
Formal Specification for Design Diversity:
Two Case Histories, One Approach

Cydney Minkowitz

ALSTOM FERROVIARIA S.p.A., Information Solutions
Via Corticella 75, Bologna, 40128 Italy

cydney.minkowitz@transport.alstom.com

Abstract. Diverse programming is a recommended approach in the preparation
of logic used to drive railway control systems, whereby different
representations and processes are used to configure and validate the logic. This
paper describes how two formal specifications have been used for the
construction of a precise model of the logic, alternative to those represented
using the user and machine notations, and for the construction of software tools
to process the logic, following a rigorous refinement approach. The first
specification was used to develop a redundant tool to check the results of a
logic generator. The second specification was used to verify a logic compiler,
both as an abstract representation, to compare against the compiled code, and as
the design of a diverse code checker.

Keywords: railway interlocking systems, safety-related software, diversity,
model-based formal methods, VDM++

1 Introduction

The Alstom Transport group supplies a family of interlocking systems, known as
SMARTLOCK. Each interlocking system is a computer based railway signalling
system, whose purpose is to ensure the safe movements of trains. Different hardware
and software solutions have been used for the systems, but each is characterized as
having a central subsystem containing generic software that processes code describing
the interlocking logic for a specific signalling area. The logic for each system is
configured using software tools, also developed by Alstom.

The interlocking logic is represented differently for each system. One system,
referred to hereafter as System A, processes logic expressed as Boolean equations,
which are generated using a rule-based tool, and the logic for another system, referred
to hereafter as System B, takes the form of compiled procedural code.

Safety must be assured on all parts of an interlocking system, including the
interlocking logic. The safety assurance techniques recommended for the fixed parts
of the system are well documented, and the generic software of Systems A and B has
been constructed and safety approved on the basis of such recommendations (e.g. the
System A software has a primary-checker architecture, where a checker module
checks the output of the primary software, and System B uses two-out-of three

42 C. Minkowitz

diverse-modular redundancy, where three software modules check each others’
outputs). With regards to the safety assurance of the configuration data, the past
publications (see [1], for instance) have concentrated on the promotion of appropriate
data representations and configuration management procedures, both of which have
also been employed for SMARTLOCK.

The best practice for the construction of railway control and protection software is
documented in the CENELEC EN 50128 standard [2], which provides guidelines on
the techniques to apply for systems with safety integrity levels (SILs) from 0 to 4, of
which interlocking systems are rated as SIL4 (i.e. the maximum). Amongst others, the
standard highly recommends two techniques for the configurable parts of the SIL4
systems - one is the use of diverse programming, whereby protection against random
and systematic faults is achieved through diverse representations and processes
leading to the same results, and the other is the use of formal methods.

The taxonomy of diversity techniques in [3] includes the following list of
techniques applicable for design diversity, the term used for redundant software
programs that compute the same outputs from the same inputs.

1. Separate (independent) developments,
2. Diverse development team,
3. Diversity in description/programming languages and notations,
4. Diverse development platforms and tools,
5. Diverse development methods,
6. Different expressions of substantially identical requirements,
7. Diverse requirements and specifications,
8. Different required properties implying the same behaviour,
9. Requiring different behaviours from the diverse versions.

In line with these recommendations, a software development approach using the
above techniques has been applied for SMARTLOCK - first to develop a diverse
logic generator for System A applications, and second to verify the logic compiled for
System B applications, both as an abstract representation, to compare against the
compiled code, and as the design of a diverse code checker. In particular, the use of a
formal language as a specification notation, and as the basis of a development
method, has led to alternative models of the interlocking logic and alternative means
of implementing the tools.

Sections 2 and 3 give a description of the interlocking logic used for System A and
System B applications and relate the background that motivated the development of
the two aforementioned configuration tools and the use of the formal specifications.

Following a formal development approach, the specifications were refined into
designs to be implemented directly in code. VDM++ was used as the specification
language, and Common Lisp was used as the programming language. Section 4
discusses the rationale for this choice, with example excerpts of the VDM++
specifications of the two configuration tools, and with an explanation of how the
approach was specifically applied to each tool.

