
Requirements Selection: Knowledge based
optimization techniques for solving the Next

Release Problem

José del Sagrado, Isabel M. del Águila, Francisco J. Orellana, and S. Túnez

Dpt. Languages and Computation,
Ctra Sacramento s/n, 04120 University of Almeŕıa, Spain

{jsagrado,imaguila,fjorella,stunez}@ual.es

Abstract. The requirements selection for the next software release is a
problem always present in Software Engineering. The complex nature of
this problem and the difficulty to address it using exact techniques has
motivated the application of optimization techniques to obtain near op-
timal solutions. This work provides a review of the different optimization
techniques proposed to accomplish the requirements selection problem.
Moreover, it proposes the application of these techniques in a require-
ment tool in order to be used in real software developments.

Keywords: next release problem, optimization techniques, search based
software engineering

1 Introduction

Software development organizations fail many times to deliverer its products
within schedule and budget. Statistical studies, and all the Chaos Reports [16]
published since 1994, reveal that, frequently, tasks related to requirements lead
software project to the disaster. When requirement-related tasks are poorly de-
fined or executed, the software product is typically unsatisfactory [23]. Software
requirements express the needs and constraints fixed for a software product that
contribute to the solution of some real world problem [18]. Usually stakehold-
ers propose some desired functionalities that software managers must filter in
order to define the set of requirements to include in the final software product.
All new suggested functionalities cannot be selected to be implemented since
resource constraints are always present in development companies; hence each
new feature competes against each other to be included in the next release soft-
ware product. The requirements selection is considered a complex task in every
software development since many factors are involved in this decision. A bad or
inappropriate choice of enhancements can turn into a source of problems during
software development: scheduling problems, dissatisfied customers, and economic
losses. This problem is known as next release problem (NRP) [2] and it is con-
sidered an optimization problem [2, 17, 12] within the Search Based Software
Engineering (SBSE) discipline [13, 5, 14]. The SBSE area is a growing research



field which proposes the application of search based optimization algorithms to
tackle problems in Software Engineering (SE). The term SBSE was first used
in 2001 by Harman and Jones [13] and has been successfully applied to differ-
ent problems in SE such as requirements, design tools and techniques, software
verification and testing and debugging among others [15]. Different approaches
can be found in the literature to tackle with requirements selection problem, for
example, [2] and [3] apply greedy and simulated annealing (SA) techniques, [12]
use genetic algorithms (GAs) in software release planning and [21] propose the
use of ant colony optimization (ACO). In this work we provide a comprehensive
review of the AI techniques applied to solve the NRP. We also propose the in-
clusion of these techniques on a CARE (Case Aided REquirement) tool to guide
the decision maker to select the best set of requirements for the next release.
The rest of this paper is structured as follows. Section 2 introduces and provides
the formal description of the NRP problem describing different approaches used
when addressing the NRP as an optimization problem. Section 3 analyzes the
existing techniques applied in the literature to address the NRP whereas Sec-
tion 4 describes a proposal to integrate these optimization techniques in a CARE
tool. Finally, Section 5 draws conclusions and future works.

2 The NRP Problem

The problem of selecting the subset of requirements among a whole set of can-
didate requirements proposed by a group of customers, that will be included
in the next release of a software product is a well-known problem in Software
Engineering. However, it is not a straightforward problem since many factors
are involved in this selection problem. Customers, seeking their own interest,
demand the set of enhancements they consider important, but not all customer
needs can be satisfied; on the one hand, each requirement means a cost in effort
terms that the company must assume but company resources are limited; on the
other hand, neither all the customers are equally important for the company nor
are the requirements equally important for the customers. Market factors can
also drive this selection process; the company may be interested on satisfying the
newest customers’ needs, or they may consider desirable to guarantee every cus-
tomer have fulfilled at least one of their proposed requirements. Two main goals
are usually considered in this kind of problems: find a subset of requirements
which maximize the customers’ satisfaction and minimize the required effort to
implement the subset of chosen requirements. The complexity of the problem
increases as the number of customers and requirements grows. Therefore, op-
timization techniques can be used to find optimal or near optimal solutions in
a reasonable amount of time. As Harman defined in [13], it is possible to ap-
ply metaheuristic search to numerous problems in SE, but that aim requires a
reformulation of the problem which implies to define:

– a representation of the problem which is amenable to symbolic manipulation,
– a fitness function based on this representation and
– a set of manipulation operators.



