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Abstract. Solution robustness is a desirable feature when dealing with
uncertainty. This issue has rarely been taken into account in the field of
auctions, where the goal is to obtain optimal solutions (i.e., maximize the
auctioneer’s benefit). In this paper we define a notion of robustness for
auctions where some resources may become unavailable once the auction
has already been cleared. This notion of robustness balances the number
of changes needed for repairing the solution and the possible loss of
benefit for the auctioneer. In order to obtain robust solutions for auctions,
we provide a mechanism based on transporting the concept of supermodel
to the setting of weighted Max-SAT. We show that finding a supermodel
of a weighted Max-SAT formula amounts to find a model of an SMT
(Satisfiability Modulo Theories) formula.

1 Introduction

Auctions are widely used as a resource allocation mechanism, since they enable
an efficient distribution of resources amongst the agents requesting them [1].
Most auction mechanisms focus on maximizing the auctioneer’s benefit, and
assume that once the auction is cleared (i.e., a solution is found), the state of
the world cannot change. However, in real applications, this is not the case. In
the time between the clearance of the auction and the moment of the allocation
of resources taking place, many things can happen. For instance, a machine that
has been assigned to a given agent may break down before it starts using it, a
winning agent may decide to withdraw its bid because it found a better deal
elsewhere, etc. The consequence of such unexpected events is that the solution
may then not yield the optimal benefits. Even worse, the solution may not be
applicable at all. In such cases, a new solution must be found. To do so, the
auction could be repeated, accounting for the new reality. However, the new
solution could be completely different from the initial one, meaning that some
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bids that were winners in the first solution are losers in the new one. Such
behavior could be a nuisance for the participating bidders, especially for those
that were told their bids were winners but become losers in the repetition of the
auction. To avoid such situations, the auctioneer could try to find a solution that
is prepared for unexpected events. Ideally, such a solution should be applicable
no matter what these events are, although this is not always achievable. Thus,
when this happens, the solution should be reparable with the minimum number
of changes to the original solution. And, while such a robust solution may be
sub-optimal, we are interested in still obtaining a high revenue for the auctioneer.

The issue of bid withdrawal has already been addressed in [2]. But, as far
as we know, the problem of resource unavailability has never been taken into
account. Thus, in this paper we introduce a new mechanism for finding robust
solutions to auctions with a bounded number of allowed breakages in resource
availability, a bounded number of repairs in bid assignment, and a minimum
guaranteed revenue for the auctioneer:

If a solution is found, we can guarantee that, for any breakage in resource
availability involving at most a resources, the solution can be repaired
with at most b changes in bid assignment. In addition, the initial solution
and all repaired solutions have a revenue of at least β. We call such a
solution an (a,b,β)-super solution.

Our starting point is the standard modeling of an auction as a weighted Max-
SAT problem [3, 4] with boolean variables to denote whether a bid is winner or
loser. In addition, we also use boolean variables representing resource availability.
The transformation used to obtain (a, b, β)-super solutions works in the spirit
of the one of [5] to obtain (a, b)-supermodels for propositional logic. As in [5],
we define a set of breakable variables and a set of repairable variables. Here, the
breakage set corresponds to the variables denoting resource availability, and the
repair set to those corresponding to bid assignment.

In fact, our mechanism can be applied to any weighted Max-SAT problem,
auctions being a particular case. An interesting aspect of our result is that
weighted Max-SAT turns out to be not expressive enough to deal with the rev-
enue constraints that we must add in the robust version of the problem. For this
reason, we move to the setting of Satisfiability Modulo Theories (SMT) [6] and
model the auction as a weighted Max-SMT formula. Hence, for our purposes the
transformation of [5] must be adapted to this new setting.

The SMT problem for a theory T is: given a formula F , determine whether
there is a model of T ∪ {F}. Hence, an SMT instance is a generalization of a
boolean SAT instance in which some propositional variables have been replaced
by predicates from the underlying theories. For example, if T denotes the theory
of linear (integer or real) arithmetic, then a formula can contain clauses like,
e.g., p ∨ q ∨ x+ 2 ≤ y ∨ x = y + z, where p and q are boolean variables and x, y
and z integer ones, providing a much richer modeling language than is possible
with SAT formulas.

