
 
WAT 2009 

 
 

PROCEEDINGS 
 
of 
 

CAEPIA 2009 Workshop on Agreement Technologies 
(WAT 2009) 

 
November 9th, 2009 

 
Escuela Técnica Superior de Ingeniería Informática 

‐ Sevilla, Spain 
 
 
 

Marc Esteva, Alberto Fernández and Adriana Giret (Eds.) 
 

 
www.agreement-technologies.org

Preface 
 
Agreement  is one of  the  crucial  social  concepts  that helps human agents  to  cope 
with  their  social  environment  and  is  present  in  all  human  interactions.  In  fact, 
without  agreement  there  is  no  cooperation  and ultimately  social  systems  cannot 
emerge. Agreement is necessary in our everyday life. 
 
Until  recently,  the  concept  of  agreement  was  a  domain  of  study  mainly  for 
philosophers,  sociologists  and was  only  applicable  to  human  societies.  However, 
this  situation  has  changed  in  the  recent  years,  especially  with  the  spectacular 
emergence of information society technologies. Computer science has moved from 
the paradigm of an isolated machine to the paradigm of a network of systems and 
of  distributed  computing.  Likewise,  artificial  intelligence  is  quickly moving  from 
the  paradigm  of  an  isolated  and  non‐situated  intelligence  to  the  paradigm  of 
situated,  social  and  collective  intelligence.  Hence,  the  concept  of  agreement  has 
become  key  for  a  robust  understanding  and  an  efficient  implementation  of 
artificial social systems. 
 
In this context, Agreement Technologies is a new approach of Distributed Artificial 
Intelligence  for constructing  large‐scale open distributed computer systems. This 
workshop on Agreement Technologies is specifically addressed for any work that 
aims at developing models, frameworks, methods and algorithms for constructing 
such systems. In other words, this workshop focuses on approaches and solutions 
for the needs of next generation computing systems where autonomy, interaction 
and  mobility  will  be  the  key  issues.  Most  importantly,  it  concentrates  on 
techniques  that  enable  software  components  to  reach agreements on  the mutual 
performance of services.  
 
Agreement Technologies  integrates many research efforts  from different  fields of 
Artificial  Intelligence.  Hence,  this  workshop  is  specifically  tailored  to  research 
works related to this new approach. As CAEPIA is the leading Artificial Intelligence 
conference  in  Spain,  it  is  a  good  forum  to  celebrate  this  workshop.  Finally,  the 
editors would like to thank all the people that bring about WAT and CAEPIA 2009. 
First of all, thanks to the authors for ensuring the richness of the workshop and the 
members  of  the  program  committee  for  their  professionalism  and  dedication. 
Furthermore, we owe particular gratitude to the CAEPIA organizing committee. 
 
 
 
 
Marc Esteva, Alberto Fernandez and Adriana Giret 
WAT2009 Organizing Committee 

ORGANIZING COMMITTEE 
 
Marc Esteva (Artificial Intelligence Research Institute (IIIA), Spain) 
Adriana Giret (Universidad Politécnica de Valencia, Spain) 
Alberto Fernández (Universidad Rey Juan Carlos, Spain) 
 
STEERING COMMITTEE 
 
Carles Sierra (IIIA‐CSIC, Spain) 
Sascha Ossowski (Universidad Rey Juan Carlos, Spain) 
Vicente Botti (Universidad Politecnica de Valencia, Spain) 
 
PROGRAM COMMITTEE 
 
Axel Polleres (DERI Galway, Ireland)  
Adriana Giret (Universidad Politecnica de Valencia, Spain) 
Alberto Fernandez (Universidad Rey Juan Carlos, Spain) 
Carlos Ángel Iglesias (Universidad Politécnica de Madrid, Spain) 
Carles Sierra (IIIA‐CSIC, Spain) 
David Pearce (Universidad Politécnica de Madrid, Spain)  
Eugénio de Oliveira (Universidade do Porto, Portugal) 
Eva Onaindía (Universidad Politecnica de Valencia, Spain) 
Frank Dignum (Universiteit Utrecht, The Netherlands) 
Helder Coelho (University of Lisbon, Portugal) 
Holger Billhardt (Universidad Rey Juan Carlos, Spain)  
Juan Antonio Rodriguez‐Aguilar (IIIA‐CSIC, Spain) 
Juan Manuel Serrano (Universidad Rey Juan Carlos, Spain) 
Jaelson Castro (Universidade Federal de Pernambuco, Brazil) 
Luis Botelho (ISCTE, Lisbon, Portugal) 
Maite Lopez‐Sanchez (Universitat de Barcelona, Spain) 
Marc Esteva (IIIA‐CSIC, Spain) 
Maria Jose Ramirez (Universidad Politecnica de Valencia, Spain) 
Michael Wooldridge (University of Liverpool, UK) 
Pablo Noriega (IIIA‐CSIC, Spain) 
Sascha Ossowski (Universidad Rey Juan Carlos, Spain) 
Vicente Julián (Universidad Politecnica de Valencia, Spain) 
Vicente Botti (Universidad Politecnica de Valencia, Spain)  
Viviane Torres da Silva (Universidade Federal Flumiense, Brazil) 
Wamberto Vasconcelos (University of Aberdeen, UK) 
 

Index 

1. Negotiation with Price-dependent Probability Models 9

Antonio Bella, César Ferri, José Hernández-Orallo,
María José Ramírez-Quintana

2. The THOMAS architecture: A case study in Home Care
 Scenarios 21

J.A. Fraile Nieto, Sara Rodríguez, Javier Bajo, Juan Manuel Corchado

3. Auction Robustness through Satisfiability Modulo Theories 33

Miquel Bofill, Didac Busquets, Mateu Villaret

4. Self-Adaptive MAS for Biomedical Environments 45

Juan F. De Paz, Sara Rodríguez, Javier Bajo, Juan M. Corchado

5. Agreement Patterns 57

Carlos A. Iglesias, Mercedes Garijo, José I. Fernández-Villamor,
José Javier Durán

6. Achieving Mediated Agreements using Agreement Space
 Modeling 69

Carlos Carrascosa, Miguel Rebollo

7. Reputation-based Agreement for Agent Organisations 82

Ramón Hermoso, Roberto Centeno, Viviane Torres da Silva
 
8. Towards an abstract architecture for service discovery with
 semantic alignment 94

Analay Baltá, Alberto Fernández
 
9. A simulator for a two layer MAS adaptation in P2P networks 106

Jordi Campos, Marc Esteva, Maite López-Sánchez, Javier Morales

10. Agreement Technologies for Adaptive, Service-Oriented
 Multi-Agent Systems 118

J. Santiago Pérez, Carlos E. Cuesta, Sascha Ossowski

11. Developing Virtual Organizations Using MDD 130

Jorge Agüero, Miguel Rebollo, Carlos Carrascosa, Vicente Julián

12. A Logic Related to Minimal Knowledge 142

David Pearce, Levan Uridia
 
13. Argumentation-based Distributed Induction 154

Santiago Ontañón, Enric Plaza

Negotiation with Price-dependent Probability
Models ?

Antonio Bella, Cèsar Ferri, José Hernández-Orallo, and Maŕıa José
Ramı́rez-Quintana

Universidad Politécnica de Valencia, DSIC, Valencia, Spain

Abstract. Negotiation and agreement generally require models of the
peers who are involved in the negotiation. One typical area where ne-
gotiation takes place is in selling and retailing, which is also known as
Customer Relationship Management (CRM). Customers and products
are usually modelled using previous retailing experiences with similar or
dissimilar customers and products. Machine learning is typically used to
construct these models, which can be used to design mailing campaigns,
to recommend new products, to do cross-selling, etc. Many CRM prob-
lems can already be solved through rankers, recommender systems, etc.,
provided that there are good models of customer and product behaviours
available. A related but more general problem is when models are used
to negotiate with one or more features of the product (or, less frequently,
the customer) such as prices, bonuses, warranties, etc. Additionally, if it
is possible to make several bids until an agreement is reached, methods
must be devised so that the maximum profit is obtained by the seller.
In this work, we present a taxonomy of CRM problems, from which we
distinguish those that have already been solved and those whose solu-
tions are still pending. Then, we extend classical purchase probability
rankings to the notion of profit probability curves (price-dependent dis-
tributions), and we propose a simple negotiation solution for these cases.

Keywords: negotiation, agreement, bargaining, CRM, ranking, proba-
bility estimation, negotiable features, machine learning.

1 Introduction

The evolution of small-sized retailing to mass Customer Relationship Manage-
ment (CRM) has usually implied greater automation of the selling process, the
selection of products, customer prescriptions, cross-selling, up-selling, market
segmentation, etc. Techniques such as mailing campaign design, recommender
systems, and others (e.g. data-mining and machine learning [5] from the area
of business intelligence) are nowadays common in these applications. However,
this evolution has not usually included traditional techniques in selling such as
? This work has been partially supported by the EU (FEDER) and the Spanish

MEC/MICINN, under grant TIN 2007-68093-C02 and the Spanish project ”Agree-
ment Technologies” (Consolider Ingenio CSD2007-00022).

9

bargaining and other kinds of negotiation because of the difficulty of automat-
ing them and also because more general models about customer behaviour are
needed. With the diversification and specialisation of services, there is a need
for new techniques that deal with selling scenarios where price (or any other
negotiable feature) can be adjusted to the customer (price discrimination using
custom discounts and offers) in order to achieve the goal of mass customisation.

Consider, for instance, a classical mailing campaign design or market target-
ing problem. Given n equal products and m customers, the subset of customers
to whom a product must be offered (customer prescription) must be devised.
In order to do this, machine learning is usually employed to learn probabilisitc
models, which assess the probability of buying for each customer, from which
a ranking of customers is performed. If the campaign has both fixed and vari-
able costs, there are simple techniques (e.g. profit lifts) to calculate the subset
of customers that maximises the expected profit [4]. Similar techniques can be
used if there are many kinds of products where several rankings and constraints
(stocks) must be taken into account [2].

A very different type of problem, however, is when product or customer
buying expectations can be influenced by changing one or more features of the
product or the customer, such as prices, bonuses, warranties, etc. For instance,
the probability of a customer buying a product changes dramatically if the price
is modified. And it is frequent to adjust prices (or, in a subtler way, to offer dis-
counts) to those customers who are less eager to buy a product. Setting different
prices for various customers can allow us to maximise profit.

In this scenario, we need to move from probabilistic models (where, given a
product and a customer, we have a probability of buying) to profit probability
curves or price-dependent distributions (where, given a product and customer,
we see the evolution of the probability of buying according to a certain feature
(e.g. price)). This more complex scenario has not been addressed to date.

Additionally, negotiating with price or other negotiable features normally
implies that counter-offers from both buyer and seller are allowed up to a max-
imum number of bids or until an agreement is reached. In other words an offer
can be made to a customer at a given price, and if the customer does not buy
the product, a lower price (a special discount offer for that particular customer)
can be offered. This is the beginning of a negotiation process between the seller
and the buyer that we have already studied in [3]. In that work, we developed
several methods to derive the profit probability curves, and we also introduced
new negotiation strategies.

However, in general, the case when a negotiation can take place, in parallel,
for several products and customers must also be solved. In this case, not only
must the profit probability curves for each pair of product and customer be
derived, but is also necessary to analyse how to combine these curves to develop
new optimal negotiation strategies in these much more complex scenarios.

This work attempts to address this problem. We place ourselves on the side of
the seller. Since the main overall objective is to sell as much as possible with the
highest possible net price. Therefore, agreements are considered to be optimal

10

when they are optimal for the seller. Nonetheless, the techniques that we discuss
in this paper can also be used when both buyer and seller model each other, or
when a buyer wants to negotiate with several sellers.

The paper is organised as follows. In Section 2, we devise a taxonomy of CRM
prescription problems, from which we distinguish those that have been solved
in the past and those which we propose a solution. In Section 3, we present a
detailed description of a specific scenario with one kind of product, a negotiable
price, and M customers, and explain how it is possible to solve other kinds of
CRM prescription problems using the same strategy. In Section 4, we present
our conclusions and future work.

2 A Taxonomy of CRM Prescription Problems

There are a great variety of different CRM prescription problems that can be
defined only by taking into account the cardinality of the different kinds of
products and customers (1−1, N−1, 1−M,N−M) and the presence or absence of
negotiation. As we have stated in the introduction, if a feature is negotiable, then
we can introduce some kind of negotiation into the CRM process; however, if it is
non-negotiable (fixed), then we are dealing with a traditional CRM prescription
problem. Focusing on the seller, in this paper, when we refer to the price of a
product we mean the net price that the seller obtains for the product, e.g., if
a customer buys a product for 3 euros, the net price is 3 euros since fixed and
variable costs are not included (except if mailing is involved).

In any of these situations, data-mining techniques can help the seller by
modelling customer behaviour in order to make good decisions. In this context,
that means obtaining as much profit as possible.

Table 1. Different CRM prescription problems that consider the number of different kinds of prod-
ucts to sell, whether the net price for the product is fixed or negotiable, and the number of customers.

Case Kinds of products Net price Number of customers Approach

1 1 fixed 1 Trivial
2 1 fixed M Customer ranking [4]
3 N fixed 1 Product ranking [4]
4 N fixed M Joint Cut-off [2]
5 1 negotiable 1 Negotiable Features [3]
6 1 negotiable M This work
7 N negotiable 1 This work
8 N negotiable M Future work

Table 1 shows eight different CRM prescription problems that are defined by
considering the number of products and customers involved as well as the fixed
or negotiable nature of the net price for each product. The last column shows
several approaches, that have already been proposed in the literature for solving
some of these problems. It also shows others that are proposed in this paper for
solving the remainder. We discuss each of them in more detail below.

11

2.1 CRM Prescription Problems without Negotiation

Case 1 in Table 1 (one kind of product, fixed net price, and one customer)
is trivial. In this scenario, the seller offers the product to the customer at a
fixed price and the customer may or not buy the product. The seller cannot do
anything more because s/he does not have more products to sell. S/he cannot
negotiate the price of the product with the customer, and s/he does not have
any more customers for the product.

Case 2 in Table 1 (one kind of product, fixed net price, and M customers)
is the typical case of a mailing campaign design. The objective is to obtain
a customer ranking to determine the set of customers to whom the mailing
campaign should be directed in order to obtain the maximum profit. Data-mining
can help in this situation by learning a probabilistic estimation model from
previous customer data that includes information about similar products that
have been sold to them. This model will obtain the buying probability for each
customer, so by putting them in order of decreasing buying probability, the most
desirable customers will be at the top of the ranking. Using a simple formula
for marketing costs, we can establish a threshold/cut-off in this ranking. The
customers above the threshold will be offered the product. This is usually plotted
using the so-called lift charts.

Case 3 in Table 1 (N kind of products, fixed net price, and one customer)
is symmetric to case 2. Instead of N customers and one product, in this case,
there are N different products and only one customer. The objective is to obtain
a product ranking for the customer. Similarly, data-mining can help to learn a
probabilistic estimation model from previous product data that have been sold
to similar customers. This model will predict the buying probability for each
product, so by putting them in order of decreasing buying probability, the most
desirable products for the customer will be at the top of the ranking. This case
overlaps to a great extent with recommender systems.

Case 4 in Table 1 (N kinds of products, fixed net price, and M customers) is
studied in [2]. This situation is more complex than the cases 2 and 3, since there
is a data-mining model for each product. In other words, there are N rankings
of customers (one for each product) and the objective is to obtain the set of cus-
tomers that gives the maximum overall profit. Note that, normally, the best local
cut-off of each model (the set of customers that gives the maximum profit for
one product) does not give the best global result. Moreover, several constraints
would have to be fulfilled (limited stock of products, the customers can only buy
one product), which usually happens in real situations. Two different methods
are proposed in [2] to obtain the global cut-off: one is based on merging the
prospective customer lists and using the local cut-offs, and the other is based on
simulation. The study in [2] shows that use simulation to adjust model cut-off
obtain better results than more classical analytical methods.

2.2 CRM Prescription Problems with Negotiation

In the above four cases, we have assumed that the net price of the product is
fixed. When this is not the case, the objective of the sellers changes. They do not

12

have to sell the product, but they have to sell it at the maximum price, which
the seller and the buyer can negotiate. Figure 1 (Left) shows how the behaviour
of a customer can be approximated. The customer buys the product if the price
is less than or equal to the maximum price that s/he could pay for it. Figure 1
(Right) shows the expected profit for each price (the expected profit is equal to
the buying probability multiplied by the price). In this case, it is clear that the
maximum expected profit is obtained when the seller sells the product at the
maximum price that the customer can pay.

We will show later, that the seller does not know this real model and tries to
learn the most accurate model from previous data by using data-mining tech-
niques.

Fig. 1. Real behaviour of the buying model of a customer. Left: Probability distribu-
tion function. Right: Associated expected profit.

In [3], a formal definition of a negotiable feature is given and a case with
one kind of product, a negotiable price, and one customer is studied (Table
1, case 5). In this case, there is one probabilistic data-mining model for the
customer, which was learned from previous product data. Several data-mining
algorithms and several negotiation strategies were studied experimentally. As
can be observed in [3] the best results were obtained by approaching the buying
model curve by the cumulative distribution function of a normal distribution.
The mean µ is equal to the value obtained by a regression model and the standard
deviation σ is equal to the standard error of the model (mean absolute error,
mae). Figure 2 shows an example of a probabilistic buying model of a customer
who is interested in buying a flat that is approximated by a normal distribution
with µ = 200, 000 and σ = 20, 000. As can be observed in this figure, the mean
price has a probability of 0.5, so the maximum expected profit is located just to
the left of that point (the seller will decrease the price to increase the probability
of buying the product if s/he can only make one offer to the customer). If the
seller can make several offers, then the offers can be distributed along the curve
to maximise the profit of the product, according to several negotiation strategies.

There are some details that should be taken into account from our work in [3].
Note that the normal distribution is limited on the left, when working with the
expected profit curve (i.e., the probability density function) because the expected
profit is zero when the price of the product is zero. Also note that, in [3], only
symmetric normal distributions were considered, but it would also be interesting

13

Fig. 2. Probabilistic buying model of a customer approximated by a normal distribu-
tion with µ = 200, 000 and σ = 20, 000. Left: Probability distribution function. Right:
Associated expected profit.

to study non-symmetric normal distributions (i.e., to consider different standard
deviations on the left and on the right of the mean, as is common in real life.
For example, it is easy to buy a product simply because it is cheap (although
not essential), therefore, in this situation the standard deviation on the left will
be greater than the one on the right. An example of a skew-normal distribution
[1] can be seen in Figure 3.

Fig. 3. Probabilistic buying model of a customer approximated by a skew-normal dis-
tribution with location ξ = 50, scale ω = 2, and shape α = 3. Left: Probability
distribution function. Right: Associated expected profit.

The cases 6, 7 and 8 in Table 1 have not yet been studied. However, they can
be understood as an extension of case 5 combined with the rankings of customers
and products that are used in the approaches proposed in Table 1 for the cases
2 and 3.

In case 6 in Table 1 (one kind of product, a negotiable price, and M cus-
tomers), there is a curve for each customer, that is similar to the curve in case 5
(Figure 4, Left). If the seller can only make one offer to the customers, the seller
will offer the product at the price that gives the maximum expected profit (in
relation to all the expected profit curves) to the customer whose curve achieves
the maximum. However, if the seller can make several offers, the seller will dis-
tribute the offers along the curves following a negotiation strategy. In this case,
the seller not only changes the price of the product, but the seller can also change
the customer that s/he is negotiating with, depending on the price of the product
(that is, by selecting the customer in each bid who gives the greatest expected

14

profit at this price). Therefore, these curves can be seen as an evolution of the
customer ranking for each price.

Fig. 4. Probabilistic buying models of 3 different customers approximated by 3 normal
distributions with µ1 = 250, 000 and σ1 = 30, 000, µ2 = 220, 000 and σ2 = 10, 000,
and µ3 = 200, 000 and σ3 = 50, 000. Left: Probability distribution function. Right:
Associated expected profit.

Case 7 in Table 1 (N kind of products, a negotiable price, and one customer)
is symmetric to case 6. Instead of one curve for each customer, there is one curve
for each product that was learned from the previous customer data. In this case,
the curves represent a ranking of products for that customer. The learned data-
mining models will help the seller to make the best decision about which product
the seller offers to the customer and at what price. Figure 4 is an example of
this case since the curves would represent three different products to be offered
to one customer.

Case 8 in Table 1 (N kind of products, a negotiable price, and M customers)
is the most complex of all. There is one data-mining model for each product
and customer (i.e., N × M curves). The objective is to offer the products to
the customer at the best price in order to obtain the maximum profit. Multiple
scenarios can be proposed for this situation: each customer can buy only one
product; each customer can buy several products; if the customer buys some-
thing, it will be more difficult to buy another product; there is limited stock;
etc.

To solve cases 6, 7 and 8, we propose extending the classical concept of
ranking customers or products to profit probability curves in order to obtain a
ranking of customers or products for each price (similar to cases 2 and 3). For
example, Figure 4 shows that, for a price of 300,000 euros the most desirable
customer is the one represented by the solid line, the second most desirable one
is the customer represented by the dotted line, and the least desirable customer
is the one represented by the dashed line. The situation changes for a price of
200,000 euros; at that point the most desirable customer is the one represented
by the dashed line, the second most desirable one is the customer represented
by the solid line, and the least desirable customer is the one represented by
the dotted line. Therefore, an important property of these probabilistic buying
models is that there is a change in the ranking at the point where two curves
cross.

15

Fig. 5. Probabilistic buying models of 2 different customers approximated by 2 nor-
mal distributions with µ1 = 400 and σ1 = 100, and µ2 = 300 and σ2 = 200. Left:
Probability distribution function. Right: Associated expected profit.

3 Scenario with Negotiable Price and several Customers

To study case 6 in more depth, we start with the simplest situation with two
customers, and we explain the negotiation strategy that the seller will follow by
means of an example.

In Figure 5, there are two curves representing the buying model of two dif-
ferent customers. The buying model of the first customer follows a normal dis-
tribution with µ1 = 400 and σ1 = 100, and it is represented by a dashed line.
The buying model of the second customer follows a normal distribution with
µ2 = 300 and σ2 = 200, and it is represented by a dotted line. These are the
models; however, the real situation is that the maximum buying price for cus-
tomer 1 is 100 euros and 150 euros for customer 2.

We assume a simple negotiation process for this example. The negotiation
strategy that we describe is similar to the Best Local Expected Profit (BLEP)
strategy explained in [3], but in that case the number of offers was limited to n.

Table 2. Left:Trace of the negotiation process. Right:Trace of the negotiation process with the
ordering pre-process.

Offer Price Customer Accepted

1 309 1 No
2 214 1 No
3 276 2 No
4 149 1 No
5 101 1 No
6 150 2 Yes

Offer Price Customer Accepted

1 309 1 No
2 276 2 No
3 214 1 No
4 150 2 Yes

The strategy consists of offering the product at the price that obtains the
maximum expected profit for the customer whose curve reaches the maximum.
If the customer accepts the offer, the process is finished. If the customer does not
accept the offer, his/her curve is normalised taking into account the following:
the probabilities of buying that are less than or equal to the probability of buying
at this price will be set to 0; and the probabilities greater than the probability
of buying at this price will be normalised between 0 and 1. This process is

16

Fig. 6. Points 1, 2 and 3 in the negotiation process. Left: Probability distribution
function. Right: Associated expected profit.

17

repeated with each customer until one of them accepts an offer1. The trace of
the negotiation process is described in Table 2 (Left) and shown graphically in
Figures 6 and 7. In each iteration, the maximum of the functions is calculated
(the envelope curve). The envelope curve is represented by a solid line in Figures
6 and 7.

Note that as Table 2 (Left) shows, the third offer is greater than the second
one. This is because there is more that one customer in the negotiation process
and the offer is made at the price that maximises the expected profit at each
iteration. Therefore, it is easy to propose an improvement for this negotiation
strategy with a limited number of offers, which is similar to BLEP with n bids.
This improvement is a pre-process that consists of calculating the n points and
ordering them by the price before starting the negotiation. Following the ex-
ample shown in Table 2 (Left), if there are only 4 bids no one will buy the
product. However, with our improvement (the pre-process) customer 2 will buy
the product at a price of 150 euros as shown in Table 2 (Right).

This negotiation scenario suggests that other negotiation strategies can be
proposed for application to problems of this type in order to obtain the maximum
profit. One problem with the BLEP strategy is that it is very conservative. It
might be interesting to implement more aggressive strategies that make offers
at higher prices (graphically, more to the right). A negotiation strategy that
attempts to do this is one of the strategies proposed in [3], the Maximum Global
Optimisation (MGO) strategy (with n bids). The objective of this strategy is
to obtain the n offers that maximise the expected profit by generalising an
optimisation formula that was presented in [3].

In case 6, we have presented an example with two customers and one product,
but it would be the same for more than two customers. In the end, there would
be one curve for each customer, and the same negotiation strategies could be
applied.

Case 7 (N kind of products, a negotiable price, and one customer) is the
same as case 6, but the curves represent the buying model of each product for
each customer, and a ranking of products will be obtained for each price.

Case 8 (N kind of products, a negotiable price, and M customers) can be
studied using the same concept of expected profit curves, but there will be N×M
curves. The use of simulation or some kind of evolutionary computation will be
necessary to obtain a good solution because case 8 is similar to case 4 where
the best point in each curve does not give the best global solution. For each
of the N kind of products, there will be M curves that belong to the buying
model of each customer. Figure 8 presents a simple example with two products
and two customers, where a customer can only buy a maximum of one product.
In this example, customer 1 (dashed line) has the maximum expected profit
for both products, corresponding to 80 euros for product 1 and 112 euros for
product 2. The best local decision would be to offer product 2 to customer 1;
however, customer 2 (dotted line) has the maximum expected profit of 27 euros

1 More stop conditions are possible (e.g. limited number of offers (BLEP with n bids),
minimum selling price, etc.)

18

Fig. 7. Points 4, 5 and 6 in the negotiation process. Left: Probability distribution
function. Right: Associated expected profit.

19

Fig. 8. Example of probabilistic models of two different customers. Left: Product 1.
Right: Product 2.

for product 1 and 52 euros for product 2. Thus, for a better global solution, it
would be better to offer product 2 to customer 2 and product 1 to the customer
1 since the overall profit would be greater.

4 Conclusions

In this paper, we have devised a taxonomy of CRM prescription problems, where
automated learning can help a seller to make a good decision about which prod-
uct should be offered to which customer and at what price in order to obtain as
much overall profit as possible.

Some of these problems have already been studied, and we have explained the
approaches proposed to solve them. In the cases that have not yet been studied
(negotiable price, several products and/or several customers), we have proposed
a solution based on the extension of rankings to expected profit curves, in which
there is a ranking of customers and/or products for each price of the product.

As future work, we plan to study the performance of the proposed methods
with experiments applying the negotiation strategies described in Section 3 and
other suitable negotiation strategies to cases 6, 7 and 8 shown in Table 1.

References

1. A. Azzalini. A class of distributions which includes the normal ones. Scandinavian
Journal of Statistics, 12:171–178, 1985.

2. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-Quintana. Joint cut-
off probabilistic estimation using simulation: A mailing campaign application. In
IDEAL, volume 4881 of LNCS, pages 609–619. Springer, 2007.

3. A. Bella, C. Ferri, J. Hernández-Orallo, and M.J. Ramı́rez-
Quintana. Feature Dependent Models. Technical Report
http://users.dsic.upv.es/∼abella/papers/FDM.pdf, Universidad Politécnica de
Valencia, 2009.

4. M.J.A. Berry and G.S. Linoff. Mastering Data Mining: The Art and Science of
Customer Relationship Management. Wiley, 1999.

5. T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

20

The THOMAS architecture: A case study in Home
Care Scenarios.

Fraile Nieto, J.A.1, Rodríguez, S. 2, Bajo, J.1 and Corchado, J.M.2

1Pontifical University of Salamanca, c/ Compañía 5, 37002 Salamanca, Spain

2University of Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
{jafraileni, jbajope}@upsa.es, {srg, corchado}@usal.es

Abstract. Nowadays, the need for architectures and computational models for
large scale open multi-agent systems is considered a key issue for the success of
agent technology in real world scenarios. The main goal of this paper is to
describe a case study in Home Care applying an abstract architecture and a
computational model for large scale open multi-agent systems based on a
service-oriented approach. The architecture we used is THOMAS. THOMAS is
specifically addresses to design organizational structures for multiagent
systems, in this case, a Home Care system. The paper presents services example
for the management of a home dependent environment, which demonstrates the
new features of the proposal.

Keywords: Dependent environments, Abstract Arquitectures, Multiagent
Systems, Home Care, Organizations, Services

1 Introduction

The continuous growth of the dependency people sector has dramatically increased
the need for new home care solutions [1] [7]. Besides, the commitments that have
been acquired to meet the needs of this sector, suggest that it is necessary to
modernize the current systems. Home Care is one of the objectives of the pervasive
computing, and dependent people require new solutions that can make use of the
technological advances to provide novel and fundamental services [2]. The vision of
the pervasive computing allows improving the quality, access, equity and continuity
of health care [2]. In this sense, the intelligent environments can improve health care
services and can have a high social impact, especially in the home care services for
dependent chronic patients [3]. Home Care requires effective communication as well
as distributed problem solving [3].

Multi-agent systems [4], [15], and intelligent devices-based architectures have
been recently explored as supervisor systems for health care scenarios [2] for elderly
people and for Alzheimer patients [7]. These systems allow providing constant care in

21

the daily life of dependent patients [5], predicting potentially dangerous situations and
facilitating a cognitive and physical support for the dependent patient [3].

The goal of work is to present a case study in which the THOMAS (MeTHods,
Techniques and Tools for Open Multi-Agent Systems) [6] [9] architecture is used to
build an open MAS for supervising and monitoring dependent patients at home.
THOMAS is a new architecture for open MAS and is made up of a group of related
modules that are well-suited for developing systems in volatile environments.
THOMAS provides a high level of abstraction to determine which components are
necessary for addressing all of the needs and characteristics of a home care
environment. The multi-agent system developed offers a series of functionalities
including automatic reasoning and planning mechanism for scheduling the medical
staff working day, an alert system, a location and tracking system and an
identification system. The medical staffs has been provided with PDAs and mobile
phones, as well as with Java Card tags, and the home environments have been
equipped with presence detection sensors, access control mechanisms, door opening
devices and video cameras. The multi-agent system monitors the daily routine of the
patient and detects dangerous situations. If any anomalous situation is detected, alert
system is used to obtain medical assistance.

One of the objectives of MAS is to build systems capable of autonomous and
flexible decision-making, and that will cooperate with other systems within a
“society” . This “society” must consider characteristics such as distribution, continual
evolution and flexibility, all of which allow the members (agents) of the society to
enter and exit, to maintain a proper structural organization, and to be executed on
different types of devices. All of these characteristics are incorporated in THOMAS
via the open MAS and virtual organization paradigm, which was conceived as a
solution for the management, coordination and control of agent performance. The
organizations not only find the structural composition of agents (i.e., functions,
relationships between roles) and their functional behaviour (i.e., agent tasks, plans or
services), but they also describe the performance rules for the agents, the dynamic
entrance and exit of components, and the dynamic formation of groups of agents.

The rest of the paper is structured as follows: section 2 provides an analysis of
related studies; section 3 presents the proposed architecture model; section 4 shows an
example of an implementation, highlighting the new possibilities provided by this
type of architecture and specifically presents an approach for a home care
management; finally, some conclusions of work are shown in section 5.

2 Related works

Agents and multi-agent systems in dependency environments are becoming a reality,
especially in health care. Most agents-based applications are related to the use of this
technology in the monitoring of patients, treatment supervision and data mining.
Lanzola present a methodology [10] that facilitates the development of interoperable
intelligent software agents for medical applications, and propose a generic
computational model for implementing them. The model may be specialized in order
to support all the different information and knowledge-related requirements of a

22

hospital information system. Meunier proposes [11] the use of virtual machines to
support mobile software agents by using a functional programming paradigm. This
virtual machine provides the application developer with a rich and robust platform
upon which to develop distributed mobile agent applications, specifically when
targeting distributed medical information and distributed image processing. While an
interesting proposal, it is not viable due to the security reasons that affect mobile
agents, and there is no defined alternative for locating patients or generating planning
strategies. There are also agents-based systems that help patients to get the best
possible treatment, and that remind the patient about follow-up tests [12]. They assist
the patient in managing continuing ambulatory conditions (chronic problems). They
also provide health-related information by allowing the patient to interact with the on-
line health care information network. Decker & Li propose [8] a system to increase
hospital efficiency by using global planning and scheduling techniques. They propose
a multi-agent solution that uses the generalized partial global planning approach
which preserves the existing human organization and authority structures, while
providing better system-level performance (increased hospital unit throughput and
decreased impatient length of stay time). To do this, they use resource constraint
scheduling to extend the proposed planning method with a coordination mechanism
that handles mutually exclusive resource relationships. Other applications focus on
home scenarios to provide assistance to elderly and dependent persons. RoboCare
presents a multi-agent approach that covers several research areas, such as intelligent
agents, visualization tools, robotics, and data analysis techniques to support people
with their daily life activities [13]. TeleCARE is another application that makes use of
mobile agents and a generic platform in order to provide remote services and
automate an entire home scenario for elderly people [4].

The architecture we used is THOMAS (MeTHods, techniques and tools for Open
Multi-Agent Systems) [6] [9], which is composed of a set of related modules that are
appropriate for developing systems in highly volatile environments similar to the one
presented in this study. This paper presents the main characteristics of THOMAS as
well as the results obtained after having applied the system to a case study..

3 THOMAS Architecture Model

THOMAS architecture basically consists of a set of modular services. Though
THOMAS feeds initially on the FIPA1 architecture, it expands its capabilities to deal
with organizations, and to boost its services abilities. In this way, a new module in
charge of managing organizations has been introduced into the architecture, along
with a redefinition of the FIPA Directory Facilitator that is able to deal with services
in a more elaborated way, following Service Oriented Architectures guidelines. As
has been stated before, services are very important in this architecture. In fact, agents
have access to the THOMAS infrastructure through a range of services included on
different modules or components. The main components of THOMAS are the
following [9]:

1 http://www.fipa.org (Foundation for Intelligent Physical Agents)

23

• Service Facilitator (SF), this component offers simple and complex services to
the active agents and organizations. Basically, its functionality is like a yellow
page service and a service descriptor in charge of providing a green page service.
The SF acts as a gateway to access the THOMAS platform. It manages this
access transparently, by means of security techniques and access rights
management. The SF can find services searching for a given service profile or
searching for the goals that can be fulfilled when executing the service. This is
done using the matchmaking [14] and service composition mechanisms [7] which
are provided by the SF. The SF also acts as a yellow pages manager and in this
way it can find which entities provide a given service.

• Organization Management System (OMS), mainly responsible for the
management of the organizations and their entities. Thus, it allows the creation
and management of any organization. The OMS is in charge of organization life-
cycle management, including specification and administration of both their
structural components (roles, units and norms) and their execution components
(participant agents and roles they play, and active organizational units).
Organizations are structured by means of organizational units, which represent
groups of entities (agents or other units), which are related in order to pursue a
common goal. These organizational units have an internal topology (i.e.
hierarchical, team, plain), which imposes restrictions on agent relationships and
control (ex. supervision or information relationships).

• Platform Kernel (PK), it maintains basic management services for an agent
platform. The PK is in charge of providing the usual services required in a multi-
agent platform. Therefore, it is responsible for managing the life-cycle of the
agents included in the different organizations, and it also makes it possible to
have a communication channel (incorporating several message transport
mechanisms) to facilitate interaction among entities. On the other hand, the PK
provides safe connectivity and the mechanisms necessary for allowing multi-
device interconnectivity.

From a global perspective, the THOMAS architecture offers a total integration
enabling agents to transparently offer and request services from other agents or
entities, at the same time allowing external entities to interact with agents in the
architecture by using the services provided.

4 Applying THOMAS to Home Care

The Home Care example is an application that facilitates the interconnection between
dependent people and their environment and medical staff (doctors, nurses and
personal assistant), delimiting services that each one can request or offer. The system
controls which services must be provided by each agent. The internal functionality of
these services is the responsibility of provider agents. However, the system imposes
some restrictions regarding service profiles, service requesting orders and service
results. Below, a description of the structure elements of the Home Care organization
is detailed. Then, in section 4.2, a dynamical usage of the organization is explained,
providing different execution scenarios.

24

4.1 Case Study Organization Structure

This case study is modelled as an organization (HomeCare) within which there are
three organizational units (HCServiceUnit, LocationUnit and AlertUnit) each of
which represents a group of agents. Each unit is dedicated to home care services,
location services or alert services, respectively.

Four kinds of roles can interact in the Home Care example: patient, doctor, family
and provider roles. The Patient role requests system services. More specifically, it can
request home automation services, through the alert service communication with the
medical service or the family and more services in their home. The Doctor role is
specialized in three subroles according to communication with each unit
(HCServiceDoctor, LocationDoctor and AlertDoctor). The Provider role is in charge
of performing services. A provider agent offers home automation, location or alert
search services. The provider role is also specialized into HCServiceProvider,
LocationProvider and AlertProvider. Finally, the Family role provides the advances
consultation service. It represents the family in which relatives can check the patient
status. As it is a private role, agents are not able to acquire this Family role. Figure 1
shows the Home Care structure, with its organizations/units, roles and relationships
with each other.

HomeCare

HCServiceUnit LocationUnit AlertUnit

Family

Patient

Doctor

ProviderParentUnit ParentUnit

inUnit

inUnit

HCServicePatient HCServiceDoctor

HCServiceProvider

LocationDoctor LocationPatient

LocationProvider AlertProvider

AlertDoctor AlertPatient

Notation

Organization

Primary RoleSecundary Role

Fig. 1. Home Care structure (units and roles).

The HomeCare organization offers three services: Automation, Location and Alert
service. These services are specialized for each unit. A brief description of the profiles
of all these services is shown in Table 1.

25

Table 1. Service Profiles for the HomeCare system.

Profiles of HCServiceUnit
Service: OnOffLight
UnitID: HCServiceUnit
Inputs:
idlight: string
operation: string

ProfileID: OnOffLightPF
ClientRole: HCServicePatient
Outputs: [light ok]
idlight: string
state: string

Description: On or off a light.
ProviderRole:
HCServiceProvider
Outputs: [not ok light]
error

Service: LockUnlockAccess
UnitID: HCServiceUnit
Inputs:
idaccess: string
operation: string

ProfileID:
LockUnlockAccessPF
ClientRole: HCServicePatient
Outputs: [access ok]
idaccess: string
state: string

Description: Lock or unlock a
access.
ProviderRole:
HCServiceProvider
Outputs: [not ok acces]
error

Profiles of LocationUnit
Service: SearchPatient
UnitID: LocationUnit
Inputs:
idhome: string
idpatient: string

ProfileID: SearchPatientPF
ClientRole: LocationProvider,
LocationDoctor, Family
Outputs: [patient ok]
name: string
location: string

Description: Search for a
patient in their home.
ProviderRole:
LocationProvider
Outputs: [not in home]
error

Service: IdentifyPatient
UnitID: LocationUnit
Inputs:
idpatient: string

ProfileID: SearchPatientPF
ClientRole: LocationProvider
Outputs: [patient ok]
location: string
date: time

Description: Identify a
patient.
ProviderRole:
LocationProvider
Outputs: [not ok patient]
error

Service: addServPatient
UnitID: LocationUnit
Inputs:
idpatient: string
operation: string

ProfileID: AddServPatientPF
ClientRole: LocationProvider
Outputs: [patient ok]
location: string
date: time

Description: Add a patient
service.
ProviderRole:
LocationProvider
Outputs: [not ok add patient]
error

Profiles of AlertUnit
Service: SendSms
UnitID: AlertUnit
Inputs:
sms: string
phone: string

ProfileID: SendSmsPF
ClientRole: AlertProvider,
AlertDoctor, Family,
AlertPatient
Outputs: [phone ok]
idsms: string
state: string

Description: Send a SMS.
ProviderRole: AlertProvider
Outputs: [not ok phone]
error

Service: ProcessSms
UnitID: AlertUnit
Inputs:
sms: string
phone: string

ProfileID: ProcessSmsPF
ClientRole: AlertProvider,
AlertDoctor, Family,
AlertPatient
Outputs: [sms ok]
sms: string
phone: string

Description: Process a SMS.
ProviderRole: AlertProvider
Outputs: [not ok sms]
error

All these services have been registered in the SF component of the THOMAS

platform. In this example, we have assumed that the Home Care system does not
initially have any agent registered as a service provider, nor any agent acting as a
patient and nor any agent acting as a doctor. Therefore, this system has initially only
been structured as a regulated space in which agents might enter to provide or request

26

all of those specific services registered in the SF component. Consequently, in the
initial state of the system, there is no provider attached to the HomeCare services.

In the following section, different scenarios are considered, in which patient and/or
provider and/or doctor agents enter and participate in the system.

4.2 System Dynamics

In this section, the use of THOMAS meta-services in the HomeCare example is
detailed. System dynamics are shown through the specification of different scenarios:
(i) a Patient is registered; (ii) the patient is registered as a PatientLocation; (iii) new
services patients are included; (iv) a doctor is registered; (v) some services are
requested; (vi) malicious agents are expulsed; and (vii) a new unit is created.

4.2.1 Patient registering
In this scenario, the process for registering a new Patient is detailed (Fig 2). Once
HC1 has been registered as a member of the THOMAS platform, it asks SF which
defined services have a profile similar to its own “home care service”. This request is
carried out using the SF SearchService (Fig 2, message 1), in which
HomeCareServiceProfile corresponds to the profile of the patient search service
implemented by HC1.

The SF returns service identifiers that satisfy these search requirements together
with a ranking value for each service (message 2). Ranking value indicates the degree
of suitability between a service and a specified service purpose. Then HC1 executes
GetProfile (message 3) in order to obtain detailed information about the
OpenCloseDoor service. Service outputs are “service goal” and “profile” (message 4).
The OpenCloseDoor profile specifies that service providers have to play a Patient
role within HCService. Thus, HC1 requests from the OMS the AcquireRole service to
acquire this patient role (message 5). AcquireRole service is carried out successfully
(message 6), because HCService is accessible from Virtual organization, thus HC1 is
registered as a Patient.

Fig. 2. Example of patient registering.

4.2.2 LocationPatient registering

27

Once the “patient registering” process has been detailed, the registration of a location
patient is illustrated (Fig 3). HC1 is able to provide a search patient in the home care
domain. Therefore, it asks SF whether an available service description with a closer
profile exists, requesting SearchService from SF as before (Fig 3, message 1).

In this case, SF returns both SearchPatient and IdentifyPatient since these two
services are visible within HomeCare unit. As indicated in the service result,
IdentifyPatient service is more appropriate for HC1 functionality. Therefore, HC1
requests information about this service from SF, using GetProfile (message 3). The
IdentifyPatient profile returned (message 4) specifies that service providers must play
LocationPatients within LocationUnit. Then HC1 requests OMS to adopt
LocationPatient role (message 5). AcquireRole service is carried out successfully
(message 6), so HC1 agent is registered as a LocationProvider.

Fig. 3. Example of LocationPatient registering.

4.2.3 Adding new service patient
This section exemplifies how HC2 has already adopted the LocationPatient role and
HC1 has been registered as a provider of the SearchPatient service. HC2 initially asks
what the registered implementations of SearchPatient service are (Fig 4, message 3).
SF provides a list that contains service implementations details (message 4). HC2
decides to employ the same service process as HC1, so it uses AddServPatient service
in order to request its inclusion as a provider of SearchPatient service (Figure 4,
message 5).

Fig. 4. Example of service implementation and patient registering.