These are the steps that we are going to follow in order to review how meta-
heuristic search techniques had been applied to the NRP problem.

2.1 The NRP formulation

Let R = {r1, r2, . . . , rn} be the set of requirements that are proposed by the
customers. These requirements represent enhancements to the current software
system, suggested by a set of m customers and candidates to be included in the
next release. Customers are not equally important for the company. So, each
customer i will have an associated weight wi, which measures its relative im-
portance. Let W = {w1, w2, . . . , wm} be the set of customers’ weights. Each
requirement rj ∈ R has an associated development cost ej , which represents the
effort needed in its development. Let E = {e1, e2, . . . , en} be the set of require-
ments’ efforts. On many occasions, the same requirement is suggested by several
customers. However, its importance or priority may be different for each cus-
tomer. Thus, the importance that a requirement rj has for customer i is given
by a value vij . The higher the vij value, the higher is the priority of the require-
ment rj for customer i. A zero value for vij represents that customer i has not
suggested requirement rj . All these importance values vij can be arranged under
the form of an m×n matrix. The global satisfaction, sj , or the added value given
by the inclusion of a requirement rj in the next release, is measured as a weighted
sum of the its importance values for all the customers and can be formalized as:
sj =

∑m
i wivij . In every SE project it is common to find dependencies among

the features suggested by the customers. Requirements dependencies mean that
a set of constraints has to be considered during the requirement selection task,
since they force us to check whether conflicts are present whenever we intend
to select a new requirement to be included in the next software release. Several
kinds of dependencies related to this problem are proposed first in [1] and later
in [4]:

– Implication or precedence. A requirement ri cannot be selected if a require-
ment rj has not been implemented yet.

– Combination or coupling. A requirement ri cannot be included separately
from a requirement rj .

– Exclusion. A requirement ri can not be included together with a requirement
rj .

– Revenue-based. The development of a requirement ri implies that some others
requirements will increase their value.

– Cost-based. The development of a requirement ri implies that some others
requirements will increase their implementation cost.

These kind of dependences, that are reviewed in [20], are taken into account in
some works about NRP such as [2] and [12]. Thus, the NRP main goal is to search
for a subset of requirements R̂ within the set of all subsets of n requirements
P (R), so the dimension of the search space is 2n. A subset of requirements R̂
can be represented in this space as a vector x1, x2, . . . , xn, where xi ∈ 0, 1. If



requirement ri ∈ R̂, then xi = 1 and otherwise xi = 0. In this way, the NRP can
be considered as an instance of the 0-1 knapsack problem, and in consequence
is a NP-hard problem [2] (it is unfeasible to tackle it using exact techniques to
find the best solution in a polynomial time).

2.2 Single-objective NRP or Multi-objective NRP

The main goal of optimization problems is to search for the best solution with
respect to several objectives. The quality of a candidate solution with respect
to each objective is measured throughout the use a previously fixed evaluation
function. According to the number of objectives, the problem can be classified as
single-objective or multi-objective. Generally, in order to define the next software
release, the main goal that we pursuit is to select a subset of requirements R̂
from the candidate requirement list R, which maximize satisfaction and minimize
development effort. The satisfaction and development effort of this subset R̂ can
be obtained, respectively, as

sat(R̂) =
∑
j∈R̂

(sj), eff(R̂) =
∑
j∈R̂

(ej) (1)

where j is an abbreviation for requirement rj . As the resources available are
limited, then development effort cannot exceed a certain bound B. First works
[2, 12] in NRP tended to consider this problem as a single-objective problem:
maximize customers’ satisfaction within a certain development constraints. Their
main goal is to find a subset of requirements that satisfies customer requests
within a given resource constraints (i.e. availability of resources). That is to say,
the selected subset of requirements R̂ has to maximize customers’ satisfaction
within a given development effort bound B. Formally,

maximize sat(R̂)

subject to eff(R̂) ≤ B
(2)