The rest of the paper is organized as follows. In Section 2 we review some
related work concerning robustness and auctions. In Section 3 we formally define
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the kinds of auctions we consider. In Section 4 we describe an example to show
how we look for robust solutions. Section 5 is devoted to the mechanism for
finding robust solutions. Finally, in Section 6 we draw some conclusions and
devise future work.

2 Related work

Here we briefly review some related work on robust solutions in general, and on
robustness and the use of logics in the field of auctions.

2.1 Supermodels

The seminal work on robust solutions for propositional logic formulas is the one
of [5], where the notion of supermodel is introduced. The complexity for finding
such supermodels in several propositional logic fragments has been studied in [7].

Definition 1 (from [5]). An (Sa
1 , S

b
2)-supermodel of a boolean formula F is a

model of F such that if we modify the values taken by the variables in a subset of
S1 of size at most a (breakage), then another model can be obtained by modifying
the values of the variables in a disjoint subset of S2 of size at most b (repair).

An (Sa
1 , S

b
2)-supermodel in which the breakage and the repair set are unre-

stricted is denoted as an (a, b)-supermodel.

The task of finding (a, b)-supermodels is NP-complete. The main idea is to
encode the supermodel requirements of a formula F as a new formula FSM

whose size is polynomially bounded by the size of F . This new formula FSM has
a model if and only if F has an (a, b)-supermodel.

Example 1. The formula F = p∨q has three models, {p, q}, {¬p, q} and {p,¬q},
which are all (1, 1)-supermodels. The encoding FSM for a (1, 1)-supermodel of
F , according to [5], would be

FSM =

original F︷ ︸︸ ︷
(p ∨ q) ∧

break in p︷ ︸︸ ︷( no repair︷ ︸︸ ︷
(¬p ∨ q)∨

repair q︷ ︸︸ ︷
(¬p ∨ ¬q)

)
∧

break in q︷ ︸︸ ︷( no repair︷ ︸︸ ︷
(p ∨ ¬q)∨

repair p︷ ︸︸ ︷
(¬p ∨ ¬q)

)
Note that, for instance, if the satisfying interpretation (model) chosen for FSM

is {¬p, q}, i.e., {p = false, q = true}, then p ∨ q is satisfied and, moreover, if q
switches to false, then a new model for p ∨ q can be obtained by switching p
to true. That is, a break in q has a repair on p. The key idea is that the value
of the subformula ¬p ∨ ¬q under the initial interpretation coincides with the
value of p ∨ q under the repaired interpretation and, hence, FSM has a model if
and only if F has a supermodel. Note also that only the first model {p, q} is a
(1, 0)-supermodel.

The concept of (a, b)-supermodel for propositional logic has been generalized
to that of (a, b)-super solution in the context of constraint programming in [8].
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2.2 Robustness in auctions

There are several works that deal with robustness with respect to potential ma-
nipulations of the auction mechanism (such as false-name bids and other types of
manipulations). However, this is not the concept of robustness we are interested
in. As we have described in Section 1, we focus our research on robustness of the
solution to the auction. Some works, such as [9, 10] add the concept of robustness
(fault tolerance) to mechanism desing in order to deal with potential failures in
the execution of tasks by the agents, although they use a probabilistic approach
and do not consider repairing the solutions. As far as we know, the only work
that deals with solution repair in auctions is that of [2]. This work addresses the
problem of bid withdrawal (i.e. a bidder that withdraws a winning bid), and,
in order to find robust solutions, uses (α, β)-weighted super solutions [11], an
extension of super solutions [8] that takes into account the breakage probability
(α) and the cost of repair (β). Our work is similar, since our approach is also
based on supermodels and we look for solutions with a bounded cost. However,
we consider the problem of resource unavailability, which is not considered in
[2]. Moreover, we are also interested in keeping the number of repairs low, which
is only done indirectly (through the cost function) in [2]. In addition, our tech-
niques are completely different because we use the logic framework of weighted
Max-SAT and Satisfiability Modulo Theories, while [2] presents an ad-hoc search
algorithm to find robust solutions.