4.2.4 Doctor registering

28

The following scenario shows the set of service calls for registering new agents as
service doctors within the HomeCare (Fig 5). A new doctor agent D1, which has
already been registered in the THOMAS platform, requests SearchService from SF
(message 1). As a result, D1 obtains SearchPatient service identifier and ranking
value (message 2). The Ranking value are calculate automatically by the SF. Ranking
value indicates the degree of suitability between a service and a specified service
purpose. Then, D1 employs GetProfile (message 3), which specifies that service
doctor must play Doctor role within HomeCare (message 4). Therefore, D1 must
acquire Doctor role to demand this service (messages 5 and 6). Once D1 plays this
doctor role, it employs GetProcess service in order to find out who the service
providers are and how this service can be requested (message 7). However, there are
no providers for the general SearchPatient service (message 8).

Within the HomeCare unit, D1 requests SearchService again (message 9). In this
case, SF returns IdentifyPatient services because both services are accessible from
HomeCare organization. D1 demands the profile of IdentifyPatient service (using
GetProfile, message 11), since this service is more appropriate for its needs. Taking
the IdentifyPatient profile into account (message 12), D1 requests the adoption of
LocationDoctor role within LocationUnit (message13).

Fig. 5. Example of doctor registering.

4.2.5 Service requesting
This scenario shows how doctor agents make demands for services (Fig 6). Once D1
adopts the doctor role for SearchPatient service, it is allowed to demand services
from providers. Assuming that D1 wants to make an information search about
patients, it should use GetProcess service to obtain the implementations of available
services and also its provider identifiers (message 1).

An implementation of SearchPatient has previously been registered by HC1 and
HC2. After comparing providers of SearchPatient service returned in message 2, D1
chooses to make a service request from HC1 agent (message 3).

29

Fig. 6. Example of service requesting.

4.2.6 Agent expulsion
In this scenario, the expulsion of a malicious agent is carried out (Fig7). Provider
agent detects that different doctor agents (D1 and D2) have registered with the same
identifier number. It consults its database and determines that D2 has been employing
an identifier number that does not belong to it. D2 is punished for its fraudulent
behaviour and is expelled from HomeCare. Provider requests the expulsion of D2
from OMS employing Expulse service (message 1).

Fig. 7. Example of agent expulsion.

4.2.7 Unit creation
This last scenario illustrates the creation of new units within HomeCare (Fig 8).
Agent L1 represents a luxury home care company which specializes in luxury
services. It is interested in providing information and services very luxurious. This L1
has already adopted the Provider role within HomeCare unit. However, since the
services offered within LocationUnit and AlertUnit are specialized in location and
alert domains, L1 decides to create a new unit (LuxuryUnit) within HomeCare (Fig 8,
message 1). This new unit will be focused on luxury home care. Once the OMS
informs L1 about the successful creation of the new unit, L1 defines luxury specific
roles and services (messages 3 to 6). Finally, luxury agents would be able to adopt the
LuxuryProvider role and start offering services to patient agents.

30

Fig. 8. Example of new unit creation.

After all these scenarios, several agents have joined the THOMAS platform and offer
or request services within this system. Table 2 shows the evolution of the
EntityPlayList content, in which all of the new elements and relationships included
due to the execution of these scenarios are emphasized.

Table 2. Final content of OMS internal lists after execution of all scenarios.

EntityPlayList
Entity Unit Role
Doctor HomeCare Doctor
HC1 LocationUnit LocationPatient
HC2 LocationUnit LocationPatient
D1 LocationUnit LocationDoctor
D2 HomeCare Doctor
L1 LuxuryUnit LuxuryPatient

5 Conclusions

In the development of real open multi-agent systems, it becomes necessary to have
methods, tools and appropriate architectures that can use the concept of agent
technology in the development process, and apply decomposition, abstraction and
reorganization methods. The THOMAS architecture has allowed us to directly model
the organization of a home care environment according to a previous basic analysis,
to dynamically and openly define the agent roles, functionalities and restrictions, and
to obtain beforehand the service management capabilities (discovery, directory, etc.)
within the platform. THOMAS provides us with the level of abstraction necessary for
the development of our system, and the set of tools that facilitate its development.
Moreover, the proposal aims to instigate the total integration of two promising
technologies, that is, multi-agent systems and service-oriented computing. In
THOMAS architecture, agents can offer and invoke services in a transparent way
from other agents, virtual organizations or entities, plus external entities can interact
with agents through the use of the services offered.

A case study example has been applied to home care to illustrate the usage of
THOMAS components and services. Also the dynamics applications are developed

31

with such architecture. In this way, examples of THOMAS service calls have been
shown through several scenarios, along with the evolution of different dynamic
virtual organizations. THOMAS creates a multi-agent system that facilitates the
development of intelligent distributed systems and renders services to dependent
person in home care environments by automating certain supervision tasks.

References

1. Anastasopoulos, M., Niebuhr, D., Bartelt, C., Koch, J. & Rausch, A. (2005). Towards a
Reference Middleware Architecture for Ambient Intelligence Systems. ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications.

2. Angulo, C., & Tellez, R. (2004). Distributed Intelligence for smart home appliances.
Tendencias de la minería de datos en España. Red Española de Minería de Datos. Barcelona,
España.

3. Augusto, Juan C., & McCullagh, Paul. Ambient Intelligence: Concepts and Applications.
Invited Paper by the International Journal on Computer Science and Information Systems,
volume 4, Number 1, pp. 1-28, June 2007.

4. Camarinha-Matos, L. Afsarmanesh, H. TeleCARE: Collaborative Virtual Elderly Care
Support Communities. The journal on Information Technology in Healthcare 2004: 2(2): pp.
73-86.

5. Carrascosa, C., Bajo, J., Julian, V., Corchado, J.M. and Botti, V. Hybrid multi-agent
architecture as a real-time problem-solving model. Expert Systems With Applications.
Volumen 34. Numero 1. pp. 2-17. Elsevier.ISSN:0957-4174 (2008).

6. Carrascosa, C., Giret, A., Julian, V., Rebollo, M., Argente, E., Botti, V.: Service Oriented
MAS: An open architecture. In: Actas del AAMAS 2009 (in press, 2009)

7. Corchado, J.M. y Laza, R. (2003). Constructing Deliberative Agents with Case-based
Reasoning Technology. International Journal of Intelligent Systems, 18, 1227-1241.

8. Decker, K. and Li, J. (1998). Coordinated hospital patient scheduling. In Proceedings of the
3rd International Conference on Multi-Agent Systems (ICMAS’98) (pp. 104-111). IEEE
Computer Society.

9. GTI_IA. A. Giret, V. Julian, M. Rebollo, E. Argente, C. Carrascosa and V. Botti. An Open
Architecture for Service-Oriented Virtual Organizations. Seventh international Workshop on
Programming Multi-Agent Systems. PROMAS 2009. pp. 23-33. 2009

10. Lanzola, G., Gatti, L., Falasconi, S. and Stefanelli, M. (1999). A Framework for Building
Cooperative Software Agents in Medical Applications. Artificial Intelligence in Medicine,
16(3), 223-249.

11. Meunier, J. A. (1999). A Virtual Machine for a Functional Mobile Agent Architecture
Supporting Distributed Medical Information. In Proceedings of the 12th IEEE Symposium
on Computer-Based Medical Systems (CBMS’99). IEEE Computer Society, Wahington,
DC.

12. Miksch, S., Cheng, K. and Hayes-Roth, B. (1997). An intelligent assistant for patient health
care. In Proceedings of the 1st international Conference on Autonomous Agents
(AGENTS’97) (pp. 458-465). California, USA: ACM, New York.

13. Pecora, F. and Cesta, A. (2007). Dcop for smart homes: A case study. Computational
Intelligence, 23 (4), 395-419.

14. Sycara K,Widoffand S, Klusch M, Lu J (1982) Larks: Dynamic matchmaking among
heterogeneous software agents in cyberspace. Journal on Autonomous Agents and Multi-
Agent Systems.

15. Want, R., Pering, T., Borriello, G., and Farkas, K. Disapearing Hardware. Pervasive
Computing, 1(1), (2002).

32

Auction Robustness through
Satisfiability Modulo Theories?

Miquel Bofill1, Dı́dac Busquets2, and Mateu Villaret1

1 Departament d’Informàtica i Matemàtica Aplicada
Universitat de Girona

{miquel.bofill,mateu.villaret}@udg.edu
2 Institut d’Informàtica i Aplicacions

Universitat de Girona
didac.busquets@udg.edu

Abstract. Solution robustness is a desirable feature when dealing with
uncertainty. This issue has rarely been taken into account in the field of
auctions, where the goal is to obtain optimal solutions (i.e., maximize the
auctioneer’s benefit). In this paper we define a notion of robustness for
auctions where some resources may become unavailable once the auction
has already been cleared. This notion of robustness balances the number
of changes needed for repairing the solution and the possible loss of
benefit for the auctioneer. In order to obtain robust solutions for auctions,
we provide a mechanism based on transporting the concept of supermodel
to the setting of weighted Max-SAT. We show that finding a supermodel
of a weighted Max-SAT formula amounts to find a model of an SMT
(Satisfiability Modulo Theories) formula.

1 Introduction

Auctions are widely used as a resource allocation mechanism, since they enable
an efficient distribution of resources amongst the agents requesting them [1].
Most auction mechanisms focus on maximizing the auctioneer’s benefit, and
assume that once the auction is cleared (i.e., a solution is found), the state of
the world cannot change. However, in real applications, this is not the case. In
the time between the clearance of the auction and the moment of the allocation
of resources taking place, many things can happen. For instance, a machine that
has been assigned to a given agent may break down before it starts using it, a
winning agent may decide to withdraw its bid because it found a better deal
elsewhere, etc. The consequence of such unexpected events is that the solution
may then not yield the optimal benefits. Even worse, the solution may not be
applicable at all. In such cases, a new solution must be found. To do so, the
auction could be repeated, accounting for the new reality. However, the new
solution could be completely different from the initial one, meaning that some

? Partially supported by the Spanish Ministry of Science and Innovation through the
project SuRoS (ref. TIN2008-04547/TIN)

33

bids that were winners in the first solution are losers in the new one. Such
behavior could be a nuisance for the participating bidders, especially for those
that were told their bids were winners but become losers in the repetition of the
auction. To avoid such situations, the auctioneer could try to find a solution that
is prepared for unexpected events. Ideally, such a solution should be applicable
no matter what these events are, although this is not always achievable. Thus,
when this happens, the solution should be reparable with the minimum number
of changes to the original solution. And, while such a robust solution may be
sub-optimal, we are interested in still obtaining a high revenue for the auctioneer.

The issue of bid withdrawal has already been addressed in [2]. But, as far
as we know, the problem of resource unavailability has never been taken into
account. Thus, in this paper we introduce a new mechanism for finding robust
solutions to auctions with a bounded number of allowed breakages in resource
availability, a bounded number of repairs in bid assignment, and a minimum
guaranteed revenue for the auctioneer:

If a solution is found, we can guarantee that, for any breakage in resource
availability involving at most a resources, the solution can be repaired
with at most b changes in bid assignment. In addition, the initial solution
and all repaired solutions have a revenue of at least β. We call such a
solution an (a,b,β)-super solution.

Our starting point is the standard modeling of an auction as a weighted Max-
SAT problem [3, 4] with boolean variables to denote whether a bid is winner or
loser. In addition, we also use boolean variables representing resource availability.
The transformation used to obtain (a, b, β)-super solutions works in the spirit
of the one of [5] to obtain (a, b)-supermodels for propositional logic. As in [5],
we define a set of breakable variables and a set of repairable variables. Here, the
breakage set corresponds to the variables denoting resource availability, and the
repair set to those corresponding to bid assignment.

In fact, our mechanism can be applied to any weighted Max-SAT problem,
auctions being a particular case. An interesting aspect of our result is that
weighted Max-SAT turns out to be not expressive enough to deal with the rev-
enue constraints that we must add in the robust version of the problem. For this
reason, we move to the setting of Satisfiability Modulo Theories (SMT) [6] and
model the auction as a weighted Max-SMT formula. Hence, for our purposes the
transformation of [5] must be adapted to this new setting.

The SMT problem for a theory T is: given a formula F , determine whether
there is a model of T ∪ {F}. Hence, an SMT instance is a generalization of a
boolean SAT instance in which some propositional variables have been replaced
by predicates from the underlying theories. For example, if T denotes the theory
of linear (integer or real) arithmetic, then a formula can contain clauses like,
e.g., p ∨ q ∨ x+ 2 ≤ y ∨ x = y + z, where p and q are boolean variables and x, y
and z integer ones, providing a much richer modeling language than is possible
with SAT formulas.

The rest of the paper is organized as follows. In Section 2 we review some
related work concerning robustness and auctions. In Section 3 we formally define

34

the kinds of auctions we consider. In Section 4 we describe an example to show
how we look for robust solutions. Section 5 is devoted to the mechanism for
finding robust solutions. Finally, in Section 6 we draw some conclusions and
devise future work.

2 Related work

Here we briefly review some related work on robust solutions in general, and on
robustness and the use of logics in the field of auctions.

2.1 Supermodels

The seminal work on robust solutions for propositional logic formulas is the one
of [5], where the notion of supermodel is introduced. The complexity for finding
such supermodels in several propositional logic fragments has been studied in [7].

Definition 1 (from [5]). An (Sa
1 , S

b
2)-supermodel of a boolean formula F is a

model of F such that if we modify the values taken by the variables in a subset of
S1 of size at most a (breakage), then another model can be obtained by modifying
the values of the variables in a disjoint subset of S2 of size at most b (repair).

An (Sa
1 , S

b
2)-supermodel in which the breakage and the repair set are unre-

stricted is denoted as an (a, b)-supermodel.

The task of finding (a, b)-supermodels is NP-complete. The main idea is to
encode the supermodel requirements of a formula F as a new formula FSM

whose size is polynomially bounded by the size of F . This new formula FSM has
a model if and only if F has an (a, b)-supermodel.

Example 1. The formula F = p∨q has three models, {p, q}, {¬p, q} and {p,¬q},
which are all (1, 1)-supermodels. The encoding FSM for a (1, 1)-supermodel of
F , according to [5], would be

FSM =

original F︷ ︸︸ ︷
(p ∨ q) ∧

break in p︷ ︸︸ ︷(no repair︷ ︸︸ ︷
(¬p ∨ q)∨

repair q︷ ︸︸ ︷
(¬p ∨ ¬q)

)
∧

break in q︷ ︸︸ ︷(no repair︷ ︸︸ ︷
(p ∨ ¬q)∨

repair p︷ ︸︸ ︷
(¬p ∨ ¬q)

)
Note that, for instance, if the satisfying interpretation (model) chosen for FSM

is {¬p, q}, i.e., {p = false, q = true}, then p ∨ q is satisfied and, moreover, if q
switches to false, then a new model for p ∨ q can be obtained by switching p
to true. That is, a break in q has a repair on p. The key idea is that the value
of the subformula ¬p ∨ ¬q under the initial interpretation coincides with the
value of p ∨ q under the repaired interpretation and, hence, FSM has a model if
and only if F has a supermodel. Note also that only the first model {p, q} is a
(1, 0)-supermodel.

The concept of (a, b)-supermodel for propositional logic has been generalized
to that of (a, b)-super solution in the context of constraint programming in [8].

35

2.2 Robustness in auctions

There are several works that deal with robustness with respect to potential ma-
nipulations of the auction mechanism (such as false-name bids and other types of
manipulations). However, this is not the concept of robustness we are interested
in. As we have described in Section 1, we focus our research on robustness of the
solution to the auction. Some works, such as [9, 10] add the concept of robustness
(fault tolerance) to mechanism desing in order to deal with potential failures in
the execution of tasks by the agents, although they use a probabilistic approach
and do not consider repairing the solutions. As far as we know, the only work
that deals with solution repair in auctions is that of [2]. This work addresses the
problem of bid withdrawal (i.e. a bidder that withdraws a winning bid), and,
in order to find robust solutions, uses (α, β)-weighted super solutions [11], an
extension of super solutions [8] that takes into account the breakage probability
(α) and the cost of repair (β). Our work is similar, since our approach is also
based on supermodels and we look for solutions with a bounded cost. However,
we consider the problem of resource unavailability, which is not considered in
[2]. Moreover, we are also interested in keeping the number of repairs low, which
is only done indirectly (through the cost function) in [2]. In addition, our tech-
niques are completely different because we use the logic framework of weighted
Max-SAT and Satisfiability Modulo Theories, while [2] presents an ad-hoc search
algorithm to find robust solutions.

Another closely related problem is that of robust knapsack [12] (i.e. a knap-
sack problem where the weights and/or values of the objects are imprecise).
Given that many auction mechanisms can be modeled as a knapsack problem
[13], it is reasonable to think that some of the robust approaches to this problem
may yield robust solutions to auctions. However, the robustness concept used
in the field of knapsack is somehow different to ours, since it does not consider
the possibility of repairing a solution. Instead, a robust solution of a knapsack
problem with imprecision is such that, on average, performs well regardless of
what the actual weights or values of the objects are, in a similar way as the
robustness presented in [9, 10].

2.3 Auctions and Logics

Regarding the use of logics in the field of auctions, it has been mainly used
to define different bidding languages [14]. There are also some works that use
logics as the method for solving the winner determination problem. For instance,
Baral et al [15] model the auction using SModels, and use their approach to solve
combinatorial auctions and combinatorial exchanges. However, they do not deal
with robustness issues. On the other hand, modeling an auction as a weighted
Max-SAT formula is a standard problem in Max-SAT benchmarks [4].

3 Auction formalization

There are many types of auctions, depending on several factors, such as the
number of items being offered, the number of units for each item, or the way in

36

which bidders may express their requests, among others [16]. In this work, we
restrict our attention to Combinatorial Auctions [17] and, more precisely, to the
winner determination problem (clearing algorithm) of the auction. Formally, a
combinatorial auction is defined as follows. There is:

– a set of K agents,
– a set of N items or goods, and
– a set of M bids of the form (Si, pi), where Si ⊆ {1..N} is the subset of goods

(i.e. bundle) requested in bid i, and pi ∈ IR+ is the value (price) of the bid.
We denote by Rj the set of indexes of the bids sent by agent j, j ∈ {1..K}.

The goal is to select the winning bids, so that no good is allocated more than
once, and the revenue for the auctioneer is maximized:

max
M∑
i=1

bi · pi s.t.
∑

i|j∈Si
bi ≤ 1,∀j ∈ {1..N}

where bi is a boolean variable indicating whether bid i is winner or loser.
Additionally, one may introduce other constraints, such as forcing all items

to be allocated (which would imply replacing the ≤ of the previous equation
by an equality), guaranteeing that all agents win at least (or at most) a given
number of bids (

∑
i∈Rj

bi ≥ Q, ∀j ∈ {1..K}, where Q is the minimum number
of winning bids per agent – or maximum if using ≤ Q), etc.

Regarding the bidding language, in the rest of the paper we assume that
bidders use an OR-language [14], that is, each bidder submits a list of bids (pairs
of bundle and price), and it is interested in winning any number of the bids sent
to the auctioneer. However, the approach we present may work with any other
bidding language (XOR, OR-of-XOR, . . .), as long as the needed restrictions (as
mentioned in the previous paragraph) are added.

4 Running example

In order to illustrate our approach, we present an example that we will use in the
forthcoming sections to explain each of the steps needed to find robust solutions
to auctions. For the sake of simplicity, we use single-item bundles, that is, each
bid requests only one item. Moreover, we impose the constraint that each agent
must win at least one of the bids it sent.

Example 2. Assume we have 3 agents and 4 goods (or resources). In the following
table we indicate the price of each single-item bid of each agent:

1 2 3 4

1 10 15 - -

2 - 5 10 20

3 15 - - 10

37

Thus we have the following list of bids:

[(1, 10), (2, 15)︸ ︷︷ ︸
first agent’s bids

, (2, 5), (3, 10), (4, 20)︸ ︷︷ ︸
second agent’s bids

, (1, 15), (4, 10)︸ ︷︷ ︸
third agent’s bids

]

We define the boolean variables g1, g2, g3 and g4 to represent the availability
of the corresponding goods, and the boolean variables bi, i ∈ {1..7} to indi-
cate whether bid i is winner or loser. Then, assuming that the only possible
source of breakages is resource availability, we define the breakage set as being
S1 = {g1, g2, g3, g4}. Then, the repair set is S2 = {b1, b2, b3, b4, b5, b6, b7}, since
a break in a resource may imply that a winning bid becomes loser and, eventu-
ally, other assignments can be reconsidered in order to improve the auctioneer’s
revenue under the new circumstances.

Assume that we look for robust solutions where one break may occur and each
possible break must be repairable with at most four changes. Assume, moreover,
that we want that whatever the break is, the revenue of the initial solution and
of the repaired solution is at least 30. This will correspond to a (1, 4, 30)-super
solution (see Definition 2 of Subsection 5.2).

The optimal solution to this auction without considering robustness would
be to set as winning bids the second, the fourth, the fifth and the sixth bids, i.e.,

b1 = 0, b2 = 1, b3 = 0, b4 = 1, b5 = 1, b6 = 1, b7 = 0,

which means assigning good 2 to the first agent, goods 3 and 4 to the second
agent and good 1 to the third agent. For the sake of readability we use the
notation such as 2456 to indicate which are the winning bids of a solution. With
this solution, the auctioneer would have a revenue of 60.

However, this optimal solution is not a (1, 4, 30)-super solution: if good 2
became unavailable (break), the only alternative for the first agent would be
good 1, but this is already allocated to the third agent; this would imply finding
also an alternative for the third agent, which would be good 4, but this good
is allocated to the second agent. Thus, repairing the breakage of good 2 would
imply modifying two winning bids (b2 to b1 and b6 to b7) and unassigning one
winning bid (b5), meaning five repairs (as shown in boldface):

b1 = 1,b2 = 0, b3 = 0, b4 = 1,b5 = 0,b6 = 0,b7 = 1,

which is more than the four allowed repairs. Note that for each bidder, choosing
a new winning bid may imply two repairs (one to set the initially winning bid to
0, and in case he had no other winning bids, another one to set one of its losing
bids to 1).

This auction has 9 feasible solutions (i.e., solutions satisfying the constraints
on bid incompatibility and minimum number of winning bids per agent), which
are the following: 1247, 137, 1347, 147, 246, 2456, 247, 2467 and 256. Within
these solutions, only three of them are (1, 4, 30)-super solutions: 246, 2467 and
247. Next we go through the details of solution 2467, i.e.,

b1 = 0, b2 = 1, b3 = 0, b4 = 1, b5 = 0, b6 = 1, b7 = 1

38

which has a revenue of 50 units for the auctioneer. For this solution, the four
possible breakages can be repaired as follows:

1. g1 = 0. The repair is b6 = 0, being the new solution 247, and the revenue
35.

2. g2 = 0. The repair is b1 = 1, b2 = 0, b6 = 0, being the new solution 147 and
the revenue 30.

3. g3 = 0. The repair is b4 = 0, b5 = 1, b7 = 0, being the new solution 256 and
the revenue 50.

4. g4 = 0. The repair is b7 = 0, being the new solution 246 and the revenue 40.

It can be seen that all repairs have a revenue of at least 30 and the number
of repairs is not greater than 4. Moreover, in the third case there is not even
loss in the revenue. We let the reader check that solutions 246 and 247 are also
(1, 4, 30)-super solutions, with a revenue of 40 and 35, respectively. However,
since the revenue of solution 2467 is higher, this would be the optimal (1, 4, 30)-
super solution to this auction.

As for the rest of feasible solutions, some of them (147 and 1247) are (1, 4,)-
super solutions, meaning that they can be repaired with at most 4 changes, but
not (1, 4, 30)-super solutions, since they do not satisfy that the solution and its
repairs have a revenue of at least 30. In particular, solution 147 has a revenue
of 30, but one of its repairs has a revenue of only 25 (when good 3 becomes
unavailable, the second agent must be assigned good 2, which corresponds to a
low value bid). Similarly, solution 1247 has a revenue of 45, but it also fails in
the revenue of repairs, since one of them has again a revenue of 25.

Finally, some solutions (137, 1347, 2456 and 256) are not even (1, 4,)-super
solutions, since they do need more than 4 changes in order to repair some of the
breakages. This is the case of the optimal solution without robustness (2456), as
we have seen a few paragraphs above.

5 Mapping auctions to supermodels

5.1 Auctions as weighted Max-SAT problems

An auction A as defined in Section 3 can be modeled as a weighted Max-SAT
formula FA as follows. Let g1, . . . , gN be a set of boolean variables representing
the availability of each of the N goods, and let b1, . . . , bM be a set of boolean
variables representing whether each of the M bids is winner or loser.

1. Resource availability. For each bid j of the form (Sj , pj), where
Sj = {i1, . . . , inj

} ⊆ {1..N}, we state

bj → gi1 ∧ · · · ∧ ginj

to indicate that, whenever bid j is accepted, then all goods it requests must
be available3.

3 These constraints are only needed to deal with resource unavailability, i.e., they do
not appear in standard (non-robust) auctions.

39

2. Bid incompatibility. For each pair of bids i and j (with i 6= j) such that
Si ∩ Sj 6= ∅, we state

¬bi ∨ ¬bj
to indicate incompatibility between bids requesting the same good.

3. Minimum winning bids. For each set Rk = {i1, . . . , ink
} corresponding to

the bids of agent k, we state

bi1 ∨ · · · ∨ bink

to indicate that at least one bid of each agent must be accepted. Note that
this restriction can change, or even disappear, depending on the type of
bidding language used in the auction (OR, XOR, OR-of-XOR, . . .) and also
on the constraints about the number of winning bids per agent.

4. Bid’s value. For each bid i, we add a unit clause

(bi, pi)

indicating that if bid i is not accepted, then there is a loss of revenue of pi.

The conjunction of the previous constraints defines a weighted Max-SAT
problem for the auction.

5.2 Robust auctions as weighted Max-SMT problems

Here we show how a weighted Max-SAT formula FA defining an auction A can
be transformed into a weighted Max-SMT formula defining a robust version of
the former. In particular, we describe how to obtain a Max-SMT formula FA

SM

such that FA
SM has a model if and only if A has an (a, b, β)-super solution. Some

of the proofs are omitted due to lack of space.

Definition 2. An (a, b, β)-super solution of an auction is a (maximal revenue)
solution for the auction such that, if a goods become unavailable (breakage),
then another solution can be obtained by changing at most b bids from winner to
loser or vice-versa (repair) and, moreover, the solution and all possible repaired
solutions have a revenue of at least β.

The following definition generalizes the one of [5] to weighted Max-SAT.

Definition 3. An (Sa
1 , S

b
2, β)-supermodel of a weighted Max-SAT formula F is

a model of F such that if we modify the values taken by the variables in a subset
of S1 of size at most a (breakage), another model can be obtained by modifying
the values of the variables in a disjoint subset of S2 of size at most b (repair)
and, moreover, the solution and all possible repaired solutions have a cost of at
most β.

Lemma 1. An auction A with N goods and M bids has an (a, b, β)-super so-
lution if and only if the weighted Max-SAT formula FA has an (Sa

1 , S
b
2, β

′)-
supermodel where S1 = {g1, . . . , gN}, S2 = {b1, . . . , bM} and cost (i.e. loss of
revenue) β′ =

(∑M
i=1 pi

)
− β.

40

Now we show how to construct a weighted Max-SMT formula FSM from a
weighted Max-SAT formula F , such that F has an (Sa

1 , S
b
2, β)-supermodel if and

only if FSM has a model.

The construction of FSM . Let

F = C ∧W

be a weighted Max-SAT formula, where C denotes the set of mandatory con-
straints and W denotes the set of weighted, non-mandatory constraints4. For
the sake of simplicity, we will assume that W consists only of unary clauses of
the form (b, w), where b is a boolean variable and w is a weight. Note that any
Max-SAT formula can be transformed into an equisatisfiable one fulfilling this
requirement by reification, i.e., by replacing any weighted constraint (G,w) such
that G is not unary by (G↔ b) ∧ (b, w).

Now, assuming that

W = (b1, w1) ∧ · · · ∧ (bk, wk)

we introduce a set of integer variables i1, . . . , ik and define

L =
∧

j∈1..k

(bj → ij = 1) ∧ (¬bj → ij = 0)

Let Sn denote the set of all (possibly empty) subsets of a set S whose size
is at most n, and let Sn+ denote the set of all non-empty subsets of a set S
whose size is at most n. Moreover, let FS denote a boolean formula F where all
occurrences of variables in the set S have been flipped (i.e., negated).

We define

BS =
∑

j∈1..k

{
ij · wj if bj ∈ S
(1− ij) · wj if bj /∈ S

where S is a set of boolean variables. We denote by B the particular case B∅ =∑
j∈1..k(1− ij) · wj , corresponding to the cost of the unsatisfied clauses in W .
Finally, we define

FSM = C ∧W ∧ L ∧ (B ≤ β) ∧
∧

S∈Sa+
1

 ∨
T∈(S2\S)b

(CS∪T ∧ (BS∪T ≤ β))


Note that, due to L and the constraints of the form B ≤ β, this formula

is not plain SAT: it falls into SAT modulo the quantifier-free fragment of the
(first-order) linear arithmetic theory. The main lemma and theorem follow here.

Lemma 2. A weighted Max-SAT formula F has an (Sa
1 , S

b
2, β)-supermodel if

and only if the weighted Max-SMT formula FSM has a model.
4 We talk about constraints instead of clauses since our transformation does not require

the formula to be in CNF format.

41

This lemma follows the spirit of the result of [5], but adding costs. Here, the
key idea is that BS∪T , gives us the cost of the unsatisfied clauses in W if the
variables in S ∪T were to change their value with respect to the initial solution.
Note that the variables in S represent the breakage variables and the ones in T
represent the repair variables and, hence, S ∪T denotes the set of variables that
are going to change their value. Notice also that the sets S and T are disjoint,
since it makes no sense to repair a broken variable.

Theorem 1. An auction A has an (a, b, β)-super solution if and only if the
weighted Max-SMT formula FA

SM has a model.

Proof. Let FA = C∧W denote the weighted Max-SAT formula obtained from A
as explained in Subsection 5.1, where C denotes the set of mandatory constraints
introduced in points 1, 2, and 3, and W denotes the set of non-mandatory
unit clauses of point 4. Let S1 = {g1, . . . , gN}, S2 = {b1, . . . , bM} and β′ =(∑M

i=1 pi

)
− β. By Lemma 2, FA has an (Sa

1 , S
b
2, β

′)-supermodel if and only if
FA

SM has a model. Therefore, by Lemma 1, A has an (a, b, β)-super solution if
and only if FA

SM has a model. ut

Observe that, since a and b are constants, the increase of size of FA
SM w.r.t.

the size of FA is polynomially bounded, namely, it is O(na+b) larger than FA,
where n is the number of variables of FA.

5.3 The whole story

Here we take the auction A of Example 2 and briefly describe how to model it
as a robust auction. We begin by modeling the auction as a Max-SAT problem
as explained in Subsection 5.1, which gives us FA = C ∧W with

C = (b1 → g1) ∧ (b2 → g2) ∧ (b3 → g2) ∧ (b4 → g3) ∧ (b5 → g4) ∧
(b6 → g1) ∧ (b7 → g4) ∧ (¬b1 ∨ ¬b6) ∧ (¬b2 ∨ ¬b3) ∧ (¬b5 ∨ ¬b7)∧
(b1 ∨ b2) ∧ (b3 ∨ b4 ∨ b5) ∧ (b6 ∨ b7)

W = (b1, 10) ∧ (b2, 15) ∧ (b3, 5) ∧ (b4, 10) ∧ (b5, 20) ∧ (b6, 15) ∧ (b7, 10)

Now observe that the sum of the costs of the non-mandatory weighted clauses
is 10+15+5+10+20+15+10 = 85. Then, as stated by Lemma 1, in order to A
have a (1, 4, 30)-super solution, we must look for a (S1

1 , S
4
2 , 85− 30)-supermodel

of FA, i.e., a (S1
1 , S

4
2 , 55)-supermodel of FA, where S1 = {g1, g2, g3, g4} and

S2 = {b1, b2, b3, b4, b5, b6, b7}. Finally, according to Lemma 2, this amounts to
find a model of the weighted Max-SMT formula

FA
SM = C ∧W ∧ L ∧ (B ≤ 55) ∧

∧
S∈S1+

1

 ∨
T∈(S2\S)4

(CS∪T ∧ (BS∪T ≤ 55))


as described in Subsection 5.2, where

L =
∧

j∈1..7

(bj → ij = 1) ∧ (¬bj → ij = 0)

42

B = (1− i1) · 10 + (1− i2) · 15 + (1− i3) · 5 + (1− i4) · 10+
(1− i5) · 20 + (1− i6) · 15 + (1− i7) · 10

Note that S1+
1 denotes the non-empty subsets of S1 with at most one element,

i.e., the singletons {g1}, {g2}, {g3} and {g4}. And, since S1 and S2 are disjoint,
we have that (S2 \ S)4 = S4

2 , i.e., the (possibly empty) subsets of S2 of size at
most 4. Due to lack of space we do not develop CS∪T and BS∪T .

6 Conclusions

In this paper we have presented a mechanism for obtaining robust solutions to
auctions. This issue has rarely been considered in the field of auctions, with only
a few exceptions [2, 9, 10]. However, we think that robustness is a key issue when
dealing with real world applications, where uncertainty is almost always present.
In particular, we have focused on the possibility of some of the resources becom-
ing unavailable once the auction has already been cleared. Thus, we provide a
mechanism to proactively look for solutions that can be easily repaired when
such unexpected events happen.

We have presented a notion of robustness that balances the number of allowed
repairs when a break occurs and the loss of revenue for the auctioneer, by defining
what we call (a, b, β)-super solutions. This allows the auctioneer to choose the
more convenient values of each parameter, depending on how conservative or
risk seeking its strategy is.

Our mechanism is based on the modeling of an auction as a weighted Max-
SAT formula. However, since SAT does not allow to easily encode formulas with
arithmetic operations, needed to achieve robustness, we have moved the problem
to the richer logical framework of Satisfiability Modulo Theories.

Let us mention that state-of-the art SMT solvers have a rich input language,
and it is not necessary (neither convenient) to translate any formula to CNF
in order they can read it. In fact, we can feed an SMT solver directly with a
formula such as FSM (as described in Subsection 5.2) contrarily to what is done
in [5], where all formulas are translated to CNF. It is worth noting that we have
not considered the option of translating our transformed formula into a linear
program since, on the one hand, SMT solvers dealing with the theory of linear
arithmetic already apply a (modified) simplex algorithm and, on the other hand,
such a translation would imply a flattening of the structure of the problem (of
which the SMT solvers can eventually take revenue) and the addition of many
new variables. Moreover, the richness of the SMT language allows us to easily
add new constraints when needed. Nevertheless, we have left as future work a
peformance comparison with Operational Research tools.

Some experiments have been carried out with Yices [18], a weighted Max-
SMT solver. At present only toy examples have been checked. In the future we
plan to test our transformation with realistic benchmarks from the Combinato-
rial Auctions Test Suite (CATS) [19].

Finally, we want to acknowledge the fruitful discussions and comments we’ve
had with the rest of the SuRoS project team.

43

References

1. McMillan, J.: Selling spectrum rights. Journal of Economic Perspectives 8(3)
(1994) 145–162

2. Holland, A., O’Sullivan, B.: Robust solutions for combinatorial auctions. In: ACM
Conf. on Electronic Commerce. (2005)

3. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving.
Artif. Intell. 172(2-3) (2008) 204–233

4. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The first and second Max-SAT
evaluations. J. on Satisfiability, Boolean Modeling and Computation 4 (2008)
251–278

5. Ginsberg, M.L., Parkes, A.J., Roy, A.: Supermodels and robustness. In: Proc. of
AAAI’98. (1998) 334–339

6. Sebastiani, R.: Lazy satisability modulo theories. J. on Satisfiability, Boolean
Modeling and Computation 3(3-4) (2007) 141–224

7. Roy, A.: Fault tolerant boolean satisfiability. J. Artificial Intelligence Research 25
(2006) 503–527

8. Hebrard, E., Hnich, B., Walsh, T.: Super solutions in constraint programming. In:
Integration of AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems. Lecture Notes in Computer Science. Springer (2004)
157–172

9. Ramchurn, S.D., Mezzetti, C., Giovannucci, A., Rodriguez, J.A., Dash, R.K., Jen-
nings, N.R.: Trust-based mechanisms for robust and efficient task allocation in the
presence of execution uncertainty. J. of Artificial Intelligence Research 35 (2009)
119–159

10. Porter, R., Ronen, A., Shoham, Y., Tennenholtz, M.: Fault tolerant mechanism
design. Artificial Intelligence 172(15) (2008) 1783 – 1799

11. Holland, A., O’Sullivan, B.: Weighted super solutions for constraint programs. In:
Proc. of AAAI’05. (2005) 378–383

12. Yu, G.: On the max-min 0-1 knapsack problem with robust optimization applica-
tions. Operations Research 44 (1996) 407–415

13. Kelly, T.: Generalized Knapsack Solvers for Multi-unit Combinatorial Auctions:
Analysis and Application to Computational Resource Allocation. LNAI 3435
(2005) 73–86

14. Nisan, N.: Bidding and allocation in combinatorial auctions. In: Proc. of ACM
Conference on Electronic Commerce. (2000) 1–12

15. Baral, C., Uyan, C.: Declarative specification and solution of combinatorial auc-
tions using logic programming. In: Proc. of LPNMR’01, LNCS. Volume 2173.
(2001) 186–199

16. Wurman, P.R., Wellman, M.P., Walsh, W.E.: A parametrization of the auction
design space. Games and Economic Behavior 35(1-2) (2001) 304 – 338

17. Cramton, P., Shoham, Y., Steinberg, R., eds.: Combinatorial Auctions. MIT Press
(2006)

18. Dutertre, B., de Moura, L.: The Yices SMT solver. Tool paper available at
http://yices.csl.sri.com/tool-paper.pdf (August 2006)

19. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for
combinatorial auction algorithms. In: Proc. of ACM Conference on Electronic
Commerce. (2000) 66–76

44

Self-Adaptive MAS for Biomedical Environments

Juan F. De Paz, Sara Rodríguez, Javier Bajo and Juan M. Corchado

Departamento de Informática y Automática, Universidad de Salamanca
Plaza de la Merced s/n, 37008, Salamanca, España

{fcofds, srg, jbajope, corchado}@usal.es
Department of Computer Science and Automation, University of Salamanca Plaza de la

Merced s/n, 37008, Salamanca, Spain

Abstract. The application of information technology in the field of biomedicine
has become increasingly important over the last several years. This paper
presents an intelligent dynamic architecture for knowledge data discovery in
biomedical databases. The core of the system is a type of agent that integrates a
novel strategy based on a case-based planning mechanism for automatic
reorganization. This agent proposes a new reasoning agent model, where the
complex processes are modeled as external services. The agents act as
coordinators of Web services that implement the four stages of the case-based
planning cycle. The multi-agent system has been implemented in a real scenario
to classify leukemia patients. The classification strategy includes services to
analyze patient’s data, and the results obtained are presented within this paper.

Keywords: Multiagent Systems, Case-Based Reasoning, microarray, Case-
based planning

1. Introduction

The continuous growth of techniques for obtaining cancerous samples, specifically
those using microarray technologies, provides a great amount of data. Microarray has
become an essential tool in genomic research, making it possible to investigate global
genes in all aspects of human disease [8]. Expression arrays [9] contain information
about certain genes in a patient’s samples. These data have a high dimensionality and
require new powerful tools. Usually, existing systems are focused on working with
very concrete problems or diseases, with low dimensionality for the data, and it is
very difficult to adapt them to new contexts for diagnosing different diseases. This
research presents an entirely new perspective that focuses on the concept of
Intelligent Organizations, proposing an architecture capable of modeling biomedical
organizations through multi-agent systems to analyze biomedical data.

This paper presents an innovative solution to model decision support systems in
biomedical environments, based on a multi-agent architecture which allows
integration with Web services and incorporates a novel planning mechanism that
makes it possible to determine workflows based on exising plans and previous results.
The Multiagent System centers on obtaining a self-adaptive biomedical organizational
model, making it possible to represent laboratory workers within a virtual

45

environment and the interactions that take place, in order to carry out daily
classification tasks. The core of system is a CBP-BDI (Case-based planning) (Belief
Desire Intention) agent [3] specifically designed to act Web services coordinator,
making it possible to reduce the computational load for the agents in the organization
and expedite the classification process. CBP-BDI agents [3] make it possible to
formalize systems by using a new planning mechanism that incorporates graph theory
and Bayesian networks as a reasoning engine to generate plans. The system was
applied to case studies, consisting of the classification of leukemia patients and brain
tumors from microarrays, and the multiagent system developed incorporates novel
strategies for data analysis and microarray data classification. Microarray has become
an essential tool in genomic research, making it possible to investigate global gene
expression in all aspects of human disease [8].

The next section describes the main characteristics of the proposed multiagent
system and briefly explains its components. Section 3 presents a case study consisting
of a distributed multi-agent system for cancer detection scenarios. Finally section 4
presents the results and conclusions obtained.

2. Multiagent System for Expresion Analysis

Nowadays, having software solutions at one's disposal that enforce autonomy,
robustness, flexibility and adaptability of the system to develop is completely
necessary. The dynamic agents organizations that auto-adjust themselves to obtain
advantages from their environment seems a more than suitable technology to cope
with the development of this type of systems. The integration of multi-agent systems
with SOA (Service Oriented Architecture) and Web Services approaches has been
recently explored [14]. Some developments are centred on communication between
these models, while others are centred on the integration of distributed services,
especially Web Services, into the structure of the agents. Ricci et al. [15] have
developed a java-based framework to create SOA and Web Services compliant
applications, which are modelled as agents. Communication between agents and
services is performed by using what they call “artifacts” and WSDL (Web Service
Definition Language). We have used the FUSION@ architecture [12] as a reference,
which not only provides communication and integration between distributed agents,
services and applications.

The approach presented in this paper is an organizational model for biomedical
environments based on a multi-agent dynamic architecture that incorporates agents
with skills to generate plans for analysis of large amounts of data. The core of the
system is a novel mechanism for the implementation of the stages of CBP-BDI
mechanisms through Web services that provides a dynamic self-adaptive behaviour to
reorganize the environment. Moreover, the system provides communication
mechanisms that facilitate integration with SOA architectures. The multiagent system
was initially designed to model the laboratory environments oriented to the processing
of data from expression arrays. To do this, the system defined specific agent types and
services. The agents act as coordinators and managers of services, while the services
are responsible for carrying out the processing of information by providing replication

46

features and modularity. Agents are available to run on different types of devices, so
different versions were created to suit each one. The types of agents are distributed in
layers within the system according to their functionalities, thus providing an
organizational structure that includes an analysis of the information and management
of the organization, and making it possible to easily add and eliminate agents from the
system. The agent layers constitute the core and define a virtual organization for
massive data analysis, as can be seen in Figure 1. Figure 1 shows four types of agent
layers:

Fig. 1. Multiagent System Architecture

• Organization: The agents will be responsible for conducting the analysis of
information following the CBP-BDI [3] reasoning model. The agents from the
organizational layer should be initially configured for the different types of
analysis that will be performed. Because these analyses vary according to the
available information and the search results.

• Analysis: The agents in the analysis layer are responsible for selecting the
configuration and the flow of services that best suit the problem to solve. They
communicate with Web services to generate results. The agents of this layer follow
the CBP-BDI [3] reasoning model. The workflow and configuration of the services
to be used is selected with a Bayesian network and graphs, using information that
corresponds to the previously executed plans. The agents at this layer are highly
adaptable to the case study to which is applied. Specifically, the microarray case
study includes those agents that are required to carry out the expression analysis, as
shown in figure 1.

• Representation: These agents are in charge of generating the tables with the
classification data and the graphics for the results.