Most recent works [25, 9] consider NRP as a multi-objective problem (MONRP),
since they consider at least two conflicting objectives; maximize customers’ satis-
faction and minimize the total effort involved in the development of the selected
requirements. Formally, the NRP can be defined as the search for requirement
subsets R̂ ⊆ R such as

maximize sat(R̂)

minimize eff(R̂)
(3)

Other approaches (see [10]) formulate multi-objective in a different way, applying
other criterion to measure customers’ satisfaction or defining more than two
objectives. In contrast to single objective optimization, which returns a unique
solution, multi-objective optimization returns a set of solutions satisfying the
proposed objectives. This means an advantage for the software developers as
they can choose from a range of different alternatives. The set of non-dominated
solutions that fulfill multiple objectives is denominated Pareto optimal front (see
Fig. 1) . Whether any of the objectives of these solutions is improved, the others
objectives will get worse.



f
Pareto optimal front

Search space

f

1

2

Fig. 1. Pareto optimal front considering two different objectives f1 and f2.

3 Analysis of Techniques

Once the problem has been formulated as a search problem and the fitness
functions have been defined, metaheuristic techniques are be applied in order to
find possible solutions. In the specific case of NRP, the metaheuristic techniques
that can be found in the literature are: greedy algorithms, simulated annealing,
genetic algorithms or ant colony systems. However, although all these approaches
pursuit the same aim, not all of them deal with the NRP in the same way.

3.1 Simulated Annealing

Simulated annealing (SA) is an optimization algorithm which emulates the en-
ergy changes that occur in a system of particles when its temperature is reduced
till the system reaches a state of equilibrium. At higher temperatures drastic
changes in the system are allowed, whereas at lower temperatures only minor
changes are allowed. This cooling scheduling has as goal to reduce the energy
state of the system, taking the system from an arbitrary initial energy state to
a final state with the minimum possible energy. Starting from an initial solution
and an initial temperature T0, the algorithm iterates following a cooling sched-
ule function which decreases the temperature until it reaches a minimum Tend.
Using some cooling functions, the algorithm stays at the same temperature for
a certain number of iterations; then, it is decreased. In each algorithm iteration,
a new solution from the neighbourhood is extracted and it can be accepted or
not as the current solution. This technique allows to explore the search space
at higher temperatures accepting poor solutions, whereas at lower temperatures
only moves that improve the current solution are accepted. This algorithm uses
an acceptance probability which determines whether a new solution found is
accepted as the current one or not. Formally, let S be the current solution and
S′ be a new solution in the neighborhood of S, S′ ∈ nei(S) (it is said that S′

is a neighbour of S, if they differ exactly on one requirement). Let T be the
current temperature and ∆E = f(S′) − f(S) the energy difference between S
and S′, obtained after applying a fitness function. The probability of making



the transition from the current solution S to the candidate solution S′, i.e. the
acceptance probability, is denoted by

p(S, S′, T ) =

{
1, if ∆E > 0

e
∆E
T , otherwise.

(4)

SA has been applied to NRP by Bagnall et al. [2] and Baker et al. [3]. In contrast
to most of the NRP approaches in the literature, which are focused on finding the
optimal subset of requirements, the main aim searched in [2] is to find a subset
of customers whose needs will be fully covered. Only implication dependencies
are considered (i.e. a requirement that needs some others requirements to be
implemented), defining precedence relationships for the candidate requirements.
Baker et al. [3] focuses on a component selection problem of a software system
from a telecommunications company. The aim of this work is to compare the
component selection obtained from a group of human experts with the results
obtained applying a search technique such as simulated annealing. In this case
dependencies among requirements are not considered.

