
Interaction Pattern Categories

Pragmatic Engineering of Knowledge-Based Systems

Martina Freiberg, Joachim Baumeister, and Frank Puppe

University of Würzburg, Institute of Computer Science
Dept. of Artificial Intelligence and Applied Informatics

D-97074 Würzburg, Germany
freiberg/baumeister/puppe@informatik.uni-wuerzburg.de

Abstract. The application of knowledge-based consultation- and doc-
umentation systems is, apart from large industrial projects, often also
beneficial for small to mid-sized enterprises. Yet, their design and im-
plementation still is a tedious and costly task. We motivate, that cus-
tomized UI and interaction patterns constitute a pragmatic technique
for supporting especially requirements engineering, and thus are capable
of considerably promoting real-world projects. In this paper, we intro-
duce abstract categories—Guided-, Adaptive-, and Autonomous Entry—
for classifying tailored patterns for knowledge-based systems. Further,
we discuss their role in an overall approach extending the Agile Process
Model and resulting benefits.

Keywords: Dialog System, User Interface Design, Agile Development

1 Introduction

Knowledge-based systems gained increasing impact also outside academia over
the last decades. Apart from large clinical and industrial projects, the applica-
tion of knowledge-based consultation and documentation systems is also often
beneficial for small to mid-sized corporations. Yet, the trade-off between their
potential benefits and their mostly still tedious and costly development, is still
often perceived as unfavorable, and respective projects are declined.

In general software engineering, user interface (UI) prototyping already is an
established methodology regarding iterative, rather inexpensive system specifi-
cation before the final product is implemented [3]. Also, UI prototyping permits
the early evaluation of (several) design options. Inspired by that approach, we
suggest Interaction Patterns for Knowledge-Based Systems as a cornerstone of
a tailored, agile knowledge system development methodology. The overall ap-
proach integrates pattern- and prototyping-based development into an existing,
agile process model, and thus combines the advantages of reusing approved so-
lutions (patterns) and of affordable, iterative system specification (UI proto-
typing within an agile process model). We argue, that this constitutes a rather
pragmatic way to enhance understanding, discussing, and specifying system re-
quirements at project start. This in turn helps to promote respective projects



in the first place, and thus renders its application especially interesting when
addressing small to mid-sized enterprises as customers.

As a first step into this direction, this paper introduces Interaction Pattern
Categories, that provide an abstract classification framework for knowledge sys-
tems and corresponding interaction/UI patterns. We further discuss the role of
such patterns within the proposed, extended agile approach; the details regard-
ing the prototyping and a respective tool are subject of separate work, see [7].

The rest of the paper is organized as follows: Related research is presented
in Section 2. In Section 3, we introduce our classification framework of Interac-
tion Pattern Categories and the relevant terminology. We further present three
categories, identified on the basis of past experiences with conducted projects.
In Section 4, we outline the extended, agile process model, and the patterns’
specific role as well as resulting benefits. We conclude with a summary of the
presented work and a discussion of future research directions in Section 5.

2 Related Work

The process model for knowledge system development, that we suggest in this
paper, integrates pattern- and prototyping-based development, thus uniting the
advantages of both approaches and especially fostering an enhanced requirements
engineering.

Patterns specify proven solutions for recurring (design) problems and are
established in many domains: Examples are software engineering, ontology engi-
neering, or knowledge formalization, [8, 9, 14]. They offer the advantage to reuse
approved solutions for similar problems, and thus to reduce development ef-
forts and to profit from the lessons learned. Regarding UI–/interaction design,
tailored, domain-specific pattern collections exist, e.g., [16–18]. Yet, patterns
originating from such research cannot be straightly transferred to our context,
as knowledge-based systems put specific demands on interaction and UI design.

Regarding knowledge system development, various methodologies have been
proposed in the past—see [12] for an overview. More recent works emphasize
the relevance of agility, e.g., see [2, 10]. We follow that direction by integrating
pattern- and prototyping-based techniques into an agile process model. Previous
approaches, however, often strongly emphasize the development of the knowl-
edge itself. In contrast, we specifically support knowledge system UI and inter-
action design by the means of tailored patterns and prototyping as to enhance
requirements engineering on the one hand, and to foster a pragmatic, affordable
promotion and execution of respective projects on the other hand.

