
Optimizing SPARQL queries over the Web of Linked Data

B. R. Kuldeep Reddy
Indian Institute of Technology Madras

Chennai, India
brkreddy@cse.iitm.ac.in

P. Sreenivasa Kumar
Indian Institute of Technology Madras

Chennai, India
psk@cse.iitm.ac.in

ABSTRACT
The web of linked data represents a globally distributed
dataspace. It can be queried with SPARQL whose execution
takes place by asynchronously traversing the RDF links to
discover data sources at run-time. However, the optimiza-
tion of SPARQL queries over the web of data remains a chal-
lenge and in this paper we present an approach addressing
this problem. The proposed approach works in two-phases
to optimize the SPARQL queries. The first phase analyzes
the query before its execution and discovers classes of data
that do not contribute towards answering it which can then
be prevented from being fetched. However, this analysis
may miss a number of patterns that can only be discovered
at run-time. The second phase analyzes the query execu-
tion to discover more patterns which are used to further
reduce the amount of data fetched from the web to answer
the query. The main idea of this phase is to model the query
execution as a context graph that is used by a heuristic to
discover the patterns which are passed sideways to prune
nodes in the context graph, resulting in an improvement in
query performance. The implementation of our approach
demonstrates its benefits.

1. INTRODUCTION
Semantic data management includes the various techniques

that use data based on its meaning. There has been a recent
growth in publishing data on the web following the linked
data principles forming a global web of linked data. Efficient
querying of this web of linked data is thus an important com-
ponent of Semantic Data Management and is addressed in
this paper.

The traditional World Wide Web has allowed sharing of
documents among users on a global scale. The documents
are generally represented in HTML, XML formats and are
accessed using URL and HTTP protocols creating a global
information space. However, in the recent years the web has
evolved towards a web of data[3] as the conventional web’s
data representation sacrifices much of its structure and se-

To copy without fee all or part of this material is permitted only for private
and academic purposes, given that the title of the publication, the authors
and its date of publication appear. Copying or use for commercial purposes,
or to republish, to post on servers or to redistribute to lists, is forbidden
unless an explicit permission is acquired from the copyright owners; the
authors of the material.
Workshop on Semantic Data Management (SemData@VLDB) 2010,
September 17, 2010, Singapore.
Copyright 2010: www.semdata.org.

mantics[1] and the links between documents are not expres-
sive enough to establish the relationship between them. This
has lead to the emergence of the global data space known as
Linked Data[1]. Linked data basically interconnects pieces
of data from different sources utilizing the existing web in-
frastructure. The data published is machine readable which
means it is explicitly defined. Instead of using HTML, linked
data uses RDF format to represent data. The connection
between data is made by typed statements in RDF which
clearly defines the relationship between them resulting in
a web of data. The Linked Data Principles outlined by
Berners-Lee for publishing data on the web basically sug-
gests using URIs for names of things which are described in
RDF format and accessed using HTTP protocol.

The RDF model describes data in the form of subject,
predicate and object triples. The subject and object of a
triple can be both URIs that each identify an entity, or a
URI and a string value respectively. The predicate denotes
the relationship between the subject and object, and is also
represented by a URI. SPARQL is the query language pro-
posed by W3C recommendation to query RDF data[8]. A
SPARQL query basically consists of a set of triple patterns.
It can have variables in the subject,object or predicate po-
sitions in each of the triple pattern. The solution consists
of binding these variables to entities which are related with
each other in the RDF model according to the query struc-
ture. An execution approach for evaluating SPARQL queries
on linked data is proposed in [6]. The idea presented in [5]
maintains index structures that are used to select relevant
sources for query answering, as in federated query process-
ing. However, the index covering large amount of data on
the Web requires much more resources. According to [6] a
SPARQL query is basically executed by iteratively derefer-
encing URIs to fetch their RDF descriptions from the web
and building solutions from the retrieved data. It must have
a seed URI as the subject of the first query pattern. It is
explained with an example below.