The conclusions in Section 5 present the results accomplished by applying the
approach to the two tools, both in its use as a technique for design diversity and as an
effective software development method in general.

Formal Specification for Design Diversity: Two Case Histories, One Approach 43

2 Diverse Logic Generator

The interlocking logic for a System A application is expressed as a sequence of
Boolean equations. Each equation specifies a relation between Boolean-valued input
variables and output variables. An input variable represents an indication received by
the interlocking from some signalling component, i.e. some mechanism, such as a
relay, used to control or monitor some physical device, such as a signal, set of points
or track circuit. An output variable represents a command sent from the interlocking
to some signalling component. The values of the variables represent the on/off states
of the components. The expression defining the relationship between the inputs and
outputs is written in terms of the logical 'not', 'and' and 'or' operators (expressed using
the symbols “.N.”, “*” and “+”, respectively). Operating in split second cycles, the
System A application continually receives the inputs, processes the Boolean
equations, and transmits the outputs.

For example, Extract 1 contains Boolean equations that define the logic for the
simple interlocking scheme shown in Figure 1, which contains two routes, RR1_4
from location 1 to location 4 in the right direction, and RL4_1 from location 4 to
location 1 in the left direction, where there is one equation for each route.

Fig. 1. Example interlocking scheme

BOOL RR1_4_CR =
(RR1_4_LORCV * P1_4_DI * .N.P1_4_PULL_LORCV *
.N.RL4_1_NXC

+ B1_4_PUSH_LORCV * P1_4_DI * .N.B1_4_PULL_LORCV *
.N.RL4_1_NXC)

BOOL RL4_1_NXC =
(RL4_1_LORCV * P4_1_DI * .N.B4_1_PULL_LORCV *
.N.RR1_4_CR

+ B4_1_PUSH_LORCV * P4_1_DI * .N.B4_1_PULL_LORCV *
.N.RR1_4_CR)

Extract 1. Logic expressed as Boolean equations

An alternative way of representing the interlocking logic is to specify the relations
between the inputs and outputs using circuit diagrams. A circuit diagram consists of
one or more terminal components, representing the outputs, and a network of non-
terminal components, representing the inputs, linked together using 'inverse', 'serial'
and 'parallel' connections. Because interlocking technology has its roots in relay
technology, signalling engineers traditionally use circuit diagrams to design the

4

1

1

4

4

44 C. Minkowitz

interlocking logic. Being equivalent representations, it is possible to convert the
circuit diagrams to their Boolean equation counterparts. For example, the two circuit
diagrams in Figure 2, containing terminal components for setting the routes, and
containing non-terminal components to detect whether the routes are requested (via
the energised contacts “RR1_4” and “RL4_1”), the points on the routes are controlled
in the correct position (via the energised contacts “P1_4” and “P4_1”), the devices
used to request the routes are in the correct states (via the buttons “B1_4” and
“B4_1”) and the opposing routes are not set (via the de-energised contacts “RL4_1”
and “RR1_4”), are an equivalent description of the Boolean equations in Extract 1.

Fig. 2. Logic described as circuit diagram

The circuit diagrams are designed according to signalling principles, which
incorporate safety and logistical constraints that govern how the interlocking must
work for different railway operating companies. Analysis of the signalling principles
has led to the identification of common network compositions, which may be reused
for different interlocking applications, and the construction of schemas (generic
templates and rules) for the design of the interlocking logic. This, in turn, gave rise to
the requirement for a software tool that would generate automatically the interlocking
logic from the schemas.

The design of the logic generator tool was commissioned nearly twenty years ago
to the University of Bologna by the SASIB Railway Group in Bologna (which later
became Alstom Ferroviaria S.p.A.), as part of a research project to investigate the use
of rule-based techniques for interlocking data configuration. An early prototype of the
tool was produced in the late 1980s using Quintus Prolog. The Prolog program was
developed further within the Alstom group in the early 1990s, and has evolved over
time to its current state. The program has been used since on numerous interlocking
applications for different operating companies.