UI prototyping so far has become an established approach in general software
engineering [3] as well as in HCI and usability engineering [4]. Main advantages
are a strong support of requirements specification, and the opportunity to eval-
uate (several) UI design(s) at an early stage. In [11], a prototyping tool, that
incorporates design patterns for layout support, has been proposed. Though
generally related to our approach, that work focusses on cross-device design of



general web-style interaction. Contrastingly, we explicitly consider UI and inter-
action design of knowledge-based consultation and documentation systems.

3 Interaction Pattern Categories

By Interaction Patterns for Knowledge-Based Systems, we understand the de-
scription of the systems’ interaction- and UI design for a specified context. They
comprise a compact specification of their applicability, and exemplify the cor-
responding solution approach. Yet, there exist attributes, the value of which
may be common to more than one distinct pattern. Thus, we first introduce
an abstract framework—Interaction Pattern Categories—for classifying patterns
according to such common properties before specifying concrete patterns. In Sec-
tion 3.1, we first introduce relevant terminology, and in Section 3.2, we present
the classifying categories—Guided-, Adaptive-, and Autonomous Entry.

3.1 Relevant Terminology for Specifying Pattern Categories

In the following, we specify the addressed system types as well as the classifying
attributes, that characterize the pattern categories, in more detail.

Knowledge-Based Systems: We specifically address knowledge-based sys-
tems with our approach—by that, we understand knowledge systems, that serve
either a consultation or a documentation task. In both cases, the main user-
system interaction is structured data entry—mirrored by ”Entry” in the pattern
category names. Regarding consultation, the system gradually derives solutions
for a given problem with the respective, implemented reasoning mechanisms
based on the provided user input (answers). Documentation systems emphasize
supporting uniform and reliable data input as effectively as possible.

Classifying Attributes: The attributes User Competence, Context Presen-
tation, and Data Volume are common to all patterns of one category. Major
classifier thereby is User Competence—in the context of knowledge-based sys-
tems, lengthy, strictly prescribed interviews can be annoying and inflexible for
competent users, that might want to influence the interrogation flow according to
their expertise. This makes it essential to tailor the system and interface design
to the target users’ competence.

A. User Competence : A naive data provider follows the prescribed inter-
rogation sequence, with no desire for deviation or adaption; possible reasons can
vary from rather low domain competence/lacking experience to a highly stressful
usage context (but nevertheless domain expertise). Experienced users possess a
certain domain expertise, and thus may be interested in system-suggested work-
flow guidance, yet, additionally require the option to influence the interrogation
and to deviate from suggested paths. An autonomous problem solver finally pos-
sesses sufficient expertise to solve the problem independent from system guid-
ance, based on the (potentially various and complex) information presented.



B. Data Volume : The amount of data that is processed during a typical
interrogation session; thus, it corresponds to the number and the complexity
of questions required for deriving a solution or entering a complete data set.
We roughly distinguish between small, medium, and large. Data Space, in con-
trast, specifies the universal range of possible input data, and thus corresponds
to the domain complexity. The respective data volume/data space combination
does not influence the pattern categorization, yet the knowledge required for a
specific implementation—e.g., large data space and low data volume implies so-
phisticated interrogation structures to present appropriate questions efficiently.

C. Context Presentation : No context means, that during an interrogation,
only the required questions are presented, but no further information. Otherwise,
we distinguish support knowledge—auxiliary information (not interrogation spe-
cific), or informal knowledge representations—and interrogation context—i.e.,
additional information regarding, e.g., the progression of the workflow, or in-
dicating the consequences of choosing certain answer alternatives in advance.
Type and extent of context presentation highly depend on the respective level of
user competence—concerning naive data providers, interrogation context often
is not required, yet for complex questions, support knowledge presentation might
be advisable; with rising competence, the presentation of interrogation context
gains importance for supporting an independent, efficient system usage.

3.2 Interaction Pattern Categories for Knowledge-Based Systems

Based on experiences from past projects, we define three basic categories for
UI/interaction patterns: Guided-, Adaptive-, and Autonomous Entry. For each
category, we describe the Problem Statement, the Solution, and the Applicability,
specifying common properties that apply to all contained patterns. Further, we
provide Examples—i.e., existing implementations—and Variants, that describe
in what regard patterns of a category may vary.