• Import/Export: These agents are in charge of formatting the data in order to adjust
them to the needs of agents and services.

• The Controller agent manages the agents available in the different layers of the
multiagent system. It allows the registration of agents in the layers, as well as their
use in the organization.

On the other hand, the services layer is divided into two groups:
• Analysis Services: The analysis services are services used by analysis agents for

carrying out different tasks. The analysis services include services for pre-
processing, filtering, clustering and extraction of knowledge. Figure 1 illustrates

47

how these services are invoked by the analysis layer agents in order to carry out the
different tasks corresponding to microarray analysis.

• Representation Services: They generate graphics and result tables.
Within the services layer, there is a service called Facilitator Directory that

provides information on the various services available and manages the XML file for
the UDDI (Universal Description Discovery and Integration). To facilitate
communication between agents and services the architecture integrates a
communication layer that provides support for the FIPA-ACL and SOAP protocols.

Figure 1 shows the connections between the diagnosis agent (in the organization
layer) with the agents in the analysis layer and the services. The connections represent
a plan. A diagnosis incorporates a filtering process, carried out by an analysis agent
that selects the sequence of services for the plan. Then, a clustering agent selects the
optimum service. Finally, the knowledge extraction obtains the relevant probes.

Nowadays, there exist different possibilities to services planning and composition.
One of the most important is services composition using HTN (Hierarchical Task
Network) and HTN planners as SHOP2 [20]. These systems don't provide a planning
mechanism that make use of past experiences, so they have a lack of adaptation an
learning abilities. Another techniques are based on Quality of Service [21] that make
use of heuristics to obtain an optimum composition. However, the quality of each of
the services is not independent of the others.

2.1. Coordinator CBP-BDI Agent

The coordinator agent is the core of the system, since provides the ability for self-
organization. The agents in the organization layer have the capacity to learn from the
analysis carried out in previous procedures. They adopt the model of reasoning CBP,
a specialization of case-based reasoning (CBR) [2]. CBP is the idea of planning as
remembering [3]. In CBP, the solution proposed to solve a given problem is a plan, so
this solution is generated taking into account the plans applied to solve similar
problems in the past [13]. The problems and their corresponding plans are stored in a
plans memory. A plan P is a tuple <S,B,O,L>, S is the set of plan actions, O is an
ordering relation on S allowing to establish an order between the plan actions, B is a
set that allows describing the bindings and forbidden bindings on the variables
appearing in P, L is a set of casual links.

The CBP-BDI agents stem from the BDI model [16] and establish a
correspondence between the elements from the BDI model and the CBP systems. The
BDI model adjusts to the system requirements since it is able to define a series of
goals to achieve based on the information that has been registered with regards to the
world. Fusing the CBP agents together with the BDI model and generating CBP-BDI
agents makes it possible to formalize the available information, the definition of the
goals and actions that are available for resolving the problem, and the procedure for
resolving new problems by adopting the CBP reasoning cycle.

The CBP-BDI agent type presented in this paper acts as coordinator of services.
The terminology used is the following: The environment M and the changes that are

48

produced within it, are represented from the point of view of the agent. Therefore, the
world can be defined as a set of variables that influence a problem faced by the agent

},,,{ 21 sM τττ L= with ∞<s (1)

The beliefs are vectors of some (or all) of the attributes of the world taking a set of
concrete values

MNisnbbB Ni
i
n

ii
ii ⊆∈∀≤== ∈}},,,,{/{ 21 τττ L (2)

A state of the world ej є E is represented for the agent by a set of beliefs that are
true at a specific moment in time t. i represents a belief of the N.

Let E={ej}jєN set of status of the World if we fix the value of t then

tjBbbbe Nr
jt

r
jtjtt

j ,},,{ 21 ∀⊆= ∈L (3)

The desires are imposed at the beginning and are applications between a state of
the current world and another that it is trying to reach

*
0

:
ee
EEd

→
→ (4)

Intentions are the way that the agent’s knowledge is used in order to reach its
objectives. A desire is attainable if the application i, defined through n beliefs exists:

*
021),,,,(

)
:

eebbb

n
ExBxEBxBxi

n →
→

LLLL
L

(5)

In our model, intentions guarantee that there is enough knowledge in the beliefs
base for a desire to be reached via a plan of action. We define an agent action as the
mechanism that provokes changes in the world making it change the state,

jiji eeaej EEa
=→

→
)(

:

(6)

Agent plan is the name we give to a sequence of actions that, from a current state
e0, defines the path of states through which the agent passes in order to reach the other
world state.

nn eepen EEp
=→

→
)(00

:

))(()()(0110 eaaeaeep nnnnn oLoL==== − 1aap nn oLo≡

(7)

Based on this representation, the CBP-BDI coordinator agents combine the initial
state of a case, the final state of a case with the goals of the agent, and the intentions
with the actions that can be carried out in order to create plans that make it possible to
reach the final state. The actions that need to be carried out are services, making a
plan an ordered sequence of services. It is necessary to facilitate the inclusion of new
services and the discovery of new plans based on existing plans. Services correspond
to the actions that can be carried out and that determine the changes in the initial
problem data. Each of the services is represented as a node in a graph. The presence
of an arch that connects to a specific node implies the execution of a service
associated with the end node. Figure 2 provides a graphical representation of a service
plans. As shown, the first graph has only one path and contains nodes that are not

49

connected. The path defines the sequence of services from the start node until the end
node. The plan described by the graph is defined by the sequence (S7 о S5 о S3 о S1)(
e0). e0 represents the original state that corresponds to Init, which represents the initial
problem description e0. Final represents the final state of the problem e*.

CBP-BDI agents use the information contained in the cases in order to perform
different types of analyses. As previously explained, an analysis assumes the
construction of the graph that will determine the sequence of services to be
performed. The construction process for the graph can be broken down into a series of
steps that are explained in detail in the following sub-sections:
1. Generate the directed graph with the information from the different plans.
2. Generate a TAN (Tree Augmented Naive Bayes) classifier for the cases with the

best and worst output respectively, using the Friedman-Godsmidtz [17] algorithm.
3. Calculate the execution probabilities for each service with respect to the classifier

generated in the previous step.
4. Adjust the connections from the original graph according to a metric.
5. Construct the graph

2.1.1. Constructing a directed graph
The different plans are represented in the graphs. The plans represented in graphical
form are joined to generate one directed graph that defines the new plans based on the
minimization of a specific metric. For example, given the graphs shown in figure 2, a
new graph is generated that joins the information corresponding to both graphs.

Fig. 2. Composition of the graphs

The dual connection of the nodes is indicated only to represent the existence of a
connection between the two graphs, although it is not actually necessary to represent
more than one connection per arc. Each of the arcs in the graph for the plans has a
corresponding weight according to which it is possible to calculate the new route to
be executed. This value is estimated based on the efficiency of the plans recovered as
indicated in section 2.1.4. When constructing the graph of plans, the weights are
estimated based on the existing plans by applying a bayesian network. The entry data
to the bayesian network is broken down into the following elements: Plans with a
high efficiency are assigned to class 1 and plans with a low efficiency are assigned to
class 0. The Bayesian network is calculated for each of the classes according to the
recovered plans, following the Friedman-Goldsmidtz [17] algorithm.

2.1.2. TAN classifier
The TAN classifier is constructed based on the plans recovered that are most similar
to the current plan, distinguishing between efficient and inefficient plans to generate

50

the model. Thus, by applying the Friedman-Goldsmidtz [17] algorithm, the two
classes that are considered are efficient and inefficient. The Friedman-Goldsmidtz
[17] algorithm makes it possible to calculate a Bayesian network based on the
dependent relationships established through a metric. The metric proposed by
Friedman is defined as follows:

∑∑∑
∈ ∈ ∈

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⋅=
Xx Yy Zz zyPzxP

zyxPzyxPZYXI
)|()|(

)|,(log),,()|;((8)

Based on the previous metric, the maximal tree is constructed.

2.1.3. Services Probabilities
Once the TAN model has been calculated for each of the classes, we proceed to
calculate the probability of execution for each of the services. These probabilities
influence the final value of the weights assigned to the arcs in the graph. The
probabilities are calculated according to the TAN model. Assuming that the set of
random variables can be defined as U = {X1, X2,…, Xn}, we can assume that the
variables are independent. The probabilities are represented by)|(

ixixP π where xi

is a value of the variables Xi and
ii Xx Π∈π where

ixπ represents one of the parents
for the node Xi. Thus, a Bayesian network B, defines a single set probability
distribution over U given for

∏∏
==

−

−−

Π=

=⋅=
n

i
Xi

n

i
nn

nnnn

i
XPXXXP

XXPXXXPXXXP

11
11

111121

)|(),...,|(

),...,(),...,|(),...,,(

2.1.4. Considering the connections
Using the TAN model, we can define the probability that a particular number of
services may have been executed for classes 1 and 0. This probability is used to
determine the final value for the weight with regards to the quality of the plans
recovered. Assuming that the probability of having executed service i for class c is
defined as follows P(i,c) the weight of the arcs is defined according to the following
formula. The function has been defined in such a way that the plans of high quality
are those with values closest to zero.

 01)0,,()0,()1,,()1,(ijijij tjiIjPtjiIjPc ⋅⋅−⋅⋅= (9)

1

,1

#

1.0))))(min()((1(
11

ij

GsGp
ij G

sqpq

t ij

∑
∈∈

+−−

=

(10)

0

,0

#

1.0))(min()(
00

ij

GsGp
ij G

sqpq

t ij

∑
∈∈

+−

=

(11)

where:
• I(i,j,c) is the probability that service i for class c is executed before of service j
• P(j,c) is the probability that service j for class c is executed. The value is obtained

based on the Bayesian network defined in the previous step.
• Gs

ij is the set of plans that contain an arc originating in j and ending in i for class s.

51

• Gs is the set of plans for class s.
• q(p) is the quality of plan p that also defined the execution time for the plan. The

significance depends on the measure of optimization in the initial plan.
• #Gs

ij the number of elements in the set.
• cij is the weight for the connection between the start node j and the end node i.

2.1.5. Graph construction
Once the graph for the plans has been constructed, the minimal route that goes from
the start node to the end node is calculated. In order to calculate the shortest/longest
route, the Dijkstra algorithm is applied since there are implementations for the order
n*log n. To apply this algorithm, it is necessary to add to each of the edges the
absolute value of the edge with a higher negative absolute value, in order to remove
from the graph those edges with negative values. The route defines the new plan to
execute and depends on the measure to maximize or minimize.

3. Case Study: A Decision Support System for Patients Diagnosis

The multiagent architecture presented in this paper has been used to develop a
decision support system for the classification of leukemia and brain tumors patients,
and three case studies were established. The first case study uses data from patients
suffering from leukemia and focuses on the classification of the type of leukemia. The
second case study also analyzes the data from leukemia patients, but in this case
focuses on the type of CLL leukemia and attempts to classify the patients in the three
existing subtypes. Finally, the goal of the third case study is to classify patients based
on the type of brain tumor. The data for leukemia patients was obtained with a HG
U133 plus 2.0 chip and corresponded to 212 patients affected by 5 different types of
leukemia (ALL, AML, CLL, CML, MDS) [19]. The second case study also used the
HG U133 plus 2.0 chip. Finally, third case study [18] used data from the Affymetrix
U95Av2 GeneChips including 4 different types of brain tumors [18].

3.1. Services Layer

The services implement the algorithms that allows the analysis expression of the
microarrays [1] [19]. There are four types of services:

Preprocessing Service: This service implements the RMA (Robust Multi-array
Average) [5] algorithm and a novel control and errors technique. During the Control
and Errors phase, all probes used for testing hybridization are eliminated.

Filtering Services: Eliminate the variables that do not allow classification of
patients by reducing the dimensionality of the data. Three services are used for
filtering: (i) Variables with low variability have similar values for each of the
individuals, so they are not significant for the classification process. (ii) All remaining
variables that follow a uniform distribution are eliminated. The contrast of
assumptions followed uses the Kolmogorov-Smirnov [6] test. (iii) The linear

52

correlation index of Pearson is calculated and correlated variables are removed. (iv)
Delete the probes which don’t have significative changes in the density of individuals.

Clustering Service: It addresses both the clustering and the association of a new
individual to the group more appropriate. The service used is the ESOINN (Enhanced
self-organizing incremental neuronal network) [4]. Additional services in this layer
are the Partition around medoids (PAM) [10] and dendrograms [11]. Classification is
carried out bearing in mind the similarity of the new case using the naive bayes.

Knowledge Extraction Service: The extraction of knowledge technique applied has
been CART (Classification and Regression Tree) [7] algorithm.

3.2. Agents Layer

The agents in the analysis layer implement the CBP reasoning model and, for this,
select the flow for services delivery and decide the value of different parameters
based on previous plans made. A measure of efficiency is defined for each of the
agents to determine the best course for each phase of the analysis process. In the
analysis layer, at the stage Preprocessed only a service is available. The efficiency is
calculated by the deviation in the microarray. At the stage of filtering, the efficiency
of the plan p is calculated by the relationship between the proportion of probes and
the resulting proportion of individuals falling ill.

I
i

N
spe ')(+=

(12)

Where s is the final number of variables, N is the initial number of probes, i’ the
number of misclassified individuals and I the total number of individuals. In the phase
of clustering and classification the efficiency is determined by the number of
misclassified individuals. Finally, in the process of extracting knowledge at the
moment, efficiency is determined by the number of misclassified individuals.

In the organization layer, the diagnosis agent chooses the agents for the expression
analysis [1]. The diagnosis agent establishes the number of plans to recover from the
plans memory for each of the agents and the agents to select from the analysis layer.

4. Results and Conclusions

This paper has presented the a self-adaptive multiagent architecture and its application
to three real problems. The characteristics of this novel architecture facilitate a
organizational-oriented approach where the dynamics of a real scenario can be
captured and modelled into CBP-BDI agents. The tests were oriented both to evaluate
the efficiency and the adaptability of the approach. The first experiment consisted of
evaluating the services distribution system in the filtering agent for the case study that
classified patients affected by different types of leukemia. According to the
identification of the problem described in table 1, the filtering agent selected the plans
with the greatest efficiency, considering the different execution workflows for the
services that are in the plans. Table 1 shows the efficiency obtained for the service
workflows that provided the best results in previous experiences. The values in the

53

table indicates the application sequence for the services within the plan, a blank cell
indicates that a service is not invoked for that specific plan.

Based on the plans shown in table 1, a new plan is generated following the
procedures indicated in section 2.1. The filtering agent in the analysis layer selects the
configuration parameters between a specific set of pre-determined values, when it has
been told to explore the parameters. Otherwise, for a specific plan, it selects the
values that have provided better results based on the measure of the previously
established efficiency (12). If there is no plan with all the services that are going to be
used, it selects the plan with the greatest efficiency that contains the greatest number
of services equal to the current plan for selecting the different parameters.

Table 1. Efficiency of the plans

Variability (z) Uniform (α) Correlation (α) Cutoff Efficiency Class
1 2 3 4 0.1401 1
1 2 3 0.1482 1
1 0.1972 0
 1 2 0.1462 1
 1 0.2036 0
 1 0,1862 0
 1 0,1932 0
 1 2 0,186 0

Table 2. Efficiency of the plans

Case study Variability (z) Uniform (α) Correlation (α) Cutoff Efficiency
Leukemia 1 2 3 0.1277
CLL Leukemia 1 2 3 4 0.1701
Brain 1 2 0,1532

Once the service distribution process and the selection of parameters for a specific

case study have been evaluated, it would appear convenient to evaluate the adaption
of this mechanism to case studies of a different nature. To do so, we once again
recover the plans with the greatest efficiency for the different workflows and case
studies, and proceed to calculate the Bayesian network and the set of probabilities
associated with the execution of services as mentioned in sections 2.1.2 and 2.1.3.
Once the graph plans have been generated, a more efficient plan is generated
according to the procedures indicated in section 2.1.5, with which we can obtain the
plan that best adjusts to the data analysis. Table 2 shows the plans generated by the
filtering process that best adjusts to the different case studies.

In Figure 3 it is possible to observe the performance of the agents at the
organization and analysis layers. 11 plans were conducted based on manual planning
and the results were compared with the automatic analysis provided by the multiagent
system. In the manual planning a human expert configures the service's parameters,
such as if the RMA will use interquantile normalization, or the sequence to execute
the services. Each of the agents of the organization layer selects the agents from the
analysis layer and, each of these agents in turn selects the services and configuration
parameters. The different kinds of agent from the analysis layer can be seen at the
bottom of Figure 3 (the name of the agents from the organization layer is indicated in

54

the right of the graphics). In each chart the efficiency measure used is shown. The
surface for the CBP-BDI agent is the highest efficiency according to the definitions.

0

0,1

0,2

0,3

0,4

1 2 3 4 5 6 7 8 9 10 11

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11

CBP-BDI

manual

CBP-BDI

CBP-BDI

CBP-BDI
manual

manual

manual

Laboratory

Doctor

Diagnosis

Pr
ep

ro
ce

ss
ed

K
no

w
le

dg
e

Ex
tr

ac
tio

n

Fi
lte

re
d

C
la

ss
fic

at
io

n

plans

plans

plans

plans

Ef
ic

ie
nc

y
Ef

ic
ie

nc
y

Ef
ic

ie
nc

y
Ef

ic
ie

nc
y

Fig. 3. Performance Comparison between the manual and the automatic planning

Fig. 4. Patients with CLL leukemia, CLL leukemia subtypes and patients with
anaplastic and oligodendrogliomas tumors.

With regards to the classification process, we were able to obtain promising results
for each of the case studies. As shown in figures 4a 4b 4c, the probes recovered by the
knowledge extraction agent are those that provide the relevant information that makes
it possible to classify new individuals. In the first image, we can see the 3 probes that
best characterize the patients with CLL leukemia. In the second image, we can see the
3 subtypes of leukemia. Finally, the last image represents the patients with anaplastic
and oligodendroglioma tumors. The multi agent system simulates the behavior of
experts working in a laboratory, making it possible to carry out a data analysis in a
distributed manner, as normally done by experts. The system distributes the
functionality among Web services, automatically calculates the expression analysis
and allows the classification of patients from the microarray data. Our approach
improves the performance provided by the manual procedure for selecting workflow
analyses.

55

References

[1] Lander,E. et al: Initial sequencing and analysis of the human genome. Nature. 409 860-
921 (2001)

[2] Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann. (1993)
[3] Glez-Bedia, M. and Corchado, J.: A planning strategy based on variational calculus for

deliberative agents. Computing and Information Systems Journal. 10 (1) 2-14 (2002)
[4] Furao, S., Ogura, T. and Hasegawa, O.: An enhanced self-organizing incremental neural

network for online unsupervised learning. Neural Networks. 20 893-903 (2007)
[5] Irizarry, R., Hobbs, B., Collin, F., Beazer-Barclay, Y., Antonellis, K., Scherf, U. and

Speed, T.: Exploration, Normalization, and Summaries of High density Oligonucleotide
Array Probe Level Data. Biostatistics. 4 249-264 (2003)

[6] Brunelli, R.: Histogram Analysis for Image Retrieval. Pattern Recognition. 34 1625-1637
(2001)

[7] Breiman, L., Friedman, J., Olshen, A. and Stone, C.: Classification and regression trees.
Wadsworth International Group. Belmont, California. (1984)

[8] Quackenbush, J.: Computational analysis of microarray data Nature Review Genetics. 2
(6) 418-427 (2001)

[9] Affymetrix
http://www.affymetrix.com/support/technical/datasheets/hgu133arrays_datasheet.pdf

[10] Saitou, N. and Nie, M.: The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution. 4 406-425 (1987)

[11] Kaufman, L. and Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley Series in Probability and Statistics. (1990)

[12] Tapia, D.I., Rodriguez, S., Bajo, J. and Corchado, J.M.: FUSION@, A SOA-Based Multi-
agent Architecture. International Symposium on Distributed Computing and Artificial
Intelligence, Advances in Soft Computing. 50 99-107 (2008)

[13] Corchado, J.M., Bajo, J., De Paz, Y. and Tapia, D.I.: Intelligent Environment for
Monitoring Alzheimer Patients, Agent Technology for Health Care. Decision Support
Systems. 44 (2) 382-396 (2008)

[14] Ardissono, L., Petrone, G. and Segnan, M.: A conversational approach to the interaction
with Web Services. Computational Intelligence, Blackwell Publishing. 20 693-709 (2004)

[15] Oliva, E., Natali, A., Ricci, A., and Viroli, M.: An Adaptation Logic Framework for
{J}ava-based Component Systems. Journal of Universal Computer Science. 14 (13) 2158-
2181 (2008)

[16] Bratman, M.: Intention, Plans and Practical Reason. Harvard U.P., Cambridge. (1987)
[17] Friedman, N., Geiger, D. and Goldszmidt, M.: Bayesian Network Classifiers. Machine

Learning. 29 131-163 (1997)
[18] Nutt, C.L., Mani, D.R., Betensky, R.A., Tamayo, P., Cairncross, J.G., Ladd, C., Pohl, U.,

Hartmann, C., McLaughlin, M.E., Batchelor, T.T., Black, P.M., von Deimling, A.,
Pomeroy, S.L., Golub, T.R., Louis, D.N.: Gene expression-based classification of
malignant gliomas correlates better with survival than histological classification.
Molecular Biology and Genetics. 63 (7) 1602-1607 (2003)

[19] Corchado, J.M., De Paz, J.F., Rogríguez, S. and Bajo, J.: Model of experts for decision
support in the diagnosis of leukemia patients. Artificial Intelligence in Medicine. 46 (3)
179-200 (2009)

[20] Sirin E., Parsia B., Wu, D., Hendler J., Nau D.: HTN planning for Web Service
composition using SHOP2. Web Semantics: Science, Services and Agents on the World
Wide Web, 1 (4) 377-396 (2004)

[21] Ko, J.M., Kim, C.O., Kwon, I.H.: Quality-of-service oriented web service composition
algorithm and planning architecture. The Journal of Systems and Software.81 2079–2090
(2008)

56

Agreement Patterns

Carlos A. Iglesias1??, Mercedes Garijo1,
José I. Fernández-Villamor1, and José J. Durán2

1 Depto. Ingenieŕıa de Sistemas Telemáticos, Universidad Politécnica de Madrid
2 Centro para las Tecnoloǵıas Inteligentes de la Información y sus Aplicaciones

(CETINIA), Universidad Rey Juan Carlos

Abstract. Agreement Patterns have been defined for improving com-
munication in software and services development, as well as for providing
a practitioner oriented approach for reusing existing agreement technolo-
gies. This article presents the notion of agreement patterns, their struc-
ture and some of the first identified examples.

1 Introduction

One of the envisioned aspects of Future Internet is the Internet of Services,
which is conceived as [1] an open service delivery platform, which goes beyond
the client-server model of service delivery.

In an Internet of Services with a vast and changing landscape of service
providers and consumers, the fulfillment of agreements for services is a key issue,
which involves notions such as trust, coordination or organization. These notions
are the basis for the understanding and implementation of artificial social sys-
tems [2], and have largely addressed in fields such as multi-agent systems [3,4,5],
p2p computing [6], service computing [7,8,9], autonomic computing [10], social
psychology [11], sociobiology or social neuroscience.

Agreement technologies [12] (AT) is a recent discipline which collects this
multidisciplinary research and can be defined as the technologies for the practical
application of knowledge to the automated fulfillment of agreements. Agreement
technologies do not dictate the underlying technologies (objects, components,
agents, services, ...), but are focused on the formalization of knowledge struc-
tures, protocols, algorithms and expertise that contribute to the establishing of
agreements in an open dynamic environment.

Nevertheless, there has not been defined yet a common vocabulary or patterns
for sharing and reusing previous experiences in the application of agreements
to social-inspired software integration. This article pretends to bridge the gap
through the use of software patterns for agreement analysys and reuse, which
are called agreement patterns.

The rest of the article is organized as follows. Section 2 reviews some of the
related work in patterns in the SOA and multi-agent community. Then, section 3
?? The first author has been partially supported by Germinus XXI (Grupo Gesfor)

through the project RESULTA.

57

presents a classification scheme for agreement patterns. Section 4 introduces
some examples of identified agreement patterns. Finally, section 5 draws out the
conclusions of this research work and the future work.

2 Background and Related Work

Software design patterns [13] can be defined as “a technique for achieving widespread
reuse of software architecture. They capture the static and dynamic structures
and collaborations of components in successful solutions to problems that arise
when building software in domains like business data processing, telecommuni-
cations, graphical user interfaces, databases and distributed communication soft-
ware. Patterns aid the development of reusable components and frameworks by
expressing the structure and collaboration of participants in a software architec-
ture at a level higher than source code or object-oriented design models.”.

Patterns can be represented in an informal way using natural language, UML,
pattern languages or ontologies [14]. The informal representation of software
patterns usually follows the canonical (or so-called Alexandrian) form [15], which
identified the following elements:

– Name: a meaningful name that provides a vocabulary for discussing.
– Alias: an alternative name to the pattern.
– Problem: a statement of the problem and the goals it wants to reach.
– Context: the preconditions under which the problem and its solution seem

to recur.
– Forces: a description of the relevant forces and constraints and how they

interact with one another and with the goals. Considerations to be taken
into account to select a solution for a problem.

– Solution: static relationships and dynamic rules describing how to realized
the desired outcome.

– Examples: one or more sample applications of the pattern which illustrate
its application. Known occurrences of the pattern which help in verifying
that the pattern is a proven solution to a recurring problem.

– Resulting context: the state or configuration of the system after the pat-
tern has been applied.

– Rationale: a justification of the pattern, explaining how and why it works,
and why it is “good”.

– Related patterns: compatible patterns which can be combined with the
described pattern.

Based on this previous research, Agreement patterns are defined as soft-
ware patterns that facilite software components coordination through the fulfill-
ment of agreements. Agreements patterns include all kind of agreements, both
explicit ones (e.g. negotiation) and tacit ones (e.g. organization).

There are related works for defining design patterns in the areas of multi-
agent systems and Service Oriented Computing (SOC).

58

Agent-Oriented Patterns have been defined for sharing multi-agent system
development experiences. Oluyomi [16,17] presents an agent pattern classifica-
tion scheme based on two dimensions: stages of the agent-oriented software de-
velopment and tasks in each stage of development. At each stage or level of
development (analysis, multi-agent architecture, agent architecture, multi-agent
implementation), the framework identifies the attributes of that level of abstrac-
tion, in order to classify these patterns. In addition, Oluyomi proposes to refine
the canonical pattern form for defining an Agent-Oriented Pattern Template
Structure, which adds more granularity depending on the pattern type (agent
internal architecture structural, interactional or strategic patterns, etc.). Some
of the patterns identified by Oluyomi, whose classification scheme includes other
approaches, can be considered agreement patterns. The main differences between
her classification and the one proposed in this article is that Oluyomi’s classifi-
cation is agent oriented (agent oriented development phase, agent architecture,
etc.), while the one proposed here is independent of the technology to be used,
although implementation examples can be presented with different technologies.
In addition, agreements are not a key concept in Oluyomi’s classification scheme
as in our proposal. Future work will provide a mapping of the agreement related
patterns classified by Oluyomi onto our classification scheme.

In the area of Service Oriented Architecture (SOA), SOA patterns have been
defined [18,19,20]. For example, Erl [18] classifies patterns for architecturing
services, service compositions, service inventories and service oriented enterprise.
Rotem-Gal-Oz [19] describes patterns for Message Exchange, Service Interaction,
Service Composition, Structural, Security and Management. SOA patterns [20]
provide high level architectural patterns, which do not detail yet agreement
issues.

Inside the SOC community, the GRAAP Working Group (Grid Resource Al-
location and Agreement Protocol WG) has defined the specification Web Services
Agreement [8], which is particularly interesting for this research. The purpose
of the specification is the definition of a Web Services protocol for establish-
ing agreements defined in XML. The specification covers the specification of
agreement schemas, agreement template schemas and a set of port types and
operations for managing the agreement life cycle. This specification defines an
agreement as an agreement between a service consumer and a service provider
specifies one or more service level objectives both as expressions of requirements
of the service consumer and assurances by the service provider on the availabil-
ity of resources and/or service qualities. An agreement defines a dynamically-
established and dynamically-managed relationship between parties. The object of
this relationship is the delivery of a service by one of the parties within the con-
text of the agreement. The management of this delivery is achieved by agreeing
on the respective roles, rights and obligations of the parties. An agreement is
characterized by its name, context and terms.

The OASIS Reference Architecture for SOA [9] is an abstract realization of
SOA, focusing on the elements and their relationships needed to enable SOA-
based systems to be used, realized and owned. The reference architecture defines

59

three primary viewpoints: business via services that captures what SOA means
for people using it to conduct business, realizing service oriented architectures
deals with the requirements for constructing a SOA; and owning service oriented
architectures addresses issues involved in owning and managing a SOA. The no-
tion of agreement is included in several ways in the architecture, as an organi-
zational concept (constitution) or as a formalization of a relationship (business
agreement and contract).

These two initiatives,OASIS RA and WS-Agreement are compatible and
complementary of our proposal, since they provide a modeling reference ar-
chitecture as well as a language for describing the identified patterns boiling
down to the implementation level. This integration will be included in future
publications.

3 Classification Scheme for Agreement Patterns

The purpose of this section is an early identification of a multi-dimensional
classification scheme for agreement patterns (figure 1) which makes easier for
software developers to select the right pattern to apply, as well as the basis for
its cataloging.

Fig. 1. Classification scheme for Agreement Patterns

The identified dimensions characterize an agreement from several properties
of the agreement itself, such as topic (purpose of the agreement), duration, and
phase (also so-called state in WS-Agreement); the organizational environment
where the agreement takes place, and the decision making cognitive task of the
agreement stakeholders.

60

One pattern can have more than one value for each one of the dimensions,
and can be classified only to the relevant dimensions.

The dimensions of the classification scheme are:

– Duration: if the agreement is reached for a short or long term. The duration
of the agreement has organizational implications, as well as its properties.
Pĕchouc̆ek [21] distinguishes between alliances for long-term collaboration
agreements and coalitions for short-term collaboration agreements. In a sim-
ilar way, other authors such as Camarinha [22] identifies long term strategic
alliances and goal-oriented networks, based on this dimension.

– Topic: the goal of the agreement can be [5], among others, the obtention
of goods, the usage of goods or services, the provision of a service or the
definition of social rules.

– Phase: this dimension defines the agreement phase where the pattern can be
applied. The phases considered are provider selection, agreement fulfillment,
agreement renegotiation, agreement monitoring and agreement conclusion.
Provider selection consists of the selection of the best available provider
before establishing an agreement, which can be based on trust and reputa-
tion techniques and can involve interactions such as bidding or contract net
protocol (CNP) [23]. Agreement negotiation is the process of defining estab-
lishing the conditions of the agreement, respecting the normative context
and using negotiation techniques such as argumentation. Agreement enact-
ment is the commitments of the agreement are effective. For example, in the
call-by-agreement interaction method [24], once the agreement for action is
establish, then the actual enactment of the action is requested. In the CNP,
the successful bidders are informed that they are now contractors for a task
together with this task specification. Agreement renegotiation is the phase
of changing the conditions of a previously negotiated agreement, because of
reasons such as environmental changes, expiration of the agreement or the
coming up of a renewal option. Agreement monitoring is the process of re-
viewing the established agreement conditions while the agreement is being
enacted. In the area of service computing, it is usually referred as Service
Level Agreement monitoring. Finally, Agreement conclusion is the process of
concluding an agreement by any party, which can be because the agreement
is not being enacted according to the negotiated terms, or because one or
more parties desires to conclude it.

– Normative context: the normative context [24] determines the rules of the
game, such as interaction patterns, norms and organization structures.

– Decision making: this dimension collects cognitive patterns followed by
the parties of the agreement. Some of the main subcategories are trust and
reputation [25], group decision [26], organizational change [24], reasoning
about the impact of the organization evolution in the current negotiated
agreements and in the agreement procedures; normative reasoning [24] for
interpreting the normative context for a specific case; agreement change,
reasoning about the improvement of the negotiated agreements as well as its
interpretation in specific situations.

61

The dimensions are interrelated, and one value in one dimension can con-
straint the values of other dimensions. For example, the topic (goods acquisition)
can restrict the valid values of normative context, being interaction (bidding,
contract-net protocol, ...) or organizational structure (electronic institution, ...).

4 Examples

This section provides examples of some of the first identified agreement patterns,
whose pattern structure follows the canonical form extended with the classifi-
cation scheme defined in section 3. The decision making process is shown in a
reasoning diagram which follows CommonKads notation [27] as illustrated in 2.

Fig. 2. Inference diagram legend

4.1 ProviderRating Pattern

Selection of the most satisfactory service providers for a specific service demand
is known as the Service Selection problem [28,29].

This pattern collects the pattern of rating available service providers in order
to select the one with highest rating. Rating-based mechanisms are simple and
effective [30], if consumers have similar preferences.

Name ProviderRating
Duration Short term (specific project)
Phase Provider Selection
Decision making Reputation, Trust
Problem Choosing a service provider, having access to other users’ rating.
Context Public rating of services.
Forces A comparison of the experience-based service-selection techniques can

be found in [31].
Solution Service provider selection is based on the rating given to service

providers using reputation [29] or trust [32] techniques.

62

Fig. 3. Provider Rating Reasoning Diagram

Examples E-Commerce [33]
Resulting context An agreement is fulfilled.
Related Patterns Portability

4.2 Portability Pattern

This pattern collect the problematic of changing of provider without service in-
terruption, which involves monitoring the current QoS and the estimation of
other Service Provider offer. When the decision of changing is taking, this pat-
tern involves the negotiation of breaking the existing contract and agree a new
contract with the new provider.

Usually, service providers try to prevent this portability, defining some cus-
tomer retention policy to improve customer loyalty.

Name Portability
Alias Service switching [34]
Problem A potentially better service offer is available and the customer wants

to break the service provision agreement with the current service provider
and to establish a new agreement with a new provider, without disruption
of the service.

Context There are several available service providers that offer a better service
conditions than the current provider.

63

Fig. 4. Portability pattern reasoning diagram

Forces This pattern is applicable when there are more than one stakeholder in
the development of the new service, and the consumer do not have strong
penalties or commitments with the current provider.

Solution Based on the QoS evaluation of the current service provider, the es-
timation of the QoS of the available service providers, and the consumer
policies and commitments, the decision to change of provider is taken, which
involves requesting portability (breaking the current agreement with the ser-
vice provider and establishing an agreement with the new provider).

Examples This pattern is frequently found in several domains. For example,
it is a common pattern in telephony customers or mobile network environ-
ments.

Resulting context The consequences of the portability can be penalties due
to commitments with the initial service provider, and the new commitment
with the new service provider.

Duration Short term (specific project)
Topic Service Provision
Phase Agreement conclusion, Provider selection, Agreement negotiation
Decision making Agreement change
Related Patterns –
Known uses Wireless networks [35], professional services [36]

The context and resulting context of this pattern can be easily formalized as
preconditions and postconditions as follows. Let be d a decisor, pc the current

64

provider, pi the available provider i, and the relation provider(decisor, provider)
used for representing that decisor has an agreement in effect with the provider.

Let be Ud
i the utility function of a decisor d for a provider i.

In order to be applied this pattern, the following pre and postconditions
should be fulfilled.

Preconditions

provider(d, c) ∧
¬provider(d, i) ∀i, i 6= c ∧
∃i , Ud

i ≥ Ud
c | i 6= c

Postconditions provider(d, i) ∧ ¬provider(d, c)

4.3 Intermediary Pattern

Fig. 5. Intermediary Pattern

Name Intermediary
Alias Service Broker
Duration Short term (specific project)
Topic Service Provision
Phase Agreement Negotiation
Problem Selection of a service provider that fits the QoS requirements of the

consumer.
Context There are several available service providers that fit the functional

requirements.
Forces Some of the considerations to be taken into account if the trust of the

service consumer on the intermediary.
Solution The intermediary selects one or more providers and adapts the service

provider offer to the service consumer preferences, providing an added value.
Examples Service provider selection in wireless networks [35], tourism and fi-

nance [37],

65

Resulting context the intermediary acts on behalf of the user based on an
agreement between user and intermediary. This pattern refines the service
mediator entity defined within SOA-RM [9].

Related Patterns Portability. Portability could be a decision of the interme-
diary.

5 Conclusions and Future work

This article presents preliminary results of the research on defining a software
methodology for agreement technology. The task is challenging, since agreement
technology is an emerging area.

The research has been based on the following premises:

– Applicability. The results of agreement technologies should be applied by any
software component which requires to fulfill an agreement. In particular, we
have not restricted the applicability to the agent community.

– Simplicity. Agile methodologies have shown their potential for fitting in every
day task. In particular, design patterns and refactoring have succeed in its
adoption. The results of our approach try to be easy to adopt.

– Reuse. In order to provide technology transfer from agreement technologies
to other areas, it is needed to organize and provide facilities for the compre-
hension of the research results. Patterns provide a suitable mechanism for
this technology transfer and a principled way.

The main conclusions of our research is that agreement patterns can be a
useful concept for providing a unifying vocabulary in agreement technology, and
providing a catalogue of methods for its implementation.

In this article we have proposed a first structure and some examples of ap-
plication with some agreement patterns we have identified. Nevertheless, these
are initial results, and we are now working on a more definitive structure of the
patterns, as long as its formalization and operationalization.

Acknowledgements

This research has been partly funded by the Spanish Ministry of Science and
Innovation through the projects Ingenio Consolider2010 AT Agreement Tech-
nologies (CSD2007-0022)) and T2C2 (TIN2008-06739-C04-03/TSI) as well as
the Spanish Ministry of Industry, Tourism and Trade through the project RE-
SULTA (TSI-020301-2009-31).

We would like to express our gratitude to Sascha Ossowski and Alberto
Fernández for involving us in the project AT as well as the rest of the URJC
research group for their support within the project. We would like also to thank
the rest of research groups of AT, IIIA CSIC and UPV for their comments, and
specially to Vicente Botti and Vicente Julián for their support, motivation and
patience along the project.

66

References

1. Working Group on Future Internet Infrastructure FP7 ICT Advisory Group: Fu-
ture internet infrastructure. Technical Report version 8, FP7 ICT Advisory Group
(January 2008)

2. Sierra, C., Botti, V., Ossowski, S.: Agreement technologies. Available at
http://www.agreement-technologies.org (2008)

3. Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P., Wiegand, M.E., Voudouris,
C., Alty, J.L., Miah, T., Mamdani, E.H.: ADEPT: Managing business processes us-
ing intelligent agents. In: Proceedings of the 16th Annual Conference of the British
Computer Society Specialist Group on Expert Systems (ISIP Track), Cambridge,
UK (1996) 5–23

4. Huhns, M.N., Singh, M.P., Burstein, M., Decker, K., Durfee, E., Finin, T., Gasser,
L., Goradia, H., Jennings, N., Lakkaraju, K., Nakashima, H., Parunak, V., Rosen-
schein, J.S., Ruvinsky, A., Sukthankar, G., Swarup, S., Sycara, K., Tambe, M.,
Wagner, T., Zavala, L.: Research directions for service-oriented multiagent sys-
tems. IEEE Internet Computing 9(6) (2005) 65–70

5. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for nego-
tiation in electronic commerce. Lecture Notes in Computer Science 1991 (2001)

6. Greco, G., Scarcello, F.: On the complexity of computing peer agreements for
consistent query answering in peer-to-peer data integration systems. In: CIKM
’05: Proceedings of the 14th ACM international conference on Information and
knowledge management, New York, NY, USA, ACM (2005) 36–43

7. Papazoglou, M.P.: Service -oriented computing: Concepts, characteristics and di-
rections. Web Information Systems Engineering, International Conference on 0
(2003) 3

8. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web services agreement specification
(WS-Agreement). Technical report, Grid Resource Allocation Agreement Protocol
(GRAAP) Working Group (2007)

9. McCabe, F.G.: Reference architecture for service oriented architecture. Technical
report, OASIS (April 2008)

10. Parashar, M., Hariri, S.: Autonomic Computing. CRC Press, Inc., Boca Raton,
FL, USA (2006)

11. Carnevale, P.: Psychology of Agreement. Psychology Press (2009)
12. Jennings, N.: Agreement technologies. Intelligent Agent Technology, IEEE / WIC

/ ACM International Conference on 0 (2005) 17
13. Schmidt, D.C.: Using design patterns to develop reusable object-oriented commu-

nication software. Communications of the ACM 38(10) (1995) 65–74
14. Rosengard, J.M., Ursu, M.F., marc Rosengard, J., Ursu, M.F.: Ontological rep-

resentations of software patterns. In: Proc. KES’04, Lecture Notes in Computer
Science, Springer Verlag (2004) 31–38

15. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented software architecture: a system of patterns. John Wiley & Sons, Inc.
(1996)

16. Oluyomi, A., Karunasekera, S., Sterling, L.: A comprehensive view of agent-
oriented patterns. Autonomous Agents and Multi-Agent Systems 15(3) (2007)
337–377

17. Oluyomi, A.O.: Patterns and Protocols for Agent-Oriented Software Development.
PhD thesis, Faculty of Engineering. University of Melbourne, Australia. (Novem-
ber 01 2006)

67

18. Erl, T.: SOA Design Patterns. Prentice-Hall (2008)
19. Rotem Gal Oz, A.: SOA Patterns. Manning (2009)
20. Zdun, U., Hentrich, C., Aalst, W.M.P.V.D.: A survey of patterns for service ori-

ented architectures. Int. J. Internet Protoc. Technol. 1(3) (2006) 132–143
21. Pĕchouc̆ek, M., Mar̆́ık, Bárta, J.: A knowledge-based approach to coalition forma-

tion. IEEE Intelligent Systems 17(3) (2002) 17–25
22. Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks. value creation

in a knowledge society. In: Proceedings of PROLAMAT’06, Shanghai, China (2007)
23. Smith, R.G.: The contract net protocol: High-level communication and control in

a distributed problem solver. Transactions on Computers C-29(12) (1980) 1104–
1113

24. Ossowski, S.: Coordination in multiagent systems – towards a technology of agree-
ment. In: MATES-2008. Volume 5244., Springer Verlag, Springer Verlag (2008)
2–12

25. Mui, L.: Computational Models of Trust and Reputation: Agents, Evolutionary
Games, and Social Networks. PhD thesis, MIT (2002)

26. Kersten, G.: Support for group decisions and negotiations. an overview. In Climaco,
J., ed.: Multicriteria Analysis, Springer Verlag (1997) 332–346

27. Schreiber, G., Akkermans, H., Anjewierden, A., Dehoog, R., Shadbolt, N., Van-
develde, W., Wielinga, B.: Knowledge Engineering and Management: The Com-
monKADS Methodology. The MIT Press (December 1999)

28. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web ser-
vices selection. IEEE Internet Computing 8(5) (2004) 84–93

29. Şensoy, M.: A Flexible Approach For Context-Aware Service Selection In Agent-
Mediated E-Commerce. PhD thesis, Boğaziçi University (2008)

30. Şensoy, M., Yolum, P.: On choosing an efficient service selection mechanism in
dynamic environments. In: Proceedings of the 9th International Workshop on
Agent-Mediated Electronic Commerce (AMEC IX), 2007. Volume 13. (2007) 105–
118

31. Şensoy, M., Yolum, P.: A comparative study of reasoning techniques for service
selection. In: Proceedings of the 5th International Workshop on Agents and Peer-
to-Peer Computing (AP2PC’06). Volume 123–134. (2006) 91–102

32. Billhardt, H., Hermoso, R., Ossowski, S., Centeno, R.: Trust-based service provider
selection in open environments. In: SAC ’07: Proceedings of the 2007 ACM sym-
posium on Applied computing, New York, NY, USA, ACM (2007) 1375–1380

33. Sierra, C., Faratin, P., Jennings, N.R.: A service-oriented negotiation model be-
tween autonomous agents, Springer-Verlag (1997) 17–35

34. Keaveney, S.: Customer switching behaviour in service industries: an exploratory
study. Journal of Marketing 59 (1995) 71–82

35. Lee, E.G., Lee, G., Faratin, P., Bauer, S., Wroclawski, J.: Automatic service se-
lection in dynamic wireless network. Technical report, First ACM International
Workshop WMASH’03 (2003)

36. Kugyté, R., Sliburyte, L.: A standardized model of service provider selection cri-
teria for different service types: a consumer oriented approach. Engineering Eco-
nomics. Commerce of Engineering Decisions 43(3) (2005) 56–63

37. Yu, C.C.: A web-based consumer-oriented intelligent decision support system for
personalized e-services. In: ICEC ’04: Proceedings of the 6th international confer-
ence on Electronic commerce, New York, NY, USA, ACM (2004) 429–437

68

Achieving Mediated Agreements using

Agreement Space Modeling

C. Carrascosa, M. Rebollo

Universidad Politécnica de Valencia
Departamento de Sistemas Informáticos y Computación (DSIC)

Camino de Vera s/n – 46022 Valencia – Spain
{carrasco, mrebollo}@dsic.upv.es

Abstract. An agreement is an arrangement between two or more enti-
ties to do something. This implies a context in which terms the agreement
is developed. This paper presents a model of such agreement context as
an euclidean space. On the other hand, an agreement can also be seen
as a Constraint Satisfaction Problem (CSP) which solution space models
an agreement space. This will allow to have a mediator that could not
only model the agreement as an space, but also to check the viability of
the agreement as it is being built. This mediator, that could even give
some counsels about the agreement terms being formulated, is called here
Counselor Agent. The protocols to interact with such agent to build an
agreement are also presented.

