
6th Workshop on

Knowledge Engineering

and Software Engineering (KESE6)

at the 33rd German Conference on Artificial Intelligence

September 21, 2010, Karlsruhe, Germany

Grzegorz J. Nalepa and Joachim Baumeister (Editors)

Technical Report No. 475, Würzburg University, Würzburg, Germany, 2010

The KESE Workshop Series is available online: http://kese.ia.agh.edu.pl

Preface

Grzegorz J. Nalepa and Joachim Baumeister

AGH University of Science and Technology
Kraków, Poland
gjn@agh.edu.pl

—
Intelligent Systems (Informatik 6)

University of Würzburg
Würzburg, Germany

joba@uni-wuerzburg.de

Intelligent systems have been successfully developed in various domains based
on techniques and tools from the fields of knowledge engineering and software
engineering. Thus, declarative software engineering techniques have been estab-
lished in many areas, such as knowledge systems, logic programming, constraint
programming, and lately in the context of the Semantic Web and business rules.

The sixth workshop on Knowledge Engineering and Software Engineering
(KESE6) was held at the KI-2010 in Karlsruhe, Germany, and brought together
researchers and practitioners from both fields of software engineering and arti-
ficial intelligence. The intention was to give ample space for exchanging latest
research results as well as knowledge about practical experience. Topics of inter-
est includes but were not limited to:

– Knowledge and software engineering for the Semantic Web
– Ontologies in practical knowledge and software engineering
– Business rules design and management
– Knowledge representation, reasoning and management
– Practical knowledge representation and discovery techniques

in software engineering
– Agent-oriented software engineering
– Database and knowledge base management in AI systems
– Evaluation and verification of intelligent systems
– Practical tools for intelligent systems
– Process models in AI applications
– Declarative, logic-based approaches
– Constraint programming approaches

This year, we received contributions focussing on different aspects of knowl-
edge engineering: Kluza et al. present a declarative method of inference specifi-
cation in modularized knowledge bases. Application of knowledge engineering in
psychological processes is elaborated by Newo et al. The contribution of Freiberg
et al. discusses practical issues of building novel interfaces for knowledge-based
systems. Sagrado et al. review optimization techniques and focus on their appli-
cation for the requirements selection problem in software releases.

This year we also encouraged to submit tool presentations, i.e., system de-
scriptions that clearly show the interaction between knowledge engineering and
software engineering research and practice. At the workshop, one presentation
about current tools was given: Cañadas et al. introduce a practical application
for rule-based applications integrated ontologies, using the Jess engine and the
MVC approach.

The organizers would like to thank all who contributed to the success of the
workshop. We thank all authors for submitting papers to the workshop, and we
thank the members of the program committee as well as the external reviewers
for reviewing and collaboratively discussing the submissions. For the submission
and reviewing process we used the EasyChair system, for which the organizers
would like to thank Andrei Voronkov, the developer of the system. Last but not
least, we would like to thank the organizers of the KI 2010 conference for hosting
the KESE6 workshop.

Grzegorz J. Nalepa
Joachim Baumeister

Program Committee

– K.-D. Althoff, University Hildesheim, Germany
– J. Baumeister, University Würzburg, Germany
– J. Cañadas, University of Almeria, Spain
– U. Geske, FhG FIRST, Berlin, Germany
– A. Giurca, BTU Cottbus, Germany
– J. Jung, Yeungnam University, Korea
– R. Knauf, TU Ilmenau, Germany
– G. J. Nalepa, AGH UST, Kraków, Poland
– D. Seipel, University Würzburg, Germany
– I. Stamelos, Aristotle University of Thessaloniki,Greece
– G. Weiss, University of Maastricht, The Netherlands

Workshop Organization

The 6th Workshop on Knowledge Engineering and Software Engineering
(KESE6)

was held as a one-day event at the
33rd German Conference on Artificial Intelligence (KI2010)

on September 21, 2010, Karlsruhe, Germany.

Workshop Chairs and Organizers

Grzegorz J. Nalepa, AGH UST, Kraków, Poland
Joachim Baumeister, University Würzburg, Germany

Programme Committee

Klaus-Dieter Althoff, University Hildesheim, Germany
Joaquin Cañadas, University of Almeŕıa, Spain
Uli Geske, FhG FIRST, Berlin, Germany
Adrian Giurca, BTU Cottbus, Germany
Jason Jung, Yeungnam University, Korea
Rainer Knauf, TU Ilmenau, Germany
Dietmar Seipel, University Würzburg, Germany
Ioannis Stamelos, Aristotle University of Thessaloniki, Greece
Gerhard Weiss, University of Maastricht, The Netherlands

Table of Contents

A Tool for MDD of Rule-based Web Applications based on OWL and
SWRL . 1

Joaqúın Cañadas, José Palma, Samuel Túnez

Visual Inference Specification Methods for Modularized Rulebases.
Overview and Integration Proposal . 6

Krzysztof Kluza, Grzegorz J. Nalepa, Lukasz Lysik

Knowledge Acquisition for Simulating Complex Psychological Processes . . 18
Régis Newo, Kerstin Bach, Klaus-Dieter Althoff

Interaction Pattern Categories — Pragmatic Engineering of
Knowledge-Based Systems . 28

Martina Freiberg, Joachim Baumeister, Frank Puppe

Requirements Selection: Knowledge based optimization techniques for
solving the Next Release Problem . 40

José del Sagrado, Isabel M. del Águila, Francisco J. Orellana, Samuel
Túnez

1

A Tool for MDD of Rule-based Web
Applications based on OWL and SWRL

Joaqúın Cañadas1, José Palma2 and Samuel Túnez1

1 Dept. of Languages and Computation. University of Almeria. Spain
jjcanada@ual.es, stunez@ual.es

2 Dept. of Information and Communications Engineering. University of Murcia. Spain
jtpalma@um.es

Abstract. TOOL PRESENTATION?: Rule languages and inference en-
gines incorporate reasoning capabilities to Web information systems.
This demonstration paper presents a tool for the development of rule-
based applications for the Web based on OWL and SWRL ontologies.
The tool applies a model-driven approach to an ontology representing a
domain conceptualization and inference model of the problem domain.
It automatically generates a rich, functional Web architecture based on
the Model-View-Control architectural pattern and the JavaServer Faces
technology, embedding a Jess rule engine for reasoning and deriving new
information.

Key words: Model Driven Development, OWL, SWRL, Rule-based sys-
tems for the Web

1 Introduction

Rule languages and inference engines provide Web information systems with rea-
soning capabilities. Rule-based applications integrate rule engines to deal with
rules and execute inference methods for firing appropriate rules in order to de-
duce new information and achieve results. Rules combined with ontologies enable
the declarative representation of the expert knowledge and business logic in an
application domain.

Web Ontology Language (OWL) [1] and Semantic Web Rule Language (SWRL)
[2], which play a major role in the Semantic Web [3], are also growing in impor-
tance in software development [4]. Ontologies can describe the relevant concepts
and data structures of an application domain and rule-based languages can be
used to formalize the business logic, increasing the amount of knowledge that
can be represented in ontologies.

Ontologies are created using authoring tools like Protégé. Recently, a tool
to bridge the gap between OWL ontologies and Model Driven Engineering has

? This work was partially financed by the Spanish MEC through projects TIN2009-
14372-C03-01 and PET2007-0033, and by the Andalusian Regional Government
project P06-TIC-02411

2

been presented, the TwoUse Toolkit 3 [5]. It is a free, open source tool bridging
the gap between Semantic Web and Model Driven Software Development. It has
been developed using Eclipse Modeling Project4 and implements current OMG
and W3C standards for developing ontology-based software models and model-
based OWL ontologies. Among its functionality, TwoUse provides a graphical
editor for specifying OWL and SWRL models based on the Ontology Definition
Metamodel (ODM) [6], and an textual editor for the OWL functional syntax [7].
Since it is deployed as an Eclipse plugin, other Eclipse-based tools for designing
and executing transformations can be straightforwardly applied to ontologies
created in TwoUse, enabling us to design an MDD process based on OWL and
SWRL models.

This demo presents a tool which provides a model-driven approach to develop
rule-based Web applications based on OWL and SWRL models created with
TwoUse. The tool applies MDD to produce the implementation of a functional,
rich Web architecture which embeds the Jess rule engine for inferencing tasks.
The functionality for the generated rule-based Web application is predefined
to enable end-users to create, retrieve, update and delete instances (CRUD). In
contrast to current tools for automatic generation of CRUD systems that perform
those functions on relational databases, our contribution is that this functionality
is executed on the rule engine working memory, enabling the execution of a
forward-chaining inference mechanism to drive the reasoning process.

This paper is organized as follows: Section 2 introduces the model-driven
approach applied in the tool. Next, Section 3 describes the architecture for the
rule-based Web application generated. Finally, the main conclusions and future
work are summarized.

2 Model-driven process implemented in the tool

The proposed tool uses OWL and SWRL ontologies created with TwoUse as
source models for the model-driven approach. We focus on OWL DL sublan-
guage of OWL. Classes, properties, and individuals define the structure of data,
whereas rules describe logical dependencies between the elements of the ontology
refereed in the rule’s antecedent and consequent.

Figure 1 shows a simplified schema of the MDD process implemented in the
proposed tool. Two different results are found from the single ontology model.
On one hand, a Jess [8] rule base is generated, a text file that contains the rules
converted to Jess syntax. On the other hand, a set of JavaBeans and JSP web
pages, making up a JavaServer Faces (JSF) [9] architecture that embodies the
Jess rule engine into the Web application.

Both MDD processes can be executed separately, enabling the decision logic
of rule-based applications to be changed regardless of the ontology structure.
When the rule model changes, the new rule base can be regenerated and deployed

3 http://code.google.com/p/twouse/
4 http://www.eclipse.org/modeling/

3

Jess Rule
model

Jess rule base

Java and JSF
Web model

Java
JSF

classes
pages

P
I
M

latform
ndependent
odels

P
S
M

latform
pecific
odels

Code

integration

Rule-based
applicationWeb

M2M
Transformations

M2T
Transformations

Interaction &
Presentation

OWL SWRL+

TwoUse Toolkit
for OWL & SWRL

Eclipse Modeling

EMF

JET

Default Presentation,
Navigation, Functionality

Fig. 1. MDD schema for rule-based Web system generation

into the Web application without affecting the full architecture. This approach
makes Web applications easier to maintain and evolve.

The tool was developed using MDD tools provided in Eclipse, and it is sup-
ported by the TwoUse toolkit for the creation of ontology and rule models.
Metamodels for representing platform-specific models in Jess and the Java/JSF
are defined using EMF5 (Eclipse Modeling Framework).

Model-to-model (M2M) transformations are designed with ATL6 (Atlas Trans-
formation Language). The first one (bottom flow in Fig. 1) maps an ontology
and rule model to a Jess platform-specific model. The second one (top flow in
Fig. 1) transforms the ontology model into a Java/JSF Web specific model.

The outputs of both ATL transformations are the respective inputs of two
model-to-text (M2T) transformations implemented in JET7 (Java Emitter Tem-
plates). As a result, the code for the rule-based Web application is obtained. On
one hand, source files with Jess rules and facts, and on the other hand, the Web
application components, the configuration files, the Java classes, and a Jess-
Engine Bean which uses the Jess API (Application Programming Interface) to
embed the rule engine into the architecture. Moreover, a set of JSP/JSF web
pages is generated for the user interface which are based on the RichFaces li-
brary [10] framework that adds AJAX capability to JSF applications. Default
configuration is injected to provide presentation templates for pages, predefined
navigation between them and default functionality for the generated application.

3 Architecture of rule-based Web applications

Figure 2 shows the target architecture for the generated rule-based Web appli-
cations.
5 http://www.eclipse.org/modeling/emf/
6 http://www.eclipse.org/m2m/atl/
7 http://www.eclipse.org/modeling/m2t/?project=jet

4

Web Browser

Apache Tomcat

Jess

JavaEE Platform

Jess facts

Rule
set

working
memory
(facts)

rule
engine

JSF + RichFaces
pages

business logic
Java Classes

Fig. 2. Architecture of a Web rule-based application

The embedded rule engine manages the Jess rule base and the text file of
persistent instances of concepts, called facts. Basically, the rule engine consists
of three parts: the working memory contains all the information or facts, the
rule set are all the rules, and the rule engine checks whether the rules match the
working memory and executes them then.

The Web application enables the user to perform basic functions for instance
management (create, list, update and delete instances). Current tools for auto-
matic generation of that kind of Web applications perform those operations on
relational databases. The contribution of our approach is that instance manage-
ment is executed on the rule engine working memory. The rule engine executes a
forward-chaining inference mechanism to drive the reasoning process, firing the
rules with conditions evaluated as true, and executing their actions to infer new
values or modify existing ones.

The use of both rules and AJAX technology improves instance management
since each single value is validated and submitted as it is entered by the user,
then the rule engine can fire suitable rules and deduce new information on the
fly, driving the instance creation or edition.

4 Conclusion and future work

This tool presentation paper presents a tool that applies MDD to rich Web
system development, incorporating a rule engine for deduction and inference.
OWL and SWRL formalisms are used as modeling languages by the model-
driven approach.

Since expressiveness in rule-based production systems such as Jess is poorer
than OWL and SWRL semantics, only a subset of those formalisms is currently
supported. Issues related with the combination of rules and ontologies have also
an effect on the proposed approach. For example, the semantics of OWL and
SWRL adopts an open world assumption, while logic programming languages
such as Jess are based on a closed world assumption. As a consequence, only
DL-Safe SWRL rules [11] are transformed to Jess. DL-Safe SWRL rules are a
restricted subset of SWRL rules that has the desirable property of decidability,

5

by restricting rules to operate only on known individuals in an OWL ontology.
Similarly, Jess rules only operate on facts in the working memory.

Another semantic difference between OWL and classic rule engines such as
Jess is related to the fact base and state assertions. While in OWL the ABox con-
taining the assertions about the individuals in the domain can not be modified,
on the other hand, in a rule-based systems facts can be asserted and modified
during the inference.

