
However, the problem of popularity bias was also verified as the 
amount of novel recommendations given to a user was the lowest 
for collaborative filtering in an experiment comparing 
collaborative filtering, content-based, and hybrid methods [14]. 
Thus, it was confirmed that collaborative filtering results in less 
percentage of novel songs but of higher quality.  

4. ALGORITHM 
In this section, we provide an algorithm that is based on 
collaborative filtering, yet overcomes popularity bias, a natural 
problem that arises from CF. Also, the algorithm focuses on 
providing recommendations that are novel to the user, while also 
remaining relevant.  

To implement this algorithm, user data from Last.fm, an Internet 
service that provides users with streaming music via radio 
stations, was used. Reasons for selecting Last.fm was the readily 
available developer API and the various, massive amount of data 
that was available such as user playlists, playcounts for artists and 
individual songs, artist information, song information, and most 
importantly, the worldwide popularity of the site. 

4.1 Concept of Recommendation Algorithm 
4.1.1 Changing Perspectives on Novel 
Recommendations 
While the goal of recommenders in general is to provide 
recommendations that are novel and relevant to the user, as stated 
beforehand social-based recommendations, although relevant, fail 
in providing novel recommendations to users. In contrast, content-
based recommender systems work better in providing novel 
recommendations because they are not affected by popularity or 
any other social influence [15]. 

Another method to provide novel recommendations to users is to 
use the long tail popularity distribution of the artists [7]. This idea 
can be applied to both content-based and social-based algorithms. 
Content-based algorithms can use the long tail distribution to 
recommend similar items based on content-analysis and also 
found in the tail portion of the distribution. For social-based 
algorithms, or collaborative filtering, the idea can be applied by 
first obtaining the full list of recommendations and then removing 
the recommendations that lie in the head portion of the 
distribution. This would result in recommendations being novel to 
the user, since it is unlikely that artists residing in the tail portion 
of the distribution are known to the user.  

However, although strictly recommending artists from the long 
tail and avoiding recommending those that are obvious (those that 
are located in the head portion of the distribution) have a high 
probability of being novel recommendations, we need to take in 
consideration that novel recommendations are relative to the user. 
In other words, it is naive to assume that the user will be aware of 
certain artists just because they are in the head portion of the long 
tail distribution. Thus, the fact that even popular artists have a 
possibility of being novel recommendations to certain users must 
not be overlooked.  

4.1.2 User Listening Behavior 
As shown in Figure 2, which shows a random Last.fm user's 
playlist in descending order of playcount, the listening behavior 
shows a distribution that is similar to that of long-tail 
distributions. Users tend to listen to an extremely small portion of 
their playlists often while the remaining songs seldom get played. 
Due to the data available, which is the top 500 played songs in the 
user's playlist, all of the songs in the graph are played at least 
once.  

4.1.3 Defining Experts and Novices 
Using this long-tailed distribution of users' listening behaviors, the 
users can be divided into two groups: experts and novices. Here, 
users are considered "experts" regarding the songs/artists that they 
listen to often, i.e. songs/artists that lie in the head portion of the 
long-tailed listening behavior. On the other hand, users are 
considered "novices" regarding the songs that reside in the tail 
portion.  

Figure 1. Recommendations from Amazon.com, which 
are all quite "obvious" recommendations, although 

they are correct recommendations. 

Figure 2. The listening behavior of a user and his/her entire 
playlist. Although not exact, the graph shows a long-tailed 

distribution where the majority of tracks are seldom played. 



4.1.4 The Mystery of Unpopular “Loved” Songs 
Last.fm provides users with an option to mark songs "loved" 
(Figure 3). This kind of feedback from users explicitly shows that 
a user enjoys a particular song. One would expect that these 
"loved" songs would all lie in the head portion of the listening 
behavior distribution. However, these songs that are marked 
"loved" can be found scattered throughout the entire distribution. 
Here, a paradox can be found: Why are some songs marked 
"loved" lying at the tail end of the playcount distribution? One 
would assume that a "loved" song would have a high playcount, 
but a quick inspection shows that this is not the case. Thus, an 
assumption that is made here, a key assumption in this algorithm, 
is that songs are marked "loved", yet remain in the tail, because 
the user is unfamiliar with that song/artist/genre, i.e. is a novice, 
but happened to stumble upon that particular song and liked it.  

Among the 21,688 users whose data was used for the algorithm, 
78.3%, or 16,973 users, used the "love" function provided in 
Last.fm. Among the 16,973 users who utilized the "love" function, 
77.8% of the users had "loved" songs in the tail portion of their 
playlist's song distribution sorted by playcount.  