1 Introduction

According to the Merrian-Webster dictionary, agreement is “an arrangement as
to a course of action. Compact, treaty a: a contract duly executed and legally
binding b: the language or instrument embodying such a contract”. This agree-
ment, this contract, assumes or implies a context in which it is going to be
carried out. So, using a classical example by Castelfranchi [3] regarding the way
an speech act tries to induce different motives for goal adoption in the addressee,
when a general commands to a soldier ’Fire!’, the soldier could interpret such
an order in different ways according to the several meanings of such expression
(he could shoot, or offer to the general some matches, or look for the firemen,
or burn a fire, ...), but the most probable outcome is that he wouldn’t doubt
between such options and shoot his weapon, due to the context of the situation,
that is, there is an implicit agreement between general and soldier regarding
orders and military concepts.

This paper continues the work of [2][1] that define an agreement by means of
a multi-dimensional Euclidean space approach. This modeling will allow to use
geometrical properties or operations to work with such agreements, and even
to model the agreement problem as a constraint-satisfaction problem (CSP)
and to solve it using the Hyperpolyhedron Search Algorithm (HSA 6=) [11].
This paper focuses in the way to use this modeling as a CSP by a mediator
(Counselor Agent), which could be able to on-line evaluate the feasibility of such

69

an agreement, or even give some advises as the agreement negotiation evolves.
In order to do that, several agreement-related interaction protocols have been
defined to be used by the participant agents to reach an agreement upon a set
of agreed terms.

So, one of the main differences between this approach and previous works
related with agreements and agents, is the focus of the approach. In works as
Contract-related agents [8], the focus is in the agent, and the way he may deal
with the concept of contract. The work here presented focuses in the concept of
agreement as an upper abstraction over the idea of agent, organization or other
entity. Modeling the agreement in this way, is what can be really useful to a
counselor mediating in such agreement.

The rest of the paper is structured as follows. Context Spaces are introduced
in section 2. Section 3 provides a set of general definitions needed to describe the
proposed protocols and algorithms. Agreement-related interaction protocols are
described in section 4 and section 5 explains how the Counselor Agents works
to help participant agents to reach an agreement. A simple example is shown in
section 6 and, finally, section 7 summarizes this approach and concludes.

2 Context Space

This term is used in the pervasive computing field related to context-aware
computing [10] [9] to define a theory that models contexts based on intuitions
from state-space models. In this way, the context space of an application is
determined by the types of information, deemed relevant and obtainable by
the designers, that is the context attributes, and the domain of possible values
in each attribute. Each one of these attributes is considered one dimension in
a multidimensional Euclidean space. This multi-dimensional space defines the
space in which context can be perceived.

This approach also includes a context algebra to express situations in terms
of Context Spaces and to reason about such situations by means of a set of
operators and calculations. The operators defined are the scalar difference (it
calculates the degree of similarity between two comparable context states), and
the intersection (it produces a new context space containing shared regions of
values of the same attributes between two comparable context spaces).

By representing situations and system’s state as multi-dimensional objects,
it is possible to generically describe and consequently reason about context of
a system. A region of acceptable values is defined as a set which satisfies some
predicate, hence, it can consist of any information (numerical or non-numerical)
that best reflect the context attribute behavior (in terms of possible values) for
the specific situation.

70

3 Agreements Concepts

This section presents some generic concepts and definitions related to agreements
needed to explain the algorithms and protocols designed for a counselor agent to
guide the agreement process. A more detailed definition can be found in [2][1].

3.1 Agreement Definitions

An agreement is the definition of a working context for two or more beings
or entities (agents, organizations, . . .) so that it is obtained as the result of a
negotiation process.

Definition 1 (Agreement). An agreement Ag is defined as Ag = (E, Cx),
where:

– E = {E1, E2, . . . En} is a set of entities participating in Ag, so that ∀Ei, i =
1, . . . n,∃!Oi = {oij}, j = 1, . . .m, ontology or set of concepts known by Ei

– Cx = {(cxo, cx
I
o)|cxo ∈

⋃
i Oi, cx

I
o ⊆ Do}, where Do is the domain of the

ontology term cxo. Thus, this context is formed by a set of ontological terms
cxo with its corresponding set of valid instances cxI

o that have been agreed by
E.

Definition 2 (Agreement Discourse Universe). The Agreement Discourse
Universe of an agreement Ag –ADU(Ag)– is the whole set of concepts known
by all the entities participating in the agreement. So, if Oi is the set of all the
ontologies known by the entity Ei participating in the agreement Ag (i = 1..n),
then D = {o/o ∈ Oi △ Ok, ∀i 6= k/i, k = 1..n} (the symmetric difference of all
the agreement participating entities’ ontologies),1 and the ADU(Ag) is defined
as ADU(Ag) =

⋃
i Oi − D.

The ADU(Ag) is formed by all the concepts that at least one pair of entities
participating in the agreement Ag share (Figure 1). If this set is empty, entities
have not anything in common and they can not reach any kind of agreement.

3.2 Agreement Process

An agreement Ag has two phases:

1. Reaching an agreement (defining the agreement context Cx): It comprises
the negotiation process between two or more entities (belonging to E) to
reach an agreement. In fact, it is decided in two levels:

(a) A decision must be taken about what are the concepts around which
such agreement is going to be related, that is, Cx ⊆ ADU(Ag).

1 The symmetric difference is defined as A△B = (A∩B
′)∪(A′∩B), where A

′ denotes
the complementary set of A

71

Fig. 1. Agreement Discourse Universe and Agreement Discourse Space with the pro-
jection to a 2-dimensional Agreement Space

(b) After that, the specific terms of such agreement must be fixed, that is,
the values or intervals for the concepts in Cx.

2. Agreement execution: In this phase each entity must fulfill the accomplished
agreement executing the needed actions or calculus according to the context
defined by such agreement. This execution could not even imply any kind of
additional coordination.

3.3 Agreement Space

As it has been stated before, an agreement can be seen as the definition of a
common context. As commented in section 2 an space metaphor such as the one
used in Context Spaces can be used to express such contexts. So, an agreement
space can be defined.

Definition 3 (Agreement Discourse Space). The Agreement Discourse Space
of an agreement Ag ADS(Ag) is defined by considering as a dimension (in an
Euclidean space) each concept included in an Agreement Discourse Universe of
an agreement Ag. That is, the ADS(Ag) is an n-dimensional space, where n is
the cardinality of the ADU(Ag) (number of common terms). Figure 1 shows an
example with 3 dimensions, where the points represent the possible combination
values of such space (assuming a discrete domain for every dimension).

Definition 4 (Agreement Space). According to the first phase of an agree-
ment, a decision must be taken about the concepts, that is, the dimensions in
which the agreement will be expressed. So, an Agreement Space is a projection
of the Agreement Discourse Space onto the dimensions defining the agreement.
That is, this space will be defined by the features the different entities Ei making
the agreement are going to negotiate (Cx), each one of such features defining a
dimension in this space (∀i : di ∈ dim(Ei, Ag)).

72

In order to be possible an agreement Ag, for all entity Ei participating in
the agreement there will exist at least one other participating entity Ej so that
dim(Ei, Ag) ∩ dim(Ej , Ag) 6= 0.

The Agreement Space is, then, the result of eliminating the unnecessary
dimensions that are not relevant for the agreement. For example, in Figure 1
the y dimension is not relevant, so the way the entities will deal with y concept
is not controlled by the agreement, and the Agreement Space is reduced to the
marked 2-dimensional area, that is, the projection over x and z dimensions of
the defined ADS.

In this way, the outcome of the first phase of the agreement will be the
definition of this Agreement Space, fixing the satisfying values for each one of the
different dimensions comprising this space. The second phase of the agreement
will be to carry out the execution of the agreement taking into account that it
has to be carried out inside the previously defined Agreement Space.

Definition 5 (Local Agreement Space). The Local Agreement Space for
entity Ei in the agreement Ag is defined as the projection over the dimensions
of interest of entity Ei in such Agreement Space.

4 Agreement-Related Interaction Protocols

WS-Agreement [6] is a standard proposed by the Global Grid Forum (GGF)
that includes the definition of a simple interaction protocol to support one-
to-one negotiation, with the likely aim to support different mechanisms in the
future through definition of multiple interaction protocols. So, the work by [7]
for what they called service agreement where one consumer of a service chooses
one service provider from n available by means of the FIPA Iterated Contract
Net Interaction Protocol[5].

In this proposal, a Counselor Agent (see Section 5) mediates in the agreement
process in order to help the participant agents to reach an agreement related to a
common vocabulary. The mediation is achieved though a set of services available
to all participants that help to find a common Agreement Space, inside which
agents can interact being ensured that the terms of the agreement are fulfilled.

This section presents two new interaction protocols that has been defined
to deal with the services offered by the Counselor Agent: ADU Definition and
Agreement Counselor, that will be addressed by the ADU Interaction Protocol
and the Mediated-Agreement Interaction Protocol, respectively.

4.1 ADU Interaction Protocol (ADUIP)

This interaction protocol controls the service of the Counselor Agent related to
the definition of the Agreement Discourse Universe of a group of entities, that is,
the common vocabulary shared by such entities (see Definition 2). This protocol
describes a general phase, previous to the agreement itself, that can be used in
many other situations in which establish a common vocabulary is needed. Figure
2 shows this protocol, that is composed of the following steps:

73

Initiator Counsellor Participant i

call for counsellor

refuse

agree

not-understood

failure-no-match

call for agreement

refuse

agree

not-understood

failure-proxy

inform

m

n

j <= n

k <= n - j

l = n - j - k

request

refuse

agree

not-understood

p

r <= p

s <= p - r

t = p - r - s

p

t

t

t

deadline

Fig. 2. ADU Interaction Protocol

1. An Entity Ei sends a Call For Counselor to all entities offering the service
of Counselor indicating an AgreementID.

2. If any Counselor agrees to Ei, then Ei will send a Request for Counselor to
one of them, Cj , that will serve as counselor for agreement AgreementID.

3. Counselor Cj sends a Call For Agreement to all entities in the system, in-
dicating an Agreement ID and a deadline to this phase of joining to the
agreement.

4. Each entity Ek that wants to participate in the agreement will send to Cj

an agree message with his ontology before deadline is met.

5. After deadline, Cj will calculate the ADU using the ontologies received from
the entities that will participate in the agreement, communicating them if
the ADU is empty that there is a failure, because there is no possibility of
agreement.

74

The ADU Interaction Protocol is only focused on provide a framework to
participant agents for exchanging their ontologies (or fragments of them). It
does not try to solve the ontology alignment problem, which is out of the scope
of this paper.

4.2 Mediated-Agreement Interaction Protocol

After the existence of a common vocabulary is ensured by ADU protocol, the
participant entities can negotiate the terms of any agreement. A two-phases
protocol is proposed to reach an agreement among a group of entities (agents
or organizations) mediated by a counselor. The final goal of this protocol is to
construct the Agreement Space by means of the following steps:

1. Defining the context: It will be formed by the dimensions of the Agreement
Space, that is, the concepts that will be dealt in the agreement, and that will
be part of the ADU (in fact, this context will be a projection of the ADU in
the dimensions of the Agreement Space).

2. Defining the agreement terms, that is the different values or intervals for the
dimensions defining the context that will define the Agreement Space. This
process will be done by applying one by one the constraints suggested by the
participants. Moreover, it is regulated by a mediator—the Counselor—which
guides the negotiation process to achieve an accord among the participants.
Its main task is to check that any additional constraint is consistent with
the current constraint set. That is, if they formed a convex hull.

The protocol here presented is described from the Counselor point of view,
and, its purpose is to help in the Agreement Space definition. This protocol (see
Figure 3a) is divided into two main parts: the first one deals with the definition
of the context, and the second one with the definition of the agreement terms
(see Figure 3b).

1. Context Definition: An initiator requests the Counselor for an agreement.

(a) An Entity Ei sends a Call For Agreement with AgreementID to the
Counselor Agent that has previously calculated the ADU, indicating
that he wants to begin an agreement with some or all the other entities
involved in such ADU.

(b) If the Counselor agrees to Ei, then he sends a Call For Context to all
the entities associated to the previous ADU, indicating an Agreement ID
and a deadline to this phase of joining to the agreement.

(c) Each entity Ek that wants to participate in the agreement will send to
the Counselor an Agree message with his agreement dimensions (that is,
the concepts he is interested in negotiate for the agreement, and that are
part of the previous ADU) before deadline is met.

2. Agreement Terms Definition: The former initiator is turned into another
participant and the Counselor takes the initiative.

75

Initiator Counsellor Participant i

call for agreement

refuse

agree

not-understood

call for context

refuse

agree

not-understood

agreement
terms

subprotocol

proxied-communicative-act

reply-message

p

r <= p

s <= p - r

t = p - r - s

p

Counsellor Participant i

inform-context p

call-for-terms p

inform-term

[redundant]
reject

[¬consistent]
reject

[consistent]
accept

p

inform-done

failure

call-for-terms

(a) (b)

Fig. 3. (a) Mediated-Agreement Interaction Protocol (b) Agreement terms definition
subprotocol

(a) The Counselor Informs to all the entities of the dimensions of the agree-
ment (from the general ADU, different concrete agreements could take
place, between different or the same entities).

(b) The Counselor sends a Call For Terms message to all the participating
entities with the proper AgreementID to ask for agreement terms.

(c) Each one of the participating entities will send an Inform message to
the Counselor for each one of the negotiation terms (in the form of a
constraint) that he is interested in. Such messages will be processed by
the Counselor to build the AS.

(d) For each Inform message, the Counselor will respond either with a Reject
message, if the new term is not consistent with the agreement or is
redundant, or with an Accept message if the new term is consistent.

(e) The process of receiving and analyzing new agreement terms continue
till there is no more terms (according to a deadline-based method).

(f) The Counselor informs the participating entities either the final agree-
ment terms, or that the agreement has not been possible.

The final result is the definition of the Agreement Space, modeled as a hyper-
polyhedron formed by all accepted constraints (agreement terms). During the
execution of the agreement, all interactions have to be inside this space as the
participants have agreed.

76

5 Using Agreement Spaces for Mediators

It is not so strange, when trying to reach an agreement to use a mediator to,
not only watch over the fulfillment of the different processes involved in reaching
an agreement, but also to counsel about the final values or intervals of the
agreement due to its global unbiased view of the agreement. So, this figure is
also interesting when trying to automatize the agreements, that is, to carry out
agreements between agents, virtual organizations or other pieces of software.
Different approaches to automatic mediators can be seen in the literature such
as the PERSUADER system [12] or AutoMed [4].

5.1 Agreement Space as a CSP

As it was stated before, after the Agreement Space is defined, the different enti-
ties involved in the agreement must fix (possibly through a negotiation process)
some concrete values or intervals for the different dimensions comprising the
Agreement Space. For such negotiation, each one of these entities will have some
intervals of satisfying values for the different dimensions it is interested in. These
satisfying intervals may be expressed as constraints for the different dimensions
that should be satisfied for the agreement. So, if this first phase of an agree-
ment is seen from a mediator point-of-view, it can be seen as the solution of a
Constraint-Satisfaction Problem (CSP), defined by the whole set of constraints
of the different entities. Being the Agreement Space n-dimensional, each one of
such constraints defines a (n − 1)-dimensional plane. As the Agreement Space
is defined by the intersection of all such planes, it can be described how such
space is by studying such planes. Therefore, this agreement mediator should be
able to detect if an agreement is possible, checking if there exists an Agreement
Space as a result of all these constraint planes intersection.

The idea is to define the Agreement Space as the solution space of a CSP
and to build an agreement by applying entities’ conditions as constraints in
the space (applying the HSA 6= [11] algorithm to build the hyperpolyhedron
modeling the CSP that will define the Agreement Space). A solution is reached
if all constraints are consistent. Furthermore, if the resulting space is convex
then it can be ensured that all interactions are inside the Agreement Space.

As it is an agreement, an Agreement Space (AS) is defined by a set of entities
and their context (E, Cx), where the context is composed by variables, their
domains an all the constraints. In this way, the AS is defined by extending a
common CSP definition.

5.2 Counselor Algorithm

The Counselor has the responsibility of helping the participants in the agreement
to find the Agreement Space, considering it as a CSP. It is an iterative process
that adds new constraints one by one, guaranteeing that the new constraint
is consistent with the previous ones. Constraints are inequalities of the form∑n

i=0 aixi ≤ b, where xi are the variables of the CSP. The set of all constraints

77

defines an hyperplane and which union defines the limits for the valid values for
all the variables involved in the agreement. The participants in the agreement
will take values inside the resulting hyperpolyhedron.

Using the mediated-agreement protocol defined in Section 4.2, the Coun-
selor obtains the constraints from the participants and creates the Agreement
Space using a variant of HSA 6= algorithm. This algorithm is applied inside the
Agreement Terms Definition subprotocol (see Figure 3b) each time a new con-
straint Ci is received from a participant (by means of an Inform message). So
the Agreement Space is incrementally constructed from scratch.

If Ci is inconsistent or redundant, the agent that proposed it is informed by
a Reject message. The agent can redefine the constraint and submit a new one
if necessary.

Consistence and redundancy are checked using the HSA 6= algorithm. Ba-
sically, when a new constraint Ci arrives the algorithm checks if each vertex
of the current hyperpolyhedron satisfies Ci. If none vertex satisfy Ci then the
constraint is inconsistent and it is rejected. That is because the space defined by
the constraint does not contain any of the vertex of the hyperpolyhedron. On
the other hand, if all vertex satisfy Ci then the constraint is redundant. That is
because the complete hyperpolyhedron is included inside the space defined by
the constraint. In any other case, the constraint is consistent and it is added to
the hyperpolyhedron.

When all constraints are added to the Agreement Space and it is not empty
then there is an agreement among all the participants. If the Agreement Space
is not empty, then it is ensured that it is convex, so any ’movement’ between
two points inside this space is always inside it. Therefore, it is guaranteed that
any negotiation process produced inside the agreement terms will never violate
the agreement.

The following section presents an example of reaching an agreement using
a Counselor Agent, interacting with the above presented interaction protocols,
focusing in the Agreement-terms definition subprotocol.

6 Example

Let it be a set of agents interested in taking piano classes. The group is formed
by one teacher and two students. They agree to negotiate over three dimensions:
the number of classes (n), its duration (d) and its price (p). Initially, participants
have their own preferences (modeled as constraints).

– Teacher
1. at least 10 classes: n ≥ 10
2. duration between 60 and 120 min: d ≥ 60 and d ≤ 120
3. at least 20 euros/hour: p ≥ 20

– Student 1
1. no more than 20 classes: n ≤ 20
2. less than 30 euros/hour: p ≤ 30

78

– Student 2
1. minimum 15 classes: n ≥ 15
2. duration between 45 and 90 min: d ≥ 45 and d ≤ 90

Assuming that agents have some common vocabulary (checked with the ADU
protocol) and they defined the above three dimensions as the agreement context,
then the Counselor asks them for the terms of the agreement. There is no rule
about the order in which agents propose the terms (constraints) nor the order
in which they arrive to the Counselor. Depending on it, one constraint can be
detected as redundant or just as a refinement of an existing one. But it does not
affect to the final Agreement Space.

Agent Mess Param Agent Mess Param Agent Mess Param

1 C inform n, d ,p 11 C call-for-terms 21 T inform d ≤ 120

2 C call-for-terms 12 T inform d ≥ 60 22 C accept d ≤ 120

3 T inform n ≥ 10 13 C accept d ≥ 60 23 C call-for-terms

4 C accept n ≥ 10 14 C call-for-terms 24 T inform p ≥ 20

5 C call-for-terms 15 S1 inform n ≤ 20 25 C accept p ≥ 20

6 S1 inform p ≤ 30 16 C accept n ≤ 20 26 C call-for-terms

7 C accept p ≤ 30 17 C call-for-terms 27 S2 inform d ≤ 90

8 C call-for-terms 18 S2 inform d ≥ 45 28 C accept d ≤ 90

9 S2 inform n ≥ 15 19 C reject d ≥ 45, red 29 C inform-done

10 C accept n ≥ 15 20 C call-for-terms

Table 1. Example of Agreement Terms Definition

This is a very simple case, in which restriction are defined over one dimension,
but it is enough to follow and understand the process of construction of the
Agreement Space. Let be C the counselor, T teacher, S1 student 1 and S2 student
2. An example of the process can be followed in Table 1. In the sequence of
messages on this table it can be seen how the Counselor communicates to the
rest of participants the context of the agreement (message 1). After that, the
participants send their own constraints one by one (messages 3, 6, 9, 12, 15,
18, 21, 24 and 27) and the Counselor accepts or rejects them. For example, in
message 18, S2 proposes a constraint that is redundant, since one more restrictive
has been accepted in 12-13. But restrictions proposed in messages 15 and 27
have been accepted because they refine (they are more restrictive) that the ones
accepted in 6-7 and 21-22 respectively.

7 Conclusions

Context Spaces seem to be a valid approach to model agreements and allows
to use well known techniques to solve the task of reaching an agreement and
controlling its subsequent execution. The agreement is modeled as an object in
the Euclidean space.

The problem of defining the space associated to an agreement can be seen as
a CSP, since the agreements conditions can be modeled as constraints and the

79

agreement is expressed as a set of restrictions over a set of data. The conjunction
of all these restrictions will define an convex hyperpolyhedron delimiting the
agreement space, that is, the space where all the computations fulfilling such
agreement will be carried out, the context of such computations.

Mediators can be used during the negotiation process to reach an agreement
to check that any additional constraint keeps this space convex, along with con-
trolling the feasibility of the agreement. For doing that, mediators can suggest
more relaxed or more strict constraints in order to maintain the consistence of
the space and the possibility of an agreement.

This paper has presented not only the advantages of using such a Mediator
or Counselor in reaching an agreement, but also the way this Counselor works
and how to interact with him by means of some interaction protocols specifically
designed for agreement reaching processes.

As future work, the dynamic of the agreement is going to be studied, because
to guarantee an agreement, besides the existence of the agreement space, the
convergence of individual negotiation processes has to be guaranteed to avoid
systems that oscillate without ending in a concrete agreement for some initial
situations.

References

1. C. Carrascosa and M. Rebollo. Modelling agreement spaces. In IBERAMIA 2008
Workshop on Agreement Technologies (WAT 2008), pages 79–88. Marc Esteve,
Adriana Giret, Alberto Fernández, Vicente Julián, 2008.

2. C. Carrascosa and M. Rebollo. Agreement spaces for counselor agents (short pa-
per). In Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2009). Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10-15,
2009, Budapest, Hungary, To appear, 2009.

3. C. Castelfranchi. Prescribed mental attitudes in goal-adoption and norm-adoption.
Artificial Intelligence and Law, 7–1:37–50, 1996.

4. M. Chalamish and S. Kraus. Automed: an automated mediator for bilateral negoti-
ations under time constraints. In AAMAS ’07: Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems, pages 1–3, New
York, NY, USA, 2007. ACM.

5. FIPA. FIPA Iterated Contract Net Interaction Protocol Specification. FIPA, 2001.

6. G. Forum. Web services agreement specification (ws-agreement). G. G. Forum,
2004.

7. F. Ishikawa, N. Yoshioka, and S. Honiden. Incorporating agreements on service
options into bpel-based services. In CIMCA ’05: Proceedings of the International
Conference on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies and Internet
Commerce Vol-1 (CIMCA-IAWTIC’06), pages 796–803, Washington, DC, USA,
2005. IEEE Computer Society.

8. J. Knottenbelt. Contract Related Agents. PhD thesis, Department of Computing,
Imperial College London, December 2006.

9. A. Padovitz, C. Bartolini, A. Zaslavsky, and S. W. Loke. Extending the context
space approach to management by business objectives. In HP OpenView University

80

Association (HP-OVUA), 12th Workshop, Porto, Portugal (FEUP), 10 - 13 July
2005, 2005.

10. A. Padovitz, S. W. Loke, and A. Zaslavsky. Towards a theory of context spaces.
In Workshop on Context Modeling and Reasoning (CoMoRea), in C Das and M
Kumar (eds), Proceedings of the Second IEEE Annual Conference on Pervasive
Computing and Communications Workshop, Orlando Florida, 14 - 17 March 2004,
pages 38–42, USA, 2004. IEEE Computer Society.

11. M. A. Salido, A. Giret, and F. Barber. Constraint satisfaction by means of dynamic
polyhedra. In Operational Research Proceedings 2001, pages 405–412. Springer
Verlag, 2001.

12. K. P. Sycara. Resolving goal conflicts via negotiation. In Proceedings of AAAI-88,
pages 245–250, 1988.

81

Reputation-based Agreement for Agent
Organisations?

Ramón Hermoso1 Roberto Centeno1 Viviane Torres da Silva2

{ramon.hermoso, roberto.centeno}@urjc.es and
viviane.silva@ic.uff.br

1 Centre for Intelligent Information Technologies (CETINIA)
University Rey Juan Carlos Madrid (URJC) - Spain
2 Universidade Federal Fluminense (UFF) - Brazil

Abstract. Reputation mechanisms have been proved to be valid meth-
ods to select partners in organisational environments. In order to tackle
some well-known problems inherent to both centralised and distributed
reputation mechanisms, a hybrid mechanism combining both techniques
seems to be a promising approach. In this work firstly we summarise
our previous work, a hybrid reputation mechanism, focusing on the dis-
tributed part. Then we put forward the centralised module that com-
pletes the mechanism, based on a novel concept such as reputation-based
agreement, that attempts to define reputation aggregation as a global
agreement reached amongst a set of participants belonging to an organ-
isation. Besides, some particular properties of this type of agreements
are proposed. The rest of the paper deals with the problem of how to
present the information related to those agreements to agents in the or-
ganisations. For that, we will use informative mechanisms supported by
some simple examples to better understand their functioning.

1 Introduction

Reputation mechanisms have been proved to be successful methods to build
multi-agent systems where agents’ decision-making processes to select partners
are crucial for the system functioning [1][7][10]. In those systems, agents ex-
change their opinions about third parties to better select partners to interact
with. In organisational environments, those mechanisms may also be useful for
agents, since organisational structures, such as roles or norms can be used in
order to estimate other participants’ behaviour. Thus, integrating those organi-
sational concepts into reputation mechanisms seems to be a promising approach
to improve agents’ decision making processes.

To cope with the interchange of opinions, many different reputation mecha-
nisms have been proposed in the literature [7][10][13]. We can distinguish among
? The present work has been partially funded by the Spanish Ministry of Education

and Science under project TIN2006-14630-C03-02 (FPI grants program) and by the
Spanish project “Agreement Technologies” (CONSOLIDER CSD2007-0022, INGE-
NIO 2010)

82

two different types, namely: i) centralised and ii) distributed. Both types have
been proved to suffer from some important problems, such as: newcomers prob-
lems, lack of reliability in information exchanging, etc. [12]. To tackle with these
problems, hybrid reputation mechanisms – combining centralised and distributed
approaches – might be considered as a convenient technique [6]. In [12] we put
forward a hybrid reputation model for organisations with a few strokes of the
brush. We claimed, in that paper, that reputation fluctuates by the effect of norm
fulfilment and violations, and that reputation values must be justified somehow
by including, for instance, the norms that have been previously violated and the
facts that have violated the norms. After that, in [5] we focus deeper on the dis-
tributed part, dealing with agents’ information exchange, exploring the scenario
of supply chains’ formation. In the present work we present a formalisation of
the centralised approach so completing the model.

In this paper we introduce the concept of reputation-based agreement as the
cornerstone of the centralised module of the hybrid reputation mechanism. An
agreement is usually defined as a meeting of minds between two or more parties,
about their relative duties and rights regarding current or future performance.
Around this concept new paradigms have been emerged [2][3] oriented to increase
the reliability and performance of agents in organisations by introducing in such
communities these well-known human social mechanisms. With this in mind,
we propose a novel approach for the meaning of reputation. From a centralised
point of view, a reputation-based agreement is a meeting point on the behaviour
of an agent, participating within an organisation, with regard to its reputation.
Agreements are evaluated by aggregating opinions sent by participants about
the behaviour of the agents. We also define some interesting properties that
describe different types of agreements. Information about reached agreements
will be provided to agents by using the concept of informative mechanism [4].

The paper is organised as follows: Section 2 presents the previous work al-
ready done and in which the current paper is based on. Section 3 formalises the
centralised module of our approach, supported on the idea of reputation-based
agreements. In Section 4 we illustrate all concepts introduced by means of a
case study. Section 5 discusses some related work and, finally, in Section 6 we
summarise the paper and present the future work.

2 Previous Work

Reputation mechanisms are being used to increase the reliability and perfor-
mance of virtual societies (or organisations) while providing mechanisms for
exchanging reputation values. In centralised reputation models, a reputation
system receives feedback about the interactions among the agents. Each agent
evaluates the behaviour of the agents with whom it interacts and informs the
reputation system. The system puts together all evaluations and stores such rep-
utations. In contrast, in distributed reputation models, each agent evaluates and
stores the reputations of the agents with whom it has interacted with and is able
to provide such information to other agents.

83

With the aim to cope with the problems of centralised and distributed rep-
utation mechanisms3, we proposed the use of a hybrid mechanism [12]. In the
distributed part of such a mechanism, agents evaluate the behaviour of other
agents by exchanging opinions and storing such information. An opinion has to
be justified by providing, for instance, the set of violated norms that contribute
to that opinion.

This work is framed in organisational environments that provide a minimum
set of organisational mechanisms to regulate agents’ interactions. Formally, an
organisation is defined as a tuple 〈Ag,A,X , φ, x0, ϕ, {ON om,Rom}〉 where Ag
represents the set of agents participating within the organisation; A is the set
of actions agents can perform; X stands for the environmental states space; φ
is a function describing how the system evolves as a result of agents actions;
x0 represents the initial state of the system; ϕ is the agents’ capability function
describing the actions agents are able to perform in a given state of the environ-
ment; ON om is an organisational mechanism based on organisational norms; and
Rom is an organisational mechanism based on roles that defines the positions
agents may enact in the organisation (see [5] for more details).

Agents participating in the field of such organisations are involved in different
situations. A situation is defined as a tuple 〈Ag,R,A, T 〉, that represents an
agent Ag, playing the role R, while performing the action A, through a time
period T . As detailed in [5], different types of situations can be defined following
this definition. For instance, situations in which an agent performs an action,
regardless of the role it is playing – 〈Ag, ,A, T 〉 –, or situations in which an
agent is playing a role along a time period, regardless the action it performs –
〈Ag,R, , T 〉 – are examples of possible situations.

As we aforementioned, we claim that when agents exchange opinions, those
should be justified somehow, in order to allow receivers to reason about them
(see [5] for more details) and, what is more important, this justification has
to be based on the fulfilment of norms that regulate the different situation in
which agents are involved. We consider two different types of norms regarding an
organisation and its members. On the one hand, there exists norms that regulate
all the participants in the organisation in different situations, known by all of
them, which fulfilment could possibly be controlled by some authority entity.
We call these norms organisational norms. Furthermore, we also define another
type of norms – personal norms –, that regulate the preferences an agent has,
regarding an individual situation. That is, they regulate how an agent wants a
particular situation to be carried out. Agents define their own personal norms
and they are the only ones that check their fulfilment. Note that, the personal
norms defined by an agent regulates the behaviour of its partners and not its own
behaviour, of course. As already pointed out, when an agent a sends an opinion
to b about c – usually a reputation value –, a has to justify such value by sending
the set of organisational norms that c violated when interacted with it, as well
as the facts that prompted that reasoning. Moreover, personal norms that also
contribute on an agent’s reputation evaluation, are sent only when requested on

3 In Section 5 we detail those problems

84

ag1
ag2

ag3

Centralised Module

R
in

f
o

a
g 1

=
〈S

it
i
, R

ep
V

al
i
〉

R
in

f
o

a
g
2

=
〈S

it
j
,R

ep
V

a
l j
〉 R

in
f
o

a
g
3

=
〈S

it
j , R

epV
a
lk 〉

ag5

Centralised Module
Rinfo

ag1

Rinfo
ag2

Rinfo
ag3

fπ
π = 〈Sit,Ag, RepV al, t〉

Π

Centralised Module

...

Π

Sit IΠ

A B C

Γ1
Π Γ2

Π Γn
Π

Fig. 1. Dynamics of the centralised module

demand. Starting from this approach, we focus on how to model the centralised
part of the mechanism, stressing in the definition of reputation-based agreement.

3 Centralised Module based on Reputation-based
Agreements

As we have previously pointed out, the current work faces with the task of
formalising the centralised module to complete a hybrid reputation approach,
working on organisational multiagent systems. The dynamics of such a module
is threefold (as illustrated in Figure 1): i) agents within an organisation have
to send their opinions about situations in which they have been involved; ii)
the centralised module aggregates all opinions received from agents, creating
reputation-based agreements; and iii) information about the agreements reached
within the organisation is provided to agents by using different informative mech-
anisms [4]. In following sections we explain each task in detail.

3.1 How Agents Send Their Opinions

Along the lifetime of an agent within an organisation, it is involved in several dif-
ferent situations [5]. Usually, agents evaluate those situations in order to compile
reliable information that allows them to predict the result of future situations.
The rationale of the current work is that if agents share their knowledge about
the situations they are involved in, this information might be useful when other
agents have not enough information to select partners to interact with. This
problem becomes hard when new participants join an organisation and they
have not formed their own opinions so far.

The centralised module relies on the concept of situation. Situations are eval-
uated from an individual point of view. An evaluation may reflect the experience
of the agent performing the evaluation – direct way – or the opinions provided by
third parties about the evaluated situation – indirect way. Thus, at any time, an
agent can send its opinion about a particular situation to the centralised mod-
ule. Obviously, an agent can only send an opinion about a situation it has been

85

involved in: the centralised module could check this. We call this information
reputation information message and it is formalised as follows:

Definition 1. A reputation information message Rinfoagi∈Ag is a tuple, represent-
ing an opinion sent by the agent agi to the centralised module containing an
evaluation about a particular situation, Rinfoagi

= 〈Sit,RepV al〉,

where agi stands for the agent, which sends the opinion; Sit is the situation being
evaluated; and RepV al represents the evaluation the agent is sending about the
situation (typically a number).

In this work we assume that agents are motivated to collaborate by sending
their opinions to the centralised module. It is out of the scope of this paper to
deal with the problem of lack of collaboration. In such situations, the centralised
module should be coupled with an incentive mechanism that motivates agents
to send their opinions. For instance, the module could give some credit to agents
when they send an opinion, and later on, they could change that credit by
information. Thus, an agent could be motivated to send their messages since it
will be able to get useful information later on.

3.2 Creating Reputation-based Agreements

In this section we intend to face the task of giving a novel approach for the
meaning of reputation, from a centralised point of view, tackling this concept
as a partial agreement about a certain situation. When the centralised module
receives reputation information messages from agents, it aggregates them creat-
ing what we have called reputation-based agreements. That is, the aggregation
of all the opinions regarding to a particular situation is ’per se’ what that set
of agents – as a whole – actually think about the aforesaid situation. Thus, a
reputation-based agreement represents the consensus reached in the reputation
opinions space sent by a set of agents about a particular situation. Formally:

Definition 2. A reputation-based agreement π for a particular situation, is a
tuple 〈Sit,Ag,RepV al, t〉

where Sit stands for the situation about which the agreement is reached; Ag
is the set of agents that contributed to the agreement; RepV al represents the
reputation value – whatever its representation is (qualitative, quantitative, etc.)
– reached as consequences of all opinions sent about the situation; and t stands
for the time when the agreement was reached.

Therefore, an agreement means a global opinion that a set of agents have on
a certain situation. This agreement, as we put forward in the next section, can
be used as a generalist expectation for a situation in which agents have no (or
little) previous information about.

As we have claimed, a reputation-based agreement is reached as consequence
of the aggregation of all opinions sent about a particular situation. Thus, the
centralised module requires a function that is able to aggregate information
reputation messages sent by agents. The aim of such a function is to create

86

reputation-based agreements from reputation opinions that agents send to the
module by means of reputation information messages. We formally define the
function as follows:

Definition 3. Let fπ be a function that given all the reputation information
messages sent by agents and a particular situation creates a reputation-based
agreement for that situation:

fπ : |Rinfoagi∈Ag| × Sit→ Π

where:

– |Rinfoagi∈Ag| stands for the set of reputation information messages received by
the centralised module;

– Sit is the set of situations;
– Π represents the set of reputation-based agreements.

As aggregation function the module might use any function that is able to
aggregate values without any modification. For instance, it is possible to use
a simple function to calculate the average of all opinions or a sophisticated
function that aggregates the opinions by means of complex calculations (the
implementation of this function is out of the scope of this paper). Note that
a ”good” aggregation function should take into account: i) the temporality of
given opinions, since two opinions should not have the same importance if one
of them was sent more recently; ii) in addition, the module should recalculate
existing agreements when new opinions come.

3.3 Reputation-based Agreements: Properties

From previous definitions – definitions 2 and 3 – it is possible to define some
desirable properties about reputation-based agreements. These properties should
be taken into account when agreements are created and may also provide useful
extra information when informing about different issues.

Property 1 A reputation-based agreement π is complete iff. all agents partic-
ipating in an organisation, at time t, contribute to reach that agreement:

π∗ ⇔

O = 〈Ag,A,X , φ, x0, ϕ, {ON om,Rom}〉 ∧
π = 〈Sit,Ag′, RepV al, t〉 ∧
(Ag = Ag′)

That is, given a time t every participant ag ∈ Ag in the organisation O has nec-
essarily sent a reputation information message indicating its opinion about the
situation concerning the agreement (Ag = Ag′). The more complete agreements
are in the system, the more reliability the information will be offered.

Property 2 A reputation-based agreement π is α-consistent iff. the reputation
value of π differs, at most, α from the reputation value sent by every agent that
contributed to reach that agreement:

87

πα ⇔


π = 〈Sit,Ag,RepV al, t〉 ∧
∀ag ∈ Ag [∀r ∈ Repinfoag [(r = 〈Siti, RepV ali〉) ∧
(Siti = Sit) ∧ (|RepV ali −RepV al| ≤ α)]]

This property represents the monotony on the agents’ behaviour, since measures
how equals the opinions coming from them are. Therefore, the lower α is, the
similar the opinions are.

Property 3 A reputation-based agreement π is full iff it is complete and 0-
consistent: πφ ⇔ (π∗ ∧ πα ∧ α = 0)

In the case α is 0 means that all agents have the same opinion about a
given situation. This property is very desirable when seeking reputation-based
agreements, because the more agents contribute to the agreement, the stronger
validity the latter has. Thus, the likelihood of capturing what is actually hap-
pening in the organisation tends to be higher.

Although properties 1 and 3 are desirable, they are not achievable in some
types of systems, for example in electronic marketplaces. However, many systems
can present those properties, such as closed organisational systems where the
number of participants is not huge.

3.4 Providing Information about Reputation-based Agreements

Once we have defined an agreement as a distributed consensus-based expecta-
tion for a set of agents on a certain situation, we now present how the cen-
tralised model can present the relevant information on the reached agreements.
Reputation-based agreements somehow capture the general thinking about a
particular situation – when the less α-consistent the agreement is the more the
reality captured is. Thus, information about the agreements reached until that
moment may be very useful for agents. In particular, when agents have recently
joined the organisation, they do not have any clue about situations in which they
might be involved in, so if the centralised module provides information about
agreements, agents may improve their utility from the very beginning.

With this in mind, we lead with the problem of how the centralised module
may provide such an information. To that end, we part from the notion of in-
formative mechanism [4]. Those types of mechanisms are in charge of providing
some kind of information to agents in order to regulate a multiagent system.
Thus, an informative mechanism Γ : S ′ × X ′ → I is a function that given
a partial description of an internal state of an agent (S′) and, taking into ac-
count the partial view that the mechanism has of the current environmental
state (X ′), provides certain information (I). We adhere this definition to create
mechanisms over the agreements for different situations, creating information
valuable for participants in the organisation. Thus, all the information about
reputation-based agreements reached within an organisation will be provided by
means of informative mechanisms, formalised as follows:

Definition 4. An informative mechanism providing information about reputation-
based agreements is:

88

ΓΠ : Sit×X ′ → IΠ
where:

– Sit is the situation an agent is requesting information about;
– X ′ is the environmental state;
– IΠ stands for the information provided by the mechanism by using the set

of agreements Π reached over the situation Sit.

We have chosen a very general definition about information in order to cover
all possible types of information the centralised module could offer taking into ac-
count the reputation-based agreements reached. The information provided may
consist of a ranking sorting the best agents for a particular situation, such as
〈 ,R,A, 〉, created from the agreements reached for that situation, a value rep-
resenting the reputation value for a situation, reached as consequence of the
agreement for that situation, information about the properties of the agreement
reached for a particular situation, for instance if it is full, complete, etc.

When we refer to situations as a key aspect when creating and using reputation-
based agreements notice that instead of situation we could also follow the same
processes to create reputation-based agreements about information related to
organisational norms, such as: violation/fulfilment of norms. For instance, there
could exist an informative mechanism providing a ranking with participants
sorted by their degree of violation of certain norms. For the sake of simplicity
we have described the terms of reputation-based agreement using situation, but
exactly the same could be applied for organisational norms.

4 Case Study

In this section, we illustrate the proposed model by means of a simple case study.
The scenario we use involves five different agents: Anna, John, Jessica, Albert and
Harry participating within an organisation. In this organisation agents can buy
and sell items, so the action space of agents is composed of actions such as, buy-
item-x, sell-item-x, where x is whatever object they want to sell/buy. Besides,
agents joined the organisation playing the following roles: Anna - buyer, John -
buyer, Jessica - buyer, Albert - seller and Harry - seller. The situations in which
an agent is involved in that organisation are regulated by organisational norms
[5], some examples of such norms are:

– ON 1 : ”An agent playing the role seller must deliver the product sold 2 days
after the payment, as maximum”

– ON 2 : ”An agent playing the role buyer must pay 2 days after the purchase
is performed, as maximum”

After several interactions among them – performing actions of buying and
selling different items – Anna decides to make public its opinion about Albert
and Harry as sellers. Thus, she uses the reputation information messages to send
to the centralised module its opinion, as follows:

89

RinfoAnna = 〈〈Albert, seller, , 〉, 0.2〉
RinfoAnna = 〈〈Harry, seller, , 〉, 0.9〉

This information shows that Anna has had bad experiences while she was buying
things from Albert – 0.2 – maybe because Albert violated some organisational
norm.4. Otherwise, she has had good experiences while she was buying things
from Harry – 0.9 – maybe because Harry never violates organisational norms.
Similarly, John and Jessica send their opinions about Albert and Harry as seller,
by using the following reputation information messages:

RinfoJohn = 〈〈Albert, seller, , 〉, 0.2〉
RinfoJohn = 〈〈Harry, seller, , 〉, 0.8〉
RinfoJessica = 〈〈Albert, seller, , 〉, 0.2〉

It seems that both John and Jessica agree that Albert is bad selling items,
however, Harry is good as a seller, from the point of view of John.