Although these semantic differences are present, the proposed tool demon-
strates how OWL and SWRL can be used as specification formalisms in rule-
based Web applications development. The benefits come from the widely use of
these formalisms and the many tools available for editing and reasoning over
OWL and SWRL specifications.

The tool is planned to be evaluated in several domains such as pest control
in agriculture and medical diagnosis. Future work extends the generated Web
application with semantic Web functionalities, such as semantic search based on
ontology classes hierarchy as well as instance search.

References

1. W3C OWL Working Group: OWL 2 Web Ontology Language:
Document Overview. W3C Recommendation (2009) Available at
http://www.w3.org/TR/owl2-overview/.

2. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
A Semantic Web Rule Language combining OWL and RuleML. W3C Member
Submission (2004) Available at http://www.w3.org/Submission/SWRL/.

3. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the
semantic web. In Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M.,
Polleres, A., Schaffert, S., eds.: Reasoning Web. Volume 5224 of Lecture Notes in
Computer Science., Springer (2008) 1–53

4. W3C: A Semantic Web Primer for Object-Oriented Software Developers. W3C
Working Draft (2006) Available at http://www.w3.org/TR/sw-oosd-primer/.

5. Parreiras, F.S., Staab, S., Winter, A.: TwoUse: integrating UML models and OWL
ontologies. Technical report, Universität Koblenz-Landau (2007)

6. Object Management Group: Ontology Definition Metamodel. Version 1.0. OMG
(2009) Available at http://www.omg.org/spec/ODM/1.0/.

7. W3C OWL Working Group: OWL 2 Web Ontology Language: Structural Speci-
fication and Functional-Style Syntax. W3C Recommendation (2009) Available at
http://www.w3.org/TR/owl-syntax/.

8. Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems. Manning Publications
(2003)

9. Geary, D., Horstmann, C.S.: Core JavaServer Faces. 2 edn. Prentice Hall (2007)
10. JBoss: RichFaces (2007) http://www.jboss.org/jbossrichfaces/.
11. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with rules.

Journal of Web Semantics 3(1) (2005) 41–60

6

Visual Inference Specification Methods
for Modularized Rulebases.

Overview and Integration Proposal?

Krzysztof Kluza, Grzegorz J. Nalepa, Łukasz Łysik

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

kluza@agh.edu.pl,gjn@agh.edu.pl

Abstract The paper concerns selected rule modularization techniques.
Three visual methods for inference specification for modularized rule-
bases are described: Drools Flow, BPMN and XTT2. Drools Flow is
a popular technology for workflow or process modeling, BPMN is an OMG
standard for modeling business processes, and XTT2 is a hierarchical tab-
ular system specification method. Because of some limitations of these
solutions, several proposals of their integration are given.

1 Introduction

Rule-Based Systems (RBS) [1] constitute one of the most powerful knowledge
representation formalisms. Rules are intuitive and easy to understand for hu-
mans. Therefore, this approach is suitable for many kinds of computer systems.
Nowadays, software complexity is increasing. Because describing it using plain
text is very difficult, many visual methods have been proposed. For example, in
Software Engineering, the dominant graphical notation for software modeling is
UML (the Unified Modeling Language). Design of large knowledge bases is non
trivial, either. However, in the area of RBS, there is no single visual notation
or coherent method. Moreover, the existing solutions have certain limitations.
These limitations are especially visible in the design of large systems.

When the number of rules grows, system scalability and maintainability suf-
fers. To avoid this, there is a need to manage rules. Rule grouping is a simple
method of rule management. However, it is not obvious how to group rules. One
of the most common grouping methods ivolves context awareness and creation of
decision tables. Another grouping method takes rule dependencies into account
and creates decision trees. This leads to RBS modularization.

This paper describes three possible solutions to modularize rule bases:

– Drools Flow [2], which is a popular technology for workflow modeling,

? The paper is supported by the BIMLOQ Project funded from 2010–2012 resources
for science as a research project.

7

– BPMN (the Business Process Modeling Notation) [3], which is an OMG
standard [4] for modeling business processes, and

– XTT2 (EXtended Tabular Trees), which is a result of authors’ research
project [5] and which organizes a tabular system into a hierarchical structure.

However, these solutions have some limitations. Drools Flow is platform-
dependent and not standarized. Moreover, it has some flow design restrictions.
BPMN is a notation for business processes, and it is not clearly stated how
processes can co-operate with rules. Furthermore, BPMN can be mapped to
BPEL (Business Process Execution Language) for execution, but this mapping
is non-trivial and execution is not possible for every BPMN model. XTT2, in
turn, is not wide-spread, and it is not a universal method.

The general problem considered in this paper is the RBS design and mod-
ularization. The article constitutes an overview and a proposal for integration
of the three presented methodologies, which can be useful in solving above-
mentioned problems. The next two sections present selected rule modularization
techniques and an overview of selected visual design methods for rule inference.
In Section 4, a proposal of rule translation from XTT2 to Drools is described,
and in Section 5, a proposal of XTT2 inference design with BPMN is introduced.
Section 6, discusses future work and summarizes the main threads of this article.

2 Rule Modularization Techniques

Most classic expert systems have a flat knowledge base. So, the inference mech-
anism has to check each rule against each fact. When the knowledge base is
large, this process becomes inefficient. This problem can be solved by providing
a structure in the knowledge base that allows to only check a subset of rules [6].

CLIPS [7] allows for organising rules into so-called modules, that restrict
access to their elements from other modules. Modularisation of the knowledge
base helps rule management. In CLIPS, each module has its own pattern match-
ing network for its rules and its own agenda. Execution focus can be changed
between modules stored on the stack.

JESS [8] also provides a module mechanism. Modules provide structure and
control execution. In general, although any JESS rule can be activated at any
time, only rules in the focus module will fire. This leads to a structured rule base,
but still all rules are checked against the facts. In terms of efficiency, the module
mechanism does not influence on the performance of conflict set creation.

Drools Flow provides a graphical interface for modelling of processes and
rules. Drools 5 has a built-in functionality to define the structure of the rule
base, which can determine the order of rule evaluation and execution. Rules
can be grouped in ruleflow-groups which define the subsets of rules that are
executed. The ruleflow-groups have a graphical representation as nodes on the
ruleflow diagram. They are connected with links, which determines the order
of evaluation. Rule grouping in Drools 5 contributes to the efficiency of the
ReteOO algorithm, because only a subset of rules is evaluated. However, there
are no policies which determine when a rule can be added to the ruleflow-group.

8

3 Selected Visual Design Methods for Rule Inference

Efficient inference would not be possible without a proper structure and design
of rule-based system. The important issues in dealing with this problem is group-
ing and hierarchization of rules, as well as addressing the contextual nature of
the rulebase. The following subsections describe selected methods and tools, in
which visual design of rule inference is possible.

3.1 Drools

Drools is a rule engine which offers knowledge integration mechanisms. The project
is run by the JBoss Community, which belongs to the Red Hat Foundation. It is
divided into four subprojects: Guvnor, Expert, Flow and Fusion. Each of them
supports different part of integration process.

Expert is the essence of Drools. It is the actual rule engine. It collects facts
from the environment, loads the knowledge base, prepares the agenda and exe-
cutes rules. A modified version of the Rete [9] algorithm is used for the inference.

The knowledge base in Drools consists of three main elements: rules, decision
tables and Drools Flow. The fundamental form of knowledge representation in
Drools is a rule. This form is easy to use and very flexible. Rules are stored in text
files which are loaded into the program memory by special Java classes. Rules in
Drools can be suplemented with attributes which contain additional information.
They have a form of name-value pairs and they describe such paramters as rule
priority and provide meta information for inference engine.

Rules which have the same schema can be combined into decision tables.
A decision table is devided into two parts: the left-hand side, which represents
the conditions of rules and the right-hand side, which represent the actions to
be executed. One row in a table corresponds to one rule. However, decision
tables, are useful only during the design phase. The structure does not improve
the performance of the inference. Decision tables are, in fact, transformed into
rules. So the inference engine does not recognize which rules come from decision
tables and which are just a group of unrelated rules.

Rules form a flat structure. When the inference engine matches rules against
facts, it takes all rules into consideration. The user, however, can define the flow
of the inference process. Drools Flow offers a workflow design functionality in
the form of blocks (See Fig. 1). The user can specify exactly which rules should
be executed in which order and under which conditions.

Each model in Drools Flow has to contain two blocks: start and end. Rules
and rule flow are linked together inside the ruleset block. Each ruleset block has
a ruleflow-group attribute. Similarly, each rule has the attribute with the same
name. Rules belong to the ruleset block with the same values of the ruleflow-
group attribute. Additionally, the process can be split and joined. Two blocks,
split and join, are used for that purpose. The block split has different types.
The AND type defines that the process follows all the outgoing connections.
The join block also has different types. The AND type waits for all the incom-

9

ming subprocesses to finish. The OR type waits for the first process to finish,
while the n-of-m type waits until specified number of processes finish.

Figure 1. Sample Drools Flow diagram (drools.org)

Drools has some limitations. First of all, it is not a standarized solution.
The form of knowledge representation still evolves. It could have been seen when
version 5 was released - new block were introduced and the format of Drools Flow
file has changed. Moreover, Drools does not provide any tools which can be used
in the knowledge design phase. It can be problematic in large systems. What
is more, the rulebase has a flat structure. Although, Drools Flow complements
the strucutre by desribing execution process, the rules still do not have a hierar-
chy. The last thing is that Drools is language dependent, closely related to Java.
Parts of the rules and some Rule Flow blocks contain Java expresions.

3.2 XTT2

XTT2 (EXtended Tabular Trees) [5] is a hybrid knowledge representation and
design method aimed at combining decision trees and decision tables. It has
been developed in the HeKatE research project (hekate.ia.agh.edu.pl), and
its goal is to provide a new software development methodology, which tries to
incorporate some well-established Knowledge Engineering tools and paradigms
into the domain of Software Engineering, such as declarative knowledge rep-
resentation, knowledge transformation based on existing inference strategies as
well as verification, validation and refinement.

Conceptual Design Logical
Design

Analysis
Verification

Physical Design

(?) today (?) hour (->) operation

=workday

=weekend

=workday

=workday

> 17

=any

<9

in [9;17]

=nbizhrs

=nbizhrs

=nbizhrs

=bizhrs
Table id: 3 - th

today

operation

hour

 <rule id="rul_4">
 <condition>
 ...
 <relation name="in">
 <attref ref="att_11"/>
 <set>
 <value from="9" to="17"/>
 </set>
 </relation>
 </condition>

Figure 2. The HeKatE process

The HeKatE process consists of three design phases (shown in Fig. 2) [5]:

1. The conceptual design phase, which is the most abstract phase. Dur-
ing this phase, both system attributes and their functional relationships

10

are identified. This phase uses ARD+ (Attribute-Relationship) diagrams as
a modeling tool. It allows design of the logical XTT2 structure.

2. The logical design phase, in which system structure is represented as
a XTT2 hierarchy. The preliminary model of XTT2 can be obtained as
a result of the previous phase. This phase uses the XTT2 representation
as a design tool. During this phase, on-line analysis, verification as well as
revision and optimization (if necessary) of the designed system properties is
provided.

3. The physical design phase, in which the system implementation is gen-
erated from the XTT2 model. The code can be executed and debugged.

Some limitations of XTT2 can be pointed out. XTT2 provides a support for
the entire process. It is used to model, represent, and store the business logic of
designed systems. Rules in XTT2 are formalized with the use of the ALSV(FD) [5]
logic and are supported by a Prolog-based interpretation. Although XTT2 rules
are prototyped with the ARD+ method, the method is quite poor, and does not
provide more advanced workflow constructs. Moreover, it is not a widely known
methodology and only dedicated tools support it.

3.3 Business Rules and BPMN

BPMN [4] is a visual notation for business processes. A BPMN model defines
the ways in which operations are carried out to accomplish the intended objec-
tives of an organization. Visualization makes the model easier to understand.
The goal of the notation is to provide such a notation which is easily under-
standable by business users. The notation provides only one kind of diagram –
BPD (Business Process Diagram). There are four basic categories of BPD el-
ements: Flow Objects (Events, Activities, and Gateways), Connecting Objects
(Sequence Flow, Message Flow, Association), Swimlanes, and Artifacts. An ex-
ample describing evaluation process of a student project is presented in Fig. 3.

Figure 3. An example of Business Process Diagram

11

BPMN [4] has been developed by the Business Process Management Ini-
tiative (BPMI) and currently is maintained by the Object Management Group.
Although the notation is relatively young, BPMN is becoming increasingly popu-
lar. According to OMG, there is more than 60 BPMN implementations of BPMN
tools. Moreover, BPMN models can be serialized to XML and further processed
e.g. into languages for execution of business processes, such as BPEL4WS (Busi-
ness Process Execution Language for Web Services) [10].

Very often a Business Process (BP) is associated with particular Business
Rules (BR), which define or constrain some business aspect, and are intended
to assert business structure or to control or influence the business behavior [11].
According to the specification [4], BPMN is not suitable for modeling concepts,
such as organizational structures and resources, data models, and business rules.
There is a huge difference in abstraction level between BPMN and BR. However,
BR may be complementary to the business process. In Fig. 4, an example from
the classic UServ Financial Services case study has been shown. This example
presents how business processes and rules can be linked.

Figure 4. An example of using BR to define a process in Business Process Diagram

BPMN has some weaknesses. Although a specification defines a mapping
between BPMN and BPEL (standard for execution languages), there is a fun-
damental difference between these two standards. One of the consequences of
this difference is that, for instance, not every BPMN process can be mapped to
BPEL and executed. Moreover, execution of the processes requires additional
specification, which is not necessarily integrated with the entire design process.

12

Despite the fact that the BPMN model has well-defined semantics and a par-
ticular model should be clearly understood, there can be various models having
the same meaning and there can be ambiguity in sharing BPMN models. Last
but not least, it is difficult to asses the quality of the model.

3.4 Critical comparison

As one can see from the Table 1, each of these solutions has some pros and cons.
Integration of these technologies based on their merits can bring better results
than using them separately.