Upon closer inspection of the random user in Figure 3, the 
songs/artists in the "head" portion came from various genres such 
as electronic, hip-hop, and reggae. What they did have in 
common, however, was that they were all German artists, 
including the user herself. Looking at the songs that were marked 
"loved" but were not played often, we can see that they too come 
from different genres, but are both artists from the U.S.  

The previously mentioned assumption that fuels this algorithm 
was made after observing such occurrences in users' playlists. 
According to our assumption, we assume that the user, who is 
German, is a novice in artists from the U.S. and stumbled across 
several songs that she liked. However, she did not get to venture 
similar songs and/or artists because she was unaware of which 
artists/songs were similar.   

4.1.5 The Big Picture 
Once the basic assumptions are made and the new definition of 
novices and experts are established, the concept of the 
recommendation algorithm can be explained. As shown in Figure 
4, recommendations can be made to novices of certain song sets 
using the information that can be obtained by a group of experts 
that have those song sets in the head portion of their listening 
behavior distribution.  

By using the listening behavior of experts to provide 
recommendations to novices, the recommended items will be 
novel to the user, contrasting to other recommendation systems 
that simply recommended artists/songs from the tail of the 
popularity distribution of items. In other words, while remaining 
novel to the specific user, the recommended items may or may not 
be in the far, unpopular end of the popularity distribution. In fact, 
even popular items that reside in the head of the popularity 
distribution may be recommended, but the user may not be aware 
of the recommended item since the recommendations were based 
on the user's tail portion of her listening behavior distribution, in 
which the user was considered a novice.  
In addition to being novel recommendations, the recommended 
items will also be relevant to the user since the recommendations 
were found using songs that the user had marked "loved", 
explicitly stating the user's view on that particular item, and then 
using collaborative filtering to find experts on those "loved" songs 
to find relevant recommendations.  

4.2 Data 
User data was collected in order to test the algorithm and evaluate 
the results of the recommendations from early March to late April 
in 2010. Data was collected from the Last.fm website using a 
custom web crawler and the Last.fm API. The user data that was 
collected included the songs that the user had listened to overall, 
meaning the songs that the user listened to from the day he/she 
registered at Last.fm up until the day the data was collected. It 
also included the playcount for each song, song title, artist name, 
user ID, rank, and whether it was marked "loved" or not. The data 
that was collected is summarized below in Table 1. 

Table 1. Summary of amount of data collected 
Data Count 

Users 21,681 

Unique Songs 2,001,324 

Songs from All Playlists 9,073,681 

 

Figure 4. The overview of the algorithm showing the 
concept of novices and experts. 

Figure 3. The "tail" portion of  a random user’s playlist.  
There are two songs marked "loved" by the user, but have 

only been played three times. 



4.2.1 Last.fm API 
All the collected information, except the playlist history, was 
gathered via the Last.fm API. Although the algorithm could have 
queried the information in real-time, it was decided that having 
local data would facilitate in quicker results. After fetching the 
data, we had song titles and corresponding artist names of 
approximately 2 million songs.  

In addition to the user and song data collected with the Last.fm 
API, artist popularity was also measured indirectly via the API. 
Because the Last.fm API did not provide the artist ranking 
directly through the API, we had to collect the number of 
Listeners and Plays, which were offered through the API. By 
having the Listeners and Plays of a given artist, we would be able 
to determine the overall ranking of popularity of the artists. This 
will be further explained in the next section. 

4.2.2 User Data Crawler 
Unfortunately, the Last.fm API query for a given user's listening 
history returns the top 50 songs ordered by playcount. This was 
not adequate enough since the algorithm needed the entire playlist 
in order to utilize the long tail of the playcount distribution. 

In order to solve this problem, a custom crawler was implemented 
to collect the users' listening history (referred to as ‘playlist’ in 
this paper) and playcount information. Although this returned a 
maximum of 500 results (Last.fm displays only top 500 songs in 
the playlist), the data was adequate to be divided into the short 
head and long tail and used in the algorithm. 

Data on a total of 21,681 random users were crawled. The 
playlists and the according information were also stored for each 
user, resulting in 21,681 playlists with a total of 9,073,681 songs. 
Because playlists from different users contain lots of duplicate 
entries, the number of unique songs that were crawled, as stated 
above, was 2,001,324 unique songs. 