The basic interaction specifying each pattern, regards question selection dur-
ing interrogation. Even if patterns later vary, e.g., regarding the processed data
volume, that basic interaction remains the same. For its specification we use the
UML sequence diagram notation and the elements: User, the system Interface,
Questions (presented to and answered by the user), the Data pool (storing data
resulting from provided answers or reasoning), and the Knowledge component.

A. Guided Entry

Problem Users act as naive data providers, thus for a reliable, effective decision-
or documentation support, a high level of system autonomy/guidance regarding
the interrogation flow is required. Data volume might vary from small to medium.

Solution An interview metaphor is transferred to the interface, where the user
and the system interact alternately. The system flexibly reacts to the pro-
vided answers by adapting the interrogation sequence, thus presenting only



the question(s) that fit the respective context best. The interview proceeds
system-guided, and deviation is mostly not (or only in limited terms) intended.
Thus, presenting interrogation context is not mandatory, even though regard-
ing lengthy sequences status feedback may be beneficial. Contrastingly, support
knowledge is required in the case of complex/difficult questions for clarification.
Figure 1 depicts the interaction sequence for Guided Entry. The interface initi-

loop

Question KnowledgeInterface

present
Question()
answer
Question()

requestNext()

Data

assessNext()

propagate()

propagate
AnswerValue()

assess()

Fig. 1. Guided Entry—Basic interaction sequence for question selection.

ates the question request, whereupon the knowledge component assesses the next
question—where available, based on the previously provided user input stored
in the data pool—and propagates the result back to the interface. The then pro-
vided answer of the user is propagated to the data component and thus made
available for the knowledge component hereafter. Those steps are performed it-
eratively until a defined interrogation sequence is finished.
Applicability Systems based on Guided Entry equally fit consultation and
documentation tasks. Especially documentation of high quality or frequently
recurring data is supported, as specified data entry can be assured by the
strict, system-guided interrogation flow. However, if a higher level of user au-
tonomy is desired—e.g., influence on the interrogation, or adaptable question
representation—Adaptive- or Autonomous Entry provide more flexibility.
Examples Figure 2 presents two implementation variants of Guided Entry.
CareMate (A) is a quick response second-opinion system for emergency situ-
ations. Its one-question interaction style creates the literal impression of an in-
terview and supports the intuitive usage in the context of stressful emergency
conditions. Continuous status feedback on the current solution states is provided,
and the processed data volume is rather small. For a more detailed introduction,
see [1]. SonoConsult [15] is a consultation and documentation system for the
field of abdominal ultrasound. The multiple-question interaction style resembles
a paper-based interview (questionary) and helps to cater with the rather large
data volume. Both support knowledge (question clarification) and interrogation
context (presenting currently derived solutions) are provided.
Variants Pattern variants arise with regards to the type and extent of context



B

A

Fig. 2. Implementation variants of Guided Entry, both in german: A) Digitalys Care-
Mate and B) SonoConsult.

presentation (see above examples), as well as regarding the characteristics of the
naive user (e.g., expert in stressful context vs. non-expert’s ad-hoc usage).

B. Adaptive Entry

Problem Experienced target users have a certain—yet, from user to user po-
tentially varying—domain competence; consequently, both system guidance as
well as the option for autonomous decisions regarding the workflow are desired.
Also, questions should be presented in a user-adaptable manner.
Solution The system basically suggests the most appropriate workflow to the
user; yet, also the option to deviate from that path and choose an adapted inter-
rogation sequence is provided. Where applicable, a hierarchical tree metaphor
is applied to cater with varying user competence levels: Questions are defined
both on an abstract (aggregate) level, but also subdivided into (several) refined
questions, where reasonable. Thus, according to their expertise, users may either
answer the aggregate questions—taking less time, but requiring more expertise—
or request the presentation of the questions’ refinement. To support the user’s
decision-making, providing interrogation context is strongly recommended. Also,
depending on the refinement level and complexity of the questions, support
knowledge should be additionally presented.
Figure 3 sketches question selection in Adaptive Entry. Basically, the user decides
whether to follow the system-guided interrogation or whether to choose an own
path. Regarding the first alternative, question selection proceeds as in Guided
Entry (Figure 1). In the second case, either the user’s competence allows for an-



loop

 alt

Question Data KnowledgeInterface

present() propagate()

[ELSE]

[USER COMPETENT]

request
Refinement()

assessRefinement()

propagate()

answerSelected
Question() propagate

AnswerValue()
assess()

 alt [Guided Entry: System-guided Question Selection]