Table 1. Simulated annealing techniques applied to the NRP

Fitness Function Cooling Schedule Initial Temperature Parameters

[2] f(S) =
∑

i∈S wi−
Geometric
Ti+1 = αT0

T0 = 100
α = 0.9995

Iters. = {250, 500}

−λmin{0, B − eff(S)} Lundy and Mees
Ti+1 = Ti/(1 + β)Ti

T0 = 100
β = {5× 10−7,

10−7, 10−8}

[3] f(S) = sat(S)
Geometric

Ti+1 = (1− α)T0
−T0 = ∆Emax

ln(1−p1)

α = 0.2
Iters. = 15000

p1 = 0.8

Table 1 provides details about the fitness and cooling schedule functions ap-
plied in both works, and the parameters used for the experiments. Bagnall’s
approach [2] combines into a single fitness function two objectives based on the
customers’ weights and the total effort of the solution, since the requirement
priorities are not gathered in this work. By contrast, Baker et al. [3] only takes
into account the total satisfaction given by a solution to measure its quality.
Applying the specified parameters, the results obtained by Bagnall et al. [2]
show that a search technique such as SA is the best choice among the studied
alternatives (greedy algorithms or hill climbers). On the other side experiments
performed in [2] using the Lundy and Mees cooling schedule slightly outper-
forms the geometric function approach. Bakeret al. [3] compares SA to a greedy
algorithm, and a selection performed by human experts. Best results are also
reached by SA. This technique yields the best score in every experiment, fol-
lowed by the greedy algorithm. Finally, the component selection specified by the
human experts demonstrates to be much worse than the returned using SA.



3.2 Genetic Algorithms

A Genetic Algorithm (GA) [11] is a bio-inspired search algorithm based on the
evolution of collections of individuals (i.e. populations) as result of natural selec-
tion and natural genetics. Starting from an initial population, their individuals
evolve into a new generation by means of selection, crossover and mutation op-
erators. This technique emulates the evolution process where best fitted individ-
uals survive through generations. This evolution (i.e. iteration of the algorithm)
is performed selecting some individuals according to their quality (measured
by a fitness function) from the population. Then some parents are chosen and
combined using crossover to produce new individuals (children). Finally, all the
individuals in the new population have a certain but very small probability of
mutation, i.e. their hereditary structure may be altered. The crossover and mu-
tation operators are in charge of producing new individuals and they are applied
with different probabilities i.e. crossover probability and mutation probability,
denoted by Pc and Pm, respectively.

NRP addressed using GAs can be found in Greer and Ruhe [12], as a single-
objective problem, whereas Zhang et al. [25] , Durillo et al. [9] and Finkelstein et
al. [10] tackle the problem using a multi-objective approach, existing important
differences among them.

Greer and Ruhe [12] addresses the requirement selection problem from a per-
spective based on agile methods, considering the iterations in the incremental
software development. This work proposes an overall method for optimally allo-
cating requirements to increments, which deals with a single-objective NRP as a
combination of two different objectives: maximize the satisfaction and minimize
the total cost of the solution. Precedence (implication) and coupling (combina-
tion) dependencies are considered and added to the problem as new constraints.
The system provides the decision maker a small set of the most promising solu-
tions that can be selected for the next software increment.

Zhang et al. [25] applies GAs to solve the NRP, using first synthetic data in
[25] and real data in [24]. As Greer and Ruhe [12], two main goals related to
benefit and effort are considered, although in this case the problem is addressed
from a multi-objective perspective applying NSGA-II and ParetoGA algorithms.
The first is a well-known multi-objective algorithm using an elitist strategy to
preserve the solutions from the best front whereas the latter is an extension of
the simple GA. Results reported by this work point to the NSGA-II method as
the best choice; the solutions belonging to the Pareto front are better than the
rest of methods evaluated and it offers a better diversity of solution distribution.

Durillo et al. [9] filled the gap left by this last work, arguing that the algo-
rithms evaluation was performed in a visual way and no statistical analysis of
the obtained results was provided. Using the same instances used by [25], they
solve NRP by using a Random Search, and two multi-objective metaheuristics,
NSGA-II and MOCell. In order to perform the analysis of the results, some
quality indicators were used to measure the extent of spread of the set of solu-
tions (i.e. spread) or the volume covered by the set of non-dominated solutions
(i.e. hypervolume). According to the obtained results, Random Search results



are generally poor, whereas NSGA-II and MOCell obtains good results present-
ing a similar performance in most of the cases. However NSGA-II outperforms
MOCell when the experiment reaches the highest number of requirements.