Drools 4 BPMN XTT2
Visual design of the rulebase no no yes
Verification no some yes
Workflow modeling (OR, AND etc.) yes yes no
Runtime environment yes no yes
Tool support yes yes yes
Standardization no yes no

Table 1. Comparison of the three approaches

The disadvantages of the Drools Flow are platform dependency and lack of
standarization. Drools Flow supports decision tables and grouping of unrelated
rules. XTT2 allows multiple connections between tables. Although Drools only
allows for a single connection, it provides Join and Split blocks.

The XTT2 connections are of the AND type, by default. However, the conec-
tion semantics is different than that in Drools or BPMN. In Drools and BPMN,
the default inference process is forward chaining, while XTT2 provides various
inference modes, e.g. forward chaining (where the connections ore of the AND
type) or backward chaining (where the semantics of connections varies).

BPMN is only a notation which has many elements for precise control of
flow. However, this solution originally was not based on Rule-Based Systems.
Therefore, it does not define the relationship between processes and rules. Al-
though BPMN can be mapped to BPEL and executed, mapping and execution
is possible only for selected groups of a BPMN model.

In case of XTT2, the entire design process is supported. What is more, formal
on-line analysis can be performed during the design process, and then a prototype
of the system can be generated. However, XTT2 is not a wide-spread solution,
and does not pretend to be a universal method.

On the one hand, the comparison shows that XTT2 is the only one solution
which supports visual modeling of the rulebase (modeling using decision tables).
Moreover, only XTT2 provides formal verification. On the other hand, Drools
offers workflow modeling. The integration of Drools and XTT gave the oppor-
tunity to combine these advantages. The next section describes the proposal of
rule translation from XTT2 to Drools in detail, as part of the HeKatE project.

13

BPMN is already a well-known and standardized notation. In Drools 5, it can
be used to model workflow. To facilitate workflow modeling for XTT2 and to
provide an executable platform for BPMN, the integration of XTT2 with BPMN
is considered. The possible scenarios are identified and described in Section 5.
This research is a part of the BIMLOQ project (2010–2012).

4 Proposal of Rule Translation from XTT2 to Drools

Knowledge structure represented by Drools is very similar to the one represented
by XTT2. In fact, that was one of the main reasons for choosing Drools as
an integration platform. Both frameworks have the same goal: to provide rule-
based and structurized knowledge representation. On the one hand, XTT2 is
a unified structure which contains both rules and inference flow. On the other
hand, Drools has both of these features, but rules can exist without Drools
Flow. Both solutions can be used to model business processes. Drools Flow even
provides special blocks which contain Java source code to be executed. XTT2,
however, is more flexible and language independent. It contains rules which do
not have any dialect specific parts.

4.1 Generating Drools files

Knowledge represented in XTT2 is stored in XML form. One file contains a tree
structure and rules. Drools with the Flow model, on the other hand, stores knowl-
edge in at least two files: a file with rules and a file with a flow. The XTT2-to-
Drools integration mechanism separates XTT2 rules from the structure, trans-
forms them and puts into two separate Drools files.

Nevertheless, Drools operates on objects while XTT2 uses primitive types.
In Drools, facts are instances of Java classes inserted into the working memory.
When the rules are fired, values used during comparison are taken from objects
using getters. The workaround would be to create one Java class which contains
all XTT2 attributes. The class is called a Workspace. To sum up, three files are
generated from one XTT2 model file: Rule Flow (model structure), Decision
tables (aggregated rules), and Workspace (a Java class with all attributes).

The results of XTT2 into Drools translation are three files. The first one is an
XML based file and represents the flow structure. It does not contain the actual
rules, but only the nodes (tables’ names). The second one, a CSV (Comma
separated values) file, contains Decision Tables storing the rules. The last one is
a single Java class which holds all the XTT2 attributes.

4.2 Structural difference

While generating Drools files from an XTT2 file, structural differences are re-
vealed. First one was already mentioned above. It is the form of attribute types.
There is, however, an easy solution. The type of every XTT2 attribute is ex-
changed with an appropriate Java type. All XTT2 attributes are wrapped into
one Workspace class which does not contain any logic but getters and setters.

14

Another structural difference is the placement of the logical operator. An XTT2
table is translated to a Drools decision table. An XTT2 table contains logical
operators in the table cell – together with the value used in comparison. This
implies that in one column, many different operators can appear. In Drools,
however, the logical operator is placed in a table header. This means that all
cells underneath use the same operator. This problem can be solved by decom-
posing the XTT2 columns into one or more columns in Drools model. Table 2 is
the representation of XTT rules, while Table 3 is its Drools equivalent.

today hour operation
= workday > 17 = nbizhrs
= weekend = ANY = nbizhrs
= workday < 9 = nbizhrs
= workday in [9,17] = bizhrs

Table 2. XTT table from the thermostat example

condition condition condition condition condition action
Workspace Workspace Workspace Workspace Workspace Workspace
Today =
”$param”

hour > hour < hour >= hour <= setOperation
(”$param”)

workday 17 nbizhrs
weekend nbizhrs
workday 9 nbizhrs
workday 9 17 bizhrs

Table 3. Decision Table for the thermostat example

There are some structural differences in the flow structure as well. First of all,
XTT2 tables allow multiple incoming connections. Furthermore, the connection
can be directed to a specific row in a table. It is not possible in Drools Flow.
Ruleset blocks can have only one incoming and one outgoing connection. This
issue can be resolved by placing split and join blocks before and after the ruleset
block. Nevertheless, the problem with row-to-row connection is still present and
it is to be resolved in a future version of the integration proposal.

Another difference with the representation form of Drools Flow appeared
when version 5 of Drools was released. In version 4.0.7, the Drools Flow structure
could only be created in a dedicated Eclipse plugin. This is because the file which
contained the structure was a Java class serialized using the XStream library
(http://xstream.codehaus.org). The programmer was dependent on the class,
which was included into the plugin. In version 5 however, the file storing the Flow
structure was slimmed and now contains only the most important information:
blocks defined in the flow and connections between them.

15

5 Proposal of XTT2 Inference Design with BPMN

The integration of XTT2 with BPMN faces two main challenges.
Different goals: BPMN provides a notation for modeling business processes.

Such processes define the order of tasks to accomplish the intended objectives
of an organization. Although in BPMN one can define very detailed description
of the particular task, it is rather not the proper use of the notation. The XTT2
methodology, in turn, is not only a notation. It provides well-founded systematic
and complete design process [5]. This preserves the quality aspects of the rule
model and allows gradual system design and automated implementation of RBS.

Different semantics Apart from goals, the semantics of both notations is
also different. BPMN describes processes while XTT2 provides the description
of rules. Although the semantics of each BPMN element is defined, the imple-
mentation of some particular task is not defined in pure BPMN. XTT2 provides
a formal language definition and therefore enables automatic verification and
execution. Therefore, BPMN and XTT2 operate on different abstraction levels.

Several integration scenarios for XTT2 and BPMN are considered:

– BPMN integration with XTT2
This scenario assumes that BPMN and XTT2 have some intersecting parts,
in which the integration of the two solutions can be performed. The gen-
eral idea is as follows: BPMN is responsible for inference specification and
hierarchization of the rulebase, and rule tables for some part of the system
are designed in XTT2. Another example is a BPMN model of a cashpoint,
shown in Fig. 7 and 8.

– BPMN as a replacement of ARD+
Because the abstraction level of ARD+ and BPMN seems to be similar, in
this scenario BPMN is proposed to be used instead of present solution –
ARD+. This assumes that mapping between BPMN tasks and XTT2 tables
is one-to-one. A prototype example of this approach is shown in Fig. 5.

– BPMN representation of XTT2 table
This is not a primary goal of integration. However, this could enable BPMN
design of the whole XTT2 methodology, including single tables and rules.
An example of this approach can be seen in Fig. 6.

Because the assumed mapping in the first scenario may be not one-to-one, this
scenario is highly complex. It requires well-prepared analysis and specification
of both solutions as well as a detailed specification of the integration proposal.
However, this is the best scenario for real-world cases. In the second one, in
turn, the mapping is very simple, because each task is mapped to exactly one
table. However, this solution does not provide the table schema, as it was in the
case of ARD+. The third scenario is a rather academic one, because tables are
already an efficient method of presenting rules, and their visual representation
in another form may not be so useful [12].

16

Determining
operation hours

Determining
thermostat settings

Determining
workday

Determining
season

Figure 5. An example of using BPMN instead of ARD+

month in 1;2;12

set season
to winter

month in 3;4;5

set season
to spring

month in 6;7;8

set season
to summer

set season
to fall

month in 9;10;11

Figure 6. BPMN representation of XTT2 table

6 Conclusions and Future Work

The general problem considered in this paper is the RBS design and modulariza-
tion. The paper considers possible solutions to modularize rule bases with Drools,
BPMN and XTT2. However, these solutions have some limitations. The paper
constitutes an overview and a proposal for integration of the three presented
methodologies, which can be useful in solving the identified problems.

The work described here is partially in progress. The rule translation from
XTT2 to Drools is being developed and implemented. The design is the result of
the comparison of both semanticts (XTT2 and Drools) while the translation is
achieved by the module to HQEd, writen in C++. Drools 5 has some differences
from its predecessor. The most important thing is that Drools Flow focuses
more on a process management, rather than on the rule hierarchisation. In the
previous version the main part was the block which refers to the rules in the
knowledge base. In the new version there are much more blocks which provide
strict integration with Java programming langauge.

Moreover, several issues concerning BPMN as an end-user notation are con-
sidered. Future work will be focused on integration of the three described so-
lutions. The plan involves analysis of the BPMN notation for the purpose of
Rule-Based Systems, which can be useful for implementation and application of
the integrated methodology. In a more distant future, the plan involves running
selected BPMN models in the rule engine, and comparison of the analysis of
BPMN models via rule engine to executable BPEL4WS.

17

Authorization
Choosing
cashpoint

activity

authorized

Take
card away

not authorized

Display balance

Enter desired
amount

~+

Cash amount
precheck

Pay out
desired amount

Unsufficient
founds

Figure 7. Example of BPMN representation of cashpoint

PIN
checking

Enter PIN
PIN correct

Checking the number
of failed attempts

PIN incorrect

 too many
failed attempts

Figure 8. Example of BPMN representation of cashpoint Authorization subactivity

References

1. Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer-Verlag, Berlin,
Heidelberg (2006)

2. Browne, P.: JBoss Drools Business Rules. Packt Publishing (2009)
3. Owen, M., Raj, J.: BPMN and business process management. Introduction to the

new business process modeling standard. Technical report, OMG (2006)
4. OMG: Business process modeling notation (bpmn) specification. Technical Report

dtc/06-02-01, Object Management Group (February 2006)
5. Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent

systems. International Journal of Applied Mathematics and Computer Science
20(1) (March 2010) 35–53

6. Bobek, S., Kaczor, K., Nalepa, G.J.: Overview of rule inference algorithms for
structured rule bases. (2010) to be published.

7. Giarratano, J., Riley, G.: Expert Systems. Principles and Programming. 4th
edn. Thomson Course Technology, Boston, MA, United States (2005) ISBN 0-
534-38447-1.

8. Friedman-Hill, E.: Jess in Action, Rule Based Systems in Java. Manning (2003)
9. Doorenbos, R.B.: Production Matching for Large Learning Systems. Carnegie

Mellon University, Pittsburgh, PA, United States of America (2005)
10. Sarang, P., Juric, M., Mathew, B.: Business Process Execution Language for Web

Services BPEL and BPEL4WS. Packt Publishing (2006)
11. Hay, D., Kolber, A., Healy, K.A.: Defining business rules - what they really are.

final report. Technical report, Business Rules Group (July 2000)
12. Kluza, K., Nalepa, G.J.: Analysis of UML representation for XTT and ARD rule

design methods. Technical Report CSLTR 5/2009, AGH University of Science and
Technology (2009)

18

Knowledge Acquisition for Simulating Complex
Psychological Processes

Régis Newo, Kerstin Bach, and Klaus-Dieter Althoff

University of Hildesheim,
Institute of Computer Sciences,

Laboratory of Intelligent Information Systems
Email: lastname@iis.uni-hildesheim.de

Abstract. In this paper we introduce an approach that elicits infor-
mation from psychologists and transfers this knowledge in knowledge
representations for a knowledge-based system. Based on SIMOCOSTS,
a psychological model for simulating coping strategies in critical situa-
tions, we present a case study on a literary character that exemplifies our
approach. We describe the simulation sequences in an abstract way and
elucidate how we utilise the acquired knowledge. We use Eichendorff’s
literary character of ”From the Life of a Good-for-Nothing” (”Aus dem
Leben eines Taugenichts”) as an example for a psychological analysis,
which is transferred into a simulation scenario according to the SIMO-
COSTS model.

1 Introduction

Artificial Intelligence (AI) has been successfully applied in various research disci-
plines trying to explain complex contexts. Especially when dealing with complex
problems, a simulation of the problem helps to understand interdependencies be-
tween various components. When a person has to cope with a critical situation
in her or his life, many reactions are possible responding this situation, so it
is very interesting how the decision they made have been developed. The work
presented in this paper picks up on this topic and presents an approach for sim-
ulating a person’s behavior coping with critical situations. The approach has
been developed together with development psychologists who have developed a
psychological theory how decision making in stressful situations can be explained
[1]. In this approach the decision making process is explained as a market place
with various buyers and sellers. Each of them has an individual goal and they
bargain with each other trying to receive its goal. The buyers and sellers in
the theory are goals that have been developed over years and the result of the
negotiation is a strategy how the person deals with the situation.

We picked up the idea of a market place idea where different goals meet
and transfered it to an multi-agent-system that simulates the determination of a
strategy. The underlying architecture of our approach is the SEASALT (Sharing
Experience using an Agent-based System Architecture LayouT) architecture [2]

19

which is based on the CoMES (Collaborating Multi-Expert-Systems) approach
[3], the research vision of our group.