4.3 Algorithm 
As shown in Listing 1, the user that will receive the 
recommendations, whom we will call "novice" according to the 
algorithm's concept, is given as input to the algorithm. Then, the 
listening behavior for the novice is retrieved using data available 
at Last.fm. As long as the user is not a new user and has been 
listening to his/her playlist, the playcount distribution of his/her 
playlist is more than likely to show a long-tailed distribution, in 
which a small set of songs have been listened with a heavily 
biased frequency while the remaining songs listened only 
occasionally. Since we are interested in the songs/artists that the 
given user is a novice on (i.e. songs marked “loved” in the long 
tail), we discard the head portion of the distribution and from the 
remaining songs, which are songs in the tail portion, we discard 
all songs except those that are explicitly labeled "loved" by the 
novice. These remaining songs, denoted by ‘S_1’, will be the song 
set that will be used to create recommendations. 

Next, using the listening behavior of the other users from our 
database, we find those that listen to the songs in song set S. In 
other words, we find the "experts" on song set S by finding users 
that have a subset of song set S in the head portion of their 
listening behavior distribution. If such users exist, we compare the 
songs in the “head” of their playcount distribution with song set S 
and use the remaining, non-overlapping songs as recommendation 
candidates and assign the weight for those items according to the 

strength of the match between the songs in the expert's "head" and 
song set S. 

These recommendation candidates are accumulated in the global 
song set REC, and the weight of the candidate are incremented as 
they are recommended to REC. Finally, the recommendations are 
given to the user in the order of their weights. 

4.4 Parameters 
The algorithm is quite flexible as it has many parameters that can 
be changed, which greatly influences the recommended items to 
the user. Parameters that play a crucial role in the overall quality 
of the recommendations include: 

• The size of the “head” of experts 
• The size of the “tail” of novices 
• Weights of recommended items 
 

4.4.1 Expert Parameter 
The parameter that influences the outcome most is the size of the 
"head" portion of the expert's listening behavior distribution. For 
example, if the value for this parameter is set to "10", a user is 
considered an expert only if the top ten songs that s/he listened to 
contains any number of songs from the set of songs that are 
marked "loved" in the novice's "tail" portion of his/her listening 
distribution. In other words, this parameter determines the 
qualification strictness on which users are considered experts. 

The lower the value, the harder it is for a given user to be 
considered an expert. Also, as the value is lower, the resulting 
recommendations are more novel, in contrast to when the values 
are higher, in which the resulting recommendations become those 
that are well-known. As the value is set higher, the 
recommendations represent those that are from the existing music 
recommendations that are offered using traditional collaborative-
filtering methods. 

4.4.2 Novice Parameter 
The parameter that can be varied for the novice users is the size of 
the "tail" portion of the novice's listening behavior distribution. 

begin Recommendations REC (aGivenUser U1); 
   do 
      Result R1 := retrieveListeningBehaviorDistribution(U1); 
      SongSet S1 := getSongsInLongTail(R1); 
      S1_loved := filterLovedSongs(S1); 
      for i := 2 to n (n: number of users) step 1 do 
         Result Ri := retrieveListeningBehaviorDistribution(Ui) 
         SongSet Si := getSongsInHead(Ri); 
         if (Si ∩ S1 ≠ ∅) do 

            CandidateSongSet CSi := (Si ∪ S1) – (Si ∩ S1); 

            incrementWeight(CSi); 
            REC += CSi;   od 
         od 
      od 
      printRecommendations(); 
   end; Listing 1. Pseudoalgorithm for proposed recommender 

system. 



Opposite of the expert parameter, the novice parameter sets the 
range of songs in the user's playlist that the user is a novice on. 
Using loved songs that lay near the "head" portion may result in 
songs that the user is aware of, leading to the recommendations 
being less novel to the novice. However, this parameter does not 
have as much influence as the expert parameter has because once 
the novice parameter is set, the entire range of songs are not used, 
but only those that are explicitly marked "loved" by the user. 
 
4.4.3 Weights of Recommended Items 
A formal set of rules and equations to assign weights to the 
recommended items can greatly change the songs that will be 
presented to the user as recommendations. This is important 
because it is inappropriate to present the entire collection of songs 
that result from the algorithm, as the number may vary depending 
on the two parameters above. Among the final song set that 
contains hundreds of candidate songs for recommendations, only 
a subset, namely the top N songs are presented to the user. Thus, 
assigning the appropriate weights for these candidates can 
ultimately influence the outcome of the recommended items. 
Currently, the algorithm uses a simple approach in which the 
weight is equal to the number of times a song is a member of both 
the head of an expert and tail of the novice.  
 

5. USER TEST & EVALUATION 
There are many ways to evaluate a recommender system, both 
offline and online. A common online method to evaluate a 
recommender system is to generate test sets to be evaluated later 
[16]. Another popular method is to use cross-validation, in which 
the data is partitioned and used as test sets [17]. 
 