Another closely related problem is that of robust knapsack [12] (i.e. a knap-
sack problem where the weights and/or values of the objects are imprecise).
Given that many auction mechanisms can be modeled as a knapsack problem
[13], it is reasonable to think that some of the robust approaches to this problem
may yield robust solutions to auctions. However, the robustness concept used
in the field of knapsack is somehow different to ours, since it does not consider
the possibility of repairing a solution. Instead, a robust solution of a knapsack
problem with imprecision is such that, on average, performs well regardless of
what the actual weights or values of the objects are, in a similar way as the
robustness presented in [9, 10].

2.3 Auctions and Logics

Regarding the use of logics in the field of auctions, it has been mainly used
to define different bidding languages [14]. There are also some works that use
logics as the method for solving the winner determination problem. For instance,
Baral et al [15] model the auction using SModels, and use their approach to solve
combinatorial auctions and combinatorial exchanges. However, they do not deal
with robustness issues. On the other hand, modeling an auction as a weighted
Max-SAT formula is a standard problem in Max-SAT benchmarks [4].

3 Auction formalization

There are many types of auctions, depending on several factors, such as the
number of items being offered, the number of units for each item, or the way in
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which bidders may express their requests, among others [16]. In this work, we
restrict our attention to Combinatorial Auctions [17] and, more precisely, to the
winner determination problem (clearing algorithm) of the auction. Formally, a
combinatorial auction is defined as follows. There is:

– a set of K agents,
– a set of N items or goods, and
– a set of M bids of the form (Si, pi), where Si ⊆ {1..N} is the subset of goods

(i.e. bundle) requested in bid i, and pi ∈ IR+ is the value (price) of the bid.
We denote by Rj the set of indexes of the bids sent by agent j, j ∈ {1..K}.

The goal is to select the winning bids, so that no good is allocated more than
once, and the revenue for the auctioneer is maximized:

max
M∑
i=1

bi · pi s.t.
∑

i|j∈Si
bi ≤ 1,∀j ∈ {1..N}

where bi is a boolean variable indicating whether bid i is winner or loser.
Additionally, one may introduce other constraints, such as forcing all items

to be allocated (which would imply replacing the ≤ of the previous equation
by an equality), guaranteeing that all agents win at least (or at most) a given
number of bids (

∑
i∈Rj

bi ≥ Q, ∀j ∈ {1..K}, where Q is the minimum number
of winning bids per agent – or maximum if using ≤ Q), etc.

Regarding the bidding language, in the rest of the paper we assume that
bidders use an OR-language [14], that is, each bidder submits a list of bids (pairs
of bundle and price), and it is interested in winning any number of the bids sent
to the auctioneer. However, the approach we present may work with any other
bidding language (XOR, OR-of-XOR, . . . ), as long as the needed restrictions (as
mentioned in the previous paragraph) are added.

4 Running example

In order to illustrate our approach, we present an example that we will use in the
forthcoming sections to explain each of the steps needed to find robust solutions
to auctions. For the sake of simplicity, we use single-item bundles, that is, each
bid requests only one item. Moreover, we impose the constraint that each agent
must win at least one of the bids it sent.