Fig. 3. Adaptive Entry—Basic interaction sequence for question selection.

swering the currently displayed question; then the answer is propagated to the
data pool and thus is available for the knowledge component as the interroga-
tion continues. Otherwise, the user can request question refinement whereupon
the knowledge component assesses the possible refinement, and propagates the
result back to the interface for displaying it to the user.
Applicability Apart from consultation, respective systems can, with limita-
tions, also serve documentation purposes. In that case, special care has to be
taken that all required input data is obtained from the user. Regarding effective
interrogation of naive data providers Adaptive Entry is only marginally suitable.
Examples Figure 4 shows the Labour Legislation Consultation, that clarifies,
whether a dismissal in a given context is legitimate. Figure 4, A, represents the
problem statement. Its current derivation state and the questions’ state (e.g.,
answered) are visually indicated by background coloring and updated with each
provided answer. Questions can be processed either in the sequence suggested
(i.e., from top to bottom), or in any other order. Further, adaptable question
presentation is implemented—e.g., Figure 4, B, was confirmed on the abstract
level; question Dismissal was... is expanded into refined questions (Figure 4, C).
Variants Possible variants originate from different forms of context presenta-
tion as well as from different data volumes that may be processed.

C. Autonomous Entry

Problem Target users are highly competent, autonomous problem solvers,
thus no explicit guidance regarding the interrogation sequence is required.
Solution The user explores the (various and potentially complex) information
sources presented by the system. Integrated knowledge-based components—e.g.,
consultation features or automated data entry support—can be used optionally,
but are not mandatory to benefit from system usage. The user provides any in-



A

B

C

Fig. 4. Labour Legislation Consultation—Indication of the solution and its current
rating (A), clarifying questions (B), and further refinement of one question (C).

put data voluntarily; based on those data fragments, the system performs rather
modularized reasoning, following sort of a bits and pieces metaphor. Thus, the
system merely provides a second-opinion to the user in presenting reasoning re-
sults (e.g., rated solutions, next-input suggestions). Such extensive user control
requires a high level of context presentation, regarding both types of context.

loop

alt

alt

Question Data KnowledgeInterface

answerSelected
Question() propagate

AnswerValue()
assess()

[Use support features (consultation/data enty) ]

[Exploration]

explore()

Fig. 5. Autonomous Entry—Basic interaction sequence for question selection.

As Figure 5 shows, the user always can choose between using more formal
knowledge components and free exploration. In the first case, potentially any
kind of (complex) knowledge component can be integrated into such a system,
e.g., according to the Guided Entry or Adaptive Entry categories. Otherwise,
the user can either simply explore the provided information, or answer questions
autonomously in a modularized manner. Answers then are propagated to the
data component, and from there assessed by the knowledge component; the lat-
ter rates solutions, presents context, and recommends next steps piecemeal.
Applicability Autonomous Entry can be applied for loose consultation, as well



as regarding a more informal, potentially collaborative documentation task. In
contrast, it is inappropriate, if rather naive data entry is desired, as no strict
workflow guidance for solving the addressed problem is provided. Further it is
not suitable for high quality documentation tasks, as any interaction takes place
voluntarily, and thus the supply of any data cannot be guaranteed.
Examples Implementation examples are the user-centered consultation ap-
proach described in [5], the PEN-Ivory system [13], but also the Inline Answering
concept provided by the Semantic Wiki KnowWE [1].
Variants Implementation variants arise with respect to the data volume, and
the type and extent of context presentation. Despite mainly addressing expert
users, systems falling into this category, might to some extent also be suitable
for unexperienced ad-hoc usage. Finally, resulting systems can vary regarding
the extent of integrating knowledge-based features.

The proposed pattern categories classify basic knowledge system types and
corresponding UI/interaction design patterns according to the level of user com-
petence (corresponding to the level of system guidance). Ongoing research ad-
dresses the definition of concrete patterns and their categorization accordingly.
We proceed by discussing how such patterns can be integrated in an extended,
agile process model for developing knowledge-based consultation and documen-
tation systems.