5.1 Difficulties in Evaluating Novel 
Recommendations  
However, offline evaluations are not appropriate for recommender 
systems where the recommendations of novel items are important. 
This is because when a truly novel item is actually recommended 
to a user, meaning that the user does not already know about this 
item, it is extremely difficult for the user to evaluate the unknown 
item without providing any additional information [18]. Because 
of this, measuring novelty in the recommended items is a rather 
challenging task, leaving no option but to carry out live user 
studies where the users explicitly indicate whether the provided 
recommendations were novel or not [19]. 

Thus, in order to measure the novelty and relevance of the 
recommended items, an online user test was carried out using a 
fully functional website, including a section for explicit user 
feedback regarding the recommendations given to the users. 

5.2 Design 
A fully functional website was created in order to perform an 
online evaluation of the recommendations for random users. On 
the website, a user has to sign-up and input his/her Last.fm ID. 
After receiving a new ID, the server runs the recommendation 
algorithm on that particular Last.fm ID. Meanwhile, the user was 
requested to come back shortly afterwards, while the 
recommendations were being processed. The algorithm had to be 
run in real-time online because of the nature of it being heavily 
dependent on the user information. Also, pre-calculating the 
recommendations for users in the local database offline and then 
providing them online was unrealistic as the probability that a new 

user would also be one that was pre-calculated was extremely 
low. When the user returns, he/she is presented with two sets of 
recommendations.  

Recommendation Set 1 was the results of the algorithm with the 
Expert Parameter, the parameter that determines the size of the 
"head" portion of the expert, set to 5. A value of 5 for the Expert 
Parameter means that the algorithm is being very strict about 
which users are qualified to be experts. This produces dense novel 
items. Recommendation Set 2 was the results with the Expert 
Parameter set to 10. A value of 10 tends to mix novel 
recommendations and well-known recommendations, so is more 
of a general setting that aims to resemble recommendations from 
Last.fm. After the user views the recommendations, a survey page 
was available to provide explicit feedback on the quality of the 
recommendations given to them.  

 
Since the goal of the algorithm is to provide novel 
recommendations, there had to be an easy way for the user to 
evaluate the recommended items, since it is assumed that if the 
recommended items are indeed novel, then the user has no 
knowledge about the item. Thus, each recommended item was 
hyperlinked to the according page in Last.fm, as shown in Figure 
5. Through these links, users were able to evaluate the 
recommended items that were novel to them by visiting the linked 
pages. Last.fm provides related information regarding specific 
songs, which include music videos, song previews, and even a 
radio for the song's artist. By utilizing these pages, users were able 
to listen to the songs that were recommended to them. 
 

5.3 Survey 
On the survey page, a set of five questions were given to the user, 
each regarding one of the two sets of recommendation results that 
were produced by the algorithm. The questions were answered on 
a five-point Likert item. The final question was a subjective 
question, asking for any comments or feedbacks on the 
recommendations. The questions used in the survey are shown in 
Table 2. 
 
 

Figure 5. Screenshot of the recommended items at the user-
test website. Each facet of the recommended items are linked 

to pages at Last.fm for supplementary information 



Table 2. Questions used in the user survey. 

Q. 1 How would you rate the relevance of items? 
Q. 2 How would you rate the novelty of the recommended 

items? 
Q. 3 How would you rate the serendipity of the recommended 

items? 
Q. 4 How would you rate the recommendations overall? 
Q. 5 Provide any comments/feedback about the 

recommendations that were given to you. 
 

6. RESULTS & DISCUSSION 
A user survey was carried out online accompanying the online 
music recommendation service because of the difficulties in 
measuring novelty. A total of 24 users tested the 
recommendations offered to them on the website. These users 
were random Last.fm users that had received private messages 
(advertising the user test) through the Last.fm messaging system. 
The new recommendation system was also advertised on various 
Last.fm groups whose interests were in finding new music or 
those who were unsatisfied with current recommender systems 
and their quite obvious recommendations. However, because the 
users had to answer two surveys for two different sets, some 
appeared to have quit abruptly after finishing the first set. As a 
result, only 11 users out of 24 completed the second survey.  

The private messages were sent to random Last.fm users who 
satisfied two conditions: 1) the user used the “loved” function 
with his/her playlist, 2) The last time the user logged in was not 
more than two weeks ago from the day the private messages were 
sent. Despite the advertisements and private messages, the 
response rate was extremely low (< 10 %). The results are shown 
in Figures 6-8.  

 

 
Figure 6. Comparison of the relevance ratings for the two sets 

 
 

 
Figure 7. Comparison of the novelty ratings for the two sets 

 

 
Figure 8. Comparison of the overall ratings for the two sets. 