Finkelstein et al. [10] focuses on satisfying the fairness term related to the
requirements selection problem, whose main motivation is to “try to balance the
requirement fulfillments between the customers”. However, the task of finding
this fairness does not result easy to achieve; hence three different multi-objective
approaches are proposed. These proposals intend to maximize the satisfaction
taking into account the number of fulfilled requirements per customer, the total
satisfaction, or the percentage of satisfied requirement per customer. Two differ-
ent algorithms, NSGA-II and the two-archive algorithm, are studied and applied
on a set of real data from a telecommunication company.

Table 2 summarizes the techniques applied in each work and the parameters
settings used by authors in the experimental evaluation.

Table 2. Genetic algorithms applied to the NRP

Techniques Selection Crossover Mutation

[12] Single-objective GA
Probability curve
based on fitness
value

Random selection
Pc = {0.1, 0.2, 0.3
· · · , 1}

Random
Pm = {0.05, 0.1,
0.15, · · · , 1}

[25]
NSGA-II, Pareto GA,
Single-objective GA

Tournament
Single Point
Pc = 0.8

Bitwise
Pm = 1/n

[10]
NSGA-II,
The Two Archive

Tournament
Single Point
Pc = 0.8

Bitwise
Pm = 1/n

[9] NSGA-II, MOcell Tournament
Single Point
Pc = 0.9

Random
Pm = 1/n

3.3 Ant Colony Optimization

Ant colony optimization (ACO) is a meta-heuristic for combinatorial optimiza-
tion problems proposed by Dorigo et al. [7], [6]. This technique emulates the co-
operative behaviour of real ants in their task to find the shortest path from their
colony to a source of food. This process is led by a substance called pheromone
that ants leave on the floor as they move along their path. If other ants find and
follow the same path, this pheromone trail will be stronger, attracting other ants
to follow it. On the other side, the pheromone is periodically evaporated; there-
fore, the worse paths gradually lose their pheromone trail. Thus, what at first
seems to be a random behaviour for ants, when no pheromone trail is present
on the ground, turns into a movement influenced by the substance left by other
ants in the colony.

The Ant System (AS) was the first ACO algorithm, proposed by Dorigo et
al. [8]. Later, a new approach, called Ant Colony System (ACS) [7], was defined.



This approach introduced some changes related to the mechanism used by the
ants to select the next vertex, and to update the pheromone.

In ACS, the NRP is represented as a fully connected directed graph. Ver-
texes represent the candidate requirements ri, r2, . . . , rn and a pheromone τ is
associated to the edges joining pairs of requirements. Ants traverse the graph
vertex by vertex constructing a new solution, but their movement is driven by
an equation based on the heuristic information and the pheromone values.

The pheromone update [6] is performed both locally and globally. The local
update τij = (1− ϕ)τij + ϕτ0 (where ϕ ∈ (0, 1] is a pheromone decay coefficient
and τ0 is the initial pheromone value) is applied by each individual ant only
to the last edge traversed, when searching for its solution. Its main goal is to
expand the search of subsequent ants during one iteration of the colony. The
global update τij = (1−ρ)τij +∆τij (where ρ is the pheromone evaporation rate
and ∆ρij is the amount of pheromone left in each arc), is performed by the ant
that has found the best solution during an iteration of the colony. It is a kind of
global memory of the colony that stores the best paths (solutions) found.

At the time of building a solution, the ants apply the pseudorandom propor-
tional rule [6]: an ant moves from requirement i to j, depending on a random
variable q (that is uniformly distributed on the 0 to 1 range) and a parameter

q0, such that if q ≤ q0, then j = argmaxl∈nei(i)τijη
β
ij , otherwise j is selected

with a probability [6]

pkij =


[τij ]

α[ηij ]
β∑

h∈Nk
i

[τij ]α[ηij ]β
, if j ∈ Nk

i ,

0, otherwise.
(5)

where the set of visible nodes, nei(i), from the current vertex i is denoted by Nk
i .

The heuristic information is defined by ηij , whereas the pheromone accumulated
in the edge i,j is represented by τij . On the other side, the parameters α and
β, reflect the relative influence of the pheromone with respect to the heuristic
information.

