
A simulator for a two layer MAS adaptation in
P2P networks

Jordi Campos1, Marc Esteva2, Maite López-Sánchez1 and Javier Morales2

1 MAiA Deptartment, Universitat de Barcelona, email: {jcampos,maite}@maia.ub.es
2 Artificial Intelligence Research Institute (IIIA), CSIC,

email:{marc,jmorales}@iiia.csic.es

Abstract. Adapting organisational structures to maintain an organisa-
tion effectiveness under varying circumstances is becoming a hot topic
within the agent community. In this paper we present a simulator that we
have developed for testing adaptation mechanisms in Peer to Peer scenar-
ios. We regard this service as part of the new generation of services that
should be incorporated into multiagent systems infrastructures to as-
sist coordination both at participant and organisation levels. In order to
provide such organisational adaptation we rely on an added distributed
meta-level. Meta-level agents perceive partial information about system
properties that they use to adapt organizational structures when nec-
essary. The simulator implements different sharing methods, allows to
define different network topologies, and includes some facilities to pro-
cess and analyse simulation results in order to compare them.

1 Introduction

Organisational structures have proven to be useful to regulate MultiAgent Sys-
tems (MAS) [1, 2]. However, certain environmental or population changes may
imply a decrease in goal fulfilment. Thus, adapting organisations is now becom-
ing an active research area [3–6], since it can help to keep the expected system
outcomes under changing circumstances.

In particular, we propose to add a meta-level in charge of adapting system’s
organisation instead of expecting agents to increase their behaviour complexity.
This is specially relevant when dealing with open MAS, since there is no insight
of participant’s implementation, and hence, we can not guarantee that agents
are endowed with organisational adaptation capabilities. We regard this adap-
tation –together with other possible meta-level functionalities– as an assistance
to agents that can be provided by MAS infrastructure. Thus, we call our imple-
mentation approach Two Level Assisted MAS Architecture (2-LAMA)[7]. Fur-
thermore, in order to avoid centralisation limitations such as fault-tolerance or
global information unavailability, we propose this architecture has a distributed
meta-level —i.e., it is composed of several agents. In this context, in this pa-
per we present a simulator for testing organisational adaptation mechanisms in
P2P scenarios. Hence, the main goal of the paper is to describe the simulator
functionality.

106



Our approach is able to deal both with highly dynamic environments and
domains without direct mapping between goals and tasks —i.e. domains where
it is not possible to derive a set of tasks that achieve certain goals. Nevertheless,
it requires domains where organisations can be dynamically changed. Peer-to-
Peer sharing networks (P2P) present all previous features, and thus, we use them
as a case study. In such networks, computers contact among them to share some
data and their relationships change over time depending on network status and
participants. In this context, a P2P system is modelled as an organisation having
a social structure among peers and a set of protocols and norms that regulate
the sharing process. On top of the P2P system –that we call domain-level– we
add a distributed meta-level that perceives status information and uses it to
adapt peers’ social structure and norm values. Meta-level adaptation is based on
system performance, which is measured by the time peers spent to share data
and the required network consumption.

This paper is structured as follows. Next section provides a more detailed
description of the 2-LAMA model, so that Section 3 can apply it to the P2P sce-
nario. This scenario has been implemented in the simulator presented in Section
4. Finally, some conclusions and future work are described in last section.

2 2-LAMA Model

Organisational structures regulate MAS by providing an agent coordination
framework and some domain independent services that alleviate agent develop-
ment. We regard these services as Coordination Support services [8] that include
basic coordination elements such as elemental connectivity or agent communica-
tion languages. Usually, these services are devoted to enact agent coordination
at different levels. In addition to them, we propose new services that provide
an added value by assisting coordination further than just enabling it. In this
manner, we group services in two different layers: an Organisational Layer that
provides coordination enabling services, and an Assistance Layer on top of it,
which provides coordination assistance services. This last layer includes a pro-
active service that adapts organisations depending on system’s evolution.

The Organisational Layer provides basic services supporting the enactment
of the organisation. We denote an organisation as Org = 〈SocStr, SocConv, Goals〉
where:

– SocStr corresponds to the social structure, which consists of a set of roles
and the relationships among them.