4 Pragmatic Knowledge System Engineering

Regarding knowledge system development and knowledge engineering, there ex-
ist diverse approaches today, such as CommonKADS, MIKE, or adaptions of
the classical stage-based and incremental software development models. Yet, for
the success of knowledge system projects in the context of small to mid-sized
companies, a pragmatic approach—affordable and efficient regarding time and
effort—is essential, c.f. [2]. Especially for promoting such projects in the first
place, it is important to quickly come up with first solutions, e.g., in the form
of prototypes or example implementations. In this respect, we made positive
experiences with applying the Agile Process Model, described in [2]. However,
that model emphasizes knowledge base development, not yet taking much into
account the design of the target system’s interface, or usability traits. In extend-
ing this model, not only UI/interaction design gains importance in the overall
development process, but also the integration of usability activities.

In the following, we introduce the Extended Agile Process Model, and af-
terwards we discuss resulting benefits specifically regarding the integration of
tailored UI/interaction patterns. Although prototyping and usability-related ac-
tivities are included in the model for reasons of completeness, their detailed
discussion is part of further work, see [7].



4.1 The Extended, Agile Knowledge System Engineering Model

Figure 6 outlines the Extended Agile Process Model—the gray parts represent the
original model, consisting of the four phases System Metaphor, Planning Game,
Implementation, and Integration. For a detailed discussion, see [2].

UA1: Prototype
Expert / Hybrid

UA2: Prod. System, 
User-based / Hybrid

Integration

System 
Metaphor

Planning 
Game

Implementation

Tailored 
Patterns & 
Prototypes

Fig. 6. Extended Agile Process Model.

Basically, tailored patterns and
prototyping can support both
System Metaphor and Planning
Game. In System Metaphor, the
system objectives are defined by
developers and customers. Based
on appropriate patterns and cor-
responding implementation exam-
ples, a basic idea can be devel-
oped more easily. Thereby, pat-
terns can be assessed either manu-
ally, or by using a tailored recom-
mender system, that suggests pat-
terns matching the target context.
Prototypes, that also provide the relevant user-system interactions, further sup-
port that process by presenting a realistic simulation of a potentially resulting
system as opposed to the static, visual depiction of knowledge system examples
provided by the patterns. The Planning Game defines the scope and priori-
tization of development tasks. Here, patterns ease the analysis and valuation
of system requirements—taking place during the Exploration sub-phase of the
planning game—by providing clear specifications of required features and inter-
actions. Additionally, prototyping supports that task by allowing for actually
trying out (and thus better evaluating) relevant functionalities.

With regards to Usability Activities, the original model can be extended
both regarding Implementation and Integration (Figure 6, UA1, UA2). The ba-
sic model defines Implementation as a test-first activity—i.e., before actually
implementing new or additional features, the corresponding tests for assuring
their correctness are developed. This can be expanded by an evaluation-first ac-
tivity, in the sense that based on the formerly created prototypes, usability issues
are assessed and valued first, before continuing with test-first implementation as
defined by the model. Without going into detail here, at that stage, expert- or
hybrid approaches (according to a categorization suggested in [6]) seem to be
most appropriate. During Integration, the implemented functionality is added to
the productive system, using integration tests for assuring its overall correctness
and integrity. Such testing can be extended by usability checks that evaluate,
whether the system still meets the specified usability goals. As this results in
a running version of the productive system, not only hybrid, but also purely
user-based usability evaluation can be beneficial.



4.2 Benefits

The integration of tailored patterns into an extended agile model offers several
benefits: First, the patterns uniformly specify common framework conditions of
different knowledge-based system types; thus, they provide a descriptive and
visual language, that enables customers and developers to discuss at the same
competence level. This fosters a clear communication and thus reduces potential
misconceptions right away, that otherwise can lead to additional, unnecessary
redesign cycles. Next, the patterns present actual implementation examples, that
can be assessed, and serve as a inspirational source regarding the concrete project
at hand. Even in case none of the provided patterns or examples completely
satisfy the project- and customer requirements, those nonetheless are helpful
by providing an overview of the possibilities and a basis for further discussions.
Despite diverse general pattern collections and UI prototyping tools, to date to
the best of our knowledge no tailored patterns/tools exist addressing specifically
knowledge-based systems. As the latter exhibit quite specific characteristics, our
approach can provide strong support for their development.