When the centralised module receives this information, it is able to create
reputation-based agreements by using a function that aggregates the reputation
information messages. Let us suppose that it aggregates the messages by cal-
culating the average of reputation values sent by agents over exactly the same
situation:

fπ(Sit) =
∑n
i=1Rinfoagi

= 〈Sit,RepV ali〉
n

From the set of messages sent by the agents so far, the centralised module
can create two reputation-based agreement regarding to two different situations:

π1 = 〈〈Albert, seller, , 〉, {Anna, John, Jessica}, 0.2, t〉
π2 = 〈〈Harry, seller, , 〉, {Anna, John}, 0.85, t〉

where the first component indicates the situation being evaluated, the second is
the set of agents which have participated in the agreement, the third component
is the reputation value agreed by the participants – it is calculated by using
the function fπ(Sit), i. e. it represents the average of all values sent about that
situation –, and finally the fourth component is the time in which the agreement
is reached.

Taking into account those agreements, the centralised module makes available
three different informative mechanisms:

– Γ 1
Π(〈Ag,R, , 〉) given a situation where an agent and a role is specified,

returns meta-information5 about the reputation-based agreement reached
about that situation;

– Γ 2
Π(〈Ag,R, , 〉) given a situation where an agent and a role is specified,

returns the reputation-based agreement reached. In particular, it returns
the reputation value in the agreement of that situation;

4 We suppose that reputation values – denoted by RepV al – are in the range [0..1]
5 with meta-information we mean the α-consistency of the agreement, if it is full or

complete

90

– Γ 3
Π(〈 ,R, , 〉) given a situation where a role is specified, returns a ranking

of agents playing that role, sorted by the reputation value they have as
consequence of the reputation-based agreement reached until the current
time t.

Let us suppose that a new agent Alice join the organisation playing the role
buyer. Since she does not know anybody within the organisation and she wants
to buy something, she may use the informative mechanisms published to obtain
information about other participants. For instance, Alice is looking for a seller
to buy something, so a ranking of sellers will be a great solution to select the
best one. Thus, she searches among all informative mechanisms if there exists
one which provides that information6. She is very lucky finding Γ 3

Π , that returns
a ranking when it is queried with a situation specifying a role. So, Alice performs
the following query to Γ 3

Π :

Γ 3
Π(〈 , seller, , 〉)⇒ {Harry,Albert}

the informative mechanism returns a ranking of agents, sorted by the reputa-
tion values of all reputation-based agreements, where the situation specified in
the query matches with the situation of agreements. In particular, the imple-
mentation of this mechanism searches among all agreements reached where the
situation has the role seller. By using this information Alice knows that there
exists an agreement within the organisation about Harry is better seller than
Albert. But, how good are they?. To answer this question Alice queries the in-
formative mechanism Γ 2

Π as follows:

Γ 2
Π(〈Harry, seller, , 〉)⇒ 0.85
Γ 2
Π(〈Albert, seller, , 〉)⇒ 0.2

Right now, Alice knows that Harry is better seller than Albert and there exists
an agreement within the organisation that Harry ’s reputation selling goods is
0.85 and another one that says that Albert as seller is 0.2 – in the range 0 and
1. However, Alice is still doubting about which seller could be the best, because
she is wondering how consistent that agreement is. Thus, she wants to answer
that question and she queries the informative mechanism that provides meta-
information about the agreement reached regarding a situation. Therefore, she
performs the following queries:

Γ 1
Π(〈Harry, seller, , 〉)⇒ π0.05

Γ 1
Π(〈Albert, seller, , 〉)⇒ π0

With this information Alice clears all her doubts, because now she knows
that all opinions sent about Albert are coincident because of the reputation-based
agreement reached is 0-consistent (π0). Besides, she knows that the opinions sent
by the agents that have interacted with Harry are almost the same since their
variability is (0.05). With this in mind, Alice, finally, selects Harry as a seller.
6 We suppose that informative mechanisms are published by the organisation to all

participants

91

5 Discussion

There are several distributed reputation systems where the agents themselves
are able not only to evaluate the behaviour of other agents and associate rep-
utation values but they are able to aggregate different reputations related to
different experiences. It is the case of the agents in Regret [11] that can aggre-
gate reputation values created based on their individual experiences and also on
reputations values reported by other agents.

As stated before, one of the main advantages of having a centralised rep-
utation mechanism is feasibility for an individual to know a more consistent
reputation about another agent based on numeral experiences. In the case of
distributed mechanisms, the individual itself would need to participate in sev-
eral interactions with the given agent and also to ask for other agents about
their experience with it. In the case of the centralised mechanism, the agent can
easily ask the informative mechanisms about the reputation-based agreement of
the given agent in the desired situation.

In [8] the authors present an approach to create rankings able not only to
provide the most trustful agents but also a probabilistic evidence of such rep-
utation values. Those rankings are also computed by a centralised mechanism
by aggregating the reputations reported by the agents. This approach and the
one presented in our paper are complementary. This paper focuses on defining
the ranking algorithms and ours focuses on describing the mechanism used to
receive the reputation information and to provide the already evaluated agree-
ments and rankings. Another work that is also complementary to ours is the one
presented in [9]. They describe the algorithm NodeRanking that creates rankings
of reputation ratings.

In order to motivate agents on reporting their experiences to the centralised
mechanism several approaches can be used. Points can be provided when agents
send reputation information to the mechanism and a given number of points can
be required when the agent asks for reputation-based agreements or rankings.
We assume that the agents know how important the information stored in the
centralised mechanism is in order to them achieve their goals.

6 Conclusions

This work tries to put forward a novel approach of reputation-based agreement
concept by supporting on a hybrid reputation model presented in [5]. This ap-
proach formalises a centralised module – complementary to the distributed mech-
anism presented in [5] – that defines reputation-based agreements as aggregations
of participants’ opinions sent to the module. We also define some properties that
can be derived. Furthermore, we also propose to use the agreements reached by
using the concept of informative mechanism [4], so providing agents with useful
information based on those agreements. Some different examples are also given
to clarify the importance of reaching reputation-based agreements and its utility
for the participants in the organisation.

92

In future work we plan to experimentally test our approach by implementing
a case of study. We are also interested in how to merge different agreements.
Moreover, it would be interesting to study the aggregation of information sent
in different periods.

References

1. Amazon. http://www.amazon.com, 2008.
2. H. Billhardt, R. Centeno, A. Fernández, R. Hermoso, R. Ortiz, S. Ossowski,

J. Pérez, and M. Vasirani. Organisational structures in next-generation distributed
systems: Towards a technology of agreement. Multiagent and Grid Systems: An
International Journal, 2009.

3. C. Carrascosa and M. Rebollo. Modelling agreement spaces. In IBERAMIA 2008
Workshop on Agreement Technologies (WAT 2008), pages 79–88. Marc Esteva,
Adriana Giret, Alberto Fernández, Vicente Julián, 2008.

4. R. Centeno, H. Billhardt, R. Hermoso, and S. Ossowski. Organising mas: A formal
model based on organisational mechanisms. In 24th Annual ACM Symposium on
Applied Computing (SAC2009), Hawaii, USA, March 8-12, pages 740–746, 2009.

5. R. Centeno, V. Torres da Silva, and R. Hermoso. A reputation model for or-
ganisational supply chain formation. In Proc. of the 6th COIN@AAMAS’09 Bu-
dapest,Hungary, pages 33–48, 2009.

6. J. Guedes, V. Silva, and C. Lucena. A reputation model based on testimonies.
In Agent Oriented Information Systems IV: Proc. of the 8th International Bi-
Conference Workshop, volume 4898 of Lecture Notes in Artificial Inteligence, pages
37–52. Springer-Verlag, 2008.

7. T. Huynh, N. Jennings, and N. Shadbolt. Fire: An integrated trust and repu-
tation model for open multi-agent systems. In Proceedings of the 16th European
Conference on Artificial Intelligence (ECAI), pages 18–22, 2004.

8. A. Ignjatovic, N. Foo, and C. Lee. An analytic approach to reputation ranking
of participants in online transactions. In WI-IAT ’08: Proceedings of the 2008
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, pages 587–590. IEEE Computer Society, 2008.

9. J. Pujol, R. Sangüesa, and J. Delgado. Extracting reputation in multi agent sys-
tems by means of social network topology. In AAMAS ’02: Proceedings of the
first international joint conference on Autonomous agents and multiagent systems,
pages 467–474, New York, NY, USA, 2002. ACM.

10. J. Sabater and C. Sierra. Reputation and social network analysis in multi-agent
systems. In Proceedings of First International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 475–482, 2002.

11. J. Sabater and C. Sierra. Review on computational trust and reputation models.
Artificial Intelligence Review, 24(1):33–60, 2005.

12. V. Silva, R. Hermoso, and R. Centeno. A hybrid reputation model based on the
use of organization. In J. Hubner, E. Matson, O. Boissier, and V. Dignum, editors,
Coordination, Organizations, Institutions, and Norms in Agent Systems IV, volume
5428 of LNAI. Springer-Verlag, 2009.

13. B. Yu and M. Singh. Distributed reputation management for electronic commerce.
Computational Intelligence, 18(4):535–549, 2002.

93

Towards an abstract architecture for service discovery

with semantic alignment

Analay Baltá, Alberto Fernández

CETINIA, University Rey Juan Carlos, Móstoles, Spain

analay@ia.urjc.es, alberto.fernandez@urjc.es

Abstract. In large-scale open environments mechanisms for locating

appropriate services have to deal with the additional problem of semantic

mismatches among the components. Semantic alignment mechanisms need to

be purposefully integrated into a service discovery framework in order to fully

exploit its potential. The objective of this paper is to present an ongoing work

towards the analysis and design of basic mechanisms able to locate adequate

services in open heterogeneous environments. An abstract architecture that

addresses the semantic mismatches at service description model level as well as

domain ontology is presented. Several open issues are pointed out.

Keywords: service oriented architecture, semantic web services, service

discovery, matchmaking,

1 Introduction

In multiagent systems, agents communicate with the aim of achieving their objectives.

Agents are autonomous entities capable of planning the tasks they have to carry out to

maximize their utilities. An individual agent may require a service to be performed by

another entity. In order to be able to achieve a fruitfully interaction the two agents

must understand the semantic of the messages they exchange. This is typically done

by sharing the same ontology, although this is not easy to achieve in open systems.

Another option is to use ontology bridges, which make use of ontology alignment

techniques [1, 2] to transform information from one ontology to another.

There are several stages since an agent identifies a given need until the service that

provides it is eventually executed. First, the agent identifies some functionality that it

is not able to perform or that might be executed more efficiently by an external entity.

Then, candidate service providers must be located. Once a set of potential providers

are known, the agent must choose one among them. This decision can be made based

on several factors such as quality of service, price, reputation, etc. After the selection

is made the two agents might engage in a negotiation about the conditions under

which the service is going to be performed. After an agreement has been reached the

service can be called. Agreement Technologies [3] like semantic alignment,

negotiation, argumentation, virtual organizations, decision making, learning, trust,

and so on, will be used to develop such large-scale open systems.

94

We concentrate on the phase of provider location. Distributed service directories

and efficient decentralised matching techniques with powerful description languages

are essential for dynamic and scalable service discovery. Furthermore, in such

environments the mechanisms for locating appropriate services have to deal with the

additional problem of semantic mismatches among the components.

In this paper we present an ongoing work towards the development of a service

discovery framework where semantic alignment mechanisms are purposefully

integrated into.

The rest of the paper is organized as follows. In the next section we begin by

describing the Service Oriented Architecture so as to establish the context in which

this work is situated. Section 3 presents an abstract architecture for semantic service

discovery, which pays especial attention to semantic alignments of service

descriptions. In section 4 we discuss several open issues for further research. Finally,

we present some conclusions and future work.

2 Service Oriented Architectures

Fig. 1 shows a general Service Oriented Architecture (SOA) [4]. It involves three or

more parties: a requester, one or more providers and a directory, which supports

services during the transaction and possibly mediates between the requester and the

provider. Roughly speaking, the requester corresponds to the client, and the provider

corresponds to the server in the typical client-server architecture.

Fig. 1 General Service Oriented Architecture.

Web Services are the reference enabling technology for SOA. Web Services can be

seen as a collection of technologies, protocols and standards that build programming

solutions for specific application integration problems. As the number of available

web services is steadily increasing, companies realize the need for automatically

discovering web services and having an automated composition.

95

SOA combines the service discovery, selection, and engagement, thus adding a

new level of functionality on top of the current Web. The addition of semantic

information to describe Web Services, in order to enable the automatic location,

combination and use of distributed components, is nowadays one of the most relevant

research topics due to its potential to achieve dynamic, scalable and cost-effective

Enterprise Application Integration and eCommerce.

The process of discovering and interacting with a Semantic Web Service includes

the following phases [5]:

(i) Candidate Service Discovery is the distributed search for available services that

can accomplish the client's internal goal or objective. It is a process of identifying

candidate services by clients. It involves three types of stakeholders: service providers

that publish service advertisements, service requesters that require a service and

matchmakers that accept descriptions of available service from providers and match

them against requirements from requesters.

(ii) Service Engagement includes the process of interpreting candidate service

enactment constraints, described by each candidate service published, and then

requesting or possibly negotiating with prospective services to reach an agreement.

Engagement concludes with both service and client knowing and agreeing to the

terms of service provision in an explicit or implicit service contract.

(ii) Service Enactment consists of alternative protocols to initiate service activity,

monitor service processes, and confirm service completion. If the service terminates

abnormally after a contract has been formed, there may be a final set of protocol

interactions to address compensation issues.

Proper methods to enable the automatic location and selection of suitable services

in order to solve a given task or user request are an essential ingredient. To this end,

several description frameworks to annotate provided services on the one hand and

express service requests on the other have been proposed. They range from logic-

based complex and expressive semantic service descriptions (e.g. OWLS [6], WSMO

[7]) to syntactical ones (WSDL [8], keywords, tag clouds), with some approaches in

between (SAWSDL [9]). Semantic service descriptions are supported on ontologies.

In this context, several description frameworks to semantically match services on

the one hand and service requests on the other have been presented in the literature.

Many of the current proposals for defining the degree of match between service

advertisements and requests are based on subsumption checking of concepts present

in inputs and outputs of service descriptions.

96

3 Abstract Service Discovery Architecture

Fig. 2 illustrates the proposed architecture that defines the service discovery

functionality. The architecture comprises the building components to match a service

request against a service advertisement. In particular, this proposal pays special

attention to the problem of semantic mismatches between descriptions. Semantic

mismatches are considered at two different levels:

• Service description models. Services (advertisements and requests) might be

described using different languages or models (e.g. OWL-S, WSMO,

SAWSDL, ...).

• Domain ontology concepts. Since semantic service descriptions rely on the

use of domain ontologies, the second type of mismatch is due to the use of

different domain ontologies to specify the concepts used in the descriptions.

Note that both options can be combined. For instance, two services might share the

same service model (e.g. OWL-S) but use different domain ontologies, or they might

use the same domain ontology but different service models.

Fig. 2 Service Discovery Architecture

The first step in the matching of two services is the alignment of the service

description models. Note that service description approaches not only differ in the

language in which they are written. They are classified at different levels of

expressiveness, ranging from complex, formal, logic-based semantic descriptions to

lightweight syntactical ones. Service model alignment consists of mapping both

service descriptions (request and advertisement) into a common service model.

97

Once the adequate model alignment has been applied, the unified service

descriptions are prepared to be matched. The Service Matching module takes those

two descriptions and returns the degree of match between them. We envision here the

existence of different matchmakers to deal with different common models.

Matchmaking algorithms usually include a Semantic Concept Matching process to

analyze the (similarity) relation between concepts used in advertisements and

requests. As it was pointed out above, those concepts might belong to different

ontologies so a Concept Alignment is carried out to solve this problem. In this case,

we keep a local knowledge base of alignments and assume the existence of a external

registry of alignments. The local knowledge base acts as a cache of alignments used

in previous matchings. The external alignment registry is consulted to avoid carrying

out a process of ontology alignment if there is an alignment published by third parties.

In the next sections we go into details of the building blocks of the proposed

architecture.

3.1 Service Model Alignment

As commented above, service model alignment consists of defining a common model

for two different ones, and mapping descriptions described in those source models

into the common model. This transformation may produce a loss of expressiveness in

at least one of the original descriptions, especially if they use models with different

expressiveness power. Here, we do not aim at the design of a unified model for any

description, which would probably lead us to the definition of a very simple

(lightweight) model to account for all the different source models. However, we

envision the definition of mappings between pairs of models, thus keeping that

particular common model as close to the original ones as possible. Besides, this

approach is more modular and flexible to consider new models. Model-to-Model

alignments consist of three steps:

1. Conceptual analysis of characteristics finding mappings between models. Note

that this task can be done focusing on service matchmaking, i.e. only the

aspects considered by the matching techniques have to be mapped.

2. Definition of a common model language (CML), which might be one of the

originals. The use of standard languages is encouraged here.

3. Implementation of a tool for automatic transformation of service descriptions

from the original models to the CML.

In the next subsection we show an example of the alignment between the two most

important Semantic Web Service description languages, OWL-S and WSMO.

3.1.1 WSMO/OWL-S alignment

In order to establish the relationships between the terminologies used in each

ontology and propose a mapping, we set out from existing conceptual comparisons

between WSMO and OWL-S [10, 111]. As shown in Table 1, Web Service

descriptions in WSMO are defined by their preconditions, posconditions, assumptions

and effects, and their equivalent in OWL-S are inputs, outputs, preconditions and

results, respectively.

98

Table 1. Mapping between OWL-S and WSMO.

Element OWL-S WSMO

input hasInput precondition

output hasOutput postcondition

precondition hasPrecondition assumption

effect hasResult effect

others

After the conceptual mapping between models, the next step is the definition of a

common description language. We opt for using RDF as the common model

language. RDF is a W3C recommendation language to represent resources on the

Web. There are a lot of RDF contents and tools to process them. Although RDF is

less expressive than OWL-S and WSMO, it is enough (in practice) for representing

the information needed for service search. It also allows the use of SPARQL [12] to

query the descriptions. The resulting RDF Schema graph describing semantic Web

services for this mapping is shown in Fig. 3 and the RDF code is shown in Fig. 4.

Fig. 3. RDF graph for service discovery

99

Fig. 4. RDF/XML representation of the CML for the OWL-S/WSMO alignment

3.2 Service Matching

Many of the current approaches to Semantic Web Services matching, particularly

those based on OWL-S, started from the work of Paolucci et al. [13]. This approach

proposes a matching algorithm that takes into account inputs and outputs of

advertised (A) and requested (R) services. A match between two output concepts (OA,

OR) is the (subsumption) relation between the two concepts in the ontology. They

differentiate among four degrees of match: exact (OA = OR), plug-in (OR subsumes

OA), subsumes (OA subsumes OR) and fail (otherwise). An output matches if and only

if for each output of the request there is a matching output in the service description.

If there are several outputs with different degree of match, the minimum degree is

used. The same algorithm is used to compute the matching between inputs, but with

the order of request and advertisement reversed. Finally, the set of service

advertisements is sorted by comparing output matches first, if equally scored,

considering the input matches. Several authors extend or propose variations to that

proposal (e.g.[14,15]).

Several similarity (or distance) measures for concept matching have been proposed

in the literature, although their application to the concrete domain of service matching

is very limited. One of the most well known distance measures between concepts is

the length of the shortest path between them in the taxonomy, proposed by Rada et al

[16]. Other proposals further refine that approach ([17, 188]). Other authors do not

base concept similarity on the distance between the concepts ([19, 20, 21]).

We propose a combination of service matching and concept similarity. In [22] we

describe how both approaches can be combined into a unified service selection

framework which returns a numeric value that can be used for ranking services. The

<?xml version="1.0"?>
 <rdf:RDF>
 < rdf: Description rdf:ID="IDserviceName">
 </rdf:Description>
 <rdf:Description rdf:ID="serviceName">
 <rdfs:domain rdf:resource="#IDserviceName"/>
 <rdfs:range rdf:resource="#Name"/>
 </rdf:Description>
 <rdf:Description rdf:ID="input">
 <rdfs:domain rdf:resource="#IDserviceName"/>
 <rdfs:range rdf:resource="#Input"/>
 </rdf:Description>
 <rdf:Description rdf:ID="output">
 <rdfs:domain rdf:resource="#IDserviceName"/>
 <rdfs:range rdf:resource="#Output"/>
 </rdf:Description>
 <rdf:Description rdf:ID="assumptions">
 <rdfs:domain rdf:resource="#IDserviceName"/>
 <rdfs:range rdf:resource="#Assumptions"/>
 </rdf:Description>
 <rdf:Description rdf:ID="effect">
 <rdfs:domain rdf:resource="#IDserviceName"/>
 <rdfs:range rdf:resource="#Effect"/>
 </rdf:Description>

</rdf:RDF>

100

ranking function compares the level of match first (e.g. exact, plugin, ...), and then the

level is refined with the (numerical) similarity value. Since service descriptions

consist of several components (inputs, outputs, ...), the similarity between services

must be defined based on its individual elements (e.g. each of its inputs) and

aggregation operators.

3.2.1 SPARQL as service query language

If we envision the representation of services in RDF (like the proposed common

model for OWL-S and WSMO), then SPARQL [12] might be used as a query

language for services. Note that the SPARQL query might be created either from the

scratch or by transforming a service request. In this section we analyse how those

requests look like, and the potential and limitations of SPARQL as service request

language. We use the RDF service descriptions proposed in section 3.1.1.

This is an example of a first attempt of defining a flight service request in

SPARQL:

SELECT ?Name
WHERE {?x serviceName ?Name .
 ?x input #DepartureAirport .
 ?x input #ArrivalAirport .
 ?x input #OutboundDate .
 ?x input #InboundDate .
 ?x output #FlightsFound .
 ?x output #PreferredFlightItinerary .
 ?x effect #HaveSeatResult}

This query will return all service names that have at least the four inputs, the two

outputs and the effect specified in the query (conditions in the WHERE section are

interpreted as conjunctions).

Remember that a service advertisement (A) match a request (R) if and only if all

the inputs of A are provided by R and all the outputs of R are provided by A.

The first problem we identify is that services that only need a subset of the

specified inputs would not be returned. However, services providing more outputs

than needed by the requester cause no problem. This problem can be solved by

decomposing the query in two: (i) querying the advertisements using the outputs and

(ii) using the results to query the original request about the inputs.

The next problem identified is that querying RDF graphs only returns exact

matches. The use of an inference engine to classify the ontology (compute subclass

relations) or to interpret the query would provide subsumption reasoning, thus

supporting the matchmaking using levels of match (exact, plugin, subsumes, …).

However, if we need more refined complex matching functions, e.g. taking into

account the distance between concepts in a taxonomy, there is no straight way to do it.

Instead, new SPARQL inference engines adapted for service matchmaking should be

developed.

Finally, we have to devise how to include semantic alignments into this approach.

A solution could go in the line of query transformation by including fragments to

consulting RDF alignment specifications (see section 3.3).

101

3.3 Concept Alignment

In the previous section we saw that current service matchmaking algorithms are based

on checking the relations between the concepts that appear in the different fields of

semantic service descriptions. If the concepts being compared are defined in different

ontologies then semantic alignments must be considered instead of obtaining a fail

match.

An alignment (or mapping) between two ontologies O and O’ can be described as a

quadruple [23]:

 <e, e’, n, R>

where:

- e and e’ are the entities between which a relation is asserted by the mapping

(e.g., formulas, terms, classes, individuals)

- n is a degree of trust (confidence) in that mapping

- R is the relation associated to a mapping, where R identifies the relation

holding between e and e’.

In this work we are not concerned about ontology alignment techniques, but on the

use of alignments. Thus, we are interested in representing and querying mappings

between ontologies. We propose using RDF as the language for expressing

alignments, so that they can be published on the web and queried using SPARQL. In

particular, we use the format of the Ontology Alignment Evaluation Innitiative1.

4 Open Issues

In addition to the aforementioned aspects, we point out here some additional open

issues that will need to be dealt with.

The abstract architecture proposed in this paper describes the process of obtaining

the degree of match between a service advertisement and a service request. Typically,

this process is carried out by a middle agent or matchmaker (either separated or

integrated in the directory of services). Roughly, that process takes as inputs two

service descriptions and returns a matching degree (a level of match or a numerical

value).

However, there might be situations in which this task should be done in a different

way. Firstly, it is arguable that the matching process can be effectively done in a one

step process. As Lara point out [24], the semantic description capability of services

and of customer goals can be exploited by the service discovery based on a two-

phased service discovery model. The first phase identifies services that can provide

results required by the customer or specifies semantic matchmaking on the goal

template level. In the second phase, the input values required by relevant services are

considered and only services for which the customer can provide appropriate input,

and for which this input can lead to the expected results are selected. The input values

will partially determine the results of the service. Then there is a combination of

query of selected service and answer of customer. In the best case the customer can

1 http://oaei.ontologymatching.org/

102

only guess, when defining his goal, what input values will be required by services

satisfying such goal. In addition, the customer might have a considerable volume of

information from which input values to services can be obtained.

Another usual convention is that service matchmaking is completely carried out in

the middle agent (or directory) side. This is possible under the assumption that the

middle agent has all the necessary information, i.e. it has complete service

descriptions. However, under some circumstances, the provider or the requester might

not be interested in revealing some private data, i.e. a credit card number. In those

contexts, some mechanisms are needed to deal with such sensitive information. One

possible option is to carry out part of the matching on the requester and/or the

provider side. In these cases, efficiency issues have to be considered.

In the development of methods, techniques and tools for open large scale

environments, scalability issues are fundamental. In the context of service discovery

and the architecture presented in Fig. 2, there are two main points that must be

considered. They are the decentralised service directories and the discovery of

ontology alignments. In both cases, the recent trends in querying distributed data on

the semantic web by means of SPARQL end points will be considered in future

research.

As described previously, services can be described in different languages at several

levels of expressiveness. Depending on the context in which the searched service is

going to be used, the set of candidate services can be larger or smaller. For instance, if

the service is expected to be used for automatic invocation or for composition, only

semantic service descriptions (OWL-S, WSMO, SAWSDL, ...) would be considered.

However, if the service is expected to be used by a human user then also more

lightweight descriptions (e.g. keyword-based) would be considered.

5 Conclusion

In this paper we have dealt with the problem of service discovery in open systems.

We proposed an abstract architecture that has semantic alignment as a first citizen

component. We provided preliminary ideas and developments towards the

construction of a service discovery framework in which semantic alignment

mechanisms are purposefully integrated into.

In particular, we discussed in detail the alignment of OWL-S and WSMO, their

differences and the transformation of both into a RDF common model. We also

proposed the combination of service matching and concept similarity into an

integrated service matching framework. We analysed the use of SPARQL as a service

query language and identified the pros and cons, and RDF as ontology alignment

representation format.

The definition of other service description model alignments as well as the

implementation of the proposed framework are part of our ongoing work. In the

future we also plan to investigate the issues pointed out in section 4 (two-phase

service discovery, distributed service directories and context).

103

Acknowledgment: This work has been partially supported by the Spanish Ministry of

Science and Innovation through grants TIN2006-14630-C03-02, and CSD2007-0022

(CONSOLIDER, INGENIO 2010)

6 References

1. Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer, Heidelberg (DE), 2007

2. Marc Ehrig: Ontology Alignment: Bridging the Semantic Gap. Springer. 2007.

3. Agreement Technologies. www.agreement-technologies.org

4. Papazoglou, M., Van den Heuvel, W. Service oriented architectures: approaches,

technologies and research issues. Springer-Verlag 2007.

5. Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M. N., Paolucci, M., Sheth, A.

P., and Williams, S. A Semantic Web Services Architecture. IEEE Internet Computing 9,

5, 72-81. 2005.

6. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDemott, D., McIlraith, D., Narayanan,

D., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K.. OWL-S:

Semantic Markup for Web Services. W3C Member Submission, 2004. Available from

http://www.w3.org/Submission/OWL-S/.

7. Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M., K¨onig-

Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman, D., Scicluna, J.,

and Stollberg, M. Web Service Modeling Ontology (WSMO). W3C Member Submission,

2005. http://www.w3.org/Submission/WSMO/.

8. E. Christensen, F. Curbera, G. Meredith, and S.Weerawarana. Web Services Description

Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, March 2001

9. Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and XML Schema

(SAWSDL). W3C Recommendation 28 August 2007. http://www.w3.org/TR/sawsdl/

10. Polleres, A., Lara, R. A Conceptual Comparison between WSMO and OWL-S, WSMO

Working Group working draft, 2005. http://www.wsmo.org/2004/d4/d4.1/v0.1/.

11. Lara, R.., Polleres, A. D4.2v0.1 Formal Mapping and Tool to OWL-S, WSMO working

draft 17 december 2004. http://www.wsmo.org/2004/d4/d4.2/v0.1/

12. W3C World Wide Web Consortium. SPARQL Query Language for RDF. W3C

Recommendation 15 January 2008. http://www.w3.org/TR/rdf-sparql-query/.

13. Paolucci, M., Kawamura, T., Payne, T., and Sycara, K. Semantic Matching of Web

Service Capabilities. In ISWC, pages 333–347. Springer Verlag, 2002.

14. Klusch, M., Fries, B., and Sycara, K. Automated semantic web service discovery with

owls-mx. In AAMAS ’06: Proceedings of the fifth international joint conference on

Autonomous agents and multiagent systems, pages 915–922, New York, NY, USA, 2006.

ACM Press.

15. Li, L and Horrocks, I. A software framework for matchmaking based on semantic web
technology. Int. J. of Electronic Commerce, 8(4):39–60, 2004.

16. Rada, R., Mili, H., Bicknell, E., and Blettner, M. Development and application of a metric

on semantic nets. IEEE Transactions on Systems, Man and Cybernetics, 19(1):17–30,

1989.

17. Leacock, C. and Chodorow, M. Combining local context andWord- Net similarity for

word sense identification. In Christiane Fellbaum, editor, WordNet: An Electronic Lexical

Database, pages 265–283. MIT Press, 1998.

18. Wu, Z. and Palmer, M. Verbs semantics and lexical selection. In Proceedings of the 32nd

annual meeting on Association for Computational Linguistics, pages 133–138,

Morristown, NJ, USA, 1994. Association for Computational Linguistics.

104

19. Resnik, P. Using information content to evaluate semantic similarity in a taxonomy. In
IJCAI, pages 448–453, 1995.

20. Borgida, A., Walsh, T., and Hirsh, H. Towards measuring similarity in description logics.

In Description Logics, 2005.

21. Noia, T., Di Sciascio, E., Donini, F., and Mongiello, M. Semantic matchmaking in a p-2-p

electronic marketplace. In SAC, pages 582–586. ACM, 2003.

22. Fernandez, A., Polleres, A., and Ossowski, S. Towards Fine-grained Service Matchmaking

by Using Concept Similarity, ISWC-2007 Workshop on Service Matchmaking and

Resource Retrieval in the Semantic Web (SMR2). 2007

23. Paolo Bouquet, Jérôme Euzenat, Enrico Franconi, Luciano Serafini, Giorgos Stamou, and
Sergio Tessaris. Specification of a common framework for characterizing alignment.

deliverable D2.2.1, Knowledge web NoE, 2004.

24. Lara, R. Two-phased web service discovery. In AI-Driven Technologies for Services-
Oriented Computing workshop at the Twenty First National Conference on Artificial

Intelligence (AAAI-06), Boston, USA, 07/2006 2006.

105

A simulator for a two layer MAS adaptation in
P2P networks

Jordi Campos1, Marc Esteva2, Maite López-Sánchez1 and Javier Morales2

1 MAiA Deptartment, Universitat de Barcelona, email: {jcampos,maite}@maia.ub.es
2 Artificial Intelligence Research Institute (IIIA), CSIC,

email:{marc,jmorales}@iiia.csic.es

Abstract. Adapting organisational structures to maintain an organisa-
tion effectiveness under varying circumstances is becoming a hot topic
within the agent community. In this paper we present a simulator that we
have developed for testing adaptation mechanisms in Peer to Peer scenar-
ios. We regard this service as part of the new generation of services that
should be incorporated into multiagent systems infrastructures to as-
sist coordination both at participant and organisation levels. In order to
provide such organisational adaptation we rely on an added distributed
meta-level. Meta-level agents perceive partial information about system
properties that they use to adapt organizational structures when nec-
essary. The simulator implements different sharing methods, allows to
define different network topologies, and includes some facilities to pro-
cess and analyse simulation results in order to compare them.

1 Introduction

Organisational structures have proven to be useful to regulate MultiAgent Sys-
tems (MAS) [1, 2]. However, certain environmental or population changes may
imply a decrease in goal fulfilment. Thus, adapting organisations is now becom-
ing an active research area [3–6], since it can help to keep the expected system
outcomes under changing circumstances.

In particular, we propose to add a meta-level in charge of adapting system’s
organisation instead of expecting agents to increase their behaviour complexity.
This is specially relevant when dealing with open MAS, since there is no insight
of participant’s implementation, and hence, we can not guarantee that agents
are endowed with organisational adaptation capabilities. We regard this adap-
tation –together with other possible meta-level functionalities– as an assistance
to agents that can be provided by MAS infrastructure. Thus, we call our imple-
mentation approach Two Level Assisted MAS Architecture (2-LAMA)[7]. Fur-
thermore, in order to avoid centralisation limitations such as fault-tolerance or
global information unavailability, we propose this architecture has a distributed
meta-level —i.e., it is composed of several agents. In this context, in this pa-
per we present a simulator for testing organisational adaptation mechanisms in
P2P scenarios. Hence, the main goal of the paper is to describe the simulator
functionality.

106

Our approach is able to deal both with highly dynamic environments and
domains without direct mapping between goals and tasks —i.e. domains where
it is not possible to derive a set of tasks that achieve certain goals. Nevertheless,
it requires domains where organisations can be dynamically changed. Peer-to-
Peer sharing networks (P2P) present all previous features, and thus, we use them
as a case study. In such networks, computers contact among them to share some
data and their relationships change over time depending on network status and
participants. In this context, a P2P system is modelled as an organisation having
a social structure among peers and a set of protocols and norms that regulate
the sharing process. On top of the P2P system –that we call domain-level– we
add a distributed meta-level that perceives status information and uses it to
adapt peers’ social structure and norm values. Meta-level adaptation is based on
system performance, which is measured by the time peers spent to share data
and the required network consumption.

This paper is structured as follows. Next section provides a more detailed
description of the 2-LAMA model, so that Section 3 can apply it to the P2P sce-
nario. This scenario has been implemented in the simulator presented in Section
4. Finally, some conclusions and future work are described in last section.

2 2-LAMA Model

Organisational structures regulate MAS by providing an agent coordination
framework and some domain independent services that alleviate agent develop-
ment. We regard these services as Coordination Support services [8] that include
basic coordination elements such as elemental connectivity or agent communica-
tion languages. Usually, these services are devoted to enact agent coordination
at different levels. In addition to them, we propose new services that provide
an added value by assisting coordination further than just enabling it. In this
manner, we group services in two different layers: an Organisational Layer that
provides coordination enabling services, and an Assistance Layer on top of it,
which provides coordination assistance services. This last layer includes a pro-
active service that adapts organisations depending on system’s evolution.

The Organisational Layer provides basic services supporting the enactment
of the organisation. We denote an organisation as Org = 〈SocStr, SocConv, Goals〉
where:

– SocStr corresponds to the social structure, which consists of a set of roles
and the relationships among them.

– SocConv are social conventions that agents should conform and expect oth-
ers to conform [9]. They are expressed as norms and/or interaction protocols,
which define legitimate sequences of actions performed by agents playing cer-
tain roles.

– Goals describe the organisation design purpose —as opposed to agents’ in-
dividual goals. They are expressed as a function on certain observable prop-
erties so that the system can evaluate its own performance.

107

Regarding our Assistance Layer, it provides two main types of services [8]:
Agent Assistance and Organisational Assistance. The former assists individual
agents to follow current social conventions. It includes four different services:
Information that is useful for participating in the MAS; Justification of specific
actions’ consequences; Advice of alternative plans conforming social conventions;
and Estimation of action consequences due to current conventions. The latter,
the Organisational Assistance, consists on adapting the existing organisation in
order to improve system’s performance under varying circumstances. To provide
such an adaptation, we propose goal fulfilment as its driving force within the con-
text of a rational world assumption. Hence, the Assistance Layer requires some
way (i) to observe system evolution, (ii) to compare it with the organisational
goals and (iii) to adapt the organisation trying to improve goal fulfilment.

Fig. 1. Two Level Assisted MAS Architecture(2-LAMA): Domain Level (DL), Meta
Level (ML) and Interface.

In order to provide Assistance Layer ’s services, we have proposed a Two
Level Assisted MAS Architecture (2-LAMA, [7]). It consists on a distributed
meta-level (ML) that provides assistance to a domain-level (DL) in charge of
domain-specific tasks. Figure 1 shows them and their communication trough
an interface (Int). Thus, the whole system can be expressed as 2LAMA =
〈ML, DL, Int〉3. Each level has a set of agents with its own organisation: DL =
〈AgDL, OrgDL〉 and ML = 〈AgML, OrgML〉. Using the interface, ML agents
perceive partial information4 about environmental observable properties (EnvP ,
e.g. date or temperature) and agents’ observable properties (AgP , e.g. colour or
position). In particular, a ML agent has partial information about the subset of
DL agents it assists. We assume DL agents are grouped into clusters according
to a domain-specific criterion —e.g. interaction costs. Therefore, a ML agent
–we call it assistant– assists a cluster of DL agents, observes partial information
about them, and shares it with other ML agents in order to provide better
assistance services.

3 It is possible to nest subsequent meta-levels updating previous level’s organisation.
4 In many scenarios global information is not available.

108

3 P2P model

Our case study is a simplified version of real Peer-to-Peer sharing networks
(P2P), where a set of computers connected to the Internet (peers) share some
data. This setting represents a highly dynamic and complex scenario, and thus,
it is suitable for the development of a simulator implementing our approach.

Meta-Level

Domain-Level Norms
DL

N
o
rm

s D
L'

A1 A2 A3

P5 P6

P7 P8

P1 P2

P3 P4

P9 P10

P11 P12

Datum

SocStr
ML

cluster1 cluster2 cluster3

E
n
v
P
,A

g
P
→

←
S
o
cS

tr
D

L,
1
'

Norms
ML

SocStr
DL,1

SocStr
DL,2

SocStr
DL,3

E
n
v
P
,A

g
P
→

←
S
o
cS

tr
D

L,
2
'

E
n
v
P
,A

g
P
→

←
S
o
cS

tr
D

L,
3
'

Fig. 2. 2-LAMA in the P2P scenario. Agents: peers P1..P12 at DL and assistants
A1..A3 at ML.

Figure 2 shows our P2P model, where the DL is composed by agents playing
the peer role. DL social structure determines agents’ relationships, which cor-
responds to the neighours peers contact to share the data. The organisational
goal (Goals) is that all peers receive the data with the minimal time and net-
work consumptions. Hence, the time needed to share the data and the network
consumption are the two metrics to evaluate simulation results. The social con-
ventions at DL include the sharing protocol specified below and two norms. First
norm limits agents’ network usage in percentage of its nominal bandwidth.This
norm can be expressed as: normBWDL =“a peer cannot use more than maxBW
bandwidth percentage to share data”. This way, it prevents peers from massively
using their bandwidth to send/receive data to/from all other peers. Second norm
limits the number of peers to whom a peer can simultaneously send the data.
Hence, we define normFriendsDL =“a peer cannot simultaneously send the data
to more than maxFriends peers”.

As we have already mentioned, ML provides assistance to DL. Each ML
agent plays the assistant role for a cluster of DL agents (peers). It does it so
by collecting information and adapting their local organisation. Its decisions are
based on local information about its cluster, aggregated information about other
clusters and the norms at ML. Some examples of local information are latencies
(EnvP) or which peers have the data (AgP). Information about other clusters
come from other assistants in the ML social structure. As for ML norms, we
consider one limiting the number of peers –in the cluster– to inform about a new
peer –in another cluster– having the data. Thus, we define normHasML =“Upon
reception of a completed peer (p /∈ cluster) message, inform no more than maxHas

109

Phase Level Protocol Messages
initial ML join<hasDatum>
latency ML get_latency<peers>, latency<peer><measure>

DL lat_req, lat_rpl
social structure ML contact<peers>
handshake DL bitfield<hasDatum>
data sharing DL request, data, cancel

ML completed, completed_peer<peer>,
has_datum<peer>, all_completed

inactive DL have
waiting DL choke, unchoke
norms ML suggested_bw<value>, suggested_friends<value>,

norm_updated<norm_id><new_definition>
Table 1. Protocol messages grouped into subsequent phases.

peers ∈ cluster ”. Finally, we assume assistants are located at Internet Service
Providers (ISP), and thus, related communications are fast.

3.1 Protocol

Our proposed protocol is a simplified version of the widely used BitTorrent [10]
protocol5. Table 1 presents the messages that are exchanged during protocol
phases. Notice that the table includes the messages among DL agents, but also
messages involving assistants at ML. Initially, peers join their cluster by inform-
ing its assistant. Afterwards, in order to compute the social structure, assistants
need local information and therefore, they initiate latency phases requesting
peers to measure their latency with all other peers in their clusters. Assistants
use this information to propose a social structure among peers in their clusters.
The social structure defines the overlay network within a cluster —i.e. which
peers each peer has to contact in order to obtain the data.

Thereafter, peers perform a handshake phase where they introduce them-
selves to their contacts, and specify whether they have the datum. If this is
the case, a data sharing phase starts —including data request and data trans-
mission. Otherwise, as soon as one peer receives the datum, it will inform its
handshaked peers so that the sharing phase is triggered this time. Nevertheless,
upon request, a source peer cannot start a transmission if it is already serving the
maximum number of allowed peers (defined by the maxFriends value). For those
cases, transmission can only be initiated when a previous transmission ends.

Upon data reception, a peer also informs its assistant. Then, this assistant
shares this information with other assistants, who, in turn, inform some (maxHas)
peers, so new data sharing phases can be started. An assistant also informs
other assistants when all peers in its cluster are completed preventing further
unnecessary communications. Finally, norm deliberations and notifications also
belong to the protocol.
5 Specially, we assume the information is composed of a single piece of data.

110

4 Simulator

As a platform to run our experiments, we have implemented a P2P sharing
network simulator in Repast Simphony. Its architecture allows to both model
agents (agent-level) and the transport of messages among them (network-level).
The model that simulates the message transport is a packet switching network.
Simulation at network level allows us to compare different P2P approaches taking
into account the environmental changes that occur at this level (notice that this
feature is not present in Repast Simphony simulator framework). In our current
implementation, network status just depends on MAS activity, but we could
introduce additional traffic that disrupts it. Our simulator includes our 2-LAMA
approach and the standard BitTorrent protocol, and provides some facilities to
collect information at agent/network level and to analyse it.

4.1 Architecture

Our simulator has an internal architecture that clearly isolates different func-
tionalities. On the one hand, we have a module called p2p that represents the
conceptual model defined by the 2-LAMA and is targeted to drive the simu-
lation at agent-level. It provides tools to create state-based agents, to define a
problem (number of peers, who has initially the datum, etc.) or services such as
an agents’ directory. The upper part of figure 3 shows the P2P implementation
of the 2-LAMA architecture described in previous section.