SEASALT consists of five components and is built around a multi-agent sys-
tem containing intelligent agents providing information (Knowledge Provision).
Each agent, so-called Topic Agent, is equipped with a knowledge-based system
that derives it information from some kind of community (Knowledge Sources)
that is pre-processed and formalized in order to be usable by a knowledge based
system (Knowledge Formalization). Furthermore a Knowledge Representation
component provides shared knowledge like rule sets and domain ontologies. The
interaction with the user is realized via a user interface that interacts with the
multi-agent system. The simulation of developing coping strategies focuses on the
multi-agent- system and the according knowledge formalization which is mainly
carried out by psychologists supported by intelligent graphical interfaces. By
talking about knowledge based systems, we are currently focusing on case-based
reasoning (CBR) systems, because CBR is an established methodology that uses
previous experiences to solve new problems. Moreover, CBR already works with
representative examples and thus performs well in interdisciplinary projects as
ours. Experts have to provide initial examples and by using the application the
figure our ”wrong behaviors” and provide more examples. So, the application
develops successively by integrating the new examples. In comparison to other
SEASALT realizations like docQuery [4] that are focusing on co-operating topic
agents where the agents deal with complex problems by dividing them into top-
ics that are solved individually and afterwards the solutions are put together.
However, in this approach we have competitive agents, because each intelligent
agent has its individual goal and they are competing against each other. The
knowledge acquisition is almost the same, because a knowledge engineer is sup-
ported by intelligent agents or processed developing knowledge models and cases
that can further be used by the CBR systems.

The remaining part of this paper presents the SIMOCOSTS model and the
briefly introduced marked place idea in section 2.2, followed by the introduction
of our case study based on Eichendorff’s literary character of ”From the Life
of a Good-for-Nothing” (”Aus dem Leben eines Taugenichts”) [5] in section 3.
Section 4 discusses how knowledge can be acquired and gives examples taken
from the case study. The final Section 5 sums up the paper and points out the
next challenges for us.

2 Simulating human processes

As stated in the previous section, we deal in our project with human behaviour.
In this section, we will first present some psychological background that we use
for the implementation of the simulation. It should be noted that we want to
develop a tool that should be used only by domain experts.
Any time we have to deal with simulations, we have to know exactly which in-
formation we need and what we have to take into account. In our case, it means
that we have to know which information is processed by a person while facing

20

a critical situation. Yet, as we all know, it is (almost) impossible to capture the
complete knowledge of a human being. This due to the fact that that whole
knowledge is saved in the so called long term memory which can, according to
psychologists, store an infinite amount of information [6].
Luckily, humans never access their whole long term memory at the same mo-
ment. We instead just use our so called short term memory, which can be seen
as a very small activated part of our long term memory. The short term memory
contains information related to the situation we are actually experiencing. More
on memory activation can be read in [7, 6]. That perception of memory legiti-
mates us to just consider situation related information during our simulations.
That means that we do not have to capture all kind of information that a human
can have. We can restrict on the situation related knowledge in order to simulate
a plausible behavior of human beings in critical situations.

Nevertheless, our simulation will be based on the theory of Brandtstädter and
Greve [8]. It is based on the fact that intentions are a key part of psychological
theories of action. Except for knee-jerk or automated behaviours, human actions
are motivated by intentions. When somebody faces a critical situation, his actual
state strongly differs from his goal state (i.e., his intentions). In order to solve
the problem, the person essentially can use one of the following three forms of
coping processes:

– Assimilative processes: the strategy here is to solve the problem by working
directly on the actual state. That is, it is an active art to work through
a problem, in which the person uses the available resources in a problem
oriented way. The available resources can be the person’s own resources or
external ones.

– Accommodative processes: this strategy is used when the person believes he
can not change the actual state (i.e. solve the problem) by himself. He then
tries to adapt his goal state such that the discrepancy to the actual state
can be diminished.

– Defensive processes: in this case, the person just ignores the discrepancy
between the actual state and his goals. He can for example perform actions
that diminishes the meaning of the discrepancy.

It should be noted that a person does not (normally) intentionally apply a given
type of process. The person rather just try to find out, which strategy would
be the best for him at the moment (depending on his capabilities, environment,
etc.). The chosen strategy can then be evaluated to belong to one of the given
processes by experts.

We will consider that the goals of a person play a crucial role for his be-
haviour. We also suppose that these goals are competitive. In fact, we will con-
sider that human’s mind is comparable to some kind of market place which
contains those competitive goals.

Another question which have to be taken into account is to know which part
of the knowledge of a human play a significant or even an essential role when
he faces critical situations. This is actually a question that will be answered
with the aid of the simulation tool, because even psychologists can not give

21

Fig. 1. Simplified Version of SIMOCOSTS (see [9])

a precise answer. Nevertheless, there are some parts (i.e. components) which
are believed to a play a major role. To that extend, we developed a model,
called SIMOCOSTS [9] (SImulation MOdel for COping STrategy Selection), in
which we represent those components and also the interactions between them.
A simplified version of the model can be seen on Figure 1

Yet that model can not be directly used for an implementation. We still
for example have to figure out how the information is going to gathered and
stored. The gathering of information will be discussed in Section 4. While dealing
with human processes, many knowledge representation techniques have to be
considered, because of the diversity of human knowledge. Yet we believe that
humans mostly rely on past experiences (first or second hand), particularly in
difficult situations. That is why we will mainly rely on Case-Based Reasoning
(CBR) [10] as our main knowledge representation technique.

Considering the organisation the knowledge, we distinguish between two
types of knowledge, which differs in their accessibility for the simulated per-
son. The first type is called shared knowledge and is always accessible for the
person. It contains general facts about the person as well as personal character-
istics. The second type of knowledge is called unshared knowledge and is only
available for the goals. It mainly contains information about the concerned goals
and strategies which can be used if there is a critical situation.

22

Fig. 2. Architecture for the Knowledge Management in SIMOCOSTS

A generic illustration of the simulation with respect to the knowledge man-
agement can be seen in Figure 2. The market place contains several processes,
in our case the goals, which interact with each other and are competitive. Each
process can access its own unshared knowledge which can in turn consist of mul-
tiple sources. As mentioned earlier, the knowledge sources will rely on CBR. Yet
we do not rule out the use of other techniques (e.g. ontologies or rules).

This architecture actually displays the knowledge line of the SEASALT ar-
chitecture [2]. SEASALT thus provides a very good platform for the organisation
of the (unshared) knowledge, which can be realised with a case factory [11].

In order to give a better insight on the realisation of the simulation, we will
elucidate in the next paragraph the underlying concepts and workflows used for
the implementation.

23

2.1 Concepts of the Simulation

Person The main concept is the person itself. As can be seen on Figure 2,
the person can access a so-called general knowledge, which contains for instance
general facts about the person. These general fact include psychic as well as
physical facts. It means that we assume that we know how the person feels
physically and which abilities he has as well as the personality of the simulated
person. We use several psychological theories in order to represent all those facts.
In the style of the personality theory developed by Asendorpf [12], we describe
the psychological facts among other things with the self-concept of a human
by using adjectives defined by Müskens in [13]. These adjectives are grouped in
several classes which include for example happiness and creativity. The physical
abilities are similarly represented by defining the hard skills of the simulated
person.
We thus represent all those attributes of the person with attribute value pair in
which the attributes display the characteristics and the values whether and to
which extend they are existent.

Situations In our simulation, a situation is a description of a state. It might
for instance be the description of the actual state of the person, thus indicating
how the person feels. We use situations to model two important parts of our
architecture.

Events An event is a situation which may have an impact on the characteristics
of the person. Events represents the situation that the person faces which might
affect him. The simulation therefore starts with the (external) generation of an
event with is then passed to the person.

Goals Goals, as stated earlier, are things that the person wants to achieve. They
are thus concrete specification of situations that the person wants to achieve.
Goals might have priorities which show their importance for the simulated per-
son. An accommodative strategy to achieve is then capable to change the goal
or adjust the its priority.

Strategies Strategies are the plans that can be used by a person in order to
achieve a certain goal. These plans can consists of several steps which affect either
the actual situation (assimilative) or the concerned goal (accommodative).

2.2 Workflows of the Simulation

A simulation run consists of five main steps:

1. The generated event is compared to the goals of the person in order to find
out whether we have a critical situation.

24

Fig. 3. Correlation between the concepts and illustration of the workflows

2. The goals gives a feedback of that evaluation to the event. That feedback
contains a so-called influence factor vector which indicates how the event
actually affects the person.

3. The influence factors are applied on the personal characteristics.
4. The best strategies for the affected goals are computed.
5. The influence factor generated by the strategies is applied on the character-

istics of the person.

Afterwards, the psychologists analyse the state of the person after the run
and also have the possibility to start a new run with different parameters. These
workflows are illustrated in Figure 3

3 Case Study

In this section, we will present an example to illustrate the architecture. We
decided to stick with an literary example because the (important) information
is given and accessible for everyone. Another reason is the fact that we also have
the output that our simulation tool should give. It is hence a good way to tune
our implementation.

Our example is a literary character of ”From the Life of a Good-For-Nothing”,
a novella of Joseph von Eichendorff [5]. It is the story of a young man, called
Good-For-Nothing, who is very lazy (hence the name). He likes to sing and play
the violin. Because he does not like to work and does not help at home, his fa-
ther send him to the wide world. His adventure starts there. Although he is quite
happy at the beginning, because he likes journeys, he faces several difficulties
during his adventure. Nevertheless, he always finds a way to come through, even

25

if he is sometimes lucky.

Our aim is to simulate the main character, Good-For-Nothing, in different
situations. For this example, we will concentrate on the psychological facts about
the character, because the physical facts do not play an important role in his
decision making. The only hard skill that can be mentioned is his ability to play
violin. As for his self-concept, Good-For-Nothing is a positive and preponderant
lucky person. He is also authentic, candid, unorderly, educated and creative.
Furthermore, he can be seen as a sentimental person and in need of affection.

He has several goals as the story goes on. First, as he leaves his father’s
home, he soon realizes that he has to earn his keep. This situation is a difficult
one because he doe not like to work. Later he gets to know a girl, yet she
does not seem to like him at fist sight. Moreover, he has the goal to go to
Italy because he heard many good things about the country. Because of his
laziness, Good-For-Nothing often applies accommodative strategies to overcome
his critical situations. That means, he just changes his goals or at least their
priorities. Most of his assimilative strategies are based on luck.

4 Knowledge Acquisition in SIMOCOSTS

With the previous example, we can see that there are many information that
should be given before an initial simulation run can be made. Because the tool
should be used by domain experts, we have to deal with the knowledge acquisi-
tion from experts. Two main problems arise. First, the expert has to give many
different information before the start. He does not only have to give a complete
and detailed description of the person (i.e. characteristics), he also have to pro-
vide the goals, strategies to achieve these goals and also events, which should be
evaluated by the person (as critical situations or not).
The second main problem concerns the amount of information needed for each
part of the simulation. In order to avoid a trivial simulation, we do not only
need decent algorithms, but also enough information. Because of the fact that
we intend to use CBR as main knowledge representation technique, we need for
example many strategies the person can rely on before we can start simulation
runs. These two points lead to the fact we need a good knowledge acquisition
methodology. That methodology should of course also take into account that
the experts, in our case the psychologists, often have a different perception of
the underlying model and the simulation than computer scientists. Furthermore,
they want to able to have non trivial simulation runs, which is necessary in order
to be able to develop (psychological) theories.

The basic idea of our approach is based upon the fact that the domain ex-
pert should not be overwhelmed by the amount of information that has to be
entered.

In our concrete example, we aim at having as few input masks as possible.
For that purpose, we try to gather similar information in one step instead of

26

getting each kind of information in different steps. This leads to the need of an
intelligent combination of similar information inputs. Determining the appropri-
ate combination is of course a highly domain dependent process. Another point
that has to be considered is the use of information extraction techniques. The
domain expert should be able to enter the needed information in his preferred
form, because this might encourage him to give more input. It is therefore a ne-
cessity to use information extraction techniques, in order to be able to structure
the given information in our case-based simulation tool.
For our simulation we will have two input masks. The first one allows the expert
to give information about the person. That means that the experts do not only
give general facts about the person, but also his goals. In the second mask, the
expert should be able to enter information about the events as well as some
strategies which can be applied in order overcome the critical situations. This
is advantageous for the experts because the can give events as well as solutions
which should adapted and applied on the event. We should remark that the spec-
ification of strategies does not trivialise the simulation, because it is important
to find out which factors play a role for the adjustment of the strategies.

With both input masks, we will be able to gather information about the four
knowledge areas in our simulation (namely personal characteristics, goals, events
and strategies).

4.1 Discussion

We are still implementing the approach. Therefore we can not provide an evalu-
ation yet. Nevertheless we strongly think that it would facilitate the knowledge
acquisition from the experts.

If we consider the case study from the previous section, the experts would
have to provide in the first mask the characteristics mentioned (lazy, candid, etc.)
as well the goals of Good-For-Nothing (e.g. earn his keep or have a relationship
with the girl he loves). The second mask offers the possibility to enter events
which will start the simulation and also strategies sketches for the event. The
experts thus can provide information for several knowledge bases in the same
iteration.

5 Summary and Outlook

We presented in this paper an architecture for the implementation of the simu-
lation of complex processes. Our generic approach for the simulation is applied
in a psychological realm, namely the simulation of human behaviour in so called
critical situations. The developed is intended to be used by domain experts
(psychologists) with the aim to develop and test theories. The simulation tool is
currently been implemented while using the SEASALT architecture.
One major problem for our simulation is the knowledge acquisition. We gave
an approach and elucidate how we intend to cope with that problem. Further
steps towards realising our simulation tool include the implementation of both
approaches and an evaluation of the tool.