The program inputs files containing a given interlocking logic schema and files
containing Prolog facts denoting the properties and layout of a given signalling area.
The schema is expressed in an Alstom propriety meta-language, based on the Prolog
syntax, which has features resembling a higher-order predicate calculus. As an
example, Extract 2 contains a logic design rule for creating networks used for route
setting, expressed in a simplified variant of the meta-language notation.

The program compiles a knowledge base from the schema and facts, constructs the
logic and outputs the Boolean equations derived by applying the schema to the facts.

+24 V

RR1_4

RR1_4

P1_4

RL4_1

B1_4

-24 V

+24 V

RL4_1

RL4_1

P4_1

RR1_4

B4_1

-24 V

Formal Specification for Design Diversity: Two Case Histories, One Approach 45

network_set_route(Dir, StartLoc, EndLoc) <--
exists(route(StartLoc, EndLoc, Dir)) and (
component(relay, route_set(Dir, StartLoc, EndLoc)) or
component(button, route_set(StartLoc, EndLoc))) and
network(points_controlled(StartLoc, EndLoc)) and
not component(button, route_cancelled(StartLoc, EndLoc)) and
if(
exists(route(OppStartLoc, OppEndLoc, OppDir)),
opposing_route(StartLoc, EndLoc, OppStartLoc, OppEndLoc) and
not component(relay, set_route(OppDir, OppStartLoc, OppEndLoc)))

).

Extract 2. Logic design rule in Prolog syntax

Having realized the requirement for the automatic generation of the interlocking
logic, there remained the problem of validating the logic. In the early years, the logic
was validated by manual inspection of the Boolean equations output. This practice,
being time consuming and error prone, could not be sustained in the long term,
especially with the increasing size and complexity of the new interlocking
applications to come, and so new validation approaches were evaluated, and, in 2001,
a decision was made to develop a diverse logic generator. The two tools could then be
executed independently on the same input files, generating two output files which
could be compared automatically by commercial off-the-shelf file comparison tools
(see Figure 3).

Fig. 3. Logic generation using diverse software

The second tool was to be developed independently from the first tool, using a
different team and alternative techniques and tools. Given that the only
documentation on the first tool, available at the time when the second tool was
conceived, consisted of a user manual and the Prolog program itself, in order to
understand the nature of the schema meta-language and how it was to be interpreted,
it was considered necessary to begin the development with a precise specification
written in a suitable notation, for which VDM++ was chosen.

The main purpose of the specification was to:
 construct a model of the circuit diagrams used to describe the interlocking logic;
 formalise the conversion rules used to generate Boolean equations from the logic;
 construct a model of the schema definitions embodying the templates and rules

used to construct the interlocking logic;
 formalise the reasoning mechanisms used to apply the schema to the facts.

schema & fact
files

Boolean
equations

file
logic generator

Boolean
equations

file
diverse

logic generator

compare

46 C. Minkowitz

So as not to be influenced by the design of the first tool, the specification of the
second tool was created from first principles (based on prior knowledge of formal
logic and rule-based systems), using the first tool as a black box in order to analyse
the required behaviour, by observing its results when applied to example scenarios.

Although the formal specification was used initially as an aid to understanding the
requirements, in the end, it served as an alternative representation of the meta-
language. For example, Extract 3 shows how the design rule in Extract 2 is expressed
in VDM.

kb.defineDesignRule(
"network_set_route",
["Dir","StartLoc","EndLoc"],
kb.guardedDesignInstruction(
kb.predicate(
"route",
["StartLoc","EndLoc","Dir"]),

kb.andConstruction(
kb.orConstruction(
kb.componentAssociation(
<relay>,
kb.componentFunction(
"route_set",
["Dir","StartLoc","EndLoc"])),

kb.componentAssociation(
<button>,
kb.componentFunction(
"route_set",
["StartLoc","EndLoc"]))),

kb.andConstruction(
kb.designRuleApplication(
"points_controlled",
["StartLoc","EndLoc"]),