– SocConv are social conventions that agents should conform and expect oth-
ers to conform [9]. They are expressed as norms and/or interaction protocols,
which define legitimate sequences of actions performed by agents playing cer-
tain roles.

– Goals describe the organisation design purpose —as opposed to agents’ in-
dividual goals. They are expressed as a function on certain observable prop-
erties so that the system can evaluate its own performance.

107



Regarding our Assistance Layer, it provides two main types of services [8]:
Agent Assistance and Organisational Assistance. The former assists individual
agents to follow current social conventions. It includes four different services:
Information that is useful for participating in the MAS; Justification of specific
actions’ consequences; Advice of alternative plans conforming social conventions;
and Estimation of action consequences due to current conventions. The latter,
the Organisational Assistance, consists on adapting the existing organisation in
order to improve system’s performance under varying circumstances. To provide
such an adaptation, we propose goal fulfilment as its driving force within the con-
text of a rational world assumption. Hence, the Assistance Layer requires some
way (i) to observe system evolution, (ii) to compare it with the organisational
goals and (iii) to adapt the organisation trying to improve goal fulfilment.

Fig. 1. Two Level Assisted MAS Architecture(2-LAMA): Domain Level (DL), Meta
Level (ML) and Interface.

In order to provide Assistance Layer ’s services, we have proposed a Two
Level Assisted MAS Architecture (2-LAMA, [7]). It consists on a distributed
meta-level (ML) that provides assistance to a domain-level (DL) in charge of
domain-specific tasks. Figure 1 shows them and their communication trough
an interface (Int). Thus, the whole system can be expressed as 2LAMA =
〈ML, DL, Int〉3. Each level has a set of agents with its own organisation: DL =
〈AgDL, OrgDL〉 and ML = 〈AgML, OrgML〉. Using the interface, ML agents
perceive partial information4 about environmental observable properties (EnvP ,
e.g. date or temperature) and agents’ observable properties (AgP , e.g. colour or
position). In particular, a ML agent has partial information about the subset of
DL agents it assists. We assume DL agents are grouped into clusters according
to a domain-specific criterion —e.g. interaction costs. Therefore, a ML agent
–we call it assistant– assists a cluster of DL agents, observes partial information
about them, and shares it with other ML agents in order to provide better
assistance services.

3 It is possible to nest subsequent meta-levels updating previous level’s organisation.
4 In many scenarios global information is not available.

108



3 P2P model

Our case study is a simplified version of real Peer-to-Peer sharing networks
(P2P), where a set of computers connected to the Internet (peers) share some
data. This setting represents a highly dynamic and complex scenario, and thus,
it is suitable for the development of a simulator implementing our approach.

Meta-Level

Domain-Level Norms
DL

N
o
rm

s D
L'

A1 A2 A3

P5 P6

P7 P8

P1 P2

P3 P4

P9 P10

P11 P12

Datum

SocStr
ML

cluster1 cluster2 cluster3

E
n
v
P
,A

g
P
→

←
S
o
cS

tr
D

L,
1
'

Norms
ML

SocStr
DL,1

SocStr
DL,2

SocStr
DL,3

E
n
v
P
,A

g
P
→

←
S
o
cS

tr
D

L,
2
'

E
n
v
P
,A

g
P
→

←
S
o
cS

tr
D

L,
3
'

Fig. 2. 2-LAMA in the P2P scenario. Agents: peers P1..P12 at DL and assistants
A1..A3 at ML.

Figure 2 shows our P2P model, where the DL is composed by agents playing
the peer role. DL social structure determines agents’ relationships, which cor-
responds to the neighours peers contact to share the data. The organisational
goal (Goals) is that all peers receive the data with the minimal time and net-
work consumptions. Hence, the time needed to share the data and the network
consumption are the two metrics to evaluate simulation results. The social con-
ventions at DL include the sharing protocol specified below and two norms. First
norm limits agents’ network usage in percentage of its nominal bandwidth.This
norm can be expressed as: normBWDL =“a peer cannot use more than maxBW
bandwidth percentage to share data”. This way, it prevents peers from massively
using their bandwidth to send/receive data to/from all other peers. Second norm
limits the number of peers to whom a peer can simultaneously send the data.
Hence, we define normFriendsDL =“a peer cannot simultaneously send the data
to more than maxFriends peers”.