27

References

1. Greve, W., Wentura, D.: Personal and Subpersonal Regulation of Human De-
velopment: Beyond Complementary Categories. Human Development 50 (2007)
201–207

2. Reichle, M., Bach, K., Althoff, K.D.: The SEASALT Architecture and its Real-
ization within the docQuery Project. In Mertsching, B., ed.: Proceedings of the
32nd Annual Conference on Artificial Intelligence, KI-2009, Paderborn, Springer
(September 2009) 556–563

3. Althoff, K.D., Bach, K., Deutsch, J.O., Hanft, A., Mänz, J., Müller, T., Newo,
R., Reichle, M., Schaaf, M., Weis, K.H.: Collaborative Multi-Expert-Systems –
Realizing Knowlegde-Product-Lines with Case Factories and Distributed Learning
Systems. In Baumeister, J., Seipel, D., eds.: Proc. of the 3rd Workshop on Knowl-
edge Engineering and Software Engineering (KESE 2007), Osnabrück, Germany,
Berlin, Heidelberg, Paris, Springer Verlag (2007)

4. Bach, K., Reichle, M., Althoff, K.D.: Case-based reasoning in a travel medicine ap-
plication. In Bichindaritz, I., Jain, L., eds.: Computational Intelligence in Medicine.
Advanced Information and Knowledge Processing. Springer (2010) to appear

5. von Eichendorff, J.: Aus dem Leben eines Taugenichts. Vereinsbuchhandlung,
Berlin (1826)

6. Anderson, J.: Kognitive Psychologie. Spektrum Akademischer Verlag, Heidelberg
(2001)

7. Anderson, J.R.: A Spreading Activation Theory of Memory. In Collins, A.,
Smith, E.E., eds.: Readings in Cognitive Science - A Perspective from Psychology
an Artificial Intelligence. Morgan Kaufmann Publishers (1988)

8. Brandtstädter, J., Greve, W.: The aging self: Stabilizing and protective processes.
Developmental Review 14 (1994) 52–80

9. Newo, R., Müller, T., Althoff, K.D., Greve, W.: Learning to Cope with Critical
Situations - A Simulation Model of Cognitive Processes using Multiagent Systems.
In Hinneburg, A., ed.: Proceedings of the LWA 2007: Lernen - Wissen - Adaptivität.
(September 2007) 159–164

10. Aamodt, A., Plaza, E.: Case-based reasoning : Foundational issues, methodological
variations, and system approaches. AI Communications 1(7) (March 1994)

11. Althoff, K.D., Hanft, A., Schaaf, M.: Case factory – maintaining experience
to learn. In Göker, M.H., Roth-Berghofer, T., Güvenir, H.A., eds.: Proc. 8th
European Conference on Case-Based Reasoning (ECCBR’06), Ölüdeniz/Fethiye,
Turkey. Volume 4106 of Lecture Notes in Computer Science., Berlin, Heidelberg,
Paris, Springer Verlag (2006) 429–442

12. Asendorpf, J.B.: Psychologie der Persönlichkeit. 4 edn. Springer Verlag (September
2007)

13. Müskens, W.: Sedimente der Selbstbeschreibung: Der lexikalische Ansatz der
Persönlichkeitsforschung, Berlin (2001)

28

Interaction Pattern Categories

Pragmatic Engineering of Knowledge-Based Systems

Martina Freiberg, Joachim Baumeister, and Frank Puppe

University of Würzburg, Institute of Computer Science
Dept. of Artificial Intelligence and Applied Informatics

D-97074 Würzburg, Germany
freiberg/baumeister/puppe@informatik.uni-wuerzburg.de

Abstract. The application of knowledge-based consultation- and doc-
umentation systems is, apart from large industrial projects, often also
beneficial for small to mid-sized enterprises. Yet, their design and im-
plementation still is a tedious and costly task. We motivate, that cus-
tomized UI and interaction patterns constitute a pragmatic technique
for supporting especially requirements engineering, and thus are capable
of considerably promoting real-world projects. In this paper, we intro-
duce abstract categories—Guided-, Adaptive-, and Autonomous Entry—
for classifying tailored patterns for knowledge-based systems. Further,
we discuss their role in an overall approach extending the Agile Process
Model and resulting benefits.

Keywords: Dialog System, User Interface Design, Agile Development

1 Introduction

Knowledge-based systems gained increasing impact also outside academia over
the last decades. Apart from large clinical and industrial projects, the applica-
tion of knowledge-based consultation and documentation systems is also often
beneficial for small to mid-sized corporations. Yet, the trade-off between their
potential benefits and their mostly still tedious and costly development, is still
often perceived as unfavorable, and respective projects are declined.

In general software engineering, user interface (UI) prototyping already is an
established methodology regarding iterative, rather inexpensive system specifi-
cation before the final product is implemented [3]. Also, UI prototyping permits
the early evaluation of (several) design options. Inspired by that approach, we
suggest Interaction Patterns for Knowledge-Based Systems as a cornerstone of
a tailored, agile knowledge system development methodology. The overall ap-
proach integrates pattern- and prototyping-based development into an existing,
agile process model, and thus combines the advantages of reusing approved so-
lutions (patterns) and of affordable, iterative system specification (UI proto-
typing within an agile process model). We argue, that this constitutes a rather
pragmatic way to enhance understanding, discussing, and specifying system re-
quirements at project start. This in turn helps to promote respective projects

29

in the first place, and thus renders its application especially interesting when
addressing small to mid-sized enterprises as customers.

As a first step into this direction, this paper introduces Interaction Pattern
Categories, that provide an abstract classification framework for knowledge sys-
tems and corresponding interaction/UI patterns. We further discuss the role of
such patterns within the proposed, extended agile approach; the details regard-
ing the prototyping and a respective tool are subject of separate work, see [7].

The rest of the paper is organized as follows: Related research is presented
in Section 2. In Section 3, we introduce our classification framework of Interac-
tion Pattern Categories and the relevant terminology. We further present three
categories, identified on the basis of past experiences with conducted projects.
In Section 4, we outline the extended, agile process model, and the patterns’
specific role as well as resulting benefits. We conclude with a summary of the
presented work and a discussion of future research directions in Section 5.

2 Related Work

The process model for knowledge system development, that we suggest in this
paper, integrates pattern- and prototyping-based development, thus uniting the
advantages of both approaches and especially fostering an enhanced requirements
engineering.

Patterns specify proven solutions for recurring (design) problems and are
established in many domains: Examples are software engineering, ontology engi-
neering, or knowledge formalization, [8, 9, 14]. They offer the advantage to reuse
approved solutions for similar problems, and thus to reduce development ef-
forts and to profit from the lessons learned. Regarding UI–/interaction design,
tailored, domain-specific pattern collections exist, e.g., [16–18]. Yet, patterns
originating from such research cannot be straightly transferred to our context,
as knowledge-based systems put specific demands on interaction and UI design.

Regarding knowledge system development, various methodologies have been
proposed in the past—see [12] for an overview. More recent works emphasize
the relevance of agility, e.g., see [2, 10]. We follow that direction by integrating
pattern- and prototyping-based techniques into an agile process model. Previous
approaches, however, often strongly emphasize the development of the knowl-
edge itself. In contrast, we specifically support knowledge system UI and inter-
action design by the means of tailored patterns and prototyping as to enhance
requirements engineering on the one hand, and to foster a pragmatic, affordable
promotion and execution of respective projects on the other hand.

UI prototyping so far has become an established approach in general software
engineering [3] as well as in HCI and usability engineering [4]. Main advantages
are a strong support of requirements specification, and the opportunity to eval-
uate (several) UI design(s) at an early stage. In [11], a prototyping tool, that
incorporates design patterns for layout support, has been proposed. Though
generally related to our approach, that work focusses on cross-device design of

30

general web-style interaction. Contrastingly, we explicitly consider UI and inter-
action design of knowledge-based consultation and documentation systems.

3 Interaction Pattern Categories

By Interaction Patterns for Knowledge-Based Systems, we understand the de-
scription of the systems’ interaction- and UI design for a specified context. They
comprise a compact specification of their applicability, and exemplify the cor-
responding solution approach. Yet, there exist attributes, the value of which
may be common to more than one distinct pattern. Thus, we first introduce
an abstract framework—Interaction Pattern Categories—for classifying patterns
according to such common properties before specifying concrete patterns. In Sec-
tion 3.1, we first introduce relevant terminology, and in Section 3.2, we present
the classifying categories—Guided-, Adaptive-, and Autonomous Entry.

3.1 Relevant Terminology for Specifying Pattern Categories

In the following, we specify the addressed system types as well as the classifying
attributes, that characterize the pattern categories, in more detail.

Knowledge-Based Systems: We specifically address knowledge-based sys-
tems with our approach—by that, we understand knowledge systems, that serve
either a consultation or a documentation task. In both cases, the main user-
system interaction is structured data entry—mirrored by ”Entry” in the pattern
category names. Regarding consultation, the system gradually derives solutions
for a given problem with the respective, implemented reasoning mechanisms
based on the provided user input (answers). Documentation systems emphasize
supporting uniform and reliable data input as effectively as possible.

Classifying Attributes: The attributes User Competence, Context Presen-
tation, and Data Volume are common to all patterns of one category. Major
classifier thereby is User Competence—in the context of knowledge-based sys-
tems, lengthy, strictly prescribed interviews can be annoying and inflexible for
competent users, that might want to influence the interrogation flow according to
their expertise. This makes it essential to tailor the system and interface design
to the target users’ competence.

A. User Competence : A naive data provider follows the prescribed inter-
rogation sequence, with no desire for deviation or adaption; possible reasons can
vary from rather low domain competence/lacking experience to a highly stressful
usage context (but nevertheless domain expertise). Experienced users possess a
certain domain expertise, and thus may be interested in system-suggested work-
flow guidance, yet, additionally require the option to influence the interrogation
and to deviate from suggested paths. An autonomous problem solver finally pos-
sesses sufficient expertise to solve the problem independent from system guid-
ance, based on the (potentially various and complex) information presented.

31

B. Data Volume : The amount of data that is processed during a typical
interrogation session; thus, it corresponds to the number and the complexity
of questions required for deriving a solution or entering a complete data set.
We roughly distinguish between small, medium, and large. Data Space, in con-
trast, specifies the universal range of possible input data, and thus corresponds
to the domain complexity. The respective data volume/data space combination
does not influence the pattern categorization, yet the knowledge required for a
specific implementation—e.g., large data space and low data volume implies so-
phisticated interrogation structures to present appropriate questions efficiently.

C. Context Presentation : No context means, that during an interrogation,
only the required questions are presented, but no further information. Otherwise,
we distinguish support knowledge—auxiliary information (not interrogation spe-
cific), or informal knowledge representations—and interrogation context—i.e.,
additional information regarding, e.g., the progression of the workflow, or in-
dicating the consequences of choosing certain answer alternatives in advance.
Type and extent of context presentation highly depend on the respective level of
user competence—concerning naive data providers, interrogation context often
is not required, yet for complex questions, support knowledge presentation might
be advisable; with rising competence, the presentation of interrogation context
gains importance for supporting an independent, efficient system usage.

3.2 Interaction Pattern Categories for Knowledge-Based Systems

Based on experiences from past projects, we define three basic categories for
UI/interaction patterns: Guided-, Adaptive-, and Autonomous Entry. For each
category, we describe the Problem Statement, the Solution, and the Applicability,
specifying common properties that apply to all contained patterns. Further, we
provide Examples—i.e., existing implementations—and Variants, that describe
in what regard patterns of a category may vary.

The basic interaction specifying each pattern, regards question selection dur-
ing interrogation. Even if patterns later vary, e.g., regarding the processed data
volume, that basic interaction remains the same. For its specification we use the
UML sequence diagram notation and the elements: User, the system Interface,
Questions (presented to and answered by the user), the Data pool (storing data
resulting from provided answers or reasoning), and the Knowledge component.

A. Guided Entry

Problem Users act as naive data providers, thus for a reliable, effective decision-
or documentation support, a high level of system autonomy/guidance regarding
the interrogation flow is required. Data volume might vary from small to medium.

Solution An interview metaphor is transferred to the interface, where the user
and the system interact alternately. The system flexibly reacts to the pro-
vided answers by adapting the interrogation sequence, thus presenting only

32

the question(s) that fit the respective context best. The interview proceeds
system-guided, and deviation is mostly not (or only in limited terms) intended.
Thus, presenting interrogation context is not mandatory, even though regard-
ing lengthy sequences status feedback may be beneficial. Contrastingly, support
knowledge is required in the case of complex/difficult questions for clarification.
Figure 1 depicts the interaction sequence for Guided Entry. The interface initi-

loop

Question KnowledgeInterface

present
Question()
answer
Question()

requestNext()

Data

assessNext()

propagate()

propagate
AnswerValue()

assess()

Fig. 1. Guided Entry—Basic interaction sequence for question selection.

ates the question request, whereupon the knowledge component assesses the next
question—where available, based on the previously provided user input stored
in the data pool—and propagates the result back to the interface. The then pro-
vided answer of the user is propagated to the data component and thus made
available for the knowledge component hereafter. Those steps are performed it-
eratively until a defined interrogation sequence is finished.
Applicability Systems based on Guided Entry equally fit consultation and
documentation tasks. Especially documentation of high quality or frequently
recurring data is supported, as specified data entry can be assured by the
strict, system-guided interrogation flow. However, if a higher level of user au-
tonomy is desired—e.g., influence on the interrogation, or adaptable question
representation—Adaptive- or Autonomous Entry provide more flexibility.
Examples Figure 2 presents two implementation variants of Guided Entry.
CareMate (A) is a quick response second-opinion system for emergency situ-
ations. Its one-question interaction style creates the literal impression of an in-
terview and supports the intuitive usage in the context of stressful emergency
conditions. Continuous status feedback on the current solution states is provided,
and the processed data volume is rather small. For a more detailed introduction,
see [1]. SonoConsult [15] is a consultation and documentation system for the
field of abdominal ultrasound. The multiple-question interaction style resembles
a paper-based interview (questionary) and helps to cater with the rather large
data volume. Both support knowledge (question clarification) and interrogation
context (presenting currently derived solutions) are provided.
Variants Pattern variants arise with regards to the type and extent of context

33

B

A

Fig. 2. Implementation variants of Guided Entry, both in german: A) Digitalys Care-
Mate and B) SonoConsult.

presentation (see above examples), as well as regarding the characteristics of the
naive user (e.g., expert in stressful context vs. non-expert’s ad-hoc usage).