kb.andConstruction(
kb.notConstruction(
kb.componentAssociation(
<button>,
kb.componentFunction(
"route_cancelled",
["StartLoc","EndLoc"]))),

kb.impliedDesignInstruction(
kb.predicate(
"route",
["OppStartLoc","OppEndLoc","OppDir"]),

kb.guardedDesignInstruction(
kb.ruleApplication(
"opposing_route",
["StartLoc","EndLoc","OppStartLoc","OppEndLoc"]),

kb.notConstruction(
kb.componentAssociation(
<relay>,
kb.componentFunction(
"set_route",
["OppDir","OppStartLoc","OppEndLoc"]))))))))));

Extract 3. Logic design rule in VDM syntax

Formal Specification for Design Diversity: Two Case Histories, One Approach 47

3 Diverse Code Checker

The System B interlocking system has been developed in recent years to replace the
Solid-state interlocking system (SSI), which, after more than a quarter of century of
wide-spread use and proven safety track record, has reached a state of obsolescence
due to the out-dated software and hardware configuration technology that it uses.

Using the same design as SSI, the System B system interprets binary code
representing the interlocking logic. The code is interpreted on the contents of reserved
areas of memories used to record the states of the signalling functions (e.g. signals,
points, track sections and routes) controlled by the interlocking. Iterating in cycles,
the interlocking receives indications of the current states of the signalling functions,
updates the memories accordingly as the logic demands, and sends commands to
control the signalling functions to their new states.

The interlocking logic is defined using a procedural, object-centred language,
which has been designed to be backwards compatible with the language used for
configuring SSI applications. The logic is organized into blocks of code containing
tests and commands that access the signalling object memories, which are combined
together in conditions and statements, using typical imperative language constructs, to
be evaluated and executed by the interlocking.

The logic is prepared as source code. The source code syntax of the memory tests
and commands uses mnemonics oriented to signalling engineers. Extract 4 contains
an example source code for an execution block used to set a route (with comments
describing the code). The source code is compiled to Motorola S3 object code, which
is programmed on a memory device to be installed on the interlocking system.
Following the design of SSI, the object code instructions are derived directly from the
source code syntax, as shown by the listing in Extract 5.

Because Alstom has no access to definitive reference material on the SSI language,
and because the language was to be extended to exploit features provided by the new
interlocking system, a decision was made to formally specify the new language, in
order to understand its semantics, i.e. how it is interpreted by the interlocking, and, as
a result, clarify its syntax. The formal specification was constructed in VDM++,
based on a formal model created previously using the Fusion notation (see [4]). The
formal specification defines, in an object-oriented manner, the essential entities,
properties and relations of the code elements processed by the interlocking interpreter.

The formal specification uses an abstract syntax to describe the interlocking logic,
in a language that is independent from both the source code and object code notations.
An example of the syntax is contained in Extract 6, which contains (commented) code
equivalent to that expressed in Extract 4 and Extract 5.

The source code notation includes macro-like constructs, called specials, which,
unlike SSI, are not supported by the System B object code interpreter. Also, unlike
SSI, the System B interpreter requires the object code blocks to be ordered differently
from the source code blocks. As a consequence, before the source code is compiled to
object code, a source-to-source translation must be performed, in order to expand the
specials to equivalent code using more primitive language constructs, and to order the
blocks appropriately. (The formal specification models the interpretable code only
and organizes the code blocks in an alternative way using VDM maps – see Extract
10 in Section 4.2.)

48 C. Minkowitz

As with SSI, it is assumed that the System B object code is generated using a
compilation system approved at a SIL4 safety integrity level. SSI ensures this level by
using compiler and decompiler tools. For System B, this proved inadequate, owing to
the difficulty of decompiling back to the pre-translated source code. Instead, it was
considered necessary to compile and decompile to an intermediate representation of
the logic, for which the abstract syntax of the formal specification proved ideal.