Figure 1: Example SPARQL query

Example. The SPARQL query shown in Figure 1 searches
for friends of Tim-Lee who work for an entity and the num-

ber of students in that entity. The query execution begins
by fetching the RDF description of Tim-Lee by dereferenc-
ing his URI. The fetched RDF description is then parsed
to gather a list of his friends. Parsing is done by looking
for triples that match the first pattern in the query. The
object URIs in the matched triples form the list of Tim-
Lee’s friends. Lets say <http://site1/John.rdf>, <http:
//site2/Peter.rdf>, <http://site3/Mary.rdf> were found
to be his friends. The query execution proceeds by fetch-
ing the RDF descriptions corresponding to John,Peter and
Mary. Lets say first Mary’s graph is retrieved. It is parsed
to check for triples matching the second query pattern and
it is found that Mary works for a university <http://site4/

universityA.rdf>. The university’s details are again fetched
and the third triple pattern in the query is searched in the
graph to get the number of students. Peter’s and John’s
graphs and their companies details would also be retrieved
and the query execution proceeded in a way similar to Mary’s.
But since Peter and John work for corporate entities which
do not have students, the third triple pattern is not answered
for them.

The SPARQL query shown in Figure 1 can be optimized
as follows. Lets say Tim-Lee has friends who are either pro-
fessors or managers. Suppose Mary is a professor and Peter
and John are managers. The professor works for a univer-
sity and managers for a corporate entity. The third triple
pattern in the query can only be answered if the entity is a
university as only a university has students. Fetching the de-
tails of managers and the companies they work for does not
result in the third triple pattern being answered and there-
fore they need not be fetched. The decision on whether to
continue the execution for a friend can be taken immediately
when his RDF description is fetched thus avoiding retriev-
ing his company information in-case he is a manager. In this
example when John’s,Peter’s and Mary’s data is fetched it is
determined that only Mary is a professor and the execution
proceeds only for her resulting in performance benefits.

The proposed approach works in two phases. The first
phase analyzes the query with the help of vocabularies(RDFS
or OWL) used to describe resources involved. This phase
traverses the query graph annotating nodes with the classes
of data they can have. It determines the classes of data
that do not produce results for the query and thus helps in
its optimization. However, it is limited in the type of pat-
terns it can detect and hence calls for an additional run-time
phase. The second phase models the query execution as a
context graph and employs a run-time heuristic that dis-
covers patterns. Many adaptive techniques have been pro-
posed [2] that operate at run-time. Our method is similar to
the sideways information passing technique [7] in which the
discovered patterns are passed along sideways during query
execution. These patterns are then used to avoid retrieval
of data by pruning nodes in the context graph, similar to
branch and bound technique. The heuristic is effective in
optimizing the query but it comes at the cost of complete-
ness of results. Some patterns may be precise like a teaching
Assistant of a course will not credit it which does not affect
the completeness of results. But others like the faculty who
publish a paper with a student is his advisor are an approx-
imation and its use will not give complete results.

2. QUERY ANALYSIS PHASE
The query graph is divided into different levels according

to its structure. A level is associated with each triple pat-
tern in the query. The level of a node in the query graph can
also be viewed as its distance from the root in terms of num-
ber of predicates. Before the query execution can begin, we
analyze it with the help of vocabularies used to describe re-
sources in this phase(we assume a mapping exists that maps
elements from one vocabulary onto another as according to
[1] it is considered good practice to do so). The idea is to
identify classes of data which do not contribute during the
query execution in that they do not produce results. The
data corresponding to those classes is deemed redundant and
may not be fetched from the web. The vocabulary contains
the domain and range values for the predicates as well as
the subclass hierarchy details. This information can be ex-
ploited to restrict the query execution to only those classes
which generate results.

Figure 2: Example Query Graph

Example. Let us consider the query of Figure 1 repre-
sented as a graph in Figure 2. The first triple pattern’s
predicate is hasFriend whose vocabulary description reveals
that its range is the class of people who can be either man-
agers or professors. The second triple pattern’s predicate
is worksFor whose domain is again the class of people and
range the class of entities found from the vocabulary. The
third triple pattern’s predicate is numberOfStudents whose
domain is the class of universities. We assume that there ex-
ists a mapping which is able to map elements like professors
and universities classes and worksFor and employs predi-
cates between the two vocabularies in the query. The third
node is therefore restricted to only the class of universities.
The vocabulary also reveals that universities employ profes-
sors. This information is then used to restrict the second
node to only the class of professors. Thus, using vocabulary
of the resources involved we are able to detect the pattern
that managers do not work for universities. Usage of this
pattern reduces the amount of data fetched from the web
optimizing the query.