B. Adaptive Entry

Problem Experienced target users have a certain—yet, from user to user po-
tentially varying—domain competence; consequently, both system guidance as
well as the option for autonomous decisions regarding the workflow are desired.
Also, questions should be presented in a user-adaptable manner.
Solution The system basically suggests the most appropriate workflow to the
user; yet, also the option to deviate from that path and choose an adapted inter-
rogation sequence is provided. Where applicable, a hierarchical tree metaphor
is applied to cater with varying user competence levels: Questions are defined
both on an abstract (aggregate) level, but also subdivided into (several) refined
questions, where reasonable. Thus, according to their expertise, users may either
answer the aggregate questions—taking less time, but requiring more expertise—
or request the presentation of the questions’ refinement. To support the user’s
decision-making, providing interrogation context is strongly recommended. Also,
depending on the refinement level and complexity of the questions, support
knowledge should be additionally presented.
Figure 3 sketches question selection in Adaptive Entry. Basically, the user decides
whether to follow the system-guided interrogation or whether to choose an own
path. Regarding the first alternative, question selection proceeds as in Guided
Entry (Figure 1). In the second case, either the user’s competence allows for an-

34

loop

 alt

Question Data KnowledgeInterface

present() propagate()

[ELSE]

[USER COMPETENT]

request
Refinement()

assessRefinement()

propagate()

answerSelected
Question() propagate

AnswerValue()
assess()

 alt [Guided Entry: System-guided Question Selection]

Fig. 3. Adaptive Entry—Basic interaction sequence for question selection.

swering the currently displayed question; then the answer is propagated to the
data pool and thus is available for the knowledge component as the interroga-
tion continues. Otherwise, the user can request question refinement whereupon
the knowledge component assesses the possible refinement, and propagates the
result back to the interface for displaying it to the user.
Applicability Apart from consultation, respective systems can, with limita-
tions, also serve documentation purposes. In that case, special care has to be
taken that all required input data is obtained from the user. Regarding effective
interrogation of naive data providers Adaptive Entry is only marginally suitable.
Examples Figure 4 shows the Labour Legislation Consultation, that clarifies,
whether a dismissal in a given context is legitimate. Figure 4, A, represents the
problem statement. Its current derivation state and the questions’ state (e.g.,
answered) are visually indicated by background coloring and updated with each
provided answer. Questions can be processed either in the sequence suggested
(i.e., from top to bottom), or in any other order. Further, adaptable question
presentation is implemented—e.g., Figure 4, B, was confirmed on the abstract
level; question Dismissal was... is expanded into refined questions (Figure 4, C).
Variants Possible variants originate from different forms of context presenta-
tion as well as from different data volumes that may be processed.

C. Autonomous Entry

Problem Target users are highly competent, autonomous problem solvers,
thus no explicit guidance regarding the interrogation sequence is required.
Solution The user explores the (various and potentially complex) information
sources presented by the system. Integrated knowledge-based components—e.g.,
consultation features or automated data entry support—can be used optionally,
but are not mandatory to benefit from system usage. The user provides any in-

35

A

B

C

Fig. 4. Labour Legislation Consultation—Indication of the solution and its current
rating (A), clarifying questions (B), and further refinement of one question (C).

put data voluntarily; based on those data fragments, the system performs rather
modularized reasoning, following sort of a bits and pieces metaphor. Thus, the
system merely provides a second-opinion to the user in presenting reasoning re-
sults (e.g., rated solutions, next-input suggestions). Such extensive user control
requires a high level of context presentation, regarding both types of context.

loop

alt

alt

Question Data KnowledgeInterface

answerSelected
Question() propagate

AnswerValue()
assess()

[Use support features (consultation/data enty)]

[Exploration]

explore()

Fig. 5. Autonomous Entry—Basic interaction sequence for question selection.

As Figure 5 shows, the user always can choose between using more formal
knowledge components and free exploration. In the first case, potentially any
kind of (complex) knowledge component can be integrated into such a system,
e.g., according to the Guided Entry or Adaptive Entry categories. Otherwise,
the user can either simply explore the provided information, or answer questions
autonomously in a modularized manner. Answers then are propagated to the
data component, and from there assessed by the knowledge component; the lat-
ter rates solutions, presents context, and recommends next steps piecemeal.
Applicability Autonomous Entry can be applied for loose consultation, as well

36

as regarding a more informal, potentially collaborative documentation task. In
contrast, it is inappropriate, if rather naive data entry is desired, as no strict
workflow guidance for solving the addressed problem is provided. Further it is
not suitable for high quality documentation tasks, as any interaction takes place
voluntarily, and thus the supply of any data cannot be guaranteed.
Examples Implementation examples are the user-centered consultation ap-
proach described in [5], the PEN-Ivory system [13], but also the Inline Answering
concept provided by the Semantic Wiki KnowWE [1].
Variants Implementation variants arise with respect to the data volume, and
the type and extent of context presentation. Despite mainly addressing expert
users, systems falling into this category, might to some extent also be suitable
for unexperienced ad-hoc usage. Finally, resulting systems can vary regarding
the extent of integrating knowledge-based features.

The proposed pattern categories classify basic knowledge system types and
corresponding UI/interaction design patterns according to the level of user com-
petence (corresponding to the level of system guidance). Ongoing research ad-
dresses the definition of concrete patterns and their categorization accordingly.
We proceed by discussing how such patterns can be integrated in an extended,
agile process model for developing knowledge-based consultation and documen-
tation systems.

4 Pragmatic Knowledge System Engineering

Regarding knowledge system development and knowledge engineering, there ex-
ist diverse approaches today, such as CommonKADS, MIKE, or adaptions of
the classical stage-based and incremental software development models. Yet, for
the success of knowledge system projects in the context of small to mid-sized
companies, a pragmatic approach—affordable and efficient regarding time and
effort—is essential, c.f. [2]. Especially for promoting such projects in the first
place, it is important to quickly come up with first solutions, e.g., in the form
of prototypes or example implementations. In this respect, we made positive
experiences with applying the Agile Process Model, described in [2]. However,
that model emphasizes knowledge base development, not yet taking much into
account the design of the target system’s interface, or usability traits. In extend-
ing this model, not only UI/interaction design gains importance in the overall
development process, but also the integration of usability activities.

In the following, we introduce the Extended Agile Process Model, and af-
terwards we discuss resulting benefits specifically regarding the integration of
tailored UI/interaction patterns. Although prototyping and usability-related ac-
tivities are included in the model for reasons of completeness, their detailed
discussion is part of further work, see [7].

37

4.1 The Extended, Agile Knowledge System Engineering Model

Figure 6 outlines the Extended Agile Process Model—the gray parts represent the
original model, consisting of the four phases System Metaphor, Planning Game,
Implementation, and Integration. For a detailed discussion, see [2].

UA1: Prototype
Expert / Hybrid

UA2: Prod. System,
User-based / Hybrid

Integration

System
Metaphor

Planning
Game

Implementation

Tailored
Patterns &
Prototypes

Fig. 6. Extended Agile Process Model.

Basically, tailored patterns and
prototyping can support both
System Metaphor and Planning
Game. In System Metaphor, the
system objectives are defined by
developers and customers. Based
on appropriate patterns and cor-
responding implementation exam-
ples, a basic idea can be devel-
oped more easily. Thereby, pat-
terns can be assessed either manu-
ally, or by using a tailored recom-
mender system, that suggests pat-
terns matching the target context.
Prototypes, that also provide the relevant user-system interactions, further sup-
port that process by presenting a realistic simulation of a potentially resulting
system as opposed to the static, visual depiction of knowledge system examples
provided by the patterns. The Planning Game defines the scope and priori-
tization of development tasks. Here, patterns ease the analysis and valuation
of system requirements—taking place during the Exploration sub-phase of the
planning game—by providing clear specifications of required features and inter-
actions. Additionally, prototyping supports that task by allowing for actually
trying out (and thus better evaluating) relevant functionalities.

With regards to Usability Activities, the original model can be extended
both regarding Implementation and Integration (Figure 6, UA1, UA2). The ba-
sic model defines Implementation as a test-first activity—i.e., before actually
implementing new or additional features, the corresponding tests for assuring
their correctness are developed. This can be expanded by an evaluation-first ac-
tivity, in the sense that based on the formerly created prototypes, usability issues
are assessed and valued first, before continuing with test-first implementation as
defined by the model. Without going into detail here, at that stage, expert- or
hybrid approaches (according to a categorization suggested in [6]) seem to be
most appropriate. During Integration, the implemented functionality is added to
the productive system, using integration tests for assuring its overall correctness
and integrity. Such testing can be extended by usability checks that evaluate,
whether the system still meets the specified usability goals. As this results in
a running version of the productive system, not only hybrid, but also purely
user-based usability evaluation can be beneficial.

38

4.2 Benefits

The integration of tailored patterns into an extended agile model offers several
benefits: First, the patterns uniformly specify common framework conditions of
different knowledge-based system types; thus, they provide a descriptive and
visual language, that enables customers and developers to discuss at the same
competence level. This fosters a clear communication and thus reduces potential
misconceptions right away, that otherwise can lead to additional, unnecessary
redesign cycles. Next, the patterns present actual implementation examples, that
can be assessed, and serve as a inspirational source regarding the concrete project
at hand. Even in case none of the provided patterns or examples completely
satisfy the project- and customer requirements, those nonetheless are helpful
by providing an overview of the possibilities and a basis for further discussions.
Despite diverse general pattern collections and UI prototyping tools, to date to
the best of our knowledge no tailored patterns/tools exist addressing specifically
knowledge-based systems. As the latter exhibit quite specific characteristics, our
approach can provide strong support for their development.

5 Conclusions and Future Work

We motivated that tailored patterns can constitute the cornerstone of an ex-
tended, agile model for knowledge system development. Especially when target-
ing smaller to mid-sized companies as customers, the suggested approach is a
rather inexpensive, pragmatic technique for promoting and launching respective
projects. As a first step, in this paper we introduced three abstract categories for
classifying corresponding patterns. Due to our focus on knowledge-based consul-
tation and documentation systems, those categories specifically address the data
entry task; yet, the elementary classification—guided, adaptive, and autonomous
interaction might be applied accordingly for other forms of interaction. The cat-
egorization arose from practical experiences with implementing knowledge-based
systems in the past, such as SonoConsult [15], Digitalys CareMate, or more re-
cently the Semantic Wiki KnowWE [1]. Further research includes the question,
whether additional pattern categories are required. Based on those, as well as
on an assessment of further existing systems, concrete patterns will be specified.
Currently, also a tailored prototyping tool is developed [7], that will be further
extended based on an analysis of required knowledge system base components.

References

1. Baumeister, J., Reutelshoefer, J., Puppe, F.: KnowWE: A Semantic Wiki for
Knowledge Engineering. Applied Intelligence (2010)

2. Baumeister, J., Seipel, D., Puppe, F.: Agile development of rule systems. In:
Giurca, Gasevic, Taveter (eds.) Handbook of Research on Emerging Rule-Based
Languages and Technologies: Open Solutions and Approaches. IGI Publishing
(2009)

39

3. Bäumer, Dirk and Bischofberger, Walter R. and Lichter, Horst and Züllighoven,
Heinz: User Interface Prototyping—Concepts, Tools, and Experience. In: ICSE ’96
Proceedings of the 18th International Conference on Software Engineering. pp.
532–541 (1996)

4. Beaudouin-Lafon, M., Mackay, W.: Prototyping tools and techniques. In: The
Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies
and Emerging Applications. pp. 1006–1031. L. Erlbaum Associates Inc., Hillsdale,
NJ, USA (2003)

5. Buscher, G., Baumeister, J., Puppe, F., Seipel, D.: User-Centered Consultation by
a Society of Agents. In: Proc. of the 3rd International Conference on Knowledge
Capture (K-CAP 2005), Banff, Alberta, Canada (2005)

6. Freiberg, M., Baumeister, J.: A survey on usability evaluation techniques and an
analysis of their actual application. Tech. Rep. 450, Institute of Computer Science,
University of Würzburg, Germany (2008)

7. Freiberg, M., Mitlmeier, J., Baumeister, J., Puppe, F.: Knowledge system proto-
typing for usability engineering. In: Proceedings of the LWA-2010 (Special Track
on Knowledge Management) (2010)

8. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman (1995)

9. Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies (2009)

10. Knublauch, H.: Extreme programming of knowledge-based systems. In: Pro-
ceedings of eXtreme Programming and Agile Processes in Software Engineering
(XP2002) (2002)

11. Lin, J., Landay, J.A.: Employing patterns and layers for early-stage design and
prototyping of cross-device user interfaces. In: CHI ’08: Proceeding of the twenty-
sixth annual SIGCHI conference on Human factors in computing systems. pp.
1313–1322 (2008)

12. Plant, R., Gamble, R.: Methodologies for the development of knowledge-based
systems, 1982–2002. Knowledge Engineering Review 18(1), 47–81 (2003)

13. Poon, A.D., Fagan, L.M., Shortliffe, E.H.: The PEN-Ivory Project: Exploring User-
Interface Design for the Selection of Items from Large Controlled Vocabularies of
Medicine. Journal of the American Medical Informatics Association pp. 168–183
(1996)

14. Puppe, F.: Knowledge Formalization Patterns. In: Proceedings of PKAW 2000,
Sydney Australia (2000)

15. Puppe, F., Atzmueller, M., Buscher, G., Huettig, M., Luehrs, H., Buscher, H.P.:
Application and evaluation of a medical knowledge system in sonography (sono-
consult). In: Proceeding of the 2008 conference on ECAI 2008. pp. 683–687. IOS
Press, Amsterdam, The Netherlands, The Netherlands (2008)

16. Ratzka, A.: Identifying user interface patterns from pertinent multimodal interac-
tion use cases. In: Mensch & Computer 2008: Viel Mehr Interaktion. pp. 347–356
(2008)

17. Schmettow, M.: User interaction design patterns for information retrieval systems.
In: EuroPLoP’ 2006, Eleventh European Conference on Pattern Languages of Pro-
grams. pp. 489–512 (2006)

18. Tidwell, J.: Designing Interfaces — Patterns for Effective Interaction Design.
O’Reilly Media Inc. (2006)

40

Requirements Selection: Knowledge based
optimization techniques for solving the Next

Release Problem

José del Sagrado, Isabel M. del Águila, Francisco J. Orellana, and S. Túnez

Dpt. Languages and Computation,
Ctra Sacramento s/n, 04120 University of Almeŕıa, Spain

{jsagrado,imaguila,fjorella,stunez}@ual.es

Abstract. The requirements selection for the next software release is a
problem always present in Software Engineering. The complex nature of
this problem and the difficulty to address it using exact techniques has
motivated the application of optimization techniques to obtain near op-
timal solutions. This work provides a review of the different optimization
techniques proposed to accomplish the requirements selection problem.
Moreover, it proposes the application of these techniques in a require-
ment tool in order to be used in real software developments.