Del Sagrado and del Águila [21] propose applying ACO to the requirement
selection problem in the incremental development proposed by agile methodolo-
gies. The NRP using a single-objective approach is afforded in [22], and later
in [21] applying a multi-objective perspective, defining this problem as NI-RSP
(Next Increment Requirement Selection Problem). Both approaches are based
on ACS. NI-RSP formulates a multi-objective problem seeking to maximize the
total score, and minimize the total effort needed to develop. This technique
is compared to other multi-objective optimization techniques, such as GRASP
(greedy randomize adaptive search procedure) and NSGA-II, using some indi-
cators to measure the quality of the Pareto front. The obtained results indicate
that ACS can be applied efficiently to solve the requirement selection problem;
its performance is very similar to NSGA-II and considerably better than GRASP.
However, according to the quality indicators, it presents less oscillation in the
number of non-dominated solutions.



4 Practical Application

This work has shown how optimization techniques applied to NRP let us find
high quality solutions, in order to help developers during the requirement selec-
tion tasks. Once the applicability of these techniques has been demonstrated,
they still have to be put in practice in real world software development. We
strongly believe that having these search techniques available in a CARE tool
would be considerably helpful for any development team at the time of dealing
with the requirements selection.

InSCo Requisite [19] is a web-based tool early developed by our research
group to manage the requirements of software development projects. Therefore,
we propose an architecture (see Fig. 2) that integrates these techniques in the
InSCo Requisite tool. The tool allows that a group of customers and developers
works simultaneously in the same project, specifying the requirements of the
system. Each requirement has an associated form which gathers its features,
priorities and even a scenario or storyboard.

SE KE

InSCo Requisite

developers

customer 1

search techniques

customer 2 customer m

simulated annealing
genetic algorithm
ant colony optimization
...

www.dkse.ual.es/insco

Fig. 2. Integration of search techniques in the architecture of the InSCo Requisite tool.

In order to facilitate the applicability of meta-heuristics algorithms, InSCo-
Requisite must generate an interface file that contains all data needed during
the execution of the simulated annealing, genetic or ant colony optimization
algorithms.

The tool actually allows to export the whole set of specified requirements to
an XML file. In a near future we plan to include development effort as a new
property of each requirement. In this way, the resulting XML file could be easily
used as input to any of the metaheuristic techniques applied in NRP. The result
obtained by the metaheuristic techniques will be presented in the interface of
InSCo Requisite and will serve as a feedback to developers when facing to the
problem of planning the next software release.

5 Conclusions

The paper presented has provided a review of the metaheuristic techniques ap-
plied to the requirement selection problem, known as Next Release Problem



(NRP). This problem, within the Search Based Software Engineering (SBSE)
discipline, was formulated in 2001 as a search problem and since then it has
been addressed by many authors applying different search techniques: SA, GA
and ACO. Table 3 summarizes the different works in the literature addressing
the NRP, classified according to several factors as dependences are considered
or not, and whether a single-objective or multi-objective perspective is applied.

Table 3. Classification of NRP related works

NRP single-objective NRP multi-objective

With requirements Without requirements Without requirements
dependences dependences dependences

Greedy, SA: Bagnall et al.,
2001 [2]

SA: Baker et al., 2006 [3] GA: Zhang et al., 2007 [25],
Filkenstein et al., 2009 [10],
Durillo et al., 2009 [9]

GA: Greer and Ruhe, 2004
[12]

ACO: del Sagrado et al.,
2010 [22]

ACO: del Sagrado et al.,
2009 [21]

Although each technique has been reviewed in an isolated way, since the com-
parison is not feasible when different datasets are applied, the results obtained
by all of them demonstrate their applicability to the NRP. Finally, an integration
of these techniques in an existent requirement tool has been proposed in order
to take advantage of these techniques in Software Engineering.

Acknowledgments. This work was supported by the Spanish Ministry of Ed-
ucation and Science under project TIN2007-67418-C03-02 and by the Junta of
Andalućıa under project P06-TIC-02411-02.