As we have already mentioned, ML provides assistance to DL. Each ML
agent plays the assistant role for a cluster of DL agents (peers). It does it so
by collecting information and adapting their local organisation. Its decisions are
based on local information about its cluster, aggregated information about other
clusters and the norms at ML. Some examples of local information are latencies
(EnvP ) or which peers have the data (AgP ). Information about other clusters
come from other assistants in the ML social structure. As for ML norms, we
consider one limiting the number of peers –in the cluster– to inform about a new
peer –in another cluster– having the data. Thus, we define normHasML =“Upon
reception of a completed peer (p /∈ cluster) message, inform no more than maxHas

109



Phase Level Protocol Messages
initial ML join<hasDatum>
latency ML get_latency<peers>, latency<peer><measure>

DL lat_req, lat_rpl
social structure ML contact<peers>
handshake DL bitfield<hasDatum>
data sharing DL request, data, cancel

ML completed, completed_peer<peer>,
has_datum<peer>, all_completed

inactive DL have
waiting DL choke, unchoke
norms ML suggested_bw<value>, suggested_friends<value>,

norm_updated<norm_id><new_definition>
Table 1. Protocol messages grouped into subsequent phases.

peers ∈ cluster ”. Finally, we assume assistants are located at Internet Service
Providers (ISP), and thus, related communications are fast.

3.1 Protocol

Our proposed protocol is a simplified version of the widely used BitTorrent [10]
protocol5. Table 1 presents the messages that are exchanged during protocol
phases. Notice that the table includes the messages among DL agents, but also
messages involving assistants at ML. Initially, peers join their cluster by inform-
ing its assistant. Afterwards, in order to compute the social structure, assistants
need local information and therefore, they initiate latency phases requesting
peers to measure their latency with all other peers in their clusters. Assistants
use this information to propose a social structure among peers in their clusters.
The social structure defines the overlay network within a cluster —i.e. which
peers each peer has to contact in order to obtain the data.

Thereafter, peers perform a handshake phase where they introduce them-
selves to their contacts, and specify whether they have the datum. If this is
the case, a data sharing phase starts —including data request and data trans-
mission. Otherwise, as soon as one peer receives the datum, it will inform its
handshaked peers so that the sharing phase is triggered this time. Nevertheless,
upon request, a source peer cannot start a transmission if it is already serving the
maximum number of allowed peers (defined by the maxFriends value). For those
cases, transmission can only be initiated when a previous transmission ends.

Upon data reception, a peer also informs its assistant. Then, this assistant
shares this information with other assistants, who, in turn, inform some (maxHas)
peers, so new data sharing phases can be started. An assistant also informs
other assistants when all peers in its cluster are completed preventing further
unnecessary communications. Finally, norm deliberations and notifications also
belong to the protocol.
5 Specially, we assume the information is composed of a single piece of data.

110



4 Simulator

As a platform to run our experiments, we have implemented a P2P sharing
network simulator in Repast Simphony. Its architecture allows to both model
agents (agent-level) and the transport of messages among them (network-level).
The model that simulates the message transport is a packet switching network.
Simulation at network level allows us to compare different P2P approaches taking
into account the environmental changes that occur at this level (notice that this
feature is not present in Repast Simphony simulator framework). In our current
implementation, network status just depends on MAS activity, but we could
introduce additional traffic that disrupts it. Our simulator includes our 2-LAMA
approach and the standard BitTorrent protocol, and provides some facilities to
collect information at agent/network level and to analyse it.

4.1 Architecture

Our simulator has an internal architecture that clearly isolates different func-
tionalities. On the one hand, we have a module called p2p that represents the
conceptual model defined by the 2-LAMA and is targeted to drive the simu-
lation at agent-level. It provides tools to create state-based agents, to define a
problem (number of peers, who has initially the datum, etc.) or services such as
an agents’ directory. The upper part of figure 3 shows the P2P implementation
of the 2-LAMA architecture described in previous section.