Algorithm. The query is represented as a directed graph
and the algorithm basically works by traversing it. It begins
by dereferencing URIs of all the predicates in the query. The
description of the predicates in the vocabulary give their do-
mains and ranges. The links corresponding to the domains
and ranges are also resolved and their details also fetched to
discover further information regarding their subclasses. This
is taken care of in lines 1-4 in Algorithm 1. The query analy-
sis begins at the root’s(seed URI) predicate ,predicate0, and
proceeds by taking one outgoing path ,predicatei, at a time
in a breadth first manner in lines 7-16. Once a path is taken,
its object node is annotated with the classes of its predicate’s

range. In lines 11-13 all the domain classes of the paths from
this object node are noted and their intersection taken. If
it is a subclass of the current class, it replaces the current
class of object node in lines 14-15. Now that the node has
been restricted, its ancestors are checked whether they also
can be restricted with this new information in line 16. For
example, if the node has been constrained to the class of
universities and its parent node has the class of managers
and professors. If there is schema element which says uni-
versity employs professors then we can restrict its parent to
the class of professors. This procedure is repeated till all the
predicates are traversed. The final classes annotated on the
nodes, indicate that the query execution be restricted only
to them resulting in lesser data being fetched from web.

Algorithm 1: Query Graph Analysis

Input : :Query graph Q
Output: :Updated node annotations of Q with classes

indicating that the query execution be restricted
to them

foreach Predicate P of Q do1

Resolve P to fetch its description R2

parse R to find out Pdomain and Prange3

further fetch & parse Pdomain and Prange for their4

subclasses hierarchy

list← null5

append predicate0 into list6

while list is not empty do7

remove listhead & assign it to p8

node← pobject ; nodeclasses ← prange9

domain← universalSet10

foreach outgoing predicatei from node do11

domain← domain ∩ predicatei
domain12

append predicatei to list13

if domain ⊂ prange then14

nodeclasses ← domain15

restrict nodeancestors16

Though this phase serves to identify classes of data which
do no produce results, it is limited in the patterns it can
detect. Suppose we are given a query to find people in a de-
partment who take a graduate course. Following the above
algorithm the range of first triple pattern predicate people
is the class of faculty and students. The domain of the
second triple pattern predicate takesCourse is the class of
students. Therefore the node connecting both the triples is
constrained to the class of students. But the third triple pat-
tern restricts the type of courses to graduateCourses. Since,
we do not have information in the vocabulary which says
Graduate courses are generally only taken by students who
have advisors we are unable to further constrain the node
identifying the people from students to only students who
have advisors. This calls for a run-time approach which an-
alyzes the query execution to discover patterns which are
missed by the query analysis phase.

3. QUERY EXECUTION PHASE

3.1 Data-Structures

3.1.1 Context Graph
This phase models the query execution as a context graph

G. The context graph is built by adding nodes to it con-

taining the RDF descriptions of the entities fetched from
the web. A node is added as a child to the one containing
the RDF description that led to it being fetched. The edge
between the two nodes in G is labeled with the predicate
name denoting the relationship between the two entities in
them. The root is the seed which begins the execution of the
query. The results occur at the leaves whose path to the root
matches their corresponding sequence of predicate terms in
the query. The context graph is also divided into different
levels similar to the query graph. The context graph con-
tains bindings of the nodes in the query graph. If the subject
binding of a triple pattern in the context graph belongs to
level l, the object binding belongs to level l + 1. The con-
tents of a node of context graph contains the description
of the entity in the shape of a star graph. The center rep-
resents the entity being described and the edges denote its
properties and their values. The Context Graph also acts
as a cache. This allows us to check whether a resource’s
details have already been fetched earlier before an attempt
is made to retrieve it from the web, which further improves
the query performance.