References

1. van den Akker, M., Brinkkemper, S., Diepen, G., Versendaal, J.: Software prod-
uct release planning through optimization and what-if analysis. Information and
Software Technology 50(1-2), 101–111 (2008)

2. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem.
Information and Software Technology 43(14), 883–890 (2001)

3. Baker, P., Harman, M., Steinhofel, K., Skaliotis, A.: Search based approaches to
component selection and prioritization for the next release problem. In: Procs. 22nd

IEEE Int. Conf. on Soft. Maintenance, 176–185. IEEE Computer Society (2006).
4. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., och Dag, J.N.: An industrial

survey of requirements interdependencies in software product release planning. In:
Procs. 5th IEEE Int. Symp. on Requirements Engineering. p. 84–91 (2001)

5. Clarke, J., Dolado, J.J., Harman, M., Hierons, R., Jones, B., Lumkin, M., Mitchell,
B., Mancoridis, S., Rees, K., Roper, M., et al.: Reformulating software engineering
as a search problem. IEE Proceedings-Software 150, 161–175 (2003)



6. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computa-
tional Intelligence Magazine 1(4), 2839 (2006)

7. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Trans. On Evolutionary Compu-
tation 1(1), 53–66 (1997)

8. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. on Sys., Man, and Cybernetics, Part B 26(1),
29–41 (1996)

9. Durillo, J.J., Zhang, Y.Y., Alba, E., Nebro, A.J.: A study of the multi-objective
next release problem. In: Procs.1st Int. Symp. on Search Based Soft. Engineering.
p. 49–58 (2009)

10. Finkelstein, A., Harman, M., Mansouri, S., Ren, J., Zhang, Y.: A search based
approach to fairness analysis in requirement assignments to aid negotiation, medi-
ation and decision making. Requirements Engineering 14(4), 231–245 (2009)

11. Goldberg, D.E.: Genetic Algorithms in Search and Optimization. Addison-wesley
(1989)

12. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative ap-
proach. Information and Software Technology 46(4), 243–253 (2004)

13. Harman, M., Jones, B.F.: Search-based software engineering. Information and soft-
ware technology 43(14), 833 (2001)

14. Harman, M.: The current state and future of search based software engineering.
In: 2007 Future of Software Engineering, 342–357. IEEE Computer Society (2007)

15. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: A
comprehensive analysis and review of trends techniques and applications. Tech.
Rep. TR-09-03 (2009)

16. Johnson, J.: CHAOS chronicles v3.0. Tech. rep. (2003), http://standishgroup.
com/chaos/toc.php

17. Karlsson, J., Ryan, K.: A Cost-Value approach for prioritizing requirements. IEEE
Softw. 14(5), 67–74 (1997),

18. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Tech-
niques. Wiley (Aug 1998)

19. Orellana, F.J., Canadas, J., del Águila, I.M., Túnez, S.: INSCO requisite - a Web-
Based RM-Tool to support hybrid software development. In: ICEIS (3-1), 326–329
(2008)

20. Ruhe, G.: Software release planning. In: Handbook of software engineering and
knowledge engineering, vol. 3, 365–394. S K Chang (2005)

21. del Sagrado, J., del Águila, I.M.: Ant colony optimization for requirement selec-
tion in incremental software development. Technical Report, University of Almeŕıa
(2009)

22. del Sagrado, J., del Águila, I.M., Orellana, F.J.: Ant colony optimization for the
next release problem. a comparative study. In: Procs. 2nd Int. Symp. on Search
Based Software Engineering (2010)

23. Sommerville, I.: Software engineering (6th ed.). Addison-Wesley Longman Pub-
lishing Co., Inc. (2001)

24. Zhang, Y., Finkelstein, A., Harman, M.: Search based requirements optimisation:
Existing work and challenges. In: Procs. 14th Int. Conf. on Requirements Engi-
neering: Foundation for Soft. Quality, 88–94. Springer-Verlag, Montpellier, France
(2008)

25. Zhang, Y., Harman, M., Mansouri, S.A.: The multi-objective next release problem.
In: Procs. 9th Ann. Conf. on Genetic and Evol. Computation, 1129–1137. ACM,
London, England (2007)