Fig. 3. 2-LAMA model and the underlying network. Agents are modelled on the top
but their exchanged messages traverse the network on the bottom.

On the other hand, we have a module that drives the simulation at network-
level. This module is called netsim and provides facilities to transport messages
among agents, to define different network topologies, and to collect statistical

111

information about network status. In order to use this module, an agent from
the p2p module is attached to a netsim’s network adapter, which is in charge
of actually sending messages. These messages are split into packets that travel
along links and follow their path by switching at routers. The destination agent
is informed when each packet reaches its network adapter. Eventually, when all
packets of a message arrive, the network adapter also delivers the whole message
to the destination agent. Hence, agents can pay attention to packets or just
wait for entire messages. The latency of a message from one network adapter to
another depends on the number of links, their bandwidth and the current traffic
through them.

The lower part of figure 3 depicts the netsim module, which exemplifies a net-
work topology. We can see how peers with a good communication among them
are grouped into a cluster and have individual links to the same ISP. In this ex-
ample, peers P1 and P2 are connected at conceptual level, which at network level
is achieved by connecting their corresponding network terminations p1 and p2
to the same ISP (r1). We also have the agent A1, which is the assistant of these
peers, connected to the same ISP (r1) through its corresponding network termi-
nation a1. Each cluster is connected to the others by means of links, so r1 and
r2 have aggregated links connected to r0, which represents the interconnection
through Internet.

The simulator also includes an overepastmodule that processes the generated
logs and extracts relevant information. This information can be later on displayed
in different types of graphics. Hence, this can be used to compare the time
spent to share the data in different configurations, or by using different sharing
methods.

4.2 Sharing methods

Our simulator offers alternate sharing methods so that they can be executed
over the same initial configurations in order to compare their results. Current
available methods are: a single-piece version of the BitTorrent protocol (BT),
the 2-LAMA approach with social structure adaptation but no norm adaptation
and the 2-LAMA approach with social structure and norm adaptation.

Since the BitTorrent protocol inspired our 2-LAMA P2P approach, both
protocols at peers’ level are really similar (in fact, both protocols work with
single-piece data and share most messages). Latency phase is not present in BT
and our whole ML collapses into a single agent (tracker) that informs about all
existing peers. As a consequence, the social structure phase is reduced to the
tracker informing about all connected peers, ant thus, peers do not receive any
further assistance to share the datum. Data sharing phase follows the algorithm
described in [10]. In brief, it uses the same messages but decisions do not depend
on norms but on protocol pre-fixed variables, so agents do not have any chance
to take their own decisions.

In contrast, agents in the 2-LAMA approach can decide their actions as far
as they respect norms. When executing the 2-LAMA approach social structure
adaptation but no norm adaptation, norm parameters (maxBW, maxFriends, maxHas)

112

are fixed from start. On the contrary, the 2-LAMA approach with social structure
and norm adaptation also has the norm parameters, but maxBW and maxFriends
are self-updated at run-time at certain adaptation intervals (adaptinterv, an
additional parameter). Each assistant computes their desired values for each
norm taking into account the information collected from its cluster and the
information received from other assistants. Assistants use a voting scheme as a
group decision mechanism to choose the actual norm updates before notifying
their peers.

4.3 Graphical User Interface (GUI)

By its very nature, MAS are complex systems composed by many agents acting
and interacting simultaneously. Runtime monitoring information is usually low
level, so we need graphical means to analyse system’s evolution from a higher
level of abstraction. With this aim, our simulator extends the Repast GUI and
creates and advanced user-friendly GUI. Next sections detail its architecture and
the new functionalities it provides.

Architecture Figure 4 shows the two main parts of the simulator: the core
and the GUI. The core is based in Repast Simphony, which provides general
simulation utilities such as schedulers or basic extendable models. By extending
it, we have created our 2-LAMA P2P Simulator core, which implements domain-
specific simulations. As for the GUI, our advanced GUI also extends Repast
original GUI, providing some additional functionalities. It is able to exchange
information with it and uses its basic tools to draw elements in the screen, such
as the agents in the simulation, the messages sent among them, etc.

Fig. 4. Repast-based architecture of the 2-LAMA Simulator GUI

Our GUI also captures information from the P2P simulator in order to obtain
all the information that will be displayed subsequently. This information comes
down to the messages that are being sent among peers. The GUI is constantly
listening to the simulator to catch these messages, which are stored afterwards.
Figure 5 depicts the organisation of these messages. Peers are grouped in pairs,
and these pairs are labelled with the name of its peers alphabetically ordered.
Each pair of peers has a bag with the messages that one peer is sending to the

113

other at a given time step. For example, left side of the figure shows a group
labelled P1P2. This group has a bag storing three messages from peers P2 and
P1, and the first one is a PIECE message that is being sent from P2 to P1. The
GUI uses this information to paint coloured arrows that represent the type and
direction of messages that are being sent among peers.

Fig. 5. Organisation of the information needed by the GUI to display simulation events

Functionalities This section explains the functionalities provided by our ad-
vanced GUI. Figure 6 depicts a screenshot of our simulator that illustrates GUI’s
general appearance. As for any other GUI, it has the natural aim of supporting
user’s interaction and the general objective of providing relevant information
about the simulation —such as the messages sent at a given time step, their
type, the source and target peers of the message, etc.

As Figure 6 shows, GUI functionalities are distributed in the following six
main layout areas:

1. Control toolbar: This toolbar pertains to the original Repast GUI (and
thus, it does not requires further implementation). It allows users to play the
simulation, pause it or execute it step by step, where each step corresponds
to a tick of the simulation.

2. Legend of agents: It shows how the different types of agents and possible
states are displayed in the layout. Thus, the user can identify each agent
and know if it is acting as an assistant or a peer, and have it into account
to interpret what is happening in the simulation at every moment.

3. Legend of message types: It shows the colours corresponding to each type
of message agents can exchange. This colour can be changed by means of
the element on the left of the coloured line next to each message type. These
changes can be saved into a file to recover them in future simulations.

4. Visible and Pause checkboxes: For each type of message, there are also
two checkboxes that allow the user to show/hide the messages of that type
that are exchanged among agents, or pause the simulation when any agent
sends a message of that type.

5. Runtime P2P Network layout: This layout shows an animation of the
agents of the simulation and the communications among them. Peers and

114

Fig. 6. 2-LAMA P2P Simulator Graphic User Interface

assistants are drawn according to the network topology. Following the ex-
ample of Figure 6, peers are grouped in clusters of four peers, where each
cluster is linked to an assistant. Messages sent among agents are displayed
according to the defined colour in the user panel.

6. Resume layout: This layout shows how the data has been distributed
among the P2P agent community. It also highlights completed peers and
displays arrows connecting source and receiver agents. Furthermore, these
arrows are labelled to specify at what time step the data was received.

Both Runtime P2P Network layout and Resume layout are able to draw
new agents entering the simulation, highlighting them during some ticks and
redistributing the layout to place them into the network.

4.4 Results analysis facilities

As it has been previously mentioned, our overepastmodule collects textual infor-
mation (logs) and analyses it off-line (i.e., at the end of one or several executions).
Analysis is done by generating additional plots that show how the main metrics
change along execution time or with different simulation parameters. Thus, sum-
marising and comparing the performance of different simulations. This turns out
to be very useful for system designers, since rather than just knowing the overall
system performance, it helps to understand its evolution based on detailed in-
formation such as bandwidth usage or link saturation. As a consequence, if some

115

problems arise, it is easier to identify them, their possible causes and what is
most valuable: which simulation parameter values perform best. For a detailed
analysis of results comparing the BitTorrent protocol and our 2-LAMA approach
reader s referred to [11].

Specifically, the following metrics are graphically displayed: (1) time required
to share the data; (2) network consumed; (3) mean number of hops that traveling
messages perform; (4) network channel usage; (5) network channel saturation;
(6) number of cancelled messages; (7) cost associated to these cancels; and (8)
source factor —measure that provides information about how data was actually
distributed among peers. Next figure 7 shows time performance comparisons
for different sharing methods (with and without norm adaptation) and different
norm values (maxBW in normBWDL and maxFriends from normFriendsDL) 6.

Fig. 7. Off-line comparison of different simulations

5 Conclusions and Future Work

This paper presents a simulator that has been developed with the aim of study-
ing MAS organisational adaptation mechanisms in P2P scenarios. In order to
endow the system with self-adaptation capabilities we advocate for adding a
meta-level in charge of that task, instead of expecting participating agents to
increase their behaviour complexity. The presented simulator provides the fol-
lowing functionalities and facilities:

– Definition and execution of simulations with different characteristics, as for
instance network topology, number of peers. or sharing method.

– A GUI that permits to graphically control and follow simulations’ evolution.
Graphical representations are far more intuitive than textual logs, and if we

6 In these plots maxHas from normHasML has been fixed to 1

116

also add the option to choose what to display (as in the user panel in our
simulator), then the gain is even larger.

– Testing of different adaptation mechanisms for the social structure and norms.
– Process and analysis of simulation results. It generates different plots that

help to compare the results of different simulations

Notice that while social adaptation is performed individually by each assis-
tant within its cluster, in norm adaptation assistants have to reach an agreement
on the norm new value. Specifically, each assistant computes its new desired norm
values and later on they have to reach an agreement on each norm value. We
believe that agreement technologies can play a key role in this process. Hence,
our simulator can be used to test different approaches for reaching agreements
among autonomous agents in the context of norm adaptation.

As future work, we plan to evaluate our approach with populations with
norm violators, and in simulations where participants enter and leave. We are
also interested in applying learning techniques to adaptation services.

Acknowledgements: This work is partially funded by IEA (TIN2006-15662-
C02-01) and AT (CONSOLIDER CSD2007-0022) projects, EU-FEDER funds,
the Catalan Gov. (Grant 2005-SGR-00093) and Marc Esteva’s Ramon y Cajal
contract.

References
1. Esteva, M.: Electronic Institutions: from specification to development. IIIA PhD.

Vol. 19 (2003)
2. Hübner, J.F., Sichman, J.S., Boissier, O.: S-MOISE+: A middleware for developing

organised multi-agent systems. In: AAMAS Workshops. Volume 3913 of LNCS.,
Springer (2005) 64–78

3. Deloach, S.A., Oyenan, W.H., Matson, E.T.: A capabilities-based model for adap-
tive organizations. Autonomous Agents and Multi-Agent Systems 16(1) (2008)
13–56

4. R., K., N., G., N., J.: Decentralised structural adaptation in agent organisations.
In: AAMAS Workshop on Organised Adaptation in MAS. (2008)

5. Sims, M., Corkill, D., Lesser, V.: Automated Organization Design for Multi-agent
Systems. Autonomous Agents and Multi-Agent Systems 16(2) (2008) 151–185

6. Zhang, C., Abdallah, S., Lesser, V.: MASPA: Multi-Agent Automated Supervisory
Policy Adaptation. Technical Report 03 (2008)

7. Campos, J., López-Sánchez, M., Esteva, M.: Multi-Agent System adaptation in a
Peer-to-Peer scenario. In: ACM SAC09 - Agreement Technologies. (2009) 735–739

8. Campos, J., López-Sánchez, M., Esteva, M.: Assistance layer, a step forward in
Multi-Agent Systems Coordination Support. In: International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS). (2009) 1301–1302

9. Lewis, D.: Convention: A Philosophical Study. Harvard University Press (1969)
10. Cohen, B.: The BitTorrent Protocol Specification.

http://www.bittorrent.org/beps/bep_0003.html
11. Campos, J., López-Sánchez, M., Esteva, M., Novo, A., Morales, J.: 2-LAMA Ar-

chitecture vs. BitTorrent Protocol in a Peer-to-Peer Scenario. In: to appear in
Twelfth Catalan Congress on Artificial Intelligence (CCIA09). (2009)

117

Agreement Technologies for Adaptive, Service-Oriented
Multi-Agent Systems

J. Santiago Pérez1, Carlos E. Cuesta2, and Sascha Ossowski1

1 Centre for Intelligent Information Technologies (CETINIA), and
2 Kybele Research Group, Dept. Comp. Languages and Systems II

Rey Juan Carlos University,
28933 Móstoles (Madrid), Spain

{josesantiago.perez,carlos.cuesta,sascha.ossowski}@urjc.es

Abstract. Multi-Agent Systems (MAS) are increasingly popular in Artificial Intelligence
(AI) to solve complex problems. They can be conceived flexible and able to adapt to
different situations. However, these features are often compromised by the characteristics
of the problem itself. On the other hand, MAS have not had a lot of success in the
industry, probably due to a different development culture. To solve this, MAS techniques
should be more accessible to the general public, and have a shorter learning curve. The
proposed approach is to use service-oriented concepts, which are popular in industry, to
simplify this step. Moreover, if this approach manifests also self-adaptive capabilities, it
will fulfil the notion's original promise: to guarantee that the system is able to adapt to
changing conditions of the problem. This work proposes a service-oriented framework,
consisting on a supporting agent-oriented architecture, a development methodology for
service-oriented MAS, and an infrastructure based on the concept of agreement, which
makes it adaptive. The first section provides a brief introduction and summarizes the
paper goals. This is followed by the description of the base architecture, designed to
support the agreement structure. Next section discusses concepts about service layers and
the role of organizations. After that, the service-oriented methodology as well as the
agreement structure itself is presented. Finally, a real-world case study, in the domain of
medical emergencies, is analyzed, some conclusions are drawn, and further lines of work
are outlined.

Keywords: Multi-Agent Systems, Service-Oriented Architecture, agreement,
coordination, adaptability.

1 Introduction

The concept of agent has evolved, and nowadays MAS are increasingly popular in AI as a
generic approach to solve complex problems. Different development strategies have been
proposed in order to make them flexible and able to adapt to different situations. However,
these features are often compromised by the heterogeneity of components, the nature of
problems themselves, or the dynamism in the environment. On the other hand, MAS have not
had a lot of success in the industry [14][36], probably due to a different development culture.
To solve this, MAS techniques should be more accessible to the general software community.
The proposed approach is to use service-oriented concepts, which are popular in industry, to
simplify this step. Moreover, if this approach demonstrates also self-adaptive capabilities, it

118

will fulfil MAS original promise: to guarantee that the system is able to adapt to changing
conditions in the problem to solve.

Before dealing with adaptability, it is perhaps better to consider coordination as a previous
concept. A well-known definition of “coordination” within the MAS field is taken from
Organizational Science: “the management of dependencies” between organizational activities
[27]. From a “micro” point of view (agent-centred) [35], coordination is understood as an
adaptation to the environment. On the other hand, from an MAS-centred point of view, the
consequences of coordination can be understood as a global influence. This can be a “shared”
plan [30] or the combination of individual plans (a “multi-plan”) [28]. In few words, when
using MAS as a software solution, the problem of coordination is always present. In fact, when
we have a self-organized agent structure, we can often consider this structure as optimal,
because it would solve the coordination issues.

Some early steps in the direction of adaptability have been given by organization-oriented
approaches. Obviously there are many other approaches, but this is one of the most interesting
in our context: adaptive capabilities, using a MAS approach, seem to be most easily provided
by organizations. These imply a number of additional questions: about the inner role of
organizations in MAS and about the need to provide coordination for organizations to achieve
adaptation. To answer to them, two additional concepts have to be defined; respectively,
services of an organization and agreements between them. The former provides both a
methodological basis for the approach, as well as a direct connection to SOA [26]. On the other
side, the latter is a main topic of this paper, and it will be discussed in detail.

Globally, this paper pursuits three main goals, namely:
- To evolve the classic agent-oriented approach, from an originally closed MAS design into

an open Service-Oriented ecosystem,
- To define the corresponding infrastructure and methodology to achieve this, using the

notion of organization as the conceptual nexus, and
- To provide internal coordination by defining the agreement, conceived as an adaptive

architecture-level construction, which would provide coordination as an emergent property,
by containment.

This paper is organized as follows: second section describes the base architecture, designed
to support the agreement structure. Next section discusses concepts about service layers and the
role of organizations. Them, the service-oriented methodology as well as the agreement
structure itself is presented. Finally, a real-world case study, in the domain of medical
emergencies, is analyzed, some conclusions are drawn, and further lines of work are outlined.

2 A Base Architecture for Service-Oriented MAS

The architecture that gives support to the model has been defined both as an open MAS and
also as a service-oriented, organization-centric, agent-based architecture. These two
perspectives are not necessarily contradictory; they are not obviously compatible either.

For both descriptions to be true, the platform has to be capable of being observed at different
levels and from different perspectives. This multi-level and multiple viewpoint nature must be
specifically enabled by the technical architecture (see 2.2), as it must present several different
notions as the key concept of the system. This requires an intertwining relationship which must
be purposely provided by the infrastructure. As the platform is conceived as a distributed
system, the middleware is the logical place to provide this support.

119

2.1 The Need for Organizations

As defined previously, the architecture that supports the model has been defined as open MAS,
which is also service-oriented, organization-centric and, of course, agent-based. In this work,
agents supporting services has been chosen as the solution alternative. First, agents are well-
known computational entities in the academic environment, with an implied granularity, and
need to comply with an existing standard [20]. On the other hand, although the services
technology is established and has a number of standards [7][12][17][26], its methodology and
influence on other paradigms are still under development. In order to allow the use of the rich
semantic and technological capabilities of agents in a broader context, an upper layer of
services can be added to provide, in particular, the interoperability feature. Therefore, it is easy
to conceive a service as a way to present the operational capabilities of an agent or, even better,
a collection of agents as an organization. One way to implement is to have the platform defined
as a SOA, built on top of supporting MAS.

Implicit in the definition of MAS is the need to register agents in the system, to separate
those ones who belong to the architecture from those who do not. The same approach will be
used to identify services. To allow their external access, they will be explicitly registered and
grouped as part of a service. This service could be later discovered by other entities within the
distributed registry of the system.

Pure agent-oriented MAS methodologies (such as MAS-CommonKADS [24], Gaia [38],
MaSE [37], Tropos [23] or Prometheus [29], among others) usually concentrate in the agent
vision. It is assumed that the final behaviour of the system emerges from the interrelations
between the designed agents. But the global behaviour is not analyzed in detail.

On the other hand, in organization-oriented MAS methodologies, the analysis is made from
a global perspective (Agent-Group-Role [19], MESSAGE [9], ANEMONA [22], AML [11],
OperA [15], Civil Agent Societies [13], MOISE [21], Electronic Institutions [18],
HARMONIA [34], GORMAS [3], among others). The objectives describe the organizational
purposes at a high level. This allows the determination of tasks, types of agents, resources
assignation between members, etc. In this approach, norms are very important because they
describe the desired behaviour of the members. These norms will derive in control,
prohibitions, sanctions, etc. to achieve the expected global behaviour. Mechanisms to allow
external agents to enter the organization and control their behaviour are particularly useful to
design open MAS.

2.2 The Agreement Technologies Base Architecture

The set of technologies and approaches used in this work is globally named as “Agreement
Technologies” [1]. This section presents the base architecture for these technologies, and, as it
was noted in the previous section, it was conceived to be based in an open MAS.

One goal of the proposed approach is to take advantage of MAS features, so the research is
oriented to achieve a greater capacity and functionality, with a lesser emphasis on efficiency or
scalability. Moreover, and from this point of view, services are used to achieve interoperability,
as mentioned earlier. The main idea is to export the agent system as a system of services,
which will be supported, not only technologically, but also methodologically.

These concepts are intended to be built on top of existing and concurrent work. It is not the
purpose of the article to give a complete description of the THOMAS architecture, which can
be found in [4]. But briefly, its design can be summarized as described in the following.

120

Figure 1: THOMAS Technical Architecture (inspired on [4])

The platform, including its middleware, (Figure 1) is structured in three levels but they are
not strictly layers. They are orthogonally supported by four specific components, which are
included as part of three different subsystems. The Platform Entities Management subsystem is
actually layered in turn. The different layers of this subsystem are used to provide capabilities
for different levels in the platform. The three levels are:
- Platform Kernel (PK). It is the actual kernel of the middleware; includes both the Network

Layer and the Agent Management System (AMS) component. It provides all the
capabilities of FIPA-compliant architecture [20]. Therefore, at this layer the platform is
already an (open) Multi-Agent System.

- Service & Organization Management. This is the conceptual level composed of the
Organization Management System (OMS) and the Service Facilitator (SF) components.
Both components provide all the relevant features and abstractions for the Execution
Framework.

- Organization Execution Framework. It is the “space” where all the computational entities
“live” and perform their functions. Agents and their organizations, and the services they
offer, are conceptually located in it. Every specific application would be conceived,
designed and executed at this abstraction level.

The aforementioned three main components of the platform are: AMS, which provides all

the required capabilities and functions for managing an agent; OMS, which provides all the
required capabilities and functions for managing an organization, and maintains together the
system as a whole; and SF, which provides the required capabilities and functions to allow that
a certain selection of the operations in an organization behave as a unified service.

3 The Service-Oriented Layer

As already noted, the base architecture will be primarily conceived as a service-oriented.
Hence, an important concept is that of service.

According to their provider, there are basically base services (user-level services, and they
are defined for every concrete application); and system services (not strictly “services” as they
are not offered by a concrete user-level provider, they are provided by the system itself, i.e.
they are the support services of the platform).

Taken into account their function and the extent of their capabilities three separate sets of
services can be identified in the architecture:

121

- Structural Services. They allow defining a certain organizational/architectural structure, by
creating and registering organizations, their roles and norms, and their relationships. They
make possible to establish and modify both structural and normative specifications of the
system and they are provided by the OMS.

- Information Services. They provide specific information about components in an
organization. Also, some of them are published as registered services, while some others
are just conceived for the use of the OMS and stay invisible.

- Dynamic Services. They allow entities to dynamically enter or abandon an organization, as
well as to adopt existing roles. Units and roles have been previously defined and registered
by using structural services. Dynamic services are just able to modify services, units and
roles. These services provide dynamic reconfiguration.

3.1 The Role of Organizations

The organization is the most important active element and the unifying notion of the
architecture itself. The recursive hierarchy of organizations is what would make possible to
simultaneously define the architecture as service-oriented and as agent-based. The concept of
organization is the nexus between both perspectives.

An organization can be seen from two points of view: externally, it can be considered as a
context, a domain of influence, the scope of a set of norms and rules; and internally, it can be
considered as a collection, the gathering of the set of individuals which would comply with the
stated norms and fill the defined roles. An organization is also composed of units (or
organizational units). A unit is an active entity with a definite, externally observable behaviour,
and it can have either a collective nature (where the unit is itself an organization) or an
autonomous nature (when the unit is just a single agent). The unit is therefore the substrate
which supports both the gathering of agents and the definition of services.

The concept of organization is also used to solve the scaling problem of architecture, in the
context of services. Since they generally are intended to be used in-the-large, it is necessary to
use a compositional structure: the organization itself. In this vision, low-level services are
essentially provided by individual agents, while system-level services are provided by roles in
a complex organization. Intermediate levels can also provide their services, so the recursive
organizational hierarchy defines the compositional “spine” for the system.

As implied before, from this point of view everything is a unit. The system itself must be
conceived from within as a unit, and therefore, it is an organization too. As such, it gathers the
contributions of both individual agents defining the small-scale MAS, as well as those from the
middleware itself, which supports the technical architecture, as described in section 2.

4 A Service-Oriented Methodology

As already said, the proposed approach is to group agents into organizations, but this is not a
simple task. Some questions arise, such as: Which agents belong to an organization? What
criteria will be used to group them? Moreover, the process of exporting the capabilities of
agents as services leads to another question: What services should be exported?

A methodology is proposed in an attempt to answer all these questions. A first step involves
the functional decomposition of services, and this leads to define organizations. Then, as a
second step, the composition of services is guided by the organizations and their structure.

122

The system is conceived as service-oriented, so, high-level services are proposed as the
starting point. Their functional decomposition (or a hierarchical decomposition, from another
point of view) will be also used to design the hierarchical structure of organizations.

A service is defined as a computational entity which gathers a set of operations, described in
its standard interface, and comprised a semi-ordered sequence of activities, semantically
described by an intentional profile and an explicit process model, which can in turn be split in
several smaller processes. There may be several implementations for the same service and an
identical profile, which are offered by different (possibly many) service providers.

The concept of service process, in this context, intends to provide a clear semantic
perspective of a service’s functionality, by describing it as a workflow.

The service process model identifies three kinds of processes in the structural description.
This classification, designed from a semantic perspective [2], will be used to support the
methodology, and assist in the design of the structure of organizations. These types of
processes are:
- Atomic processes can be directly invoked, execute in a single step, and cannot be

decomposed.
- Simple processes are also perceived to be executed in a single step, but cannot be directly

invoked. They are abstract processes (placeholders) and can be filled either by an atomic
process; or (acting as a simplified representation) by a composite process.

- Composite processes are decomposed in sub-processes, which can be defined in turn as
atomic, simple or composite ones. This way, the service’s functionality unfolds recursively
as a hierarchic composite structure.

Simple processes (which are also services) allow a next level of decomposition. High-level
services can be described as a set of simple processes. Those actually simple are described as
atomic services (i.e. agent operations); and those that are more complex are considered as
composite processes, which will be further decomposed. Organizations can be now identified
by relating each service with its provider, unfolding their hierarchical structure.

From this point of view, the composition of services is given by the organizational structure
itself. Though the approach here has a semantic nature, this is essentially the same approach
which is also used for this purpose, from a behavioural perspective, in the context of service
composition, based on orchestration [25].

In particular, both approaches use the process abstraction as the way to describe the
behaviour of a service, and specifically the composition of (smaller-scale) services. Also,
provide a number of control structures, which define a principled way to combine sub-
processes into larger processes, providing compositionality and recursive structures.

There is an implicit relationship between these recursive structures: (composite) processes
can be provided as services by (composite) organizational units; when these processes are
decomposed, the resulting sub-processes can be provided in turn by other units. That is, sub-
processes of a composite process would be provided by the members (units) of the composite
organization which provided the upper level. When this happens, the recursive structure of
processes mimics the recursive structure of organizations. The converse is also true: starting
from simple tasks, a vertical composition method could help in the definition of the
organizational hierarchy, defining at the same time the resulting complex (composite)
processes. Like in the case of organizations, the recursion ends at the agent level.

Therefore, our approach provides the structure for the vertical composition of services. This
way, a task that is often considered difficult –to design the service composition– is
methodologically tackled, allowing at the same time to fully exploit the organizational
structure of the agents. Then, there is a mutual support between these two concepts.

123

5 The Agreement Structure

Agents were originally conceived as single actors, but within the MAS approach, a different
method has become possible. The need for a trade-off continues, but has it transformed into a
coordination problem. As already said, the service can be conceived as a way to present the
operational capabilities of an agent (or a collection of them) inside an organization.

The proposed methodology allows tackling the decomposition of services, but adaptability
in the system is provided by the architecture. First, there is a decomposition of services to
provide the required features; but after that it is necessary to address the structure of
agreements which supports this decomposition, in order to make it adaptive.

So, an important notion is the agreement between computational entities (organizations, at
the top levels; but also agents, at the lower ones) conceived as an architectural construct. The
following subsections discuss the need for an adaptive structure, and the agreement model.

5.1 The Need for an Adaptive Structure

When using MAS as a software solution, as already noted, the problem of coordination is
always present. When they define a self-organized structure, it sometimes implicitly solves the
coordination issues; this approach could be considered as optimal.

When a complex problem is tackled in an ecosystem (or a system of systems), the solution
requires certain adaptability. At the same time, this structure needs to be flexible to achieve
coordination inside the ecosystem, and also this behaviour could be emergent.

Pioneer works related to cooperation define adaptiveness as a required notion for intelligent
solution of complex problems [2]. Two approaches can be considered: from the collaborative
entity point of view (cooperation is introduced as an additional mechanism to increase the
effectiveness in solving problems); and from the problem to solve point of view (this intends to
find the best way to structure and decompose a complex problem to solve it effectively).
Taking into account these approaches, several solutions to the cooperation problem were
developed. The blackboard architecture [16] provides cooperation between knowledge sources
using a simple communication mechanism. The contract net [32] proposes negotiation as a
mechanism to coordinate and to assign tasks to different entities participating in problem
solving. The reactive architecture [8] tries to obtain an intelligent behaviour from simple
models, without knowledge representation, reasoning or learning mechanisms. Finally, agent
architectures with organizational capacity appeared: agents need to know about their own
capabilities and social features.

Generically, entities are organized into a structure by using controls, which either enforce or
forbid specific interactions –or connections–; and protocols, which either enable or channel
them. Therefore, where the former are based on force or imposition, the latter are based on
consensus and agreement.

The concept of agreement among computational entities seems to be a right approach to
tackle the need for an adaptive structure. The objective is to “discover” a suitable structure of
controls and protocols so that it emerges as a global structure, the agreement. This will make
possible to define the main inner structures in order to obtain agreement-based organizations.

As the structures of agents are become more and more complex, it is clear that for some
kind of problems we need not a superstructure, like the blackboard. Agents that organize
themselves in organizations (and after that in agreement-based organizations) are needed. The
main objective is to evolve from that emergent coordination to an emergent agreement between
entities.

124

5.2 The Agreement Model

As already noted in previous sections, a central notion in this approach is the agreement
between computational entities. Continuing with research efforts in the field of “Agreement
Technologies” [1], the process of agreement-based coordination can be conceived as
consistent with the normative context where agents are established and allow them, once
accepted, to call for mutual services, and to be called by others.

Several key research topics must be considered and they can be seen in a “tower” structure
[1] where each level provides functionality and inputs to the one above. Therefore, the
agreement must be seen as a layered structure, by definition: when an agreement is reached at a
certain level, elements located at lower levels must respect it at their own level. These “tower”
levels, from bottom up, are:
- Semantics: the bottom one, as semantic issues influence all others. The semantic alignment

of ontologies [6] is necessary to avoid mismatches and is needed to have a common
understanding.

- Norms: is concerned with the definition of rules determining constraints that the
agreements, and the process to reach them, have to satisfy.

- Organizations: implies a super-structure that restricts the way agreements are reached by
fixing the social structure of the agents, the capabilities of their roles and the relationship
among them [5].

- Argumentation and Negotiation: can be seen as protocols that define the structure of an
agreement.

- Trust: the top level in the tower. Agents need to use trust mechanisms that summarize the
history of agreements and subsequent agreements executions in order to build long-term
relationships between them [31].

These five layers, of course, are not seen as isolated because they may well benefit from
each other. For example, if changes in some norms or to take advantage of negotiation
methods, the organizational model has to be modified. A switch from the described “tower”
into a multi faceted (“pentagon”) figure can be conceived because the agreement pervades (and
is influenced by) all the facets/levels (Figure 2). In this sense, the facets are intertwined, but
agreement is still a layered structure – and layers bind both ways.

Figure 2: Multi-faceted perspective on the structure of an Agreement

In fact, the agreement is a crosscutting structure, which maintains a bidirectional

relationship to every element it contains. The agreement defines the architecture but at the
same time, the architecture defines the agreement. The agreement is shaped by those forces,

125

but its existence also shapes the reaction to them, and models the future evolution of the
system. It is important to note that the multi-faceted perspective is not intended to replace the
“tower” structure, as the architecture described in previous subsection is still hierarchical in
many senses, but the agreement itself can be considered not only as layered, but also as multi-
faceted. Layers are just conceived to provide logical separation of concerns, and they are not
always physical (contained) tiers. On the other side, in an MAS setting, a reconfiguration can
also be triggered bottom-up; a single agent can react to a change in their surroundings by
asking for some kind of change, such as a move to some other organization. Of course this
change can cause some others in turn, and the effect would spread accordingly, causing even a
global reorganization.

In summary, the system already provides the required elements to build an adaptive
architecture; to actually define an emergent agreement would just require identifying the
structural patterns, and the set of inter-level protocols. Some refinements can be made further,
though the need for meta-elements has still to be considered, nothing excludes the definition of
specific agents to carry out support tasks for the agreement itself (such as sensors, observers or
even planners).

6 Case Study: mHealth

This section presents a case study in order to illustrate the proposed approach. Our purpose is
to show the reason why an agreement between entities is not only necessary, but it can also be
a natural solution to complex problems. As already said in section 3.1, the structure in
organizations can be seen as a logical strategy to tackle complex situations, and has also
several advantages. The need for a flexible and adaptive agreement construct can also be seen
as the basis to create and evolve these organizations. Section 5 has described the structure of
the agreement structure which could address that need.

The example is related to the mHealth (mobile-Health) demonstrator, which is an
evolutionary prototype currently under development within the Agreement Technologies
project [1]. It is inspired by work with SUMMA112 [33], the centre that manage medical
emergencies in the Autonomous Region of Madrid, which is also involved in the project.

In the following, an initial emergency (E1) is described. The system has to evolve to
simultaneously react to a second one (E2).

E1. There is a fire in Casa de Campo (a large urban park). There are about 500 people at that
moment and about 65 of them present symptoms of asphyxia. SUMMA112 receives
information related to E1 and decides that 5 ambulances and one helicopter are needed. The
coordination with hospitals near the area, Fire Department (FD) and Police (P) is also urgent.
FD and P will send 3 fire trucks and 5 police cars. From an organizational approach, all these
elements form an organization, O1. Each actor maps onto an agent considering this scenario as
MAS. Then, there are 14 agents are interacting in the organization O1. Each agent has its role,
goals and plans inside the organization, which in turn has its own norms and protocols.

E2. One hour after E1, there is a chain car crash (E2) in the tunnel of Paseo de Extremadura,
a road near to E1 location. Several cars have crashed and 2 of them are on fire. SUMMA112
decides that this emergency requires 3 ambulances. In this case, FD and P decide to send one
fire truck and 3 police cars. Again, all these 7 elements form a second organization, O2.

Basically, this scenario can be solved using two alternative solutions: deal with O1 and O2
as separate elements, with no relation between them; or, deal with O1 and O2 as units with
some degree of relationship.

126

The second is the most efficient and sensible approach, as it must have into account
potential interactions between both emergencies. So, let’s consider first O1, whose elements
reach an agreement to tackle E1. At this point, the agreement construct can be seen as “the set
of elements interacting in a coordinated way to solve a problem”. But at the time to assign
resources to E2, O2 is not considered in isolation from O1. Some resources that previously
were mapped onto O1 now can be mapped on O2 because the conditions in emergency E1 may
have changed during the last hour. This process of re-mapping implies a reconfiguration of
unit O1, i.e. an agent’s reorganization within the O1O2 composite.

Some services which were provided by unit O1 are no longer required in E1 and now can be
re-mapped onto O2. This can be done at different levels (for instance, registering services at
the unit level, with no structural changes); but the simplest and most efficient solution implies
not only re-assigning services, but also the agents which provide them, i.e. doing a
reorganization. For example, according to the observed results in O1 some services can be
assigned to E2. Additional elements are also assigned to E2 to fulfil O2 necessities. O1, a
smaller unit now, continues working in E1; and a new agreement is created around E2,
defining the O2 organization. At the same time, a larger agreement is created encompassing
both units (and therefore, defining another one). This agreement would continue adapting to
changes in both emergencies as system evolves.

Elements participating in an agreement (O1+O2) must be capable to adjust themselves to
environmental changes, to accomplish the goals in the agreement. This will often lead to
changes, not in the elements themselves, but on their configuration. In fact, even the criteria
used to decide if an agent belongs in an agreement should be managed the same way: this
defines an emergent agreement, where not only part of the behaviour, but the structure itself
emerges from the situation.

The base architecture described in Section 2 already includes all the services and facilities
necessary to carry out any reconfiguration [4]. However, this is not enough to define a self-
adaptive structure – the triggering of those services is essential. Of course norms (to define
constraints) and organizations (to define their scope) can assist in the establishment of such a
structure; and even the negotiation layer can be used to trigger the creation of the agreement
itself.

7 Conclusion

It has been argued that MAS techniques should be more accessible to software community in
general in this paper. As services are concepts very popular in industry and can simplify the
transition, this work has proposed a service-oriented framework, consisting on a supporting
agent-oriented architecture; a development methodology for service-oriented MAS; and an
infrastructure based on the concept of agreement, which makes it adaptive.

The example shows why it is needed to consider a general ecosystem, instead a “classic”
closed system or a single-design open system. To actually provide the required response in an
emergency, SUMMA112 has to coordinate with the information systems from the Fire
Department, the Police, and every hospital in the area. This implies that it is not possible to
have a unified pre-programmed strategy to manage emergencies, as it should be embedded in
several independent systems which only sometimes gather to act together.

The key idea in the Agreement Model is that it creates an architectural context, in which
agents (organizations, services) are coordinated and reorganized by inclusion in a structure. In
particular, there is not an architectural element in charge of reconfiguration, i.e. there is not a

127

self-supervisor. Instead of that, every self-property in the system is conceived as emergent, and
they will be “indirectly” provided by structural features of the agreement. The elements do just
what they must to comply with the requirements of the location they occupy within the
architecture; the relationships between the agreement facets will do the rest. Again, the case
study discussed previously describes a simulated coordination effort in the current
SUMMA112 system. In [10], MAS structured in organizations, and implemented in THOMAS
architecture has been used to model systems and simulate several situations.

The reconfiguration process has also been modelled and tested using several different
approaches; but this manual process is only the first stage of research. The next step is to
develop a model-driven approach to guide the reconfiguration, and will be followed by a well-
defined self-adaptive, emergent approach, which is the ultimate goal.

Acknowledgment: This work has been partially funded by Project AT (CONSOLIDER
CSD2007-0022, INGENIO 2010) of the Spanish Ministry of Science and Innovation, and from
COST Action AT (COST IC0801) from the EU RTD Framework Programme.

References

[1] Agreement Technologies (AT) Project: http://www.agreement-technologies.org/ (2009)
[2] Ana Mas: Agentes Software and Sistemas Multi-Agente: Conceptos, Arquitecturas y Aplicaciones.

Prentice-Hall (2005).
[3] Argente, E.: GORMAS: Guidelines for ORganization-based Multiagent Systems. PhD thesis,

Universidad Politécnica de Valencia (2008).
[4] Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., and Rebollo, M.: An Abstract

Architecture for Virtual Organizations: The THOMAS Project. Technical report, DSIC, Universidad
Politécnica de Valencia (2008).

[5] Argente, E., Julian, V., and Botti, V.: Multi-Agent System Development based on Organizations.
Electronic Notes in Theoretical Computer Science 150(3):55-71 (2006).

[6] Atienza, M., Schorlemmer, M.: I-SSA - Interaction-situated Semantic Alignment. Proc Int. Conf. on
Cooperative Information Systems (CoopIS 2008) (2008).

[7] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard, D.: Web
Services Architecture. W3C WSA Working Group, W3 Consortium (2004)

[8] Brooks, R.: Intelligence without Representation. Art. Intelligence, 47:139-159 (1991).
[9] Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P., Stark, J.,

Evans, R., and Massonet, P.: Agent-oriented analysis using MESSAGE /UML. LNCS vol.
2222:119–125 (2002).

[10] Centeno, R., Fagundes, M., Billhardt, H., and Ossowski, S.: Supporting Medical Emergencies by
MAS. In “Agent and Multi-Agent Systems: Technologies and Applications”. LNCS, vol. 5559:823-
833. Springer (2009).

[11] Cervenka, R., and Trencansky, I.: AML. The Agent Modeling Language. Whitestein Series in
Software Agent Technologies and Autonomic Computing. Birkauser (2007).

[12] Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S.: Web Services Description
Language (WSDL) 1.1. W3C Consortium. W3C Note (2001)

[13] Dellarocas, C., and Klein, M.: Civil agent societies: Tools for inventing open agent-mediated
electronic marketplaces. In ACM Conf. Electronic Commerce (EC-99) (1999).

[14] DeLoach, S.: Moving multi-agent systems from research to practice. International Journal of Agent-
Oriented Software Engineering - Vol. 3, No.4 pages 378 – 382 (2009)

[15] Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded in Logic. PhD
thesis, Utrecht University.

[16] Erman, L., Hayes-Roth, F., Lesser, V., Reddy, R.: The Hearsay-II Speech-Understanding System:
Integrating Knowledge to Resolve Uncertainty. ACM Computing Surveys 12(2), pages 213-253
(1980)

128

[17] Esteban, J., Laskey, K., McCabe, F., and Thornton, D.: Reference Architecture for Service Oriented
Architecture 1.0. Organization for the Advancement of Structured Information Standards (OASIS)
(2008).

[18] Esteva, M., Rodriguez, J., Sierra, C., Garcia, P., and Arcos, J.: On the Formal Specification of
Electronic Institutions. Agent Mediated Electronic Commerce 1991, pages 126–147 (2001)

[19] Ferber, J., Gutkenecht, O., and Michel, F.: From Agents to Organizations: an Organizational View of
Multi-Agent Systems. In Proc. AAMAS03 - Agent-Oriented Software Engineering Workshop
(AOSE) (2003).

[20] FIPA. FIPA Abstract Architecture Specification. Technical Report SC00001L, Foundation for
Intelligent Physical Agents. FIPA TC Architecture (2002).

[21] Gateau, B., Boissier, O., Khadraoui, D., and Dubois, E.: MOISE-Inst: An Organizational model for
specifying rights and duties of autonomous agents. In der Torre, L. V., and Boella, G., eds., First
Intl. Workshop on Coordination and Organisation (2005).

[22] Giret, A.: ANEMONA: Una metodología multi-agente para sistemas holónicos de fabricación. PhD
thesis, Universidad Politécnica de Valencia (2005).

[23] Giunchiglia, F., Mylopoulos, J., and Perini, A.: The Tropos Software Development Methodology:
Processes, Models and Diagrams. In Proc. Workshop on Agent Oriented Software Engineering
(AOSE), 63–74 (2002).

[24] Iglesias, A., Garijo, M., Gonzalez, J., and Velasco, J.: A methodological proposal for multiagent
systems development extending CommonKADS. In Proc. 10th Banff Workshop Knowledge
Acquisition for Knowledge-Based Systems (1996).

[25] Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford,
M., Goland, Y., Guizar, A., Kartha, N., Kevin Liu, C., Khalaf, R., Koening, D., Marin, M., Mehta,
V., Thatte, S., van der Rijn, D., Yendluiri, P., and Yiu, A.: Web Services Business Process Execution
Language (WSBPEL) 2.0. Organization for the Advancement of Structured Information Standards
(OASIS) (2007).

[26] MacKenzie, C., Laskey, K., McCabe, F., Brown, P., and Metz, R.: Reference Model for Service
Oriented Architecture 1.0. Organization for the Advancement of Structured Information Standards
(OASIS) (2006).

[27] Malone, T., Crowston, K.: The Interdisciplinary Study of Co-ordination. Computing Surveys 26 (1).
ACM Press, pages 87–119 (1994).

[28] Ossowski, S.: Co-ordination in Artificial Agent Societies, LNAI 1535. Springer (1999).
[29] Padgham, L., and Winikoff, M.: Prometheus: A Methodology for Developing Intelligent Agents. In

Proc. Agent Oriented Software Engineering (AOSE), 135–145 (2002).
[30] Rosenschein, J., and Zlotkin, G.: Rules of Encounter – Designing Conventions for Automated

Negotiation among Computers. MIT Press (1994).
[31] Sierra, C., Debenham, J.: Information-Based Agency. Proc Intl. Joint Conference on AI (IJCAI-

2007). AAAI Press, pages 1513-1518 (2007).
[32] Smith, R.: A Framework for Problem Solving in a Distributed Processing Environment. PhD thesis,

Stanford University (1978).
[33] SUMMA112: http://www.madrid.org/cs/Satellite?language=es&pagename=SUMMA112

%2FPage%2FS112_home (2009).
[34] Vazquez-Salceda, J., and Dignum, F.: Modelling Electronic Organizations. Lecture Notes in

Artificial Intelligence 2691:584–593 (2003).
[35] Von Martial, F.: Co-ordinating Plans of Autonomous Agents. LNAI 610, Springer (1992)
[36] Weyns, D., Helleboogh, A., and Holvoet, T.: How to get multi-agent systems accepted in industry?