 <http://site/Tim_lee.rdf>

<http://site3/Mary.rdf><http://site2/Peter.rdf>

<http://site1/John.rdf>

<http://site5/CompanyA.rdf>
<http://site4/UniversityA.rdf>

10000

<http://site6/CompanyB.rdf>

<http://site1/John.rdf>

<http://site6/CompanyB.rdf>
Manager

30 Masters

nm1:hasFriend

nm1:hasFriend

nm1:hasFriend

nm1:worksFor

nm1:worksFor

nm1:worksFor

univ:numberOfStudents

nm1:age
univ:degree

nm1:worksFornm1:designation

CONTENTS OF THE
NODE OF CONTEXT
GRAPH

Figure 3: Context Graph

Example. An example for a Context Graph is shown in
Figure 3 that models the execution of the query in Figure
1. According to the query, Tim-Lee’s URI is resolved to
fetch his RDF description from the web and is stored in
the corresponding node in the context graph. The context
graph is built by creating nodes for Peter,Mary and John

after fetching their details. It continues till the data for the
last query pattern is retrieved. The results in this case is the
node containing the value 10000 and its path to the root.

3.1.2 Summaries
Summaries are maintained of context nodes which are

used by the heuristic to make a decision on whether to ex-
plore the current node of the context graph or not. Two
summaries are associated with each node of the query graph.
One summary Sqnode

results - summarizes the information of all
the result producing context nodes associated with qnode
and the other Sqnode

noResults - summarizes the information of all
the nodes that did not lead to results for qnode. A summary
is basically a star graph whose center represents a generic
result producing or a non-result producing entity and edges
denote the properties. The edges have a weight indicating
the number of times that the triple containing that predicate
and object has occurred in the nodes previously fetched. An
edge with a high weight in result-producing summary and
low weight in the non-result producing summary can be used
as a discriminant. If a node contains such an edge then it is
highly probable it will produce results as it is similar to the
nodes earlier that did produce results. Summaries at any
point of time contain only the top-K high weight triples.

Algorithm. When a URI is resolved to fetch a RDF de-
scription from the web, it is inserted in the context graph
as a new node N . Lets say it is associated with node qn of
the query graph having the two summaries associated with
it. If the execution continues for the new node and it pro-
duces results, its details are inserted in Sqn

results else they are
inserted in Sqn

noResults. The insertion procedure is as follows.
Each triple in the new node N is compared with the triples
in one of the summary based on whether it produced results.
If both the predicate name and the object match, weight of
the corresponding edge is incremented by one. Otherwise,
if the number of triples in the summary is less than K, it is
inserted as a new triple and its weight is set to one. On the
other hand, if the number of triples are greater than K it
can randomly select the triple with least weight and replace
it. This executes for all the nodes constituting the path from
N to the leaf updating summaries at all the levels with the
corresponding details of nodes.

3.1.3 Links
The query graph may have a number of nodes which have

relationships amongst them other than those specified by
the query. These relationships are discovered by analyzing
the execution of the query. Their discovery improves the
query performance by introducing an edge denoting the re-
lationship between the query nodes, bypassing the original
edges and nodes if none of the bypassed nodes need to be dis-
played. Therefore, the data corresponding to the bypassed
nodes need not be fetched thereby reducing the query exe-
cution time.

Example. Suppose we have a query which finds out
all the students who have authored a paper with a faculty
member. In the query graph the nodes denoting students
and faculty has a node representing publications in between.
It is executed by fetching the details of students followed by
their publication details followed by its co-authors to find a
faculty member. During its execution we find such a faculty
member is generally an advisor of the student. Therefore,
using this pattern we can check whether the student has

a publication and if he does, display the advisor without
fetching the details of publications.