Example 2. Assume we have 3 agents and 4 goods (or resources). In the following
table we indicate the price of each single-item bid of each agent:

1 2 3 4

1 10 15 - -

2 - 5 10 20

3 15 - - 10
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Thus we have the following list of bids:

[(1, 10), (2, 15)︸ ︷︷ ︸
first agent’s bids

, (2, 5), (3, 10), (4, 20)︸ ︷︷ ︸
second agent’s bids

, (1, 15), (4, 10)︸ ︷︷ ︸
third agent’s bids

]

We define the boolean variables g1, g2, g3 and g4 to represent the availability
of the corresponding goods, and the boolean variables bi, i ∈ {1..7} to indi-
cate whether bid i is winner or loser. Then, assuming that the only possible
source of breakages is resource availability, we define the breakage set as being
S1 = {g1, g2, g3, g4}. Then, the repair set is S2 = {b1, b2, b3, b4, b5, b6, b7}, since
a break in a resource may imply that a winning bid becomes loser and, eventu-
ally, other assignments can be reconsidered in order to improve the auctioneer’s
revenue under the new circumstances.

Assume that we look for robust solutions where one break may occur and each
possible break must be repairable with at most four changes. Assume, moreover,
that we want that whatever the break is, the revenue of the initial solution and
of the repaired solution is at least 30. This will correspond to a (1, 4, 30)-super
solution (see Definition 2 of Subsection 5.2).

The optimal solution to this auction without considering robustness would
be to set as winning bids the second, the fourth, the fifth and the sixth bids, i.e.,

b1 = 0, b2 = 1, b3 = 0, b4 = 1, b5 = 1, b6 = 1, b7 = 0,

which means assigning good 2 to the first agent, goods 3 and 4 to the second
agent and good 1 to the third agent. For the sake of readability we use the
notation such as 2456 to indicate which are the winning bids of a solution. With
this solution, the auctioneer would have a revenue of 60.

However, this optimal solution is not a (1, 4, 30)-super solution: if good 2
became unavailable (break), the only alternative for the first agent would be
good 1, but this is already allocated to the third agent; this would imply finding
also an alternative for the third agent, which would be good 4, but this good
is allocated to the second agent. Thus, repairing the breakage of good 2 would
imply modifying two winning bids (b2 to b1 and b6 to b7) and unassigning one
winning bid (b5), meaning five repairs (as shown in boldface):

b1 = 1,b2 = 0, b3 = 0, b4 = 1,b5 = 0,b6 = 0,b7 = 1,

which is more than the four allowed repairs. Note that for each bidder, choosing
a new winning bid may imply two repairs (one to set the initially winning bid to
0, and in case he had no other winning bids, another one to set one of its losing
bids to 1).

This auction has 9 feasible solutions (i.e., solutions satisfying the constraints
on bid incompatibility and minimum number of winning bids per agent), which
are the following: 1247, 137, 1347, 147, 246, 2456, 247, 2467 and 256. Within
these solutions, only three of them are (1, 4, 30)-super solutions: 246, 2467 and
247. Next we go through the details of solution 2467, i.e.,

b1 = 0, b2 = 1, b3 = 0, b4 = 1, b5 = 0, b6 = 1, b7 = 1
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which has a revenue of 50 units for the auctioneer. For this solution, the four
possible breakages can be repaired as follows:

1. g1 = 0. The repair is b6 = 0, being the new solution 247, and the revenue
35.

2. g2 = 0. The repair is b1 = 1, b2 = 0, b6 = 0, being the new solution 147 and
the revenue 30.

3. g3 = 0. The repair is b4 = 0, b5 = 1, b7 = 0, being the new solution 256 and
the revenue 50.

4. g4 = 0. The repair is b7 = 0, being the new solution 246 and the revenue 40.

It can be seen that all repairs have a revenue of at least 30 and the number
of repairs is not greater than 4. Moreover, in the third case there is not even
loss in the revenue. We let the reader check that solutions 246 and 247 are also
(1, 4, 30)-super solutions, with a revenue of 40 and 35, respectively. However,
since the revenue of solution 2467 is higher, this would be the optimal (1, 4, 30)-
super solution to this auction.

As for the rest of feasible solutions, some of them (147 and 1247) are (1, 4, )-
super solutions, meaning that they can be repaired with at most 4 changes, but
not (1, 4, 30)-super solutions, since they do not satisfy that the solution and its
repairs have a revenue of at least 30. In particular, solution 147 has a revenue
of 30, but one of its repairs has a revenue of only 25 (when good 3 becomes
unavailable, the second agent must be assigned good 2, which corresponds to a
low value bid). Similarly, solution 1247 has a revenue of 45, but it also fails in
the revenue of repairs, since one of them has again a revenue of 25.