Fig. 3. 2-LAMA model and the underlying network. Agents are modelled on the top
but their exchanged messages traverse the network on the bottom.

On the other hand, we have a module that drives the simulation at network-
level. This module is called netsim and provides facilities to transport messages
among agents, to define different network topologies, and to collect statistical

111



information about network status. In order to use this module, an agent from
the p2p module is attached to a netsim’s network adapter, which is in charge
of actually sending messages. These messages are split into packets that travel
along links and follow their path by switching at routers. The destination agent
is informed when each packet reaches its network adapter. Eventually, when all
packets of a message arrive, the network adapter also delivers the whole message
to the destination agent. Hence, agents can pay attention to packets or just
wait for entire messages. The latency of a message from one network adapter to
another depends on the number of links, their bandwidth and the current traffic
through them.

The lower part of figure 3 depicts the netsim module, which exemplifies a net-
work topology. We can see how peers with a good communication among them
are grouped into a cluster and have individual links to the same ISP. In this ex-
ample, peers P1 and P2 are connected at conceptual level, which at network level
is achieved by connecting their corresponding network terminations p1 and p2
to the same ISP (r1). We also have the agent A1, which is the assistant of these
peers, connected to the same ISP (r1) through its corresponding network termi-
nation a1. Each cluster is connected to the others by means of links, so r1 and
r2 have aggregated links connected to r0, which represents the interconnection
through Internet.

The simulator also includes an overepastmodule that processes the generated
logs and extracts relevant information. This information can be later on displayed
in different types of graphics. Hence, this can be used to compare the time
spent to share the data in different configurations, or by using different sharing
methods.

4.2 Sharing methods

Our simulator offers alternate sharing methods so that they can be executed
over the same initial configurations in order to compare their results. Current
available methods are: a single-piece version of the BitTorrent protocol (BT),
the 2-LAMA approach with social structure adaptation but no norm adaptation
and the 2-LAMA approach with social structure and norm adaptation.

Since the BitTorrent protocol inspired our 2-LAMA P2P approach, both
protocols at peers’ level are really similar (in fact, both protocols work with
single-piece data and share most messages). Latency phase is not present in BT
and our whole ML collapses into a single agent (tracker) that informs about all
existing peers. As a consequence, the social structure phase is reduced to the
tracker informing about all connected peers, ant thus, peers do not receive any
further assistance to share the datum. Data sharing phase follows the algorithm
described in [10]. In brief, it uses the same messages but decisions do not depend
on norms but on protocol pre-fixed variables, so agents do not have any chance
to take their own decisions.

In contrast, agents in the 2-LAMA approach can decide their actions as far
as they respect norms. When executing the 2-LAMA approach social structure
adaptation but no norm adaptation, norm parameters (maxBW, maxFriends, maxHas)

112



are fixed from start. On the contrary, the 2-LAMA approach with social structure
and norm adaptation also has the norm parameters, but maxBW and maxFriends
are self-updated at run-time at certain adaptation intervals (adaptinterv, an
additional parameter). Each assistant computes their desired values for each
norm taking into account the information collected from its cluster and the
information received from other assistants. Assistants use a voting scheme as a
group decision mechanism to choose the actual norm updates before notifying
their peers.

4.3 Graphical User Interface (GUI)

By its very nature, MAS are complex systems composed by many agents acting
and interacting simultaneously. Runtime monitoring information is usually low
level, so we need graphical means to analyse system’s evolution from a higher
level of abstraction. With this aim, our simulator extends the Repast GUI and
creates and advanced user-friendly GUI. Next sections detail its architecture and
the new functionalities it provides.

Architecture Figure 4 shows the two main parts of the simulator: the core
and the GUI. The core is based in Repast Simphony, which provides general
simulation utilities such as schedulers or basic extendable models. By extending
it, we have created our 2-LAMA P2P Simulator core, which implements domain-
specific simulations. As for the GUI, our advanced GUI also extends Repast
original GUI, providing some additional functionalities. It is able to exchange
information with it and uses its basic tools to draw elements in the screen, such
as the agents in the simulation, the messages sent among them, etc.