Summaries by themselves are unable to discover these re-
lationships which calls for additional data structures. There-
fore two links structures are maintained between each pair
of nodes, say n1 and n2 in the given query graph. The
two types of link structures between the pair of nodes in the
query graph at level l are linkn1−n2

results and linkn1−n2
noResults. They

are again star graphs with the center indicating a generic re-
sult or non-result producing node with weighted predicates
attached to it. They are maintained as follows. If the result
for a query is produced, the predicate denoting the relation-
ship between node bindings of n1 and n2 is inserted in the
star graph linkn1−n2

results and its weight set to 1. If the pred-
icate is already present, its weight is incremented by one.
If the result for the query is not produced linkn1−n2

noResults is
similarly updated. This process is carried out for all pairs
of nodes in the query graph. The bypassing of nodes under
certain circumstances may not be correct as it may lead to
results which would not have passed through the bypassed
nodes. Therefore, to deal with this situation, when a result
is generated after bypassing we randomly check whether it
would have also been generated by the un-bypassed original
nodes. A variable is maintained which continuously com-
putes the percentage difference of produced results between
these two situations. If it is falls below a certain threshold,
we say that bypassing of nodes is not correct and we drop
it.

3.2 Heuristic
We can optimize the SPARQL query by halting the ex-

ploration of certain nodes in the context graph which do not
produce results. This requires the formulation of a heuristic
which makes such a decision. This is similar to the Branch &
Bound strategy using a heuristic to prune nodes in the con-
text graph. Reduced number of nodes corresponds to lesser
number of URIs being dereferenced to fetch their RDF de-
scriptions and thus lesser time taken to execute the query.
The heuristic basically works by matching the contents of
a node with the contents of the summaries and links asso-
ciated with all nodes of the query graph. The summaries
are compared to discover edges which have a high weight
in either one of them. Presence of such edges in the node
are used to assess its likelihood of producing results. Links
are used to discover relationships between query nodes not
specified in the query graph.

Example. For the query in Figure 1, suppose Tim-Lee has
another friend Richard who is a professor in some university.
When his RDF description is fetched, a node is created for
him in the context graph in Figure 3 in level 1. In order
to decide whether to continue exploring with the current
node, it is matched with the two summaries associated with
the query node ”?friend” at the same level. Comparison of
two summaries indicates that result producing nodes contain
the triple defining the entity to be type Professor and non-
result producing nodes contain the triple defining the entity
of type Manager. Richard’s description is found to contain
the triple describing him as a professor and therefore it is
predicted that his node will generate results.

Algorithm. The heuristic is invoked each time a new
node N is inserted into the context graph. The contents
of the new node is a description of an entity in the form
a star graph. Lines 2-11 in Algorithm 2 iterate over all

the nodes in the query graph. The idea here is to find if
N contains a predicate which denotes a direct relationship
between nodes in the query graph allowing us to bypass orig-
inal nodes between them. The heuristic iterates over all the
predicates in N in line 3 and counts its matches in linkresults

and linknoResults and stores the scores in variables scoreLr

and scoreLnR respectively in lines 6 and 9. If the ratio of
scoreLr to scoreLnR is greater than the threshold, we intro-
duce a direct edge between the two nodes and exploration
proceeds with this new edge in lines 10-11.

Lines 12-29 in Algorithm 2 iterate over all the triples in
N . Each triple in N is compared with the triples in the
two summaries associated with its corresponding query node
n1 in the query graph. This happens in lines 14-24 in the
algorithm 2. Two score variables are maintained for each
summary. scorePO counts the predicate and object value
matches like x advisorOf studentA whereas scoreP counts
the predicate matches like advisorOf between the node’s and
summary’s contents. Lines 17-18 and 23-24 do the compar-
isons and increment the scores by the weights of respective
edges. Ratios of the scores computed from result summaries
with that computed from non-result summaries are deter-
mined. These ratios indicate the presence of edges which
are predominant in Sn

results but rare in Sn
noResults. If either

of the ratios are above a certain threshold in lines 25-26, we
can say that N contains a pattern commonly found in the
result producing nodes of its level. Hence, it is predicted
to produce results and the execution proceeds from the new
node. The inverse of ratios computed earlier are also com-
pared with the threshold in lines 27-28, if they are greater
it means that N is very similar to the non-result produc-
ing nodes and it may also not produce results. Parameter
p represents the probability with which a node may be ex-
plored after being rejected by the heuristic. When the node
is found to be similar to the non-result producing nodes, the
probability of it being explored is diminished by a constant
e in line 28.