The results of the user test on the recommendations produced by 
the proposed algorithm are generally positive. The mean value for 
the relevance of the items was 3.417 (on a 5 point scale) with a 
confidence interval of 0.390 (with alpha value of 0.05). The mean 
values of novelty and serendipity were also on the positive side 
with 3.667 and 3.625, respectively. The confidence intervals were 
0.436 (alpha = 0.05) for novelty and 0.350 (alpha = 0.05) for 
serendipity. The overall rating of the recommender system had a 
mean value of 3.458 with a confidence interval of 0.263 (alpha = 
0.05). In general, the results show that the proposed system has 
positive ratings and could be refined to produce better results. 

The proposed system was rated higher in both novelty and 
serendipity, compared to the second set of recommendations, 
which was a set of recommendations that was intended to imitate 
existing systems such as Last.fm. 

For this study, the parameters of the system were set with values 
that we thought produced the desired results after several 
iterations of the algorithm. However, a full study focused on 
finding the optimal values for the parameters would be an 
excellent follow-up study and would greatly enhance the 
recommendations of the system. 

The score for the novelty of recommended items could have been 
higher, because the algorithm did not check whether the 
recommended songs existed in the user's library before being 
offered. Thus, the user would see some artists that they were 
aware of. As implied above, it is quite easy to increase the 
percentage of novel items in the entire recommendation list: 
simply check whether the artist exists in the user's library and if it 
does, exclude it from the recommendations. However, this step 
was excluded from the algorithm deliberately to increase the 
confidence of the users on the proposed system. The basis for this 
was [20], in which the authors found that users liked to see 
familiar items in the recommendations, which ultimately led to an 
increase of user confidence in the system. Checking to see if the 
user is familiar with the recommended item would produce more 
"dense" novel recommendations. 

Regarding the novelty of items, an unforeseen problem was 
revealed after the user test. One user commented, "I have most of 
the bands recommended on my computer, I just haven't given 
them much of a listen to. Grizzly Bear in particular..." The 
problem here is whether, in this user's case, Grizzly Bear is a 
novel recommendation. The user states that s/he did not listen to 
many of the recommended artists, although those artists were in 
his/her library. Because the algorithm depends on the playcount of 
the songs in a user's library it is totally blind to tracks that reside 
in the library but have a playcount of 0. Thus, it recommends 
songs that it believes to be novel to the user, when it could in fact 



exist in the library already. Unsurprisingly, the novelty and 
serendipity ratings from this user were low (a score of 2 for each), 
but the rating on the overall system was positive (a score of 4). 
Clarifying such issues on what a novel item is would help 
improve the algorithm and the user's perception of the system. 
 

7. FUTURE RESEARCH 
The most urgent and important future work on this particular 
study would be to find the ideal parameter settings to produce the 
desired recommendations. Due to the available time frame for this 
study, much of the algorithm analysis including the settings of the 
parameters, were done manually, simply by iterating through 
different settings and observing the results. By finding the 
optimized values on parameters such as Expert Head Size, User 
Tail Size, and Item Weights, the quality of the recommendations 
in novelty and relevance would be greatly enhanced. 

Work on expanding the flexibility of the algorithm can also be 
done, creating additional parameters that bring changes to the 
recommendations. More parameters would mean that the 
algorithm could be suited for each user's needs, bringing the 
possibility of creating an evermore-personalized set of 
recommendations.  

The overall system itself could be further developed to integrate 
content-based analysis for better results. Although the proposed 
method is at its infancy, we believe that the only way to improve 
it further (after it has fully developed independently) will be to 
incorporate a content-based algorithm to improve on its remaining 
weaknesses as an algorithm that is based on user profiles. 

8. CONCLUSION 
In this paper, a novel approach to recommending unfamiliar artists 
relative to each user was proposed in order to tackle the problem 
of the high density of obvious items in the list of 
recommendations found in today's recommender systems. The key 
concept in this approach was that novel items did not always have 
to be items that reside in the long tail of the popularity 
distribution. Although novel or unfamiliar items, more often than 
not, do indeed reside in the long tail of the popularity distribution, 
it is important to acknowledge that even well-known artists could 
be unknown to users who are (a) interested in different genres and 
(b) are in different cultures and/or countries. 

A system that produced recommendations was implemented and 
was available online for users to use and rate. The 
recommendations were produced using data collected from 
Last.fm. Results of the user surveys show that the proposed 
system succeeds in providing novel recommendations to users, 
while keeping those items also relevant. This study shows the 
potential of such an approach to recommending novel items, while 
maintaining a collaborative filtering algorithm without the support 
from content-based algorithms.  
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