Keywords: next release problem, optimization techniques, search based
software engineering

1 Introduction

Software development organizations fail many times to deliverer its products
within schedule and budget. Statistical studies, and all the Chaos Reports [16]
published since 1994, reveal that, frequently, tasks related to requirements lead
software project to the disaster. When requirement-related tasks are poorly de-
fined or executed, the software product is typically unsatisfactory [23]. Software
requirements express the needs and constraints fixed for a software product that
contribute to the solution of some real world problem [18]. Usually stakehold-
ers propose some desired functionalities that software managers must filter in
order to define the set of requirements to include in the final software product.
All new suggested functionalities cannot be selected to be implemented since
resource constraints are always present in development companies; hence each
new feature competes against each other to be included in the next release soft-
ware product. The requirements selection is considered a complex task in every
software development since many factors are involved in this decision. A bad or
inappropriate choice of enhancements can turn into a source of problems during
software development: scheduling problems, dissatisfied customers, and economic
losses. This problem is known as next release problem (NRP) [2] and it is con-
sidered an optimization problem [2, 17, 12] within the Search Based Software
Engineering (SBSE) discipline [13, 5, 14]. The SBSE area is a growing research

41

field which proposes the application of search based optimization algorithms to
tackle problems in Software Engineering (SE). The term SBSE was first used
in 2001 by Harman and Jones [13] and has been successfully applied to differ-
ent problems in SE such as requirements, design tools and techniques, software
verification and testing and debugging among others [15]. Different approaches
can be found in the literature to tackle with requirements selection problem, for
example, [2] and [3] apply greedy and simulated annealing (SA) techniques, [12]
use genetic algorithms (GAs) in software release planning and [21] propose the
use of ant colony optimization (ACO). In this work we provide a comprehensive
review of the AI techniques applied to solve the NRP. We also propose the in-
clusion of these techniques on a CARE (Case Aided REquirement) tool to guide
the decision maker to select the best set of requirements for the next release.
The rest of this paper is structured as follows. Section 2 introduces and provides
the formal description of the NRP problem describing different approaches used
when addressing the NRP as an optimization problem. Section 3 analyzes the
existing techniques applied in the literature to address the NRP whereas Sec-
tion 4 describes a proposal to integrate these optimization techniques in a CARE
tool. Finally, Section 5 draws conclusions and future works.

2 The NRP Problem

The problem of selecting the subset of requirements among a whole set of can-
didate requirements proposed by a group of customers, that will be included
in the next release of a software product is a well-known problem in Software
Engineering. However, it is not a straightforward problem since many factors
are involved in this selection problem. Customers, seeking their own interest,
demand the set of enhancements they consider important, but not all customer
needs can be satisfied; on the one hand, each requirement means a cost in effort
terms that the company must assume but company resources are limited; on the
other hand, neither all the customers are equally important for the company nor
are the requirements equally important for the customers. Market factors can
also drive this selection process; the company may be interested on satisfying the
newest customers’ needs, or they may consider desirable to guarantee every cus-
tomer have fulfilled at least one of their proposed requirements. Two main goals
are usually considered in this kind of problems: find a subset of requirements
which maximize the customers’ satisfaction and minimize the required effort to
implement the subset of chosen requirements. The complexity of the problem
increases as the number of customers and requirements grows. Therefore, op-
timization techniques can be used to find optimal or near optimal solutions in
a reasonable amount of time. As Harman defined in [13], it is possible to ap-
ply metaheuristic search to numerous problems in SE, but that aim requires a
reformulation of the problem which implies to define:

– a representation of the problem which is amenable to symbolic manipulation,
– a fitness function based on this representation and
– a set of manipulation operators.

42

These are the steps that we are going to follow in order to review how meta-
heuristic search techniques had been applied to the NRP problem.

2.1 The NRP formulation

Let R = {r1, r2, . . . , rn} be the set of requirements that are proposed by the
customers. These requirements represent enhancements to the current software
system, suggested by a set of m customers and candidates to be included in the
next release. Customers are not equally important for the company. So, each
customer i will have an associated weight wi, which measures its relative im-
portance. Let W = {w1, w2, . . . , wm} be the set of customers’ weights. Each
requirement rj ∈ R has an associated development cost ej , which represents the
effort needed in its development. Let E = {e1, e2, . . . , en} be the set of require-
ments’ efforts. On many occasions, the same requirement is suggested by several
customers. However, its importance or priority may be different for each cus-
tomer. Thus, the importance that a requirement rj has for customer i is given
by a value vij . The higher the vij value, the higher is the priority of the require-
ment rj for customer i. A zero value for vij represents that customer i has not
suggested requirement rj . All these importance values vij can be arranged under
the form of an m×n matrix. The global satisfaction, sj , or the added value given
by the inclusion of a requirement rj in the next release, is measured as a weighted
sum of the its importance values for all the customers and can be formalized as:
sj =

∑m
i wivij . In every SE project it is common to find dependencies among

the features suggested by the customers. Requirements dependencies mean that
a set of constraints has to be considered during the requirement selection task,
since they force us to check whether conflicts are present whenever we intend
to select a new requirement to be included in the next software release. Several
kinds of dependencies related to this problem are proposed first in [1] and later
in [4]:

– Implication or precedence. A requirement ri cannot be selected if a require-
ment rj has not been implemented yet.

– Combination or coupling. A requirement ri cannot be included separately
from a requirement rj .

– Exclusion. A requirement ri can not be included together with a requirement
rj .

– Revenue-based. The development of a requirement ri implies that some others
requirements will increase their value.

– Cost-based. The development of a requirement ri implies that some others
requirements will increase their implementation cost.

These kind of dependences, that are reviewed in [20], are taken into account in
some works about NRP such as [2] and [12]. Thus, the NRP main goal is to search
for a subset of requirements R̂ within the set of all subsets of n requirements
P (R), so the dimension of the search space is 2n. A subset of requirements R̂
can be represented in this space as a vector x1, x2, . . . , xn, where xi ∈ 0, 1. If

43

requirement ri ∈ R̂, then xi = 1 and otherwise xi = 0. In this way, the NRP can
be considered as an instance of the 0-1 knapsack problem, and in consequence
is a NP-hard problem [2] (it is unfeasible to tackle it using exact techniques to
find the best solution in a polynomial time).

2.2 Single-objective NRP or Multi-objective NRP

The main goal of optimization problems is to search for the best solution with
respect to several objectives. The quality of a candidate solution with respect
to each objective is measured throughout the use a previously fixed evaluation
function. According to the number of objectives, the problem can be classified as
single-objective or multi-objective. Generally, in order to define the next software
release, the main goal that we pursuit is to select a subset of requirements R̂
from the candidate requirement list R, which maximize satisfaction and minimize
development effort. The satisfaction and development effort of this subset R̂ can
be obtained, respectively, as

sat(R̂) =
∑
j∈R̂

(sj), eff(R̂) =
∑
j∈R̂

(ej) (1)

where j is an abbreviation for requirement rj . As the resources available are
limited, then development effort cannot exceed a certain bound B. First works
[2, 12] in NRP tended to consider this problem as a single-objective problem:
maximize customers’ satisfaction within a certain development constraints. Their
main goal is to find a subset of requirements that satisfies customer requests
within a given resource constraints (i.e. availability of resources). That is to say,
the selected subset of requirements R̂ has to maximize customers’ satisfaction
within a given development effort bound B. Formally,

maximize sat(R̂)

subject to eff(R̂) ≤ B
(2)

Most recent works [25, 9] consider NRP as a multi-objective problem (MONRP),
since they consider at least two conflicting objectives; maximize customers’ satis-
faction and minimize the total effort involved in the development of the selected
requirements. Formally, the NRP can be defined as the search for requirement
subsets R̂ ⊆ R such as

maximize sat(R̂)

minimize eff(R̂)
(3)

Other approaches (see [10]) formulate multi-objective in a different way, applying
other criterion to measure customers’ satisfaction or defining more than two
objectives. In contrast to single objective optimization, which returns a unique
solution, multi-objective optimization returns a set of solutions satisfying the
proposed objectives. This means an advantage for the software developers as
they can choose from a range of different alternatives. The set of non-dominated
solutions that fulfill multiple objectives is denominated Pareto optimal front (see
Fig. 1) . Whether any of the objectives of these solutions is improved, the others
objectives will get worse.

44

f
Pareto optimal front

Search space

f

1

2

Fig. 1. Pareto optimal front considering two different objectives f1 and f2.

3 Analysis of Techniques

Once the problem has been formulated as a search problem and the fitness
functions have been defined, metaheuristic techniques are be applied in order to
find possible solutions. In the specific case of NRP, the metaheuristic techniques
that can be found in the literature are: greedy algorithms, simulated annealing,
genetic algorithms or ant colony systems. However, although all these approaches
pursuit the same aim, not all of them deal with the NRP in the same way.

3.1 Simulated Annealing

Simulated annealing (SA) is an optimization algorithm which emulates the en-
ergy changes that occur in a system of particles when its temperature is reduced
till the system reaches a state of equilibrium. At higher temperatures drastic
changes in the system are allowed, whereas at lower temperatures only minor
changes are allowed. This cooling scheduling has as goal to reduce the energy
state of the system, taking the system from an arbitrary initial energy state to
a final state with the minimum possible energy. Starting from an initial solution
and an initial temperature T0, the algorithm iterates following a cooling sched-
ule function which decreases the temperature until it reaches a minimum Tend.
Using some cooling functions, the algorithm stays at the same temperature for
a certain number of iterations; then, it is decreased. In each algorithm iteration,
a new solution from the neighbourhood is extracted and it can be accepted or
not as the current solution. This technique allows to explore the search space
at higher temperatures accepting poor solutions, whereas at lower temperatures
only moves that improve the current solution are accepted. This algorithm uses
an acceptance probability which determines whether a new solution found is
accepted as the current one or not. Formally, let S be the current solution and
S′ be a new solution in the neighborhood of S, S′ ∈ nei(S) (it is said that S′

is a neighbour of S, if they differ exactly on one requirement). Let T be the
current temperature and ∆E = f(S′) − f(S) the energy difference between S
and S′, obtained after applying a fitness function. The probability of making

45

the transition from the current solution S to the candidate solution S′, i.e. the
acceptance probability, is denoted by

p(S, S′, T) =

{
1, if ∆E > 0

e
∆E
T , otherwise.

(4)

SA has been applied to NRP by Bagnall et al. [2] and Baker et al. [3]. In contrast
to most of the NRP approaches in the literature, which are focused on finding the
optimal subset of requirements, the main aim searched in [2] is to find a subset
of customers whose needs will be fully covered. Only implication dependencies
are considered (i.e. a requirement that needs some others requirements to be
implemented), defining precedence relationships for the candidate requirements.
Baker et al. [3] focuses on a component selection problem of a software system
from a telecommunications company. The aim of this work is to compare the
component selection obtained from a group of human experts with the results
obtained applying a search technique such as simulated annealing. In this case
dependencies among requirements are not considered.

Table 1. Simulated annealing techniques applied to the NRP

Fitness Function Cooling Schedule Initial Temperature Parameters

[2] f(S) =
∑

i∈S wi−
Geometric
Ti+1 = αT0

T0 = 100
α = 0.9995

Iters. = {250, 500}

−λmin{0, B − eff(S)} Lundy and Mees
Ti+1 = Ti/(1 + β)Ti

T0 = 100
β = {5× 10−7,

10−7, 10−8}

[3] f(S) = sat(S)
Geometric

Ti+1 = (1− α)T0
−T0 = ∆Emax

ln(1−p1)

α = 0.2
Iters. = 15000

p1 = 0.8

Table 1 provides details about the fitness and cooling schedule functions ap-
plied in both works, and the parameters used for the experiments. Bagnall’s
approach [2] combines into a single fitness function two objectives based on the
customers’ weights and the total effort of the solution, since the requirement
priorities are not gathered in this work. By contrast, Baker et al. [3] only takes
into account the total satisfaction given by a solution to measure its quality.
Applying the specified parameters, the results obtained by Bagnall et al. [2]
show that a search technique such as SA is the best choice among the studied
alternatives (greedy algorithms or hill climbers). On the other side experiments
performed in [2] using the Lundy and Mees cooling schedule slightly outper-
forms the geometric function approach. Bakeret al. [3] compares SA to a greedy
algorithm, and a selection performed by human experts. Best results are also
reached by SA. This technique yields the best score in every experiment, fol-
lowed by the greedy algorithm. Finally, the component selection specified by the
human experts demonstrates to be much worse than the returned using SA.

46

3.2 Genetic Algorithms

A Genetic Algorithm (GA) [11] is a bio-inspired search algorithm based on the
evolution of collections of individuals (i.e. populations) as result of natural selec-
tion and natural genetics. Starting from an initial population, their individuals
evolve into a new generation by means of selection, crossover and mutation op-
erators. This technique emulates the evolution process where best fitted individ-
uals survive through generations. This evolution (i.e. iteration of the algorithm)
is performed selecting some individuals according to their quality (measured
by a fitness function) from the population. Then some parents are chosen and
combined using crossover to produce new individuals (children). Finally, all the
individuals in the new population have a certain but very small probability of
mutation, i.e. their hereditary structure may be altered. The crossover and mu-
tation operators are in charge of producing new individuals and they are applied
with different probabilities i.e. crossover probability and mutation probability,
denoted by Pc and Pm, respectively.

NRP addressed using GAs can be found in Greer and Ruhe [12], as a single-
objective problem, whereas Zhang et al. [25] , Durillo et al. [9] and Finkelstein et
al. [10] tackle the problem using a multi-objective approach, existing important
differences among them.

Greer and Ruhe [12] addresses the requirement selection problem from a per-
spective based on agile methods, considering the iterations in the incremental
software development. This work proposes an overall method for optimally allo-
cating requirements to increments, which deals with a single-objective NRP as a
combination of two different objectives: maximize the satisfaction and minimize
the total cost of the solution. Precedence (implication) and coupling (combina-
tion) dependencies are considered and added to the problem as new constraints.
The system provides the decision maker a small set of the most promising solu-
tions that can be selected for the next software increment.