International Journal of Agent-Oriented Software Engineering - Vol. 3, No.4 pages 383 – 390
(2009)

[37] Wood, M., DeLoach, S., and Sparkman, C.: Multiagent system engineering. Journal of Software
Engineering and Knowledge Engineering 11:231–258 (2001).

[38] Wooldridge, M., Jennings, N., and Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis
and Design. J. Autonomous Agent and Multi-Agent Systems 3:285–312 (2000).

129

Developing Virtual Organizations Using MDD

Jorge Agüero, Miguel Rebollo, Carlos Carrascosa, Vicente Julián

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera S/N 46022 Valencia (Spain)
{jaguero, mrebollo, carrasco, vinglada}@dsic.upv.es

Abstract. Virtual Organizations are novel mechanisms where agents
can demonstrate their social skills, due to the fact that they can work
in a cooperative and collaborative way. Furthermore, organizations are
frameworks where agents can achieve different types of agreements. But
the development of organizations in MAS (Multi-Agent Systems) re-
quires extensive experience in different methodologies and platforms.
MDD (Model Driven Development) is a technique for generating ap-
plication code developed from basic models and meta-models using a
variety of automatic transformations. This paper presents a meta-model
of Virtual Organization (of agents) using concepts and components at a
suitable level of abstraction so that it can be implemented on different
systems following a MDD approach. Based on this idea, a service-oriented
organizations meta-model that is platform independent is presented. As
an example, two model transformations that allow the unified model of
the virtual organization to be translated into two different platforms are
shown, facilitating the development process of agent-based software from
the point of view of the user.

1 Introduction

Advances in new technologies based mainly on the Internet and the Web, such
as electronic commerce, mobile/ubiquitous computing, social networks, etc.,
demonstrate the need to develop distributed applications with some intelligent
capabilities. Multi-Agent Systems (MAS) are a powerful technology with very
significant applications in distributed systems and artificial intelligence[18]. Sup-
porting all of these developments requires the creation of platforms of highly
heterogeneous agents, where agents work together through different interactions
to support complex tasks, in a collaborative and dynamic way. Bearing this in
mind, it is suitable for agents to display characteristics such as sociability, au-
tonomy, self-organization, etc. Therefore, it is necessary to create open systems
composed of a group of cooperative and heterogeneous agents, which work with
local or individual goals and that must fulfill global goals. That is, a set of agents
can reach agreements to achieve the group goals. The concepts of organization al-
low individual and group entities to be modelled in a very abstract way[3]. The

130

organization describes the main aspects of a society based on different view-
points, such as: structure, functionality, norms, interactions, and environment.
This type of organization is called Virtual Organization[13].

However, to implement an Agents Virtual Organization requires vast experi-
ence in one or more design platforms. A major challenge when designing MAS
is to provide efficient tools that can be used by any user (non-expert users). The
MDD approach can facilitate and simplify the design process and the quality of
agent-based software[19], since it allows the reuse of software and transformation
between models. MDD basically proposes the automatic generation of code from
the models using the transformations. In other words, using models that have
components that are platform independent, and by means of the transforma-
tions, those models are translated into components (or code) that depend on the
execution platform, which integrates specific details about the system. Recently
some proposals to implement these ideas (MDD techniques) have been proposed
in MAS[16, 14, 17, 2], but none of these proposals focus on organization design.

Our purpose is to use the MDD approach for the design of organizations,
taking the core and fundamental concepts, to specify an organization meta-
model that is platform independent, and then use the translation mechanism to
convert the unified meta-model into platform specific models for the execution
of the agents. This paper presents a Virtual Organization meta-model, focused
mainly on the integration of service-oriented technology and MAS, which allows
support (from a very high level of abstraction) to be given to dynamic and open
agent societies. Two transformation models for moving the unified model of the
Virtual Organization to two different platforms are also proposed, allowing the
feasibility of the proposal to be verified. These target platforms are: THOMAS1

[7] and E-Institutions2[12].
This paper is structured as follows. A brief summary of relevant works and

their problems are discussed in Section 2. Section 3 presents MDD concepts and
how to apply these concepts to the MAS paradigm. Section 4 explains how to
design a virtual organization from the MDD viewpoint. Finally, the conclusions
of this work are presented in Section 5.

2 Related Work

This section presents some related contributions with respect to organization
modeling in agent-based systems, and discusses some problems. Furthermore,
this section explains how, using the MDD approach, these problems can be
addressed.

MAS development needs methodologies that allow the design of agent-based
software to be optimized. The first methodologies that emerged can be classified
as agent-oriented, without describing the organization explicitly. These systems
are generally closed and external agents are prohibited. But in recent times, new
organizational-oriented methodologies have emerged, which allow (partially) the

1 http://users.dsic.upv.es/grupos/ia/sma/tools/Thomas
2 http://e-institutions.iiia.csic.es

131

design of open MAS, leading to the development heterogeneous systems. These
organizational-oriented methodologies allow external agents to access the system
functionality, but the agents are obliged to adhere to the social norms of the
system. Among the most important methodologies which allow the design of
virtual organizations are: PASSI[9], MOISE[15], OperA[11] and GORMAS[4].

Now, with respect to the application of MDD for MAS, all of the above com-
mented methodologies allow (to a major or minor extent) the design of agent
organizations using their own set of specifications. But, in general, these pro-
posals only use specific aspects of the platforms, which are in the majority of
cases very different. This situation can create an added complexity for devel-
opers which try to employ these approaches. Moreover, some of them do not
have an implementation phase, only defining high-level models, and difficulting
enormously the developer work when tries to obtain executable code. But with
the appearance of the MDD, it is possible to take advantage the flexibility pro-
vided by this approach to solve “some” of the problems found in the design of
organizations in MAS.

The purpose of MDD is to create models legible by computers that can be un-
derstood by automatic tools to generate templates, proof models and even code,
integrating them in multiple platforms[19]. From the viewpoint of the develop-
ment of agent oriented systems, application development consists of obtaining
the agent code that can be executed in different platforms. That is, to concen-
trate on the development of the application from a unified agent model and
apply different transformations to get implementations for different platforms.
Currently, the most common methodologies for MAS have an identified set of
models that specify their characteristics. These models can be adjusted as MDD
models that specify the concepts of the MAS as roles, behaviors, tasks, interac-
tions or protocols. The models can be used to model a MAS without focusing on
platform-specific details and requirements. After this, it is possible to transform
any agent model into agent implementations for different platforms.

Only a few agent development methodologies have integrated the MDD tech-
niques in the MAS design. The most relevant are MetaDIMA[16], TROPOS[6],
PIM4AGENT[17], INGENIAS[14], AML [8] and AUML [5]. All of this work is for
the application of MDD to the agent modeling process, but the biggest problem
found, is that they do not consider the development of virtual organizations.

Therefore, our purpose is to apply the MDD approach to organizational-
oriented methodologies. In other words, the contribution of this paper is to take
as a starting point previous works of organization design in MAS, to develop
a Unified Model of Virtual Organization which allows flexible implementation
(including deployment) on different agent platforms with support for organiza-
tions.

3 Modeling Virtual Organizations with MDD

This section presents how to use the MDD approach to model organizations. In
order to do this, the core concepts of MDD are presented first. Then, the meta-

132

models for the organization and the process of creating Virtual Organization
using the MDD approach is explained.

3.1 MDD: Core Concepts

The MDD approach uses and creates different models at different abstraction
levels, combining them when the application has to be implemented [19]. At
high abstraction levels, the models are known as meta-models and they define
the structure, semantics and constraints for a family of models (they are the
model of a model). Models can be classified into three groups depending on
their abstraction level: Computation Independent Model (CIM), which details
the general concepts independently whether they are going to be implemented
by a machine or not; Platform Independent Model (PIM), which represents the
system functionalities without considering the final implementation platform;
and the Platform Specific Model (PSM), obtained by combining the PIM with
specific details about the selected platform.

A fundamental aspect of the MDD is the definition of sets of transformation
rules between models, which allows the models to be automatically converted.
Transformations are relational entities that describe how to map the rules con-
cerning how the concepts of one model are transformed into the concepts of
another model. These transformations can be applied at different abstraction
levels. Horizontal transformations are applied over models that belong to the
same level: PIM-to-PIM or PSM-to-PSM. Vertical transformations turn a gen-
eral model into a more specific one (PIM-to-PSM) [19]. In general, all transfor-
mations are known as model-to-model transformations. Additionally, executable
code can be automatically generated from a PSM. These transformations are
known as model-to-code or model-to-text.

3.2 Using MDD to define an Agent Virtual Organization

One fundamental challenge when defining a platform independent meta-model
in an organization is selecting which concepts or components will be included in
order to model the organization. It is almost too obvious to mention that this
is not a trivial task, since it must define the minimum components necessary
for the organization. To achieve this objective, some of the most well-known
approaches in the area of MAS organizations were studied (mentioned in Sec-
tion 2). The purpose of this analysis is to extract the common features from
the methodologies studied and adapt them to the current proposal, specifying a
platform independent meta-model of the organization. Therefore, the transfor-
mation mechanism turns the platform independent model (PIM) into platform
specific models (PSM’s). Figure 1 shows diagram that illustrates the relationship
among the meta-models.

In these methodologies, an agent organization is considered a social entity
consisting of a specific number of members which carry out different tasks or
functions, and that are structured according to communication patterns and

133

Fig. 1. Using MDD approach in Virtual Organizations

topology specific interactions, to achieve the global objective of the organiza-
tion, based on behavior rules. The main aspects or factors of an organizations
are the structure, functionality, dynamic, normative and its environment. So, to
model the characteristics of these components five key concepts are used: Orga-
nizational Unit, Service, Environment, Norm and Agent [3]. These concepts make
it possible to represent: (i) how the entities are grouped with each other, defining
the relationship between the elements and their environment; (ii) what function-
ality they offer, including services for the dynamic entry and exit of agents in the
organization, and (iii) what restrictions exist regarding the behaviors of system
entities[10].

3.3 Organization Meta-model

This section presents our proposal for modeling agent organizations, based on
five key concepts(previously mentioned): Organizational Unit, Service, Environ-
ment, Norm and Agent. The proposal is presented defining a set of meta-models,
which provide the necessary concepts and primitives to describe structure, func-
tionality, dynamism, environment and normative behaviors of the organization.
This set of meta-models will be called πVOM (Platform Independent Virtual
Organization Model) and is structured in different views or perspectives. The
motivation for this is to support the evolution of the meta-model and to allow
its possible growth in the future. The different views give complementary ap-
proaches which, when superposing themselves, generate the complete view of the
system. Below, the different views proposed are briefly detailed due to the space
limitations of the paper.

Structural view: This view includes all those elements that persist in the
organization (see Figure 2(a)). The main concept employed in this view is the
Organizational unit (OU). An OU is a group of agents who carry out specific

134

and differentiated tasks and follow a certain predefined communication and co-
operation pattern[4]. This clustering can be seen externally as a single entity
that pursues certain objectives, offers and/or requires certain services, and even
plays a specific role in order to interact with other entities. Therefore, the orga-
nizational unit has a recursive nature and will not only contain agents but also
other organizational units acting as atomic entities.

Fig. 2. Concepts used in Strutural(a), Functional(b), Environment(c) and Norma-
tive(d) viewpoints of πVOM

Functional view: This view details system functionality, based on services,
tasks and objectives. This view shows the general behavior desired by the sys-
tem. Thus, Services represent a certain functionality that an entity (Agent or
OU) provides other entities, see the meta-model in Figure 2(b). The provider
of a Service is always associated with a specific Role. Service functionality is
carried out through the execution of certain Tasks, typically executed by the
entity providing the service or delegated to other entities. The services can also
be composed of several sub-services, and it is possible to define a “workflow”
between them using (RelationType).

Environment view: This perspective details the elements (Resources) of
the system. The resources are accessed and perceived through an Environment-
Port (see the meta-model in Figure 2(c)). A Resource is an object in the envi-
ronment that will be consumed by its members. A Port represents a point of

135

interaction between the entity and other elements of the model and serves as an
interface to the real world.

Normative view: This model assumes that the organization is managed
according to norms. Norms are used as mechanisms to limit the autonomy of
agents in large systems and solve complex problems of coordination. This view
specifies the set of rules and actions defined to control the behavior of mem-
bers of the organization, specifically the roles of the organization (see Figure
2(d)). These rules correspond to obligations, permissions and prohibitions; also
as sanctions and rewards to carry out on its members.

Agent view: A Agent is the basic entity of MAS which is within the orga-
nization and uses a series of interrelated components, shown in Figure 3. Our
Agent has a set of basic components: Capabilities represent the know-how of
the Agent and follow a pattern of event-condition-action. The Behaviours im-
plement the roles that the agent can play. The Task is the component where the
code base of the agent actions is written. For a more detailed explanation of the
components of the agent meta-model, please refer to Aguero at el[1].

Fig. 3. Concepts used in Agent viewpoint of πVOM

4 Developing an organization with a MDD approach

Once the set of models that characterize our proposed model of Virtual Orga-
nization platform-independent has been presented, the process for transforming
the Virtual Organization into different platforms must be defined. The design
process begins by selecting how abstract concepts (which are part of the unified

136

organization model) are mapped to the target platforms. For this paper, we focus
on the study of transformations on two platforms that support agents organi-
zations: THOMAS[7] and E-Institutions[12]. The transformation defines a set
of mapping rules. The first mapping rules define which concepts of the source
meta-model (πVOM) are transformed to which concepts of the target meta-
model, a model-to-model transformation (PIM-to-PSM). This is illustrated by
dotted lines in Figure 4. The second transformation translate the models into the
code templates of the organization, which can be optionally combined with code
written manually by the user. This is a model-to-text transformation (PSM-to-
code).

Fig. 4. Tranformation from πVOM to differents platforms

4.1 Development Process Using the THOMAS Platform

The πVOM meta-model is very similar to the model of the organization pro-
grammed in THOMAS, since both works are based (partially) on the methodol-
ogy and artifacts proposed by GORMAS. For this reason, the automatic trans-
formations are relatively easy to describe. Almost all of the abstract concepts
of πVOM are represented in THOMAS, so the model-to-model transformation
rules are expressed almost as a one-to-one relationship. It is convenient to no-
tice that some concepts in THOMAS have a more detailed feature than πVOM,
because THOMAS is a platform-specific model. The transformation rules that
must perform the translation between different models are shown in Table 1
(from rule 1 to rule 8).

4.2 Development Process Using the E-Institutions Platform

E-institutions provide a set of tools that are widely used in the area of agents to
model organizations, which are defined as a Multi-Agent Systems and can be ef-
fectively designed and implemented as electronic institutions composed of a vast
amount of heterogeneous (human and software) agents playing different roles and
interacting by means of speech acts[12]. They take inspiration from traditional
human institutions, and offer a general agent-mediated computational model

137

Rule Concept Transformation

THOMAS

1 Organizational Unit πVOM.OU ⇒ THOMAS.OU

2 Agent πVOM.Agent ⇒ THOMAS.Agent

3 Role πVOM.Role ⇒ THOMAS.Role

4 Service πVOM.Service ⇒ THOMAS.Service

5 Norm πVOM.Norm ⇒ THOMAS.Norm

6 RelationType πVOM.RelationType ⇒ THOMAS.Process

7 Resource πVOM.Resource ⇒ THOMAS.Resource

8 Goal πVOM.Goal ⇒ THOMAS.Goal

E-INSTITUTIONS

9 Organizational Unit
∪

πVOM.OU ⇒
∪

EI.Scene

10 Agent πVOM.Agent ⇒ EI.Agent

11 Role πVOM.Role ⇒ EI.Role

12 Service ∀ πVOM.Service ∈ OU ⇒
∪

EI.State ∈ Scene

13 RelationType πVOM.RelationType ⇒ EI.Transition OR EI.Illocutions

14 Norm πVOM.Norm ⇒ EI.Norm

15 Goal πVOM.Goal ⇒ EI.Norm

16 Resource πVOM.Resource ⇒ EI.World

Table 1. Rules from πVOM to THOMAS and E-Institutions

that serves to realize an agent-mediated electronic institutions. In Figure 5, the
main meta-model components of E-Institutions are presented. Transformation
rules for E-Institutions are shown in Table 1 (from rule 9 to rule 16). Due to
the space limitations of this paper, each transformation rule cannot be detailed.
Instead, in order to illustrate its use to the reader, an application scenario of
core rules is described in the next section.

Fig. 5. Core concepts used in E-Institutions

4.3 Usage Scenario

To illustrate the use of the rules, a case scenario for making flight and hotel
arrangements is utilized. This is a well known example that has been modeled

138

by means of electronic institutions in previous works (Dignum [11]; Argente et al
[3]). The Travel Agency example is an application that facilitates the intercon-
nection between clients (individuals, companies, travel agencies) and providers
(hotel chains, airlines); delimiting services that each one can request or offer.
The system controls which services must be provided by each entity. Provider
entities are responsible for the internal functionality of these services. However,
the system imposes some restrictions on service profiles, service requesting or-
ders and service results. In this system, agents can search for and make hotel
and flight reservations, and pay in advance for bookings. This case study is mod-
eled as an organization (TravelAgency) inside which there are two organizational
units (HotelUnit and FlightUnit) which represent a group of agents. Each unit is
dedicated to hotels or flights, respectively. Three kind of roles can interact in the
Travel Agency example: customer, provider and payee roles. The Customer role
requests system services. More specifically, it can request hotel or flight search
services, booking services for hotel rooms or flight seats, and payment services.
The Provider role is in charge of performing the service. Finally, the Payee role
gives the advanced payment service. Figure 6 shows the TravelAgency structure,
with its units, roles and relationships between them.

Fig. 6. Travel Agency in πVOM

The process begins by modeling the Travel Agency (structural and functional
models, see Figure 6(a)(b)), and applying the rules mentioned previously, in
order to obtain the organizations on THOMAS and E-Institutions. In the case
of THOMAS the models are very similar and their transformation in almost
direct (see in Figure 7(a)). But, getting the organization in E-Institutions and
creating the core templates of PerformativeStructure seen in figure 7(b), requires
the application of the rule 9 and rule 13.

Rule 9 allows all of the Scenes in the E-Institutions that correspond to the
OU of πVOM (3 in total) to be obtained. Additionally the Scenes for entrance
and exit are needed (root and output). After the application of Rule 13, as the
Services are composed in the order given by the RelationType, we can specify the
type of Transitions between the different Scenes in the E-Institutions, which in

139

this case correspond to Transitions of type OR. As previously mentioned, this
mapping generates the basic template of the PerformativeStructure of the E-
Institutions (Figure 7(b)). With the application of the remaining rules, a more
detailed description of the PerformativeStructure is obtained, but due to the
limitations of space in this paper, they are not explained.

Fig. 7. Travel Agency in THOMAS and E-Institutions

5 Conclusions

This work presents a meta-model of Virtual Organization (called πVOM) which
allows organizations in MAS to be modeled using abstract components which are
independent of the implementation platform following a MDD approach. This
meta-model is divided into five views that focus on the most important aspects
of the Virtual Organizations and these views can easily be extended if required
to a specific domain.

From unified meta-model, creating code templates for specific platforms of
organizations is possible. This was discussed and exemplified using transfor-
mations on the THOMAS and E-Institutions platforms. These transformations
show that the meta-model can be considered platform independent. As future
work, we will propose additional transformations in order to obtain the agent
instances (to generate the agent code) in the proposal and other frameworks. We
will propose the introduction of specific components/views (additional) to reach
agreements. We propose that the Virtual Organization provides the framework
and components required to model agreements, or in other words, use the MDD
approach to drive design-oriented agreements.

Acknowledgment: This work was partially supported by TIN2006-14630-
C03-01 and PROMETEO/2008/051 projects of the Spanish government and
CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.

140

References

1. J. Agüero, M. Rebollo, C. Carrascosa, and V. Julián. Does android dream with
intelligent agents? In Int. Symposium on Distributed Computing and Artificial
Intelligence 2008(DCAI2008), ISBN: 978-3-540-85862-1, pages 194–204, 2008.

2. J. Agüero, M. Rebollo, C. Carrascosa, and V. Julián. Agent design using Model
Driven Development In 7th Int. Conference on Practical Applications of Agents and
Multi-Agent Systems(PAAMS2009), ISBN 978-3-642-00486-5, pages 60–69, 2009.

3. E. Argente, V. Julian, and V. Botti. Mas modelling based on organizations. In 9th
Int. Workshop on Agent Oriented Software Engineering, pages 1–12, 2008.

4. E. Argente Villaplana. Gormas: Gúıas para el desarrollo de sistemas multiagente
abiertos basados en organizaciones. PhD thesis, UPV, Spain, 2008.

5. B. Bauer. Uml class diagrams revisited in the context of agent-based systems.
Proceedings Agent-Oriented Software Engineering, pages 101–118, 2002.

6. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, 2004.

7. C. Carrascosa, A. Giret, V. Julian, M. Rebollo, E. Argente, and V. Botti. Service
oriented multi-agent systems: An open architecture. In Autonomous Agents and
Multiagent Systems (AAMAS), pages 1–2, 2009.

8. R. Cervenka and I. Trencansky. The Agent Modeling Language – AML. Whitestein
Series in Software Agent Technologies and Autonomic Computing, 2007.

9. M. Cossentino and C. Potts. Passi: A process for specifying and implementing
multi-agent systems using uml. Technical report, University of Palermo, 2001.

10. N. Craido, E. Argente, V. Julián, and V. Botti. Designing virtual organizations.
In 7th Int. Conference on Practical Applications of Agents and Multi-Agent Sys-
tems(PAAMS2009), ISBN 978-3-642-00486-5, pages 440–449, 2009.

11. V. Dignum. A model for organizational interaction: based on agents, founded in
logic. Phd dissertation, Utrecht University, 2003.

12. M. Esteva, J. A. Rodŕıguez-Aguilar, C. Sierra, and J. L. Arcos. On the formal
specifications of electronic institutions. Lecture Notes in Computer Science, pages
126–147, 2001.

13. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: an organi-
zational view of multi-agent systems. Lecture Notes in Computer Science, pages
214–230, 2004.

14. I. Garca-Magario, J. Gómez-Sanz, and R. Fuentes. Ingenias development assisted
with model transformation by-example: A practical case. In 7th Int. Conf. on
Practical Applications of Agents and MultiAgent Systems, pages 40–49, 2009.

15. B. Gateau, O. Boissier, D. Khadraoui, and E. Dubois. Moiseinst: An organizational
model for specifying rights and duties of autonomous agents. In Third European
Workshop on Multi-Agent Systems (EUMAS2005), pages 484–485, 2005.

16. Z. Guessoum and T. Jarraya. Meta-models & model-driven architectures. In
Contribution to the AOSE TFG AgentLink3 meeting, 2005.

17. C. Hahn, C. Madrigal-Mora, and K. Fischer. A platform-independent meta-
model for multiagent systems. In Autonomous Agents and Multi-Agent Systems,
18(3):239–266, 2009.

18. N. Jennings and M. Wooldridge. Applications of intelligent agents. In Agent
Technology: Foundations, Applications, and Markets, pages 3–28, 1998.

19. A. Kleppe, J. B. Warmer, and W. Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Professional, 2003.

141

A Logic Related to Minimal Knowledge ?

David Pearce1 and Levan Uridia2

1 Universidad Politcnica de Madrid, Spain, david.pearce@upm.es
2 Universidad Rey Juan Carlos, uridia@ia.urjc.es

Abstract. We introduce and study a modal logic wK4F which is closely
related to the logic S4F that is important in the context of epistemic
logics for representing and reasoning about an agent’s knowledge. It is
obtained by adding the axiom F to the modal logic wK4, or dropping
from S4F the T axiom. We show that wK4F is sound and complete
with respect to the class of all minimal topological spaces i.e. topological
spaces with only three open sets. We characterize the rooted frames of the
logic wK4F by quadruples of natural numbers and in the same fashion
we give a characterization of p-morphic images of rooted wK4F frames.

1 Introduction

In epistemic logic and formalisms for representing an agent’s knowledge, the
paradigm of minimal knowledge has played an important role [1]. S4F is a re-
flexive normal modal logic first introduced and studied by Segerberg [2]. Later
its importance for knowledge representation and reasoning was discovered by
Truszczynski [3] and Schwarz and Truszczynski [4] who used it to investigate
the idea of minimal knowledge. They showed that the nonmonotonic version of
the logic S4F captures, under some intuitive encodings, several important ap-
proaches to knowledge representation and reasoning. They include disjunctive
logic programming under answer set semantics [5], (disjunctive) default logic [6];
[7], the logic of grounded knowledge [8], the logic of minimal belief and nega-
tion as failure [10] and the logic of minimal knowledge and belief [4]. Recently,
Truszczynski [11] and Cabalar [12] have revived the study of S4F in the context
of a general approach to default reasoning.

In terms of Kripke models, S4F is captured by frames consisting of two
clusters of points connecting by an accessibility relation:

W2

W1

r2

r1first floor

second floor

? Partially supported by the MCICINN projects TIN2006-15455-CO3 and CSD2007-
00022.

142

The points in each cluster, W1,W2, are reflexive. In this paper we study a logic
closely related to S4F , called wK4F . It is obtained by dropping from S4F the
T axiom and therefore the condition of reflexivity on points; so, while the basic
picture is the same, some points in W1,W2 are now irreflexive.

Since S4F and wK4F are closely related, many results about the latter
can be transferred to the former. In this paper we examine wK4F , prove a
completeness theorem and show that there is a close relation between wK4F
and the class of minimal topological spaces. We leave for future work the study
of the non-monotonic variant of wK4F as well as multi-modal versions that
may be used to represent common knowledge. However we point out that by a
standard translation technique there is a natural embedding of wK4F into S4F .
The embedding is obtained by so called splitting translation the main clause of
which is given by Sp(�φ) = �φ ∧ φ.

The paper is organized in the following way. In section 2 we present the syntax
and kripke semantics of the modal logic wK4F . We prove the completeness and
finite model property with respect to given semantics. In section 3 we give the
characterization of finite one-step, weak-transitive frames and their bounded
morphisms in terms of quadruples of natural numbers. In section 4 we prove the
main theorem of the paper, which states that wK4F is the complete and sound
logic of all minimal topological spaces. The last section gives the conclusion and
questions for future work.

2 The modal logic wK4F

Following Tarski’s suggestion to treat modality as the derivative of the topolog-
ical space, Esakia [13] introduced the modal logic wK4 as the modal logic of all
topological spaces, with the desired (derivative operator) interpretation of the
modal ♦. The modal logic wK4F is a normal modal logic obtained by adding
the axiom weak-F to the modal logic wK4. wK4F is a weaker logic then S4F
discussed in Segerberg [2]. In particular we get the modal logic S4F by adding
axiom T to the logic wK4F . Thus in this sense wK4F is of interest for S4F
also as some results are easily carried over and simplified from one to another.

2.1 syntax

Definition 2.11 The normal modal logic wK4F is defined in a standard modal
language with an infinite set of propositional letters p, q, r.. and connectives
∨,∧,�,¬,
• The axioms are all classical tautologies plus the following axioms:

�> ↔ >,
�(p ∧ q)↔ �p ∧�q,
�p ∧ p→ ��p,
p ∧ ♦(q ∧�¬p)→ �(q ∨ ♦q).

• The rules of inference are: Modus ponens, Substitution and Necessitation.

143

2.2 Kripke semantics

The Kripke semantics for the modal logic wK4F is provided by one-step, weak-
transitive Kripke frames. Below we give the definition of these frames.

Definition 2.21 We will say that a relation R ⊆ W ×W is weak-transitive if
(∀x, y, z)(xRy ∧ yRz ∧ x 6= z ⇒ xRz).

Of course every transitive relation is weakly-transitive also. Moreover it is
not difficult to see that weakly-transitive relations differ from transitive ones
just by the occurrence of irreflexive points in clusters. As one can see, the frame
in the picture is weakly transitive, but not transitive.

x y

pic. 1

The picture represents the diagramatic view
of kripke structure. Irreflexive points are col-
ored by grey and reflexive points are uncol-
ored. Arrows represent the relation between
two distinct points. So as we can see yRx
and xRy, but y 6 Ry, which contradicts tran-
sitivity, but not weak transitivity as y = y.

Definition 2.22 We will say that a relation R ⊆W ×W is a one-step relation
if the following two conditions are satisfied:

1)(∀x, y, z)((xRy ∧ yRz)⇒ (yRx ∨ zRy)),
2)(∀x, y, z)((xRy ∧ ¬(yRx) ∧ xRz)⇒ (zRx ∨ (zRy ∨ yRz))).

As the reader can see the first condition restricts the ”strict” height of the
frame to two. Where informally by ”strict” we mean that the steps are not
counted within a cluster. So for example we cannot have the situation on the
left hand side of the picture below, while we can have the situations in the middle
and on the right hand side.

The second condition is more complicated. Nevertheless it is not too hard to
verify that it restricts the ”strict” width of the frame to one. So again we cannot
have for example the figure on the right hand side, while the figures in the middle
and on the left are allowed. Here we cheat slightly as indeed the frame is not
allowed to fork as in the picture on the right, but condition 2) does not restrict
the reversed fork i.e. frame with two points on the bottom and one on the top.
So strict width does not effect points on the bottom.

144

For the sake of completeness we will just briefly recall the main definitions
in modal logic, like: Kripke frame, satisfaction and validity of modal formulas.

Definition 2.23 The pair (W,R), with W an arbitrary set (set of possible
worlds) and R ⊆W ×W is called a Kripke frame.

If we additionally have a third component V : Prop ×W → {0, 1}, then we
say that we have a Kripke model M = (W,R, V) (where Prop denotes the set of
all propositional letters).

The satisfaction and validity of a modal formula are defined inductively. We
just state the base and modal cases here.

Definition 2.24 For a given kripke model M = (W,R, V) the satisfaction of a
formula at a point w ∈W is defined inductively as follows: w
 p iff V (p, w) = 1,
the boolean cases are standard, w
 �φ iff (∀v)(wRv ⇒ v
 φ).

Note: From the definition of ♦, (♦φ ≡ ¬�¬φ) it follows that w
 ♦φ iff
(∃v)(wRv ∧ v
 φ).

So far we defined the modal logic wK4F syntactically and we gave the defini-
tion of one-step and weakly-transitive Kripke frames. The following two propo-
sitions link these two things. The proof uses standard modal logic completeness
techniques, so we will not enter into all the details.

Proposition 2.25 The modal logic wK4F is sound w.r.t. the class of all one-
step and weakly-transitive Kripke frames.

Proof. We give the proof only for the fourth axiom of the modal logic wK4F .
The proofs for other axioms are analogous. The reader may also consult [13].

Take an arbitrary, weakly-transitive, one-step frame (W,R). Take an arbi-
trary valuation V and assume at some point w ∈ W that w
 p ∧ ♦(q ∧ �¬p).
By the definition of satisfaction this implies that w
 p and there exists w′ such
that wRw′, w′
 q and it is not the case that w′Rw as much as w′
 �¬p. Now
take an arbitrary v such that wRv. By the second condition in the definition
of one-step relation we have that either vRw or vRw′ ∧ w′Rv. If v = w′ we
immediately have that v
 q since w′
 q. In case v 6= w′ we have two subcases
vRw′ ∧ w′Rv or vRw ∧ wRv. In both cases by weak-transitivity of the relation
R we have at least vRw′, which implies that v
 ♦q and hence w
 �(q ∨ ♦q).

Proposition 2.26 The modal logic wK4F is complete w.r.t. the class of all
finite, one-step and weakly-transitive Kripke frames.

Proof. We do not give the details here as far as the proof uses standard tech-
niques given in [13]. First we take the canonical model for wK4F and then apply
the minimal filtration to it.

145

3 The class of finite, rooted, weakly-transitive and
one-step Kripke frames and their bounded morphisms.

We have seen that the class of finite, weakly-transitive and one-step Kripke
frames fully captures the modal logic wK4F . This class can be reduced to a
smaller class of frames which are rooted. In this section we characterise finite,
rooted, weakly-transitive and one-step Kripke frames and their bounded mor-
phisms in terms of quadruples of natural numbers.

Definition 3.07 The upper cone of a set A ⊆ W in a Kripke frame (W,R) is
defined as a set R(A) =

⋃
{y : x ∈ A&xRy}.

Definition 3.08 A Kripke frame (W,R) is called rooted if there exists a point
w ∈W such that the upper cone R({w}) = W ; w is called the root of the frame.

Note 1. The root is not necessarily unique. For example on the first picture both
x and y are roots.

Let N4 be the set of all quadruples of natural numbers and let N 4 =
N4 − {(n,m, 0, 0)|n,m ∈ N}. The following theorem states that the set of fi-
nite, rooted, one-step, weakly-transitive frames can be viewed as the set N 4.
Let K denote the class of all rooted, finite, one-step, weakly-transitive frames
considered up to isomorphism.

Theorem 3.09 There is a one-to-one correspondence between the set K and the
set N 4.

Proof. We know that any one-step frame has ”strict” width one and ”strict”
height less than or equal to two (We didn’t give the formal definition of ”strict”
height and width, but it should be clear from the intuitive explanation after the
definitions 2.22 and 2.21 what we mean by this). If additionally we have that the
frame is rooted, the case where width is greater than one at the bottom is also
restricted. It is not difficult to verify that any such frame (W,R) is of the form
(W1,W2), where W1 ∪W2 = W , W1 ∩W2 = ∅ and (∀u ∈ W1,∀v ∈ W2)(uRv).
Besides because of the weak-transitivity, we have that (∀u, u′ ∈ W1)(u 6= u′ ⇒
uRu′) and the same for every two points v, v′ ∈ W2. We will call W1 the first
floor and W2 the second floor of the frame (W,R). Pictorially any rooted,
weak-transitive and one-step Kripke frame can be represented as in the picture
below.

W2

W1

i2 r2

i1 r1first floor

second floor

Note 2. It is possible that W1 or W2 is equal to ∅ i.e. the frame has only one
floor. In this case we treat the only floor of the frame as the second floor.

146

Now let us describe how to construct the function from K to N 4. With every
frame (W,R) ∈ N 4 we associate the quadruple (i1, r1, i2, r2), where i1 is the
number of irreflexive points in W1, r1 is the number of reflexive points in W1, i2
is the number of irreflexive points in W2 and r2 is the number of reflexive points
in W2. We will call the quadruple (i1, r1, i2, r2) the characteriser of the frame
(W,R). In case the frame (W,R) has only one floor, by note 2 above it is treated
as the frame (∅,W). Hence it’s characteriser has the form (0, 0, i, r). Now it is
clear that the correspondence described above defines a function from the set K
to the set N 4. Let us denote this function by Ch.

claim 1: Ch is injective. Take any two distinct finite, rooted, weakly-transitive,
one-step Kripke frames (W,R) and (W ′, R′). That they are distinct in K means
that they are non-isomorphic i.e. either |W | 6= |W ′| or R 6' R′. In the first case
it is immediate that Ch(W,R) 6= Ch(W ′, R′) since |W | = i1 + i2 + r1 + r2. In
the second case we have three subcases:

1) |W1| 6= |W ′1|. In this subcase i1 + r1 6= i′1 + r′1 and hence Ch(W,R) 6=
Ch(W ′, R′).

2) The number of reflexive (irreflexive) points in |W1| differs from the num-
ber of reflexive (irreflexive) points in |W ′1|. In this subcase i1 6= i′1 and again
Ch(W,R) 6= Ch(W ′, R′).

3) The number of reflexive (irreflexive) points in |W2| differs from the number
of reflexive (irreflexive) points in |W ′2|. This case is analogous to the previous.

It is straightforward to see that if none of these cases above occur i.e. |W | =
|W ′|, |W1| = |W ′1|, |{w|w ∈ W1 ∧ wRw}| = |{w′|w′ ∈ W ′1 ∧ w′R′w′}| and
|{w|w ∈ W2 ∧ wRw}| = |{w′|w′ ∈ W2 ∧ w′R′w′}| then (W,R) is isomorphic to
(W ′R′) and hence (W,R) = (W ′, R′) in K.

claim 2: Ch is surjective. Take any quadruple (i1, r1, i2, r2) ∈ N 4. Let us show
that the pre-image Ch−1((i1, r1, i2, r2)) is not empty. Take the frame (W,R) =
(W1,W2), where |W1| = i1 + r1, |W2| = i2 + r2, W1 contains i1 irreflexive and
r1 reflexive points and |W2| contains i2 irreflexive and r2 reflexive points. Then
by the definition of Ch, we have that Ch(W,R) = (i1, r1, i2, r2).

Definition 3.010 The function f between two frames (W,R) and (W ′, R′) is
called a bounded morphism if the following two conditions are satisfied:
(1)wRv ⇒ f(w)R′f(v),
(2) f(w)R′v′ ⇒ (∃v ∈W)(wRv ∧ f(v) = v′).

The bijection given in theorem 3.09 can be extended to bounded morphisms.
In the following theorems we characterise the bounded morphisms between two
finite, rooted, weakly-transitive, one-step frames in terms of conditions on the
quadruples of natural numbers. We split the proof into three different theorems
to make it much more readable; besides each case is interesting on its own. In the
first theorem we will give the characterisation for frames with the characterisers
(0, 0, i, r) i.e. for frames with only one floor, then we will give the characterisa-
tions for frames where one has two floors and the second is one floor frame and
the third theorem will give the condition for frames where both have two floors.
We will omit zeroes in the quadruple (0, 0, i, r) and just write it as (i, r).

147

Theorem 3.011 The finite, rooted, weakly-transitive, one-step frame (W ′, R′)
with the characteriser (i′, r′) is a bounded morphic image of the finite, rooted,
weakly-transitive, one-step frame (W,R) with the characteriser (i, r) iff the fol-
lowing conditions are satisfied:

r′ = 0⇒ (i, r) = (i′, r′),
i ≥ i′,
2× (r′ − r) ≤ i− i′.

Note that the operation minus is defined within the natural numbers i.e. n−m = 0
if m > n.

Proof. For the left to right direction assume f : (W,R) � (W ′, R′). This means
that i+ r ≥ i′ + r′, sincef is a surjection. First let us state some general obser-
vations which will help in proving the theorem.

• for every irreflexive point w′ ∈ W ′, we have that f−1(w′) is one
irreflexive point. Assume not. Then either f−1(w′) contains some reflexive
point w ∈ W , or it contains at least two irreflexive points u, v ∈ W . In the first
case we have wRw but not f(w)R′f(w), so we obtain a contradiction. In the
second case we have uRv∧vRu but not f(v)R′f(u) and again this contradicts f
being a bounded morphism. Now we are ready to begin the proof of the theorem.
Let us check that all conditions are satisfied.

case 1 Assume r′ = 0 but (i, r) 6= (i′, r′). So either r 6= 0 or i 6= i′. In both
cases we get a contradiction by the above observation, as reflexive points cannot
be mapped to irreflexive ones and also two irreflexive points can not be mapped
to one irreflexive point.

case 2 Assume i < i′. Then there is at least one point v′ ∈ W ′ such that
f−1(v′) = ∅. The reason is that there are not enough irreflexive points in W to
cover all irreflexive points in W ′. And we know (by above remarks) we cannot
map reflexive points to irreflexive ones. So we get a contradiction.

case 3 Assume 2 × (r′ − r) > i − i′. This means that r′ > r. So there are
r′− r reflexive points in W ′ with the pre-image not containing a reflexive point.
But then there is at least one reflexive point w′ ∈ W ′ such that f−1(w′) con-
tains less than 2 irreflexive points. This is because by assumption there are not
enough pairs of irreflexive points in W for all reflexive points with pre-image
not containing reflexive ones. But this gives a contradiction because either f is
not surjective (in case f−1(w′) = ∅) or f is not a bounded morphism (in case
f−1(w′) = v with v irreflexive).

Now let us prove the converse direction. Let us enumerate points in W in the
following way: Let w1, ...wr be the reflexive points and v1, ...vi irreflexive points.
Let us use the same enumeration for points in W ′ with the difference that we
add ′ to every point. So for example w′1 is the reflexive and v′2 is the irreflexive
point in W ′. In case r′ = 0 we know that (i, r) = (i′, r′) and we can take f to
be bijection mapping wi to w′i.

148

In case r′ 6= 0 we distinguish two subcases.

case 1 When r > r′. Let us define f : W →W ′ in the following way:

f(vj) = v′j for j ∈ {1, .., i′1},
f(wj) = w′j for j ∈ {1, .., r′1 − 1},
f(vi′+1) = f(vi′+2) = ... = f(vi) = f(wr′+1) = .. = f(wr) = w′r.

case 2 When r ≤ r′. Let us define f : W →W ′ in the following way:

f(vj) = v′j for j ∈ {1, .., i′},
f(wj) = w′j for j ∈ {1, .., r},
f(vi′+2k−1) = f(vi′+2k) = w′r+k for k ∈ {1, .., r′ − r − 1},
f(vi′+2(r′−r)−1) = f(vi′+2(r′−r)) = .. = f(vi) = w′r.

In other words we send each reflexive point wj ∈ W to the reflexive point
w′j ∈ W ′ and each irreflexive point vj ∈ W to the irreflexive point v′j ∈ W ′.
Inasmuch as we have that i ≥ i′ and r ≤ r′, there may be left some irreflexive
points in W on which we have not yet defined f and also some reflexive points
in W ′ which have no pre-image, so we associate to every pair of such irreflexive
points one reflexive point which has no pre-image. We continue this process until
we are left with only one reflexive point without pre-image (we know this exists
by the condition r′ 6= 0) and associate to it all the remaining irreflexive points on
which f was not defined. The condition 2× (r−r′) ≤ i′− i guarantees that there
are at least two such irreflexive points left. It is easy to check that f defined in
the following way is indeed a bounded morphism.

Now let us consider the case, where the first frame has two floors, while the
second is a one floor frame. Note that the only difference from the conditions
in 3.011 is that we require that the second frame contains at least one reflexive
point. This is because we want to map all first floor points of the first frame to
this particular reflexive point.

Theorem 3.012 The finite, rooted, weakly-transitive, one-step frame (W ′, R′)
with the characteriser (i′, r′) is a bounded morphic image of the finite, rooted,
weak-transitive, one-step frame (W,R) with the characteriser (i1, r1, i2, r2), where
i1 + r1 > 0 and i2 + r2 > 0 iff the following conditions are satisfied:

r′ 6= 0,
i2 ≥ i′,
2× (r′ − r2) ≤ i2 − i′.

Proof. Assume r′ = 0. This means that all points in (W ′, R′) are irreflexive.
Now as (W,R) has two floors we can represent it as a pair (W1,W2) where both
sets are non-empty. This implies that there are at least two points u ∈ W1 and
v ∈ W2, such that f(u) ∈ W ′ and f(v) ∈ W ′. Since (W ′, R′) is a cluster, we
have that f(u)R′f(v) and f(v)R′f(u). But this contradicts the property that f
is a bounded morphism. This is because not Ru while f(v)R′f(u) and as f(u)

149

is irreflexive there does not exist a point w ∈ W , with u 6= w and f(w) = f(v)
(see the first observation in the proof of lemma 3.011).

Assume i2 < i′. Again by first observation in the proof of lemma 3.011 we
know that the pre-image of the irreflexive point cannot be reflexive. This means
that there exists a point u′ ∈W ′, such that, u′ is irreflexive and f−1(u′)∩W2 =
∅. Different from the analogous case in the proof of lemma 3.011 the possibility
arises that some irreflexive point u ∈W1 is mapped to the point u′. Let us show
that this cannot happen. Assume u ∈ W1 and f(u) = u′. As u is a first floor
point, there exists some v ∈ W2 with uRv. As f is bounded morphism we have
that f(u)R′f(v). As (W ′, R′) is a cluster we have that f(v)R′f(u) as well. Now
we get a contradiction as there is no successor of v which is mapped to f(u) = u′.