Fig. 4. Repast-based architecture of the 2-LAMA Simulator GUI

Our GUI also captures information from the P2P simulator in order to obtain
all the information that will be displayed subsequently. This information comes
down to the messages that are being sent among peers. The GUI is constantly
listening to the simulator to catch these messages, which are stored afterwards.
Figure 5 depicts the organisation of these messages. Peers are grouped in pairs,
and these pairs are labelled with the name of its peers alphabetically ordered.
Each pair of peers has a bag with the messages that one peer is sending to the

113



other at a given time step. For example, left side of the figure shows a group
labelled P1P2. This group has a bag storing three messages from peers P2 and
P1, and the first one is a PIECE message that is being sent from P2 to P1. The
GUI uses this information to paint coloured arrows that represent the type and
direction of messages that are being sent among peers.

Fig. 5. Organisation of the information needed by the GUI to display simulation events

Functionalities This section explains the functionalities provided by our ad-
vanced GUI. Figure 6 depicts a screenshot of our simulator that illustrates GUI’s
general appearance. As for any other GUI, it has the natural aim of supporting
user’s interaction and the general objective of providing relevant information
about the simulation —such as the messages sent at a given time step, their
type, the source and target peers of the message, etc.

As Figure 6 shows, GUI functionalities are distributed in the following six
main layout areas:

1. Control toolbar: This toolbar pertains to the original Repast GUI (and
thus, it does not requires further implementation). It allows users to play the
simulation, pause it or execute it step by step, where each step corresponds
to a tick of the simulation.

2. Legend of agents: It shows how the different types of agents and possible
states are displayed in the layout. Thus, the user can identify each agent
and know if it is acting as an assistant or a peer, and have it into account
to interpret what is happening in the simulation at every moment.

3. Legend of message types: It shows the colours corresponding to each type
of message agents can exchange. This colour can be changed by means of
the element on the left of the coloured line next to each message type. These
changes can be saved into a file to recover them in future simulations.

4. Visible and Pause checkboxes: For each type of message, there are also
two checkboxes that allow the user to show/hide the messages of that type
that are exchanged among agents, or pause the simulation when any agent
sends a message of that type.

5. Runtime P2P Network layout: This layout shows an animation of the
agents of the simulation and the communications among them. Peers and

114



Fig. 6. 2-LAMA P2P Simulator Graphic User Interface

assistants are drawn according to the network topology. Following the ex-
ample of Figure 6, peers are grouped in clusters of four peers, where each
cluster is linked to an assistant. Messages sent among agents are displayed
according to the defined colour in the user panel.

6. Resume layout: This layout shows how the data has been distributed
among the P2P agent community. It also highlights completed peers and
displays arrows connecting source and receiver agents. Furthermore, these
arrows are labelled to specify at what time step the data was received.

Both Runtime P2P Network layout and Resume layout are able to draw
new agents entering the simulation, highlighting them during some ticks and
redistributing the layout to place them into the network.

4.4 Results analysis facilities

As it has been previously mentioned, our overepastmodule collects textual infor-
mation (logs) and analyses it off-line (i.e., at the end of one or several executions).
Analysis is done by generating additional plots that show how the main metrics
change along execution time or with different simulation parameters. Thus, sum-
marising and comparing the performance of different simulations. This turns out
to be very useful for system designers, since rather than just knowing the overall
system performance, it helps to understand its evolution based on detailed in-
formation such as bandwidth usage or link saturation. As a consequence, if some

115



problems arise, it is easier to identify them, their possible causes and what is
most valuable: which simulation parameter values perform best. For a detailed
analysis of results comparing the BitTorrent protocol and our 2-LAMA approach
reader s referred to [11].