Finally, some solutions (137, 1347, 2456 and 256) are not even (1, 4, )-super
solutions, since they do need more than 4 changes in order to repair some of the
breakages. This is the case of the optimal solution without robustness (2456), as
we have seen a few paragraphs above.

5 Mapping auctions to supermodels

5.1 Auctions as weighted Max-SAT problems

An auction A as defined in Section 3 can be modeled as a weighted Max-SAT
formula FA as follows. Let g1, . . . , gN be a set of boolean variables representing
the availability of each of the N goods, and let b1, . . . , bM be a set of boolean
variables representing whether each of the M bids is winner or loser.

1. Resource availability. For each bid j of the form (Sj , pj), where
Sj = {i1, . . . , inj

} ⊆ {1..N}, we state

bj → gi1 ∧ · · · ∧ ginj

to indicate that, whenever bid j is accepted, then all goods it requests must
be available3.

3 These constraints are only needed to deal with resource unavailability, i.e., they do
not appear in standard (non-robust) auctions.
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2. Bid incompatibility. For each pair of bids i and j (with i 6= j) such that
Si ∩ Sj 6= ∅, we state

¬bi ∨ ¬bj
to indicate incompatibility between bids requesting the same good.

3. Minimum winning bids. For each set Rk = {i1, . . . , ink
} corresponding to

the bids of agent k, we state

bi1 ∨ · · · ∨ bink

to indicate that at least one bid of each agent must be accepted. Note that
this restriction can change, or even disappear, depending on the type of
bidding language used in the auction (OR, XOR, OR-of-XOR, . . . ) and also
on the constraints about the number of winning bids per agent.

4. Bid’s value. For each bid i, we add a unit clause

(bi, pi)

indicating that if bid i is not accepted, then there is a loss of revenue of pi.

The conjunction of the previous constraints defines a weighted Max-SAT
problem for the auction.

5.2 Robust auctions as weighted Max-SMT problems

Here we show how a weighted Max-SAT formula FA defining an auction A can
be transformed into a weighted Max-SMT formula defining a robust version of
the former. In particular, we describe how to obtain a Max-SMT formula FA

SM

such that FA
SM has a model if and only if A has an (a, b, β)-super solution. Some

of the proofs are omitted due to lack of space.

Definition 2. An (a, b, β)-super solution of an auction is a (maximal revenue)
solution for the auction such that, if a goods become unavailable (breakage),
then another solution can be obtained by changing at most b bids from winner to
loser or vice-versa (repair) and, moreover, the solution and all possible repaired
solutions have a revenue of at least β.

The following definition generalizes the one of [5] to weighted Max-SAT.

Definition 3. An (Sa
1 , S

b
2, β)-supermodel of a weighted Max-SAT formula F is

a model of F such that if we modify the values taken by the variables in a subset
of S1 of size at most a (breakage), another model can be obtained by modifying
the values of the variables in a disjoint subset of S2 of size at most b (repair)
and, moreover, the solution and all possible repaired solutions have a cost of at
most β.

Lemma 1. An auction A with N goods and M bids has an (a, b, β)-super so-
lution if and only if the weighted Max-SAT formula FA has an (Sa

1 , S
b
2, β

′)-
supermodel where S1 = {g1, . . . , gN}, S2 = {b1, . . . , bM} and cost (i.e. loss of
revenue) β′ =

(∑M
i=1 pi

)
− β.
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Now we show how to construct a weighted Max-SMT formula FSM from a
weighted Max-SAT formula F , such that F has an (Sa

1 , S
b
2, β)-supermodel if and

only if FSM has a model.