Assume the third condition does not hold. This means that 2 × (r′ − r2) >
i2 − i′. In this case we have that there is at least one point u′ ∈ W ′ such that
u′ is reflexive and f−1(u′) ∩W2 is either the empty set or it contains only one
point u with u 6 Ru. This gives a contradiction, since u′R′u′ while there is no
successor v of u with f(u) = u′.

For the converse direction we construct f : W � W in the following way:
f|W1 = v′, where v′ is an arbitrary reflexive point in W ′ (we know that such a
point exists from the first condition of the lema). f|W2 is constructed in exact
analogy with the construction in 3.011.

And at last we can give the characterisation for the case where both frames
have two floors.

Theorem 3.013 The finite, rooted, weakly-transitive, one step-frame (W ′, R′)
with the characteriser (i′1, r

′
1, i
′
2, r
′
2), where i′1 + r′1 > 0 and i′2 + r′2 > 0 is a

bounded morphic image of the finite, rooted, weakly-transitive, one step-frame
(W,R) with the characterisers (i1, r1, i2, r2), where i1 + r1 > 0 and i2 + r2 > 0
iff the following hold:

r′1 = 0⇒ (i1, r1) = (i′1, r
′
1),

r′2 = 0⇒ (i2, r2) = (i′2, r
′
2),

i1 ≥ i′1,
i2 ≥ i′2,
2× (r′1 − r1) ≤ i1 − i′1,
2× (r′2 − r2) ≤ i2 − i′2.

The operation minus is defined within the natural numbers i.e. n−m = 0 if
m > n.

Proof. The theorem follows from the previous theorem and the following obser-
vation:
• If (W ′, R′) is a two floor frame i.e. i′1 + r′1 > 0 and i′2 + r′2 > 0

then (W,R) is also two floor frame. Assume not. Then there exist points
w, v ∈W such that vRw and f(v) 6 R′f(w) as f(v) is a second floor point while
f(w) is a first floor point.

150

• points from the second floor cannot be mapped to points on the
first floor. For the contradiction assume that the point f(w) is a first floor
point while w is a second floor point. This means that there exists v′ ∈W ′ such
that f(w)R′v′ and not v′R′f(w). Then as f is a bounded morphism there exists
v ∈W such that wRv and f(v) = v′. As w is a second floor point, wRv ⇔ vRw
and we get a contradiction as we have vRw while not f(v)R′f(w).
• points from the first floor cannot be mapped to the points on the

second floor. For the contradiction assume that the point f(w) is a second floor
point while w is a first floor point. Now either there is another point w1 ∈ W
on the first floor with f(w1) also on the first floor or all points including w from
the first floor of W are mapped to the second floor of W ′. In the first case wRw1

and not f(w)Rf(w1) so we get a contradiction. In the second case we get that f
is not surjective inasmuch as both frames were supposed to be two floor frames
so there is at least one point on the first floor in W ′ left with empty pre-image.
This is because by above observation second floor points cannot be mapped to
first floor points.

The converse direction is proved just by repetition of the case for one floor
frames for the other floor.

4 Connection with minimal topological spaces

In this section we show that that the modal logic wK4F is the modal logic of
minimal topological spaces. A topological space is minimal if it has only three
open sets. It is well known that there is a bijection between Alexandrof spaces
and weakly transitive, irreflexive Kripke frames. It is also well known that this
bijection preserves modal formulas. In this section we show that the special case
of this correspondence for minimal topological spaces gives one step, irreflexive
and weakly transitive relations as a counterpart. As a corollary it follows that
the logic wK4F is sound and complete w.r.t. the class of minimal topological
spaces.

Theorem 4.014 There is a one-to-one correspondence between the class of ir-
reflexive, weakly-transitive, finite, rooted, one-step Kripke frames and the class
of all finite minimal topological spaces.

Proof. Assume (W,R) is a finite, rooted, weakly transitive and one step rela-
tional structure and besides R is irreflexive. (Note that as the frame is irreflexive
its characteriser has the form (i1, 0, i2, 0), where i1 + i2 = |W |.) Let W1 be the
first floor and W2 the second floor of the frame, then the topology we construct
is {W,∅,W2}. It is immediate that the space (W,ΩR), where ΩR = {W,∅,W2},
is a minimal topological space.

Let us show that the correspondence we described is injective. Take two
arbitrary distinct irreflexive, finite, rooted, weakly transitive frames (W,R) and
(W ′, R′). As they are distinct, either W 6= W ′ or R 6= R′. In the first case it is
immediate that (W,ΩR) 6= (W ′, ΩR′). In the second case as both R and R′ are
irreflexive the second floors are not the same, so W2 6= W ′2 and hence ΩR 6= ΩR′ .

151

For surjectivity take an arbitrary minimal topological space (W,Ω), where
Ω = {W,∅,W0} for some subset W0 ⊆ W . Take the frame (W,R), where R =
(W0×W0−{(w,w)|w ∈W0})∪(−W0×−W0−{(w,w)|w ∈ −W0})∪{(w,w′)|w ∈
−W0, w

′ ∈ W0}. In words every two distinct points are related in W0 by R and
the same in the complement −W0 = W −W0, besides every point from the −W0

is related to every point from W0. what we get is the rooted two step relation
which is weakly transitive, with the second floor equal to W0. As we didn’t allow
wRw for any point w ∈W , the relation R is also irreflexive.

Now we will give the definition of a derived set (or set of accumulation points)
of a set in a topological space. This definition is needed to give the semantics of
modal formulas in arbitrary topological spaces.

Definition 4.015 Given a topological space (W,Ω) and a set A ⊆ W we will
say that w ∈ W is an accumulation point of A if for every neighborhood Uw of
w the following holds: Uw ∩A− {w} 6= ∅. The set of all accumulation points of
A will be denoted by der(A) and will be called the derived set of A.

Derived sets serve to give the semantics of the diamond modality in an arbi-
trary topological space. Below we give the definition of satisfaction in a derived
set topological semantics of modal logic.

Definition 4.016 A topological model (W,Ω, V) is a triple, where (W,Ω) is a
topological space and V : Prop→ P (W) is a valuation function. Satisfaction of
a modal formula in a topological model (W,Ω, V) at a point w ∈ W is defined
by:

w
 p iff w ∈ V (p),
w
 ♦p iff w ∈ der(V (p)),

boolean cases are standard. Validity in a frame and class of frames of a formula
is defined in a standard way.

Fact 4.017 Let (W,R) be a finite, weakly transitive and irreflexive frame and
let (W,ΩR) be its Allexandrof space. For every modal formula α the following
holds:

(W,R)
 α iff (W,ΩR)
 α.

Note that here
 on the left hand side denotes the validity in Kripke frames while
on the right hand side it denotes the validity in topological frames in derived set
semantics.

Theorem 4.018 The modal logic wK4F is sound and complete with respect to
the class of all minimal topological spaces.

Proof. Proof. Soundness can be checked directly so we do not prove it here. For
completeness assume 0 φ. By theorem 2.26 there exists a finite, one-step, weak-
transitive frame (W,R) which falsifies φ. Assume that Ch(W,R) = (i1, r1, i2, r2).

152

By theorems 3.011, 3.012 and 3.013 there exists a one-step, weak-transitive frame
(W ′, R′) such that R′ is irreflexive and (W,R) is p-morphic image of (W ′, R′).
For example such a frame could be (W ′, R′) = Ch−1(i1 +2× r1, 0, i2 +2× r2, 0).
The surjection immediately yelds that (W ′, R′) 1 φ. Now the result immediately
follows from theorem 4.014, and the fact 4.017.

5 Conclusions

We have characterised the logic wK4F and established its relation to minimal
topological spaces. The logic is closely related to the model logic S4F that
has been shown to capture several important kinds of knowledge representation
systems and, in its non-monotonic version, can be viewed as a logic of minimal
knowledge. In future work we plan to study the non-monotonic version of wK4F
and its relation to S4F in more detail. It may also be interesting to consider
multi-model versions and their suitability for modeling common knowledge.

References

1. Fagin, R., Halpern J.Y., Moses Y., and Vardi M.Y. Reasoning about Knowledge.
Published by MIT Press, 1995.

2. Segerberg, K. An Essay in Classical Modal Logic. volume 13 of Filosofiska Studier.
Uppsala: Filosofiska Foreningen och Filosofiska Institutionen vid Uppsala Univer-
sitet.

3. Truszczynski, M. Embedding Default Logic into Modal Nonmonotonic Logics.
LPNMR 1991, 151-165.

4. Truszczynski, M.,Schwarz G. Minimal Knowledge Problem: A New Approach.
Artif. Intell. 67(1), 113-141, 1994.

5. Gelfond M., Lifschitz V. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, vol. 9, 365-385, 1991.

6. Reiter R. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.
7. M. Gelfond, V. Lifschitz, H. Przy-musinska, and M. Truszcynski. Disjunctive de-

faults. In Second International Conference on Principles of Knowledge Represen-
tation and Reasoning, KR ’91, Cambridge, MA, 1991.

8. Lin F., Shoham Y. Epistemic semantics for fixed-points nonmonotonic logics. In
Rohit Parikh, editor. Theoretical Aspects of Reasoning about Knowledge: Proc, of
the Third Conf, pages 111-120, 1990.

9. Lin F., Shoham Y. Epistemic semantics for fixed-points nonmonotonic logics. In
Rohit Parikh, editor. Theoretical Aspects of Reasoning about Knowledge: Proc, of
the Third Conf, pages 111-120, 1990.

10. Lifschitz V. Minimal Belief and Negation as Failure. Artificial Intelligence, vol.
70, 53-72, 1994.

11. Truszczynski, M. The Modal Logic S4F , the Default Logic, and the Logic Here-
and-There. In Proceedings of the 22nd National Conference on Artificial Intelli-
gence (AAAI 2007). AAAI Press, 2007.

12. Cabalar, P., and Lorenzo, D. New Insights on the Intuitionistic Interpretation of
Default Logic. In R. López de Mántaras and L. Saitta (eds), ECAI 2004, IOS Press
2004, 798–802.

13. Esakia, L. Weak transitivity - restitution. Logical Studies 2001, vol 8, 244-255.

153

Argumentation-based Distributed Induction

Santiago Ontañón1 and Enric Plaza2

1 CCL, Cognitive Computing Lab,
Georgia Institute of Technology, Atlanta, GA 303322/0280,

santi@cc.gatech.edu
2 IIIA-CSIC, Artificial Intelligence Research Institute
Campus UAB, 08193 Bellaterra, Catalonia (Spain),

enric@iiia.csic.es

Abstract. Argumentation can be used by a group of agents to discuss
about the validity of hypotheses. In this paper we propose an argumentation-
based framework for distributed induction, where two agents learn sep-
arately from individual training sets, and then engage in an argumen-
tation process in order to converge to a common hypothesis about the
data. The result is a distributed induction strategy in which the agents
minimize the set of examples that they have to share in order to converge
to a common hypothesis. The proposed strategy works for any induction
algorithm which expresses the hypothesis as a disjunction of rules. We
show that the strategy converges to a hypothesis indistinguishable in
training set accuracy from that learned by a centralized strategy.

Keywords: Distributed Induction, Argumentation, Classification.

1 Introduction

Distributed induction is the problem of learning a hypothesis or model (such
as a set of rules, or a decision true) from data when the data is distributed
among different sources. Some real-life domains involve such forms of distributed
data, where data cannot be centralized due to one or several of the following
reasons: storage size, bandwidth, privacy, or management issues. Storage size
and bandwidth are less and less a problem nowadays, however in large data sets
they might still be an issue. In this paper we will propose a framework in which
agents will use a limited form of argumentation in order to arrive to a model
of all the data while minimizing the communication, and specially minimizing
the amount of examples exchanged, and ensuring that the hypothesis found is
exactly as good as if centralized induction with all the data was used.

Argumentation frameworks can be used in multi-agent systems for different
purposes such as joint deliberation, persuasion, negotiation, and conflict reso-
lution [12]. In a previous work [8] we have shown how argumentation can be
used by agents that use lazy learning techniques. In this paper we will intro-
duce a framework where agents use argumentation to argue about hypotheses.
In this framework, agents will generate hypotheses locally, and then argue about

154

them until both agents agree. During the argumentation process, agents might
exchange a small number of examples.

Formalizing agent communication as argumentation allows the distributed
induction strategies to abstract away from the induction algorithm used by the
agents. Thus, all the strategies presented in this paper can work with any induc-
tion algorithm that satisfies certain requirements. In particular, we require that
the hypotheses learnt can be expressed as a disjunction of independent rules.
So, for instance, algorithms such as FOIL [11], or ID3 [10] (since a tree can be
easily flattened into a set of rules), or other rule learners can be used. Algorithms
such as CN2 [4] that learn an ordered set of rules also fit in this framework, but
rules require some preprocessing to remove the dependencies that the ordering
introduces (as elaborated in Section 2). Moreover, the framework is also agnostic
in regards to the representation formalism, in the experiments section we will
show results with both relational as well as flat feature-vector representations.

The remainder of this paper is organized as follows. Section 2 presents our
multi-agent learning framework, including our formalism for argumentation. Sec-
tion 3 presents two strategies for distributed induction based on argumentation,
and Section 4 empirically evaluates them, comparing them to other distributed
induction strategies in the literature. Section 5 provides a quick overview of the
related work, and finally the paper closes with conclusions and future work.

2 A Framework for Multi-Agent Learning

Let A1 and A2 be two agents who are completely autonomous and have access
only to their individual and private training sets T1, and T2. A training set
Ti = {e1, ..., en} is a collection of examples. Agents are able to individually
apply induction in order to learn a hypothesis (or model) of the data and solve
problems using the induced model, but they can also collaborate with other
agents for both induction and problem solving. In the rest of this paper we will
use the terms model and hypothesis indistinguishably.

2.1 Examples, Hypotheses and Rules

Examples, hypotheses and rules are the three key concepts of the learning frame-
work proposed in this paper.

We will restrict ourselves to analytical tasks, i.e. tasks, such as classification,
where the solution of a problem is achieved by selecting a solution class from
an enumerated set of solution classes. In the following we will note the set of all
the solution classes by S = {S1, ..., SK}. Therefore, an example e = 〈P, S〉 is a
pair containing a problem P and a solution class S ∈ S. In the remainder of this
paper, we will use the dot notation to refer to elements inside a tuple; e.g., to
refer to the solution class of an example e, we will write e.S.

Our framework is restricted to hypotheses H that can be represented as a
disjunctive set of rules: H = {r1, ..., rm}. A rule r = 〈H,S〉 is composed of
a body r.H, and a solution, r.S. When a problem P matches the body r.H

155

TL
redgreen

CC Wait

yesno

Cross Wait

Fig. 1. Conversion of a decision tree to a set of rules.

CCN2 t t

A
CCN2 output:

A
B

default: C

Fig. 2. Postprocessing of the rules generated by CN2 in order to remove the order
dependencies, and thus fit in our argumentation framework.

of a particular rule r, the rule predicts that the solution to the problem P is
r.S. When a problem matches the body of a rule r.H, we say that the body
subsumes the problem: r.H v P . A large number of induction algorithms can
generate hypothesis that can be represented using this formalism. In particular,
in our experimental section we have selected to use INDIE [1], which is a heuristic
relational inductive learner, ID3, and CN2, but other algorithms could have been
used such as AQR [6], or FOIL [11].

The framework introduced in this paper does not specify which induction
algorithm or representation formalism agents use. In principle, any induction
algorithm could be used, and any data representation (propositional, relational,
or any other) could be used. The restriction on the hypothesis representation is
imposed because agents will argue about each of these rules independently.

To illustrate how different induction algorithms can represent their hypothe-
sis using our formalism, Figure 1 shows the equivalence between a decision tree
and a set of rules. In the example, a simple decision tree with only two features
(TL and CC) is shown, and three rules equivalent to the tree are constructed.

Further, as we mentioned earlier, when using algorithms such as CN2, that
produce an ordered set of rules, the rules produced have to be postprocessed in
order to remove the order relationship among them. The left hand side of Figure
2 shows a set of three rules generated by CN2 (plus the default class assigned by

156

CN2 when no rule covers a problem). The center of Figure 2 shows a graphical
representation of the way these rules partition the problem space among the three
different solution classes A, B, and C (the three circles represent the subset of
problems that are subsumed by each of the three conditions in the body of the
rules: c1, c2 and c3). Notice for instance that rule r2 states that all the problems
that are subsumed by c2 have solution B. However, r2 is only considered if r1 is
not fired. Therefore, that rule is postprocessed and converted into rule r′2, which
states that all examples that are subsumed by c2, but not by c1 have solution
B. In general, a rule is postprocessed by adding the negations of all the previous
rules to its body. Finally, the default solution computed by CN2 is converted
also into a rule containing the conjunction of the negation of the body of all the
rules generated by CN2. The result of this process is a set of independent rules,
which can be used in our framework.

As illustrated by the previous two examples, a large collection of induction
algorithms can represent their hypotheses in the form of rules.

2.2 Arguments and Counterarguments

In order to use argumentation, two elements must be defined: the argument
language (that defines the set of arguments that can be generated), and a pref-
erence relation (that determines which arguments are stronger than others). In
our framework, the argument language is composed of two kinds of arguments:

– A rule argument α = 〈A, r〉, is an argument generated by an agent α.A
stating that the rule α.r is true.

– A counterexample argument β = 〈A, e, α〉, is an argument generated by an
agent β.A stating that a particular argument β.α is incorrect, because the
example β.e is a counterexample of such argument.

To define the relation among arguments, we have to take into account all
the possible different situations that can arise while comparing two arguments
consisting of rules or examples. Figure 3 shows all these situations. The top
row of Figure 3 considers all the possible comparisons of two rule arguments,
r1 and r2 such that r1.S = r2.S. Only three situations might arise: a) r1 and
r2 are totally unrelated, b) the sets of problems covered by r1 and r2 have a
non empty intersection, and c) one is more general than the other. The middle
row of Figure 3 considers all the possible comparisons of two rule arguments, r1
and r2 but this time r1.S 6= r2.S. The same three situations arise (unrelated,
non-empty intersection, and one more general than another). Notice that in the
non-empty intersection situation we also require that no rule is more general
than another (we don’t include the extra restriction in the figure for clarity).
Thus, when comparing any two rule arguments, only 6 situations might arise.
Situations a), b), c) and d) represent rule arguments that are compatible, whereas
situations e) and f) represent conflicting arguments. Moreover situation c) is a
special situation and we say that r1 subsumes r2.

157

a) b) c)

d) e) f)

g) h) i) j)

Fig. 3. All the possible different situations that can arise while comparing two argu-
ments consisting of rules or counterexamples.

The third row of Figure 3 shows all the possible situations that arise when
comparing a rule argument with a counterexample argument: g) both the coun-
terexample and the rule support the same class (in which case the counterex-
ample is not such, and both arguments endorse each other), h) in which the
counterexample, although supporting the same class, is not covered by the rule,
i) where the counterexample supports a different solution than the rule, and the
rule covers the counterexample, j) in which the counterexample, although sup-
porting a different class, is not covered by the rule. In our framework, we assume
that a counterexample cannot be defeated, and thus only the rule arguments can
be defeated. Out of the four situations, the counterexample argument only de-
feats the rule in situation i), in all the other situations, they are compatible. The
counterexample in situation i) is called a defeating counterexample of r1.

Using these two types of arguments and the compatible, conflicting, subsumed,
and defeated relations among arguments, next section introduces two different
distributed induction strategies.

3 Argumentation-based Distributed Induction

In this section we will present two strategies, ADI (Argumentation-based Dis-
tributed Induction) and RADI (Reduced Argumentation-based Distributed In-
duction), based on argumentation for distributed induction. Since the strategies
involve communication among agents, they will be presented as communication

158

protocols. Both strategies are based on the same idea, and share the same high
level structure.

1. A1 and A2 use induction locally with their respective training sets, T1 and
T2, and obtain initial hypotheses H1 and H2 respectively.

2. A1 and A2 argue about H1, obtaining a new H∗1 derived from H1 that is
consistent with both A1 and A2’s data.

3. A1 and A2 argue about H2, obtaining a new H∗2 derived from H2 that is
consistent with both A1 and A2’s data.

4. A1 and A2 obtain a final hypothesis H∗ = H∗1 ∪ H∗2 . Remove all the rules
that are subsumed by any other rule (situation c) in Figure 3).

Basically, the intuitive idea is the following. In step 1 both agents perform
induction individually. Then in steps 2 and 3 (which are symmetric, and can
actually be performed in parallel), the agents use argumentation to refine the in-
dividually obtained hypotheses and make them compatible with the data known
by both agents. Finally, when both hypothesis are compatible, a final global hy-
pothesis H∗ is obtained by just computing the union of all the rules learned by
both agents, removing all the rules that are subsumed by some other rule (since
those would be redundant). Notice that, unless the induction algorithms are not
able to learn rules with 100% accuracy in the training set, there should not be
any conflicting rules in H∗ (at least not conflicting in the classification of the
examples of the training set). However, there might be rules that conflict in the
classification of problems outside of the training set. If the learning algorithm
computes confidence levels for rules, those can be used to arbitrate, otherwise
random arbitration can be used. ADI and RADI only differ in the way steps 2
and 3 are performed.

Step 2 in ADI works as follows

1. Let H0
1 = H1, and t = 0.

2. If there is any rule r ∈ Ht
1 that still has not been accepted by A2, then send

the argument α = 〈A1, r〉 to A2. Otherwise, if all the rules in Ht
1 have been

accepted the protocol goes to step 5.
3. A2 analyzes α.r and tries to find a counterexample that defeats it (situation

i) in Figure 3). If A2 can find such counterexample e, then A2 sends the
counterargument β = 〈A2, e, α〉 to A1. Otherwise, r is accepted and the
protocol goes to step 2 again.

4. When A1 receives a counterexample β, it appends β.e to its training set T1,
and updates its hypothesis. If the induction algorithm of A1 is not incremen-
tal, then A1 can simply use induction from scratch with the new extended
set of examples that includes e. A1 updates the hypothesis obtaining Ht+1

1 .
The protocol goes to step 2 again, and t = t+ 1.

5. The protocol returns Ht
1.

The main idea is that A1 will generate hypotheses according to his local
training set T1, and A2 evaluates them, trying to generate counterarguments to
the hypotheses that do not agree with his own local data T2. Step 3 in ADI is

159

just the reversed, where it is A2 that generates hypotheses, and A1 that tries
to rebut them with counterexamples. One characteristic of ADI is that at each
step, only one counterexample is exchanged.

If the induction algorithm of A1 and A2 was capable of achieving 100%
accuracy if it was given the complete collection of examples that both A1 and
A2 have, then the protocol always ends up converging to a hypothesis that also
has 100% accuracy in both T1 and T2. Moreover, in order to prevent infinite
iterations in the case of noisy data, the agents are not allowed to send the same
counterexample twice during the protocol. This ensures that the protocol will
eventually end.

The second strategy, RADI, improves over ADI in trying to minimize the
number of times the hypothesis has to be updated while keeping the number of
counterexamples exchanged low. Step 2 in RADI works as follows:

1. Let H0
1 = H1, and t = 0.

2. Let Rt ⊆ Ht
1 be the set of rules in the hypothesis of A1 not yet accepted

by A2. If such set is empty, then the protocol goes to step 5. Otherwise, A1

sends the set of arguments Rt = {α = 〈A1, r〉|r ∈ Rt} to A2.
3. For each α ∈ Rt, A2 computes the set of examples Cα in its training set that

are counterexamples that defeat α.r: Cα = {e ∈ T2|α.r.H v e.P ∧ α.r.S 6=
e.S}. For each argument α ∈ Rt such that Cα = ∅, α.r is accepted by A2.
Let It ⊆ Rt be the subset of arguments for which A2 could find defeating
counterexamples. A2 computes the minimum set of counterexamples Bt such
that ∀α∈ItCα ∩ Bt 6= ∅. That is the minimum subset of examples that can
defeat all arguments in It. A2 sends the set of counterexample arguments
Bt consisting of a counterexample argument β = 〈A2, e, α〉 for each pair e,
α such that e ∈ Bt, α ∈ Rt, and β defeats α.

4. When A1 receives a set counterexample arguments Bt, it appends all the
examples on them to its training set T1, and updates its hypothesis. If the
induction algorithm of A1 is not incremental, then A1 can simply use induc-
tion from scratch with the new extended set of examples. A1 updates the
hypothesis obtaining Ht+1

1 . The protocol goes to step 2 again, and t = t+ 1.
5. The protocol returns Ht

1.

The idea behind RADI is that an example can be a defeating counterexam-
ple of more than one rule at the same time, thus, by selecting the minimum
set of counterexamples, the number of examples exchanged is reduced. Also, by
sending all the counterexample arguments at once, the number of times the hy-
pothesis has to be updated is also reduced. This results in an efficient strategy for
distributed induction that minimizes the number of examples being exchanged,
and that can be used with any induction algorithm. Notice that finding such
minimum subset of counterexamples is NP, however approximate methods to
compute such minimum subset can be easily defined.

Figure 4 illustrates the first cycle of the RADI protocol. In the figure, agent
A1 has learnt a hypothesis H0

1 from its original training set. A1 sends the set
R0 of rule arguments to A2. In the middle part of Figure 4, we can see the

160

Fig. 4. An illustration of one step in the RADI strategy.

training set of A2 (T2). In this example, there are only two classes, + and -. A2

evaluates all the arguments in R0 with his training set T2. In particular, in this
example, A2 finds counterexamples for two of the arguments, namely α1 and α2.
Thus, the set B0 = {α1, α2}. Then, A2 constructs the set B0 consisting of the
minimum set of examples that contain counterexamples for all the arguments in
I0. In this case, there is a particular example, e2, which is a counterexample of
both arguments, so e2 is enough to contradict both. Therefore, A2 will construct
the set of counterarguments B0 = {〈A2, e2, α1〉, 〈A2, e2, α3〉}, and send it to A1,
which will update his hypothesis by appending e2 to its training set T1, and
will generate a new updated hypothesis H1

1 , with which the next round of the
protocol will start.

As explained in Section 6, it is part of our future work to investigate how
the inclusion of additional types of counterarguments, such as rule counterar-
guments, can further reduce the amount of information exchanged during the
distributed induction process.

4 Experimental Evaluation

In order to evaluate our approach, we tested the distributed induction strategies
in four different data sets: three propositional data sets from the Irvine machine
learning repository (soybean, zoology, cars), and a complex relational data set
(sponges). Moreover, we tested it using three different induction algorithms:
ID3, CN2 and INDIE (a relational inductive learner [1]). We also compared the
results against centralized induction and also three other distributed induction
strategies: individual (where agents just do induction individually), union (where
agents do induction individually, and then they put together all the rules they
learn into one common hypothesis), and DAGGER [5] (the only other distributed
induction technique independent of the learning algorithm to the best of our

161

Centralized

Induction

T2T1

DAGGER

ADI / RADI

Individual

T2

H2

Induction

T1

H1

InductionT2

Induction

T1

Induction

T2

H2

Induction

T1

H1

Induction DAGGER DAGGER

ARGUMENTATION

H2H1

H2H1

Union

T2

Induction

T1

Induction
Induction

H2H1

Fig. 5. An illustration of all the different distributed induction strategies evaluated in
our experiments.

knowledge, see Section 5 for a brief explanation of DAGGER). Figure 5 presents
a visual overview of the different strategies used in our evaluation. We evaluated
convergence, time, number of examples exchanged, number of rules exchanged,
number of induction calls, and both training and test set accuracy. All the results
presented are the average of 10 fold cross validation runs.

Since sponge is a relational data set (introduced by Armengol and Plaza [1])
it has to be converted to propositional so that ID3 and CN2 can use it. In the
sponge data set, examples are represented as trees, and the size of the trees
varies greatly from an example to another. In order to convert it to a proposi-
tional representation, we computed the set of all possible different branches that
the examples have, and each one is converted to a feature (70 different features
are defined in this way). Each example consists of about 30 to 50 features each,
so there is a large amount of missing values in the resulting propositional repre-
sentation. Thus, both ID3 and CN2 have troubles learning in this domain. CN2

162

Table 1. Training and test accuracy measurements of different distributed induction
strategies combined with different induction algorithms.

Training Test

Soybean Zoology Cars Sponges Soybean Zoology Cars Sponges

ID3-ADI 100.00 100.00 100.00 99.70 88.50 99.00 88.95 58.21

ID3-RADI 100.00 100.00 100.00 99.74 87.67 99.00 89.24 58.21

ID3-centralized 100.00 100.00 100.00 99.44 85.00 99.00 88.95 58.57

ID3-individual 85.67 93.85 93.84 80.20 76.50 90.00 86.84 55.54

ID3-union 90.25 94.73 97.73 94.05 81.00 94.00 90.99 60.36

ID3-DAGGER 99.57 100.00 76.36 99.76 80.67 92.50 68.95 62.50

CN2-ADI 100.00 100.00 100.00 100.00 84.90 93.50 80.61 79.11

CN2-RADI 100.00 100.00 100.00 100.00 84.66 93.50 80.17 78.93

CN2-centralized 100.00 100.00 100.00 100.00 84.66 94.00 80.64 78.57

CN2-individual 87.82 94.62 89.90 88.29 77.83 87.50 80.84 74.46

CN2-union 54.91 91.65 80.41 70.71 63.66 86.00 80.00 68.20

CN2-DAGGER 99.49 99.65 95.86 99.88 79.33 92.50 75.34 78.93

INDIE-ADI 99.64 100.00 100.00 100.00 84.33 93.00 91.25 95.89

INDIE-RADI 99.64 100.00 100.00 100.00 84.50 94.00 91.37 94.11

INDIE-centralized 99.64 100.00 100.00 100.00 83.00 94.00 81.80 95.00

INDIE-individual 89.21 94.07 93.93 96.45 77.50 85.50 87.76 54.11

INDIE-union 91.44 96.48 97.42 97.90 78.00 90.00 91.80 94.29

INDIE-DAGGER - - - - - - - -

does, in fact, a better job, but ID3 achieves a very low classification accuracy.
Additionally, since the basic ID3 cannot handle missing values, all missing values
where considered to have the special value “missing” when the data set was used
by ID3. For CN2, a beam size of 3 was used in all the experiments.

Table 1 presents the classification accuracy (both measured in training set
and in test set). We ran each combination of induction algorithm (ID3, CN2, IN-
DIE) with distributed induction strategy (centralized, individual, union, DAG-
GER, ADI and RADI) with all the data sets (except the combination of INDIE-
DAGGER, that is not possible, since DAGGER assumes propositional data sets,
and INDIE requires them in relational form). In each experimental run the data
set was split in two sets, a training set containing 90% of the examples, and a
test set containing 10% of the examples. The training set was further split among
two agents (except in the case of the centralized strategy, where there was only
one agent). Accuracy is measured in the original training set (with 90% of the
examples), and also in the remaining 10%, that forms the test set. The left hand
side of Table 1 shows accuracy in the training set, and the right hand side shows
accuracy in the test set.

Looking at the training accuracy, the first thing that the experimental re-
sults confirm is that the hypotheses learnt by ADI and RADI are indistinguish-
able in training set accuracy from the one learnt by using centralized induction.
Achieving a 100% accuracy all the times where centralized induction also does.

163

Table 2. Time (in seconds) required to complete the induction process per agent,
number of examples shared per agent (as a percentage of the number of examples
owned by an agent), number of rules sent per agent, and number of times the base
induction algorithm had to be invoked per agent (notice that in the “centralized” case,
there is only one agent). All the results are average over all the induction algorithms
and all the data sets.

time Examples shared Rules sent Induction calls

centralized 2.8 100.00% 0.00 1.00
individual 1.5 0.00% 0.00 1.00
union 1.5 0.00% 67.63 1.00
DAGGER 3.5 68.56% 64.75 1.50
ADI 155.4 19.04% 3748.70 58.90
RADI 18.2 21.52% 679.34 5.77

When agents perform individual induction, of course, training accuracy dimin-
ishes (since agents only learn with 50% of the data in the training set), agents
using the union strategy improve their accuracy, but still it is not guaranteed
to be as good as that of centralized accuracy (and in the case of CN2, where
the order of the rules matter, the accuracy drops drastically). DAGGER shows
good accuracy (although not guaranteeing that of centralized induction).

Analyzing test set accuracy, we observe that, except in a few cases where
DAGGER achieves higher accuracy (and one where surprisingly union does 3),
ADI and RADI achieve same or higher accuracy than the centralized approach.
Table 1 shows the highest results for each induction algorithm in boldface (when
the difference was not statistically significant, more than one result is high-
lighted). The explanation is that when agents use ADI or RADI, two different
hypothesis of the data are learnt (one per agent), and, after inconsistencies are
fixed, they are merged. Therefore, the resulting hypothesis has potentially sev-
eral rules that cover the same examples, but that were derived from different
training sets (thus having different biases). This, alleviates overfitting, and thus
increases classification accuracy in unseen problems. The effect achieved is sim-
ilar to that of ensemble methods, but with the advantage of having a single
hypothesis.

Another effect that can be seen is that ID3 and CN2 cannot properly handle
the complexity of the sponges data set, since, although they can achieve high
training set accuracy, the rules they learn do not generalize and achieve very low
test set accuracy. INDIE, however, being a relational learner, can handle sponges
in its native representation formalism, and thus learn much more general rules,
that generalize properly, achieving high test set accuracy.

Classification accuracy, however, is only one side of the coin. Table 2 shows
the amount of time used by each of the different distributed induction strategies

3 We repeated that experiment several times, with identical result, we are still in the
process of analyzing why union achieves such good result in the cars data set with
ID3.

164

per agent (averaged over all the data sets and induction algorithms), also the
percentage of the examples owned by each agent that had to be shared, the
number of rules exchanged, and also the number of times that the agents had to
call the base induction algorithm. Notice, that time is dominated by the slower
learning algorithm (CN2) and the most complex data set (sponges), the fastest
algorithm (ID3) required less than a tenth of a second for any strategy except
ADI and RADI (where it still required less than a second for any data set).
Table 2 shows that ADI and RADI, are the most computationally expensive
strategies, ADI taking 155.4 seconds and RADI 18.2, while centralized accuracy
required only 2.8 seconds. Moreover, most of the time consumed by ADI and
RADI corresponds to invocations to the base induction algorithm after receiving
new examples. If an incremental induction algorithm such as ID5R or ITI [15]
the amount of time consumed would be reduced drastically.

Table 2 shows that among all the distributed induction strategies, DAGGER
is the one that requires exchanging the highest percentage of examples, 68.56%,
while ADI and RADI exchange only 19.04% and 21.52% respectively. The union
strategy, of course, does not force agents to exchange any example. However,
ADI and RADI require the exchange of a large amount of rules, where as other
strategies, such as DAGGER, or union only require sharing the final hypothesis.
While ADI shares slightly a lower amount of examples, RADI requires only a
tenth of the time, a fifth of the rules, and a tenth of the number of induction
calls.

Summarizing the results, we can conclude that different distributed induc-
tion strategies have different strengths and weaknesses. Performing centralized
induction has the problem of having to share all the examples, but achieves a
high accuracy at the minimum computational cost. Next in line is DAGGER,
which forces the agents to share most of their examples, but achieves a high ac-
curacy also (although not guaranteed to be as high as centralized). On the other
extreme, we have the individual and union strategies, that have the minimum
computational cost, zero example exchange, but also the lowest classification ac-
curacies. ADI and RADI sit in the middle, requiring the agents to share a small
percentage of examples (around 20%), while ensuring the same or higher clas-
sification accuracy than centralized induction (especially in the test set, where
they hypotheses learnt by ADI or RADI have less overfitting). However, ADI
and RADI have a higher computational cost. In between ADI and RADI, we
can conclude that RADI is the most well balanced strategy, since it requires
about a tenth of the computational cost, while only sharing a very small number
of additional examples.

Moreover, notice that nothing stops ADI or RADI from working even if each
of the agents had a different base induction algorithm.

5 Related Work

Two areas of work are related to ours, namely distributed induction and in-
cremental learning. Distributed induction has been attempted mainly from four

165

different approaches: computing statistics in a distributed fashion and then ag-
gregating, sharing example, sharing hypotheses or viewing induction as search
and distributing the search process. Let us present examples of each of the ap-
proaches.

Caragea et al. [3] present a framework for induction from a set of distributed
sources based on computing a collection of statistics locally in each of the sources,
and then aggregating them to learn a model. They prove that some learning al-
gorithms, such as ID3, can be distributed in this way while still guaranteeing
finding the same exact tree that would be found if all the data were centralized.
Their framework restricts to feature value representations. The main difference
with our work is that in their framework they assume a single agent trying to
learn from scratch from a collection of distributed sources, while in our frame-
work we assume a multi-agent system with agents that already have an initial
hypothesis and improve it by interacting with other agents. A similar frame-
work was presented by Bhatnagar and Srinivasan [2], but where they allow each
agent to have a completely different set of attributes, as long as all the tables
owned by the agents can be put together using a join data base operation if they
were copied in a centralized repository. Another difference of both these frame-
works with ours is that both attempt at providing a framework for defining
distributed induction algorithms. So, using those frameworks, algorithms such
as ID3 or CN2 have to be adapted to work in a distributed fashion. In contrast,
our research focuses on finding distributed induction strategies that can be built
around standard induction algorithms without modifying them.

A different approach is DAGGER, presented by Davies [5] (and used in our
experiments for comparison purposes). Davies proposes to perform distributed
induction by selecting a reduced set of informative examples from each of the
distributed sources, and then perform centralized induction with the union of the
reduced sets of examples. Davies’ method had the goal of being an alternative
to voting mechanisms for aggregating hypothesis, which is a different goal than
the work presented in this paper. Thus Davies’ approach is a one shot approach
that does not ensure preserving classification accuracy, while our strategies do.

Another approach to distributed induction is that of Shaw and Sikora [14],
where they propose to learn individual models in each of the sources, and then
combine them by using a genetic algorithm that uses specialized mutation and
crossover operators for being able to merge the hypothesis. The goal with Shaw
and Sikora’s approach is just to distribute the induction task among agents,
so that it becomes more efficient and parallelizable. Our goal is not to make
the induction process more efficient, but to allow groups of agents to perform
distributed induction by using their own induction algorithm, and ensuring high
quality of the hypotheses found.

Another example of distributing induction for efficiency is that of distribut-
ing the search process of finding rules among a series of distributed processors.
Provost and Hennessy [9] propose to perform distributed search for rule learn-
ing, where each individual processor only searches with a subset of the data and
proposes each candidate rule to the rest for verification.

166

Also related is the work on incremental learning, such as the incremental
versions of the ID3 algorithm ID4 and ÎD4 by Schlimmer and Fisher [13], or
ID5R and ITI by Utgoff [15], which allow learning a decision tree from a set of
examples, and then update it with new examples at a lower cost than learning
it from scratch again. These algorithms can be used to increase the efficiency of
relearning the hypotheses in the techniques presented in this paper. Experiments
to validate this claim are part of our future work.

Finally, the argumentation framework presented in this paper is comple-
mentary to that introduced in [8], where an argumentation framework for lazy
learning called AMAL was presented. The idea behind AMAL is complementary
to that of ADI and RADI. While in ADI and RADI agents perform induction in
a collaborative fashion, and then they solve problems individually (by using the
hypothesis learnt collaboratively), in AMAL, agents learn separately, and only
collaborate during problem solving. Thus, AMAL is an argumentation model of
multi-agent learning based on “solution merging”, where as ADI and RADI are
based on “hypothesis merging”.

6 Conclusions and Future Work

In this paper we have introduced two different distributed induction strategies,
ADI and RADI, that can be used on top of any induction algorithm capable of
learning hypotheses that can be represented using an independent set of rules.
ADI and RADI ensure that the hypothesis learnt will be undistinguishable in
terms of training set accuracy from that produced by the base induction algo-
rithm when learning from all the data. The main idea behind ADI and RADI
is to let each agent perform induction individually, then argue about the learnt
hypotheses to remove inconsistencies, and finally merge both hypotheses.

Experimental results show that, in addition to achieve the same training
set accuracy than a centralized method, ADI and RADI have the advantage of
obtaining hypotheses that are less prone to overfitting, and thus achieve higher
test set accuracy. Moreover, ADI and RADI require sharing only about 20%
of the examples of each agent in order to converge to the common hypothesis.
ADI and RADI also require that the agents perform several calls to the base
induction algorithm, and thus are better suited to be paired with incremental
learning algorithms (but this is not required).

ADI and RADI use counterexamples as the only form of counterargument.
However, we plan to investigate more complex argumentation protocols that let
agents use rule also as counterarguments. The problem of that, is that the base
learning algorithms would have to be modified to be able to take rules into ac-
count, in addition to the examples in the training set. This is related to the
research in “argument based machine learning” by Možina et al. [7] where they
modify the CN2 algorithm to take into account specific rules (arguments) in
addition to examples for learning purposes. Our ultimate goal is to design dis-
tributed induction strategies that could be paired with any induction algorithm,
and get as close as possible to not requiring the exchange of any example, while

167

converging to the same hypothesis of a centralized learner. Additionally, we want
to extend ADI and RADI to work with an arbitrary number of agents, and go
beyond classification tasks.

Acknowledgements Support for this work came from the project MID-CBR TIN2006-

15140-C03-01.

References

[1] E. Armengol and E. Plaza. Bottom-up induction of feature terms. Machine
Learning Journal, 41(1):259–294, 2000.

[2] Raj Bhatnagar and Sriram Srinivasan. Pattern discovery in distributed databases.
In AAAI/IAAI, pages 503–508, 1997.

[3] Doina Caragea, Adrian Silvescu, and Vasant Honavar. Decision tree induction
from distributed, heterogeneous, autonomous data sources. In In Proceedings of
the Conference on Intelligent Systems Design and Applications (ISDA 03), pages
341–350. Springer Verlag, 2003.

[4] Peter Clark and Tim Niblett. The CN2 induction algorithm. In Machine Learning,
pages 261–283, 1989.

[5] Winston H. E. Davies. The Communication of Inductive Inference. PhD thesis,
University of Aberdeen, 2001.

[6] Ryszard S. Michalski, Igor Mozetic, Jiarong Hong, and Nada Lavrac. The multi-
purpose incremental learning system aq15 and its testing application to three
medical domains. In AAAI, pages 1041–1047, 1986.

[7] Martin Možina, Jure Žabkar, and Ivan Bratko. Argument based machine learning.
Artificial Intelligence, 171(10-15):922–937, 2007.

[8] Santiago Ontañón and Enric Plaza. Learning and joint deliberation through ar-
gumentation in multiagent systems. In AAMAS, page 159, 2007.

[9] Foster John Provost and Daniel N. Hennessy. Scaling up: Distributed machine
learning with cooperation. In In Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence, pages 74–79. AAAI Press, 1996.

[10] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
[11] J. R. Quinlan. Learning logical definitions from relations. Machine Learning,

5:239–266, 1990.
[12] Iyad Rahwan, Simon Parsons, and Chris Reed, editors. Argumentation in Multi-

Agent Systems, 4th International Workshop, ArgMAS 2007, Honolulu, HI, USA,
May 15, 2007, Revised Selected and Invited Papers, volume 4946 of Lecture Notes
in Computer Science. Springer, 2008.

[13] Jeffrey C. Schlimmer and Douglas H. Fisher. A case study of incremental concept
induction. In AAAI, pages 496–501, 1986.

[14] Michael J. Shaw and Riyaz Sikora. A distributed problem-solving approach to
rule induction: Learning in distributed artificial intelligence systems. Technical
Report ADA232822, Carnagie-Mellon University, 1990.

[15] Paul E. Utgoff. An improved algorithm for incremental induction of decision trees.
Technical Report 94-072, UMass, 1994.

168