Specifically, the following metrics are graphically displayed: (1) time required
to share the data; (2) network consumed; (3) mean number of hops that traveling
messages perform; (4) network channel usage; (5) network channel saturation;
(6) number of cancelled messages; (7) cost associated to these cancels; and (8)
source factor —measure that provides information about how data was actually
distributed among peers. Next figure 7 shows time performance comparisons
for different sharing methods (with and without norm adaptation) and different
norm values (maxBW in normBWDL and maxFriends from normFriendsDL) 6.

Fig. 7. Off-line comparison of different simulations

5 Conclusions and Future Work

This paper presents a simulator that has been developed with the aim of study-
ing MAS organisational adaptation mechanisms in P2P scenarios. In order to
endow the system with self-adaptation capabilities we advocate for adding a
meta-level in charge of that task, instead of expecting participating agents to
increase their behaviour complexity. The presented simulator provides the fol-
lowing functionalities and facilities:

– Definition and execution of simulations with different characteristics, as for
instance network topology, number of peers. or sharing method.

– A GUI that permits to graphically control and follow simulations’ evolution.
Graphical representations are far more intuitive than textual logs, and if we

6 In these plots maxHas from normHasML has been fixed to 1

116



also add the option to choose what to display (as in the user panel in our
simulator), then the gain is even larger.

– Testing of different adaptation mechanisms for the social structure and norms.
– Process and analysis of simulation results. It generates different plots that

help to compare the results of different simulations

Notice that while social adaptation is performed individually by each assis-
tant within its cluster, in norm adaptation assistants have to reach an agreement
on the norm new value. Specifically, each assistant computes its new desired norm
values and later on they have to reach an agreement on each norm value. We
believe that agreement technologies can play a key role in this process. Hence,
our simulator can be used to test different approaches for reaching agreements
among autonomous agents in the context of norm adaptation.

As future work, we plan to evaluate our approach with populations with
norm violators, and in simulations where participants enter and leave. We are
also interested in applying learning techniques to adaptation services.

Acknowledgements: This work is partially funded by IEA (TIN2006-15662-
C02-01) and AT (CONSOLIDER CSD2007-0022) projects, EU-FEDER funds,
the Catalan Gov. (Grant 2005-SGR-00093) and Marc Esteva’s Ramon y Cajal
contract.

References
1. Esteva, M.: Electronic Institutions: from specification to development. IIIA PhD.

Vol. 19 (2003)
2. Hübner, J.F., Sichman, J.S., Boissier, O.: S-MOISE+: A middleware for developing

organised multi-agent systems. In: AAMAS Workshops. Volume 3913 of LNCS.,
Springer (2005) 64–78

3. Deloach, S.A., Oyenan, W.H., Matson, E.T.: A capabilities-based model for adap-
tive organizations. Autonomous Agents and Multi-Agent Systems 16(1) (2008)
13–56

4. R., K., N., G., N., J.: Decentralised structural adaptation in agent organisations.
In: AAMAS Workshop on Organised Adaptation in MAS. (2008)

5. Sims, M., Corkill, D., Lesser, V.: Automated Organization Design for Multi-agent
Systems. Autonomous Agents and Multi-Agent Systems 16(2) (2008) 151–185

6. Zhang, C., Abdallah, S., Lesser, V.: MASPA: Multi-Agent Automated Supervisory
Policy Adaptation. Technical Report 03 (2008)

7. Campos, J., López-Sánchez, M., Esteva, M.: Multi-Agent System adaptation in a
Peer-to-Peer scenario. In: ACM SAC09 - Agreement Technologies. (2009) 735–739

8. Campos, J., López-Sánchez, M., Esteva, M.: Assistance layer, a step forward in
Multi-Agent Systems Coordination Support. In: International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS). (2009) 1301–1302

9. Lewis, D.: Convention: A Philosophical Study. Harvard University Press (1969)
10. Cohen, B.: The BitTorrent Protocol Specification.

http://www.bittorrent.org/beps/bep_0003.html
11. Campos, J., López-Sánchez, M., Esteva, M., Novo, A., Morales, J.: 2-LAMA Ar-

chitecture vs. BitTorrent Protocol in a Peer-to-Peer Scenario. In: to appear in
Twelfth Catalan Congress on Artificial Intelligence (CCIA09). (2009)

117