The construction of FSM . Let

F = C ∧W

be a weighted Max-SAT formula, where C denotes the set of mandatory con-
straints and W denotes the set of weighted, non-mandatory constraints4. For
the sake of simplicity, we will assume that W consists only of unary clauses of
the form (b, w), where b is a boolean variable and w is a weight. Note that any
Max-SAT formula can be transformed into an equisatisfiable one fulfilling this
requirement by reification, i.e., by replacing any weighted constraint (G,w) such
that G is not unary by (G↔ b) ∧ (b, w).

Now, assuming that

W = (b1, w1) ∧ · · · ∧ (bk, wk)

we introduce a set of integer variables i1, . . . , ik and define

L =
∧

j∈1..k

(bj → ij = 1) ∧ (¬bj → ij = 0)

Let Sn denote the set of all (possibly empty) subsets of a set S whose size
is at most n, and let Sn+ denote the set of all non-empty subsets of a set S
whose size is at most n. Moreover, let FS denote a boolean formula F where all
occurrences of variables in the set S have been flipped (i.e., negated).

We define

BS =
∑

j∈1..k

{
ij · wj if bj ∈ S
(1− ij) · wj if bj /∈ S

where S is a set of boolean variables. We denote by B the particular case B∅ =∑
j∈1..k(1− ij) · wj , corresponding to the cost of the unsatisfied clauses in W .
Finally, we define

FSM = C ∧W ∧ L ∧ (B ≤ β) ∧
∧

S∈Sa+
1

 ∨
T∈(S2\S)b

(CS∪T ∧ (BS∪T ≤ β))


Note that, due to L and the constraints of the form B ≤ β, this formula

is not plain SAT: it falls into SAT modulo the quantifier-free fragment of the
(first-order) linear arithmetic theory. The main lemma and theorem follow here.

Lemma 2. A weighted Max-SAT formula F has an (Sa
1 , S

b
2, β)-supermodel if

and only if the weighted Max-SMT formula FSM has a model.
4 We talk about constraints instead of clauses since our transformation does not require

the formula to be in CNF format.
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This lemma follows the spirit of the result of [5], but adding costs. Here, the
key idea is that BS∪T , gives us the cost of the unsatisfied clauses in W if the
variables in S ∪T were to change their value with respect to the initial solution.
Note that the variables in S represent the breakage variables and the ones in T
represent the repair variables and, hence, S ∪T denotes the set of variables that
are going to change their value. Notice also that the sets S and T are disjoint,
since it makes no sense to repair a broken variable.

Theorem 1. An auction A has an (a, b, β)-super solution if and only if the
weighted Max-SMT formula FA

SM has a model.

Proof. Let FA = C∧W denote the weighted Max-SAT formula obtained from A
as explained in Subsection 5.1, where C denotes the set of mandatory constraints
introduced in points 1, 2, and 3, and W denotes the set of non-mandatory
unit clauses of point 4. Let S1 = {g1, . . . , gN}, S2 = {b1, . . . , bM} and β′ =(∑M

i=1 pi

)
− β. By Lemma 2, FA has an (Sa

1 , S
b
2, β

′)-supermodel if and only if
FA

SM has a model. Therefore, by Lemma 1, A has an (a, b, β)-super solution if
and only if FA

SM has a model. ut

Observe that, since a and b are constants, the increase of size of FA
SM w.r.t.

the size of FA is polynomially bounded, namely, it is O(na+b) larger than FA,
where n is the number of variables of FA.

5.3 The whole story

Here we take the auction A of Example 2 and briefly describe how to model it
as a robust auction. We begin by modeling the auction as a Max-SAT problem
as explained in Subsection 5.1, which gives us FA = C ∧W with

C = (b1 → g1) ∧ (b2 → g2) ∧ (b3 → g2) ∧ (b4 → g3) ∧ (b5 → g4) ∧
(b6 → g1) ∧ (b7 → g4) ∧ (¬b1 ∨ ¬b6) ∧ (¬b2 ∨ ¬b3) ∧ (¬b5 ∨ ¬b7)∧
(b1 ∨ b2) ∧ (b3 ∨ b4 ∨ b5) ∧ (b6 ∨ b7)