During the initial phase of the execution, the decisions
made for the nodes may not be correct. This happens be-
cause the number of nodes to be compared against are less
initially. If the current node is of the type which produces
the result, it is unlikely that similar type of an entity may
have been encountered earlier. The heuristic in this case is
unable to determine its result producing capability. To over-
come this shortcoming a parameter δ is introduced which
allows the exploration of a node even if the heuristic sug-
gests otherwise. This is crucial during the initial part of the
execution when the heuristic fails to predict the usefulness
of the node. But in the latter part of the execution, the
heuristic can bank on a lot of nodes which makes its deci-
sion very reliable. This suggests that the parameter vary
continuously. It has a high value initially and it decreases
continuously with each new node that leads to a result.

4. EXPERIMENTS
The experiments were conducted on a Pentium 4 machine

running windows XP with 1 GB main memory. All the pro-
grams were written in Java. The synthetic data used for the
simulations was generated with the LUBM benchmark data
generator [4]. The LUBM benchmark is basically an univer-
sity ontology that describes all the constituents of a univer-
sity like its faculty,courses,students etc. The synthetic data
is represented as a web of linked data with 200,890 nodes

Algorithm 2: Heuristic

Input : :Context graph and Query graph, New node N
Output: :Decision on whether to explore N
New node N associated with node n1 in query graph.1

foreach node n2 in query graph do
foreach predicate prd in N do2

ScoreLr ← 0 ; ScoreLnR ← 03

foreach Triple Tr ∈ linkn1−n2
results do4

if Trpredicate = prd then5

ScoreLr = Trweight6

foreach Triple Tnr ∈ linkn1−n2
noResults do7

if Tnrpredicate = prd then8

ScoreLnR = Tnrweight9

if scoreLr
scoreLnR

>= RATIO then10

Explore N with the next predicate prd instead of11

the original path ; exit

foreach Triple T in N do12

scorePOresults ← 0; scorePresults ← 013

foreach Triple Tr ∈ Sn1
results do14

if Trpredicate = Tpredicate then15

if Trobject = Tobject then16

scorePOresults = Trweight17

scorePresults = scorePresults + Trweight18

scorePOnoResults ← 0; scorePnoResults ← 019

foreach Triple Tnr ∈ Sn1
noResults do20

if Tnrpredicate = Tpredicate then21

if Tnrobject = Tobject then22

scorePOnoResults = Tnrweight23

scorePnoResults = scorePnoResults + Tnrweight24

if scorePOresults
scorePOnoResults

>= RATIO or25

scorePresults
scorePnoResults

>= RATIO then

Explore N ; exit26

if scorePOnoResults
scorePOresults

>= RATIO or scorePnoResults
scorePresults27

then
With probability δ/e Explore N and exit28

Explore N with probability δ29

denoting entities and 500,595 edges denoting the relation-
ships between them. The efficacy of the proposed idea was
demonstrated by executing a set of complex queries on the
simulated web of linked data of a university and comparing
the results with the existing approach. There are a number
of patterns in the data and each of the query below demon-
strates the ability of the proposed approach to discover and
use them to optimize its execution. The results are judged
according to the two metrics discussed next.

Metrics. The time taken to execute the query is pro-
portional to the number of URIs resolved to fetch their RDF
descriptions during the course of query execution. The time
taken to determine whether to explore a node or not is dom-
inated by the amount of time taken to retrieve the data from
the web. Therefore, minimizing the number of URIs resolved
has a bigger impact on the the query execution time. Thus
the results are judged according to two metrics. The first
metric α represents the percentage reduction in the number
of URIs dereferenced compared with the existing approach,
indicating the degree of optimization achieved. The second

metric β denotes the percentage reduction in the complete-
ness of results compared with the existing approach.
let Ne : Number of URIs dereferenced by existing approach
let Re : Number of results generated by existing approach
let Np : Number of URIs dereferenced by proposed approach
let Rp : Number of results generated by proposed approach

α =

(
Ne −Np

Ne

)
∗ 100 ; β =

(
Re −Rp

Re

)
∗ 100

Queries
Query1. Return the students in a department who take a
graduate course.
The query execution with the existing approach begins by
fetching the details of all the students in the department
followed by the details of courses taken by them. The courses
are then filtered according to whether they are of the type
graduate course or not. The proposed approach optimizes
the query by recognizing that most of the graduate courses
are taken by students who have an advisor. This is used to
avoid retrieving course details of students who do not have
an advisor.