Zhang et al. [25] applies GAs to solve the NRP, using first synthetic data in
[25] and real data in [24]. As Greer and Ruhe [12], two main goals related to
benefit and effort are considered, although in this case the problem is addressed
from a multi-objective perspective applying NSGA-II and ParetoGA algorithms.
The first is a well-known multi-objective algorithm using an elitist strategy to
preserve the solutions from the best front whereas the latter is an extension of
the simple GA. Results reported by this work point to the NSGA-II method as
the best choice; the solutions belonging to the Pareto front are better than the
rest of methods evaluated and it offers a better diversity of solution distribution.

Durillo et al. [9] filled the gap left by this last work, arguing that the algo-
rithms evaluation was performed in a visual way and no statistical analysis of
the obtained results was provided. Using the same instances used by [25], they
solve NRP by using a Random Search, and two multi-objective metaheuristics,
NSGA-II and MOCell. In order to perform the analysis of the results, some
quality indicators were used to measure the extent of spread of the set of solu-
tions (i.e. spread) or the volume covered by the set of non-dominated solutions
(i.e. hypervolume). According to the obtained results, Random Search results

47

are generally poor, whereas NSGA-II and MOCell obtains good results present-
ing a similar performance in most of the cases. However NSGA-II outperforms
MOCell when the experiment reaches the highest number of requirements.

Finkelstein et al. [10] focuses on satisfying the fairness term related to the
requirements selection problem, whose main motivation is to “try to balance the
requirement fulfillments between the customers”. However, the task of finding
this fairness does not result easy to achieve; hence three different multi-objective
approaches are proposed. These proposals intend to maximize the satisfaction
taking into account the number of fulfilled requirements per customer, the total
satisfaction, or the percentage of satisfied requirement per customer. Two differ-
ent algorithms, NSGA-II and the two-archive algorithm, are studied and applied
on a set of real data from a telecommunication company.

Table 2 summarizes the techniques applied in each work and the parameters
settings used by authors in the experimental evaluation.

Table 2. Genetic algorithms applied to the NRP

Techniques Selection Crossover Mutation

[12] Single-objective GA
Probability curve
based on fitness
value

Random selection
Pc = {0.1, 0.2, 0.3
· · · , 1}

Random
Pm = {0.05, 0.1,
0.15, · · · , 1}

[25]
NSGA-II, Pareto GA,
Single-objective GA

Tournament
Single Point
Pc = 0.8

Bitwise
Pm = 1/n

[10]
NSGA-II,
The Two Archive

Tournament
Single Point
Pc = 0.8

Bitwise
Pm = 1/n

[9] NSGA-II, MOcell Tournament
Single Point
Pc = 0.9

Random
Pm = 1/n

3.3 Ant Colony Optimization

Ant colony optimization (ACO) is a meta-heuristic for combinatorial optimiza-
tion problems proposed by Dorigo et al. [7], [6]. This technique emulates the co-
operative behaviour of real ants in their task to find the shortest path from their
colony to a source of food. This process is led by a substance called pheromone
that ants leave on the floor as they move along their path. If other ants find and
follow the same path, this pheromone trail will be stronger, attracting other ants
to follow it. On the other side, the pheromone is periodically evaporated; there-
fore, the worse paths gradually lose their pheromone trail. Thus, what at first
seems to be a random behaviour for ants, when no pheromone trail is present
on the ground, turns into a movement influenced by the substance left by other
ants in the colony.

The Ant System (AS) was the first ACO algorithm, proposed by Dorigo et
al. [8]. Later, a new approach, called Ant Colony System (ACS) [7], was defined.

48

This approach introduced some changes related to the mechanism used by the
ants to select the next vertex, and to update the pheromone.

In ACS, the NRP is represented as a fully connected directed graph. Ver-
texes represent the candidate requirements ri, r2, . . . , rn and a pheromone τ is
associated to the edges joining pairs of requirements. Ants traverse the graph
vertex by vertex constructing a new solution, but their movement is driven by
an equation based on the heuristic information and the pheromone values.

The pheromone update [6] is performed both locally and globally. The local
update τij = (1− ϕ)τij + ϕτ0 (where ϕ ∈ (0, 1] is a pheromone decay coefficient
and τ0 is the initial pheromone value) is applied by each individual ant only
to the last edge traversed, when searching for its solution. Its main goal is to
expand the search of subsequent ants during one iteration of the colony. The
global update τij = (1−ρ)τij +∆τij (where ρ is the pheromone evaporation rate
and ∆ρij is the amount of pheromone left in each arc), is performed by the ant
that has found the best solution during an iteration of the colony. It is a kind of
global memory of the colony that stores the best paths (solutions) found.

At the time of building a solution, the ants apply the pseudorandom propor-
tional rule [6]: an ant moves from requirement i to j, depending on a random
variable q (that is uniformly distributed on the 0 to 1 range) and a parameter

q0, such that if q ≤ q0, then j = argmaxl∈nei(i)τijη
β
ij , otherwise j is selected

with a probability [6]

pkij =

[τij]

α[ηij]
β∑

h∈Nk
i

[τij]α[ηij]β
, if j ∈ Nk

i ,

0, otherwise.
(5)

where the set of visible nodes, nei(i), from the current vertex i is denoted by Nk
i .

The heuristic information is defined by ηij , whereas the pheromone accumulated
in the edge i,j is represented by τij . On the other side, the parameters α and
β, reflect the relative influence of the pheromone with respect to the heuristic
information.

Del Sagrado and del Águila [21] propose applying ACO to the requirement
selection problem in the incremental development proposed by agile methodolo-
gies. The NRP using a single-objective approach is afforded in [22], and later
in [21] applying a multi-objective perspective, defining this problem as NI-RSP
(Next Increment Requirement Selection Problem). Both approaches are based
on ACS. NI-RSP formulates a multi-objective problem seeking to maximize the
total score, and minimize the total effort needed to develop. This technique
is compared to other multi-objective optimization techniques, such as GRASP
(greedy randomize adaptive search procedure) and NSGA-II, using some indi-
cators to measure the quality of the Pareto front. The obtained results indicate
that ACS can be applied efficiently to solve the requirement selection problem;
its performance is very similar to NSGA-II and considerably better than GRASP.
However, according to the quality indicators, it presents less oscillation in the
number of non-dominated solutions.

49

4 Practical Application

This work has shown how optimization techniques applied to NRP let us find
high quality solutions, in order to help developers during the requirement selec-
tion tasks. Once the applicability of these techniques has been demonstrated,
they still have to be put in practice in real world software development. We
strongly believe that having these search techniques available in a CARE tool
would be considerably helpful for any development team at the time of dealing
with the requirements selection.

InSCo Requisite [19] is a web-based tool early developed by our research
group to manage the requirements of software development projects. Therefore,
we propose an architecture (see Fig. 2) that integrates these techniques in the
InSCo Requisite tool. The tool allows that a group of customers and developers
works simultaneously in the same project, specifying the requirements of the
system. Each requirement has an associated form which gathers its features,
priorities and even a scenario or storyboard.

SE KE

InSCo Requisite

developers

customer 1

search techniques

customer 2 customer m

simulated annealing
genetic algorithm
ant colony optimization
...

www.dkse.ual.es/insco

Fig. 2. Integration of search techniques in the architecture of the InSCo Requisite tool.

In order to facilitate the applicability of meta-heuristics algorithms, InSCo-
Requisite must generate an interface file that contains all data needed during
the execution of the simulated annealing, genetic or ant colony optimization
algorithms.

The tool actually allows to export the whole set of specified requirements to
an XML file. In a near future we plan to include development effort as a new
property of each requirement. In this way, the resulting XML file could be easily
used as input to any of the metaheuristic techniques applied in NRP. The result
obtained by the metaheuristic techniques will be presented in the interface of
InSCo Requisite and will serve as a feedback to developers when facing to the
problem of planning the next software release.

5 Conclusions

The paper presented has provided a review of the metaheuristic techniques ap-
plied to the requirement selection problem, known as Next Release Problem

50

(NRP). This problem, within the Search Based Software Engineering (SBSE)
discipline, was formulated in 2001 as a search problem and since then it has
been addressed by many authors applying different search techniques: SA, GA
and ACO. Table 3 summarizes the different works in the literature addressing
the NRP, classified according to several factors as dependences are considered
or not, and whether a single-objective or multi-objective perspective is applied.

Table 3. Classification of NRP related works

NRP single-objective NRP multi-objective

With requirements Without requirements Without requirements
dependences dependences dependences

Greedy, SA: Bagnall et al.,
2001 [2]

SA: Baker et al., 2006 [3] GA: Zhang et al., 2007 [25],
Filkenstein et al., 2009 [10],
Durillo et al., 2009 [9]

GA: Greer and Ruhe, 2004
[12]

ACO: del Sagrado et al.,
2010 [22]

ACO: del Sagrado et al.,
2009 [21]

Although each technique has been reviewed in an isolated way, since the com-
parison is not feasible when different datasets are applied, the results obtained
by all of them demonstrate their applicability to the NRP. Finally, an integration
of these techniques in an existent requirement tool has been proposed in order
to take advantage of these techniques in Software Engineering.

Acknowledgments. This work was supported by the Spanish Ministry of Ed-
ucation and Science under project TIN2007-67418-C03-02 and by the Junta of
Andalućıa under project P06-TIC-02411-02.

References

1. van den Akker, M., Brinkkemper, S., Diepen, G., Versendaal, J.: Software prod-
uct release planning through optimization and what-if analysis. Information and
Software Technology 50(1-2), 101–111 (2008)

2. Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem.
Information and Software Technology 43(14), 883–890 (2001)

3. Baker, P., Harman, M., Steinhofel, K., Skaliotis, A.: Search based approaches to
component selection and prioritization for the next release problem. In: Procs. 22nd

IEEE Int. Conf. on Soft. Maintenance, 176–185. IEEE Computer Society (2006).
4. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., och Dag, J.N.: An industrial

survey of requirements interdependencies in software product release planning. In:
Procs. 5th IEEE Int. Symp. on Requirements Engineering. p. 84–91 (2001)

5. Clarke, J., Dolado, J.J., Harman, M., Hierons, R., Jones, B., Lumkin, M., Mitchell,
B., Mancoridis, S., Rees, K., Roper, M., et al.: Reformulating software engineering
as a search problem. IEE Proceedings-Software 150, 161–175 (2003)

51

6. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computa-
tional Intelligence Magazine 1(4), 2839 (2006)

7. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Trans. On Evolutionary Compu-
tation 1(1), 53–66 (1997)

8. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. on Sys., Man, and Cybernetics, Part B 26(1),
29–41 (1996)

9. Durillo, J.J., Zhang, Y.Y., Alba, E., Nebro, A.J.: A study of the multi-objective
next release problem. In: Procs.1st Int. Symp. on Search Based Soft. Engineering.
p. 49–58 (2009)

10. Finkelstein, A., Harman, M., Mansouri, S., Ren, J., Zhang, Y.: A search based
approach to fairness analysis in requirement assignments to aid negotiation, medi-
ation and decision making. Requirements Engineering 14(4), 231–245 (2009)

11. Goldberg, D.E.: Genetic Algorithms in Search and Optimization. Addison-wesley
(1989)

12. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative ap-
proach. Information and Software Technology 46(4), 243–253 (2004)

13. Harman, M., Jones, B.F.: Search-based software engineering. Information and soft-
ware technology 43(14), 833 (2001)

14. Harman, M.: The current state and future of search based software engineering.
In: 2007 Future of Software Engineering, 342–357. IEEE Computer Society (2007)

15. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: A
comprehensive analysis and review of trends techniques and applications. Tech.
Rep. TR-09-03 (2009)

16. Johnson, J.: CHAOS chronicles v3.0. Tech. rep. (2003), http://standishgroup.
com/chaos/toc.php

17. Karlsson, J., Ryan, K.: A Cost-Value approach for prioritizing requirements. IEEE
Softw. 14(5), 67–74 (1997),

18. Kotonya, G., Sommerville, I.: Requirements Engineering: Processes and Tech-
niques. Wiley (Aug 1998)

19. Orellana, F.J., Canadas, J., del Águila, I.M., Túnez, S.: INSCO requisite - a Web-
Based RM-Tool to support hybrid software development. In: ICEIS (3-1), 326–329
(2008)

20. Ruhe, G.: Software release planning. In: Handbook of software engineering and
knowledge engineering, vol. 3, 365–394. S K Chang (2005)

21. del Sagrado, J., del Águila, I.M.: Ant colony optimization for requirement selec-
tion in incremental software development. Technical Report, University of Almeŕıa
(2009)

22. del Sagrado, J., del Águila, I.M., Orellana, F.J.: Ant colony optimization for the
next release problem. a comparative study. In: Procs. 2nd Int. Symp. on Search
Based Software Engineering (2010)

23. Sommerville, I.: Software engineering (6th ed.). Addison-Wesley Longman Pub-
lishing Co., Inc. (2001)

24. Zhang, Y., Finkelstein, A., Harman, M.: Search based requirements optimisation:
Existing work and challenges. In: Procs. 14th Int. Conf. on Requirements Engi-
neering: Foundation for Soft. Quality, 88–94. Springer-Verlag, Montpellier, France
(2008)

25. Zhang, Y., Harman, M., Mansouri, S.A.: The multi-objective next release problem.
In: Procs. 9th Ann. Conf. on Genetic and Evol. Computation, 1129–1137. ACM,
London, England (2007)

Author Index

Águila, Isabel M.40
Althoff, Klaus-Dieter 18

Bach, Kerstin . 18
Baumeister, Joachim 28

Cañadas, Joaqúın 1

Freiberg, Martina 28

Kluza, Krzysztof 6

 Lysik, Lukasz . 6

Nalepa, Grzegorz J. 6
Newo, Régis .18

Orellana, Francisco J. 40

Palma, José . 1
Puppe, Frank . 28

Sagrado, José . 40

Túnez, Samuel1, 40