W = (b1, 10) ∧ (b2, 15) ∧ (b3, 5) ∧ (b4, 10) ∧ (b5, 20) ∧ (b6, 15) ∧ (b7, 10)

Now observe that the sum of the costs of the non-mandatory weighted clauses
is 10+15+5+10+20+15+10 = 85. Then, as stated by Lemma 1, in order to A
have a (1, 4, 30)-super solution, we must look for a (S1

1 , S
4
2 , 85− 30)-supermodel

of FA, i.e., a (S1
1 , S

4
2 , 55)-supermodel of FA, where S1 = {g1, g2, g3, g4} and

S2 = {b1, b2, b3, b4, b5, b6, b7}. Finally, according to Lemma 2, this amounts to
find a model of the weighted Max-SMT formula

FA
SM = C ∧W ∧ L ∧ (B ≤ 55) ∧

∧
S∈S1+

1

 ∨
T∈(S2\S)4

(CS∪T ∧ (BS∪T ≤ 55))


as described in Subsection 5.2, where

L =
∧

j∈1..7

(bj → ij = 1) ∧ (¬bj → ij = 0)
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B = (1− i1) · 10 + (1− i2) · 15 + (1− i3) · 5 + (1− i4) · 10+
(1− i5) · 20 + (1− i6) · 15 + (1− i7) · 10

Note that S1+
1 denotes the non-empty subsets of S1 with at most one element,

i.e., the singletons {g1}, {g2}, {g3} and {g4}. And, since S1 and S2 are disjoint,
we have that (S2 \ S)4 = S4

2 , i.e., the (possibly empty) subsets of S2 of size at
most 4. Due to lack of space we do not develop CS∪T and BS∪T .

6 Conclusions

In this paper we have presented a mechanism for obtaining robust solutions to
auctions. This issue has rarely been considered in the field of auctions, with only
a few exceptions [2, 9, 10]. However, we think that robustness is a key issue when
dealing with real world applications, where uncertainty is almost always present.
In particular, we have focused on the possibility of some of the resources becom-
ing unavailable once the auction has already been cleared. Thus, we provide a
mechanism to proactively look for solutions that can be easily repaired when
such unexpected events happen.

We have presented a notion of robustness that balances the number of allowed
repairs when a break occurs and the loss of revenue for the auctioneer, by defining
what we call (a, b, β)-super solutions. This allows the auctioneer to choose the
more convenient values of each parameter, depending on how conservative or
risk seeking its strategy is.

Our mechanism is based on the modeling of an auction as a weighted Max-
SAT formula. However, since SAT does not allow to easily encode formulas with
arithmetic operations, needed to achieve robustness, we have moved the problem
to the richer logical framework of Satisfiability Modulo Theories.

Let us mention that state-of-the art SMT solvers have a rich input language,
and it is not necessary (neither convenient) to translate any formula to CNF
in order they can read it. In fact, we can feed an SMT solver directly with a
formula such as FSM (as described in Subsection 5.2) contrarily to what is done
in [5], where all formulas are translated to CNF. It is worth noting that we have
not considered the option of translating our transformed formula into a linear
program since, on the one hand, SMT solvers dealing with the theory of linear
arithmetic already apply a (modified) simplex algorithm and, on the other hand,
such a translation would imply a flattening of the structure of the problem (of
which the SMT solvers can eventually take revenue) and the addition of many
new variables. Moreover, the richness of the SMT language allows us to easily
add new constraints when needed. Nevertheless, we have left as future work a
peformance comparison with Operational Research tools.

Some experiments have been carried out with Yices [18], a weighted Max-
SMT solver. At present only toy examples have been checked. In the future we
plan to test our transformation with realistic benchmarks from the Combinato-
rial Auctions Test Suite (CATS) [19].

Finally, we want to acknowledge the fruitful discussions and comments we’ve
had with the rest of the SuRoS project team.
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