5 Conclusions and Future Work

We motivated that tailored patterns can constitute the cornerstone of an ex-
tended, agile model for knowledge system development. Especially when target-
ing smaller to mid-sized companies as customers, the suggested approach is a
rather inexpensive, pragmatic technique for promoting and launching respective
projects. As a first step, in this paper we introduced three abstract categories for
classifying corresponding patterns. Due to our focus on knowledge-based consul-
tation and documentation systems, those categories specifically address the data
entry task; yet, the elementary classification—guided, adaptive, and autonomous
interaction might be applied accordingly for other forms of interaction. The cat-
egorization arose from practical experiences with implementing knowledge-based
systems in the past, such as SonoConsult [15], Digitalys CareMate, or more re-
cently the Semantic Wiki KnowWE [1]. Further research includes the question,
whether additional pattern categories are required. Based on those, as well as
on an assessment of further existing systems, concrete patterns will be specified.
Currently, also a tailored prototyping tool is developed [7], that will be further
extended based on an analysis of required knowledge system base components.

References

1. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: A Semantic Wiki for
Knowledge Engineering. Applied Intelligence (2010)

2. Baumeister, J., Seipel, D., Puppe, F.: Agile development of rule systems. In:
Giurca, Gasevic, Taveter (eds.) Handbook of Research on Emerging Rule-Based
Languages and Technologies: Open Solutions and Approaches. IGI Publishing
(2009)



3. Bäumer, Dirk and Bischofberger, Walter R. and Lichter, Horst and Züllighoven,
Heinz: User Interface Prototyping—Concepts, Tools, and Experience. In: ICSE ’96
Proceedings of the 18th International Conference on Software Engineering. pp.
532–541 (1996)

4. Beaudouin-Lafon, M., Mackay, W.: Prototyping tools and techniques. In: The
Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies
and Emerging Applications. pp. 1006–1031. L. Erlbaum Associates Inc., Hillsdale,
NJ, USA (2003)

5. Buscher, G., Baumeister, J., Puppe, F., Seipel, D.: User-Centered Consultation by
a Society of Agents. In: Proc. of the 3rd International Conference on Knowledge
Capture (K-CAP 2005), Banff, Alberta, Canada (2005)

6. Freiberg, M., Baumeister, J.: A survey on usability evaluation techniques and an
analysis of their actual application. Tech. Rep. 450, Institute of Computer Science,
University of Würzburg, Germany (2008)

7. Freiberg, M., Mitlmeier, J., Baumeister, J., Puppe, F.: Knowledge system proto-
typing for usability engineering. In: Proceedings of the LWA-2010 (Special Track
on Knowledge Management) (2010)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman (1995)

9. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies (2009)

10. Knublauch, H.: Extreme programming of knowledge-based systems. In: Pro-
ceedings of eXtreme Programming and Agile Processes in Software Engineering
(XP2002) (2002)

11. Lin, J., Landay, J.A.: Employing patterns and layers for early-stage design and
prototyping of cross-device user interfaces. In: CHI ’08: Proceeding of the twenty-
sixth annual SIGCHI conference on Human factors in computing systems. pp.
1313–1322 (2008)

12. Plant, R., Gamble, R.: Methodologies for the development of knowledge-based
systems, 1982–2002. Knowledge Engineering Review 18(1), 47–81 (2003)

13. Poon, A.D., Fagan, L.M., Shortliffe, E.H.: The PEN-Ivory Project: Exploring User-
Interface Design for the Selection of Items from Large Controlled Vocabularies of
Medicine. Journal of the American Medical Informatics Association pp. 168–183
(1996)

14. Puppe, F.: Knowledge Formalization Patterns. In: Proceedings of PKAW 2000,
Sydney Australia (2000)

15. Puppe, F., Atzmueller, M., Buscher, G., Huettig, M., Luehrs, H., Buscher, H.P.:
Application and evaluation of a medical knowledge system in sonography (sono-
consult). In: Proceeding of the 2008 conference on ECAI 2008. pp. 683–687. IOS
Press, Amsterdam, The Netherlands, The Netherlands (2008)

16. Ratzka, A.: Identifying user interface patterns from pertinent multimodal interac-
tion use cases. In: Mensch & Computer 2008: Viel Mehr Interaktion. pp. 347–356
(2008)

17. Schmettow, M.: User interaction design patterns for information retrieval systems.
In: EuroPLoP’ 2006, Eleventh European Conference on Pattern Languages of Pro-
grams. pp. 489–512 (2006)

18. Tidwell, J.: Designing Interfaces — Patterns for Effective Interaction Design.
O’Reilly Media Inc. (2006)