Query2. Return the students whose advisors have an
interest in the research area ”Research9”.
The existing approach executes the query by fetching the
details of all the students followed by the details of their ad-
visors. The advisor’s research interests are further retrieved
and checked to see if its title is ”Research9”. The query is
optimized by the proposed approach by building a list of
faculty involved in ”Research9”. Then as the students de-
tails are fetched, they are checked to see if their advisors
belong to the list involved in ”Research9”. This results in
avoiding the retrieval of data regarding advisors and their
researching interests not involved in ”Research9”.

Query3. Return the students who co-authored a paper
with a faculty member.
The query is executed by the existing approach by first fetch-
ing the details of all the students followed by the details of
their publications. The publication details reveals its co-
authors whose details are again fetched. If any one of the
co-author is a faculty member, his URI is displayed as a
result along with the student’s. The proposed approach dis-
covers that most of such faculty are infact advisors of the
students. Therefore, as the student details are fetched, it is
parsed to see if he authored a paper. If he did, his advisor
is displayed as the co-author. This optimization results in
the avoidance of retrieval of data pertaining to publications
and its co-authors.

Query4. Return the faculty who take courses which are
attended by the students they advise.

The query is executed by the existing approach by first
fetching the details of all the faculty followed by the details
of courses taken by them. This is followed by fetching the
details of all the students who take these courses. Then the
students details are checked to see whether they are guided
by the professor who teaches that course. The proposed
approach discovers the fact that lecturers take courses but
do not advise students. This fact is used to optimize the
query by not fetching the details of lecturers’s courses and
the students who take those courses.

5. CONCLUSIONS AND FUTURE WORK
In this paper we present an approach to optimize the

Table 1: Results
Query Ne Re Np Rp α β

Q1 135631 13911 42463 13076 69% 6%
Q2 71714 532 21362 532 71% 0%
Q3 145788 14316 33321 13170 77% 8%
Q4 72044 446 29437 446 59% 0%

Figure 4: Degree of Optimization achieved

SPARQL query execution over the web of linked data. The
approach is a two-phased strategy to discover patterns in
the query. These patterns are used to identify data that do
not contribute to answer the query and can be prevented
from being fetched, resulting in a reduction in the query
execution time. We ran simulations that demonstrated the
efficacy of the proposed approach. Future work includes the
application of proposed approach to optimize conventional
SPARQL queries over RDF data.

6. REFERENCES
[1] C. Bizer, T. Heath, and T. Berners-Lee. Linked data –

the story so far. International Journal on Semantic
Web and Information Systems, 5(3):1–22, 2009.

[2] A. Deshpande, Z. Ives, and V. Raman. Adaptive query
processing. Found. Trends databases, 1(1):1–140, 2007.

[3] M. Franklin. From databases to dataspaces: A new
abstraction for information management. SIGMOD
Record, 34:27–33, 2005.

[4] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for
owl knowledge base systems. J. Web Sem.,
3(2-3):158–182, 2005.

[5] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U.
Sattler, and J. Umbrich. Data summaries for
on-demand queries over linked data. In WWW ’10:
Proceedings of the 19th international conference on
World wide web, pages 411–420, New York, NY, USA,
2010. ACM.

[6] O. Hartig, C. Bizer, and J.-C. Freytag. Executing
sparql queries over the web of linked data. In 8th
International Semantic Web Conference (ISWC2009),
October 2009.

[7] Z. G. Ives and N. E. Taylor. Sideways information
passing for push-style query processing. In ICDE, pages
774–783. IEEE, 2008.

[8] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. W3C recommendation, World Wide
Web Consortium, 2008.