*R5(M)
if R5(M) a / if route R5(M) available and

P2 crf / points P2 controlled or free to move normal
then R5(M) s / then set route R5(M),

P2 cr / set points P2 controlled normal and
S5 clear bpull / clear signal S5 button pulled

\
\

Extract 4. Execution block in source code syntax

memory map:

S5 5
P2 2
R5(M) 9

block map:

R5(M) 14780

instructions:

[N°14780 : 0x0001 14787 14787 => if]
[N°14781 : 0x0621 9 0 => R5(M) a]
[N°14782 : 0x0541 2 1 => P2 cnf]
[N°14783 : 0x0002 0 0 => then]
[N°14784 : 0x0620 9 0 => R5(M) s]
[N°14785 : 0x0541 2 0 => P2 cn]
[N°14786 : 0x040A 5 0 => S5 clear bpull]
[N°14787 : 0x0008 0 0 => \]
[N°14788 : 0x0008 0 0 => \]

Extract 5. Execution block in object code syntax

Formal Specification for Design Diversity: Two Case Histories, One Approach 49

data.defineExecutionBlock(
"R5(M)", -- block label
data.statementList([-- block statements

data.conditionalStatementList(
data.conditionList([-- conditions to evaluate

data.routeAvailableTest("R5(M)"),
data.pointsNormalStateTest(-- Check,

"P2", -- in points memory,
mk_(-- if either

{ -- all data bits, comprising
mk_token(<controlN>)}, -- controlN data bit,
1), -- are set to 1, or

true)]), -- points free to move.
data.statementList([-- ‘then’ statements to execute

data.setRouteCommand("R5(M)"), -- Set route memory data bit.
data.pointsNormalStateCommand(-- Assign,

"P2", -- in points memory,
{ -- all data bits, comprising
mk_token(<controlN>)}, -- controlN data bit,
1), -- to 1.

data.signalStateCommand(-- Assign,
"S5", -- in signal memory,
{ -- all data bits, comprising
mk_token(<bpull>)}, -- bpull data bit,
0)]), -- to 0.

nil)])); -- no ‘else’ statements to execute

Extract 6. Execution block in intermediate code syntax

Figure 4 illustrates the architecture of the compilation system eventually designed
to compile and verify System B interlocking logic. The system contains three
subsystems - a compiler to compile the logic in object code format (constructed using
conventional means), and a redundant compiler and decompiler to verify the logic in
intermediate code format, each developed using diverse teams, techniques and tools.

In order to ensure that the interlocking interpreter processes the logic correctly,
before converting the source code to object code, the compiler checks the logic to
ensure that it is syntactically correct, self-consistent and complete. Whereas, with SSI,
similar checks are also performed on the object code by the interpreter itself, with
System B, redundant checks are performed on both the source and intermediate code
by two separate program components of the redundant compiler. The first program
checks that the source code is syntactically correct and compliant to the invariants
defined on the intermediate code (to ensure that it can be transformed correctly). The
second program checks that the intermediate code is self-consistent and complete.

Design diversity was achieved by separate, independent, developments. The three
subsystems were implemented using different programming languages. The compiler
was implemented in C, the redundant compiler was implemented using Bison/Flex
and C++ (for the source to intermediate code generator) and Common Lisp (for the
intermediate code checker), and the decompiler was implemented in Prolog.

Furthermore, different specification documents were produced for the development
teams of the three subsystems to follow, written using different notations. The first
two documents, used by the compiler and redundant compiler development teams,
define the source code syntax (in BNF notation) and the requirements of the

50 C. Minkowitz

compilation system, by specifying informally the consistency, completeness and
capacity constraints of the interlocking logic (expressed in natural language on the
source code syntax terms) and the source code to source code translation rules and
source code to object code conversion rules (expressed in a semi formal notation).
The third document, used by the redundant compiler and decompiler development
teams, defines the structure of the intermediate code (in the UML notation) and the
source code to intermediate code and object code to intermediate code conversion
rules (expressed in a semi formal notation). The fourth document, used by the
redundant compiler development team, specifies the semantics of the interlocking
logic (i.e. the VDM++ specification), which, in order to implement the intermediate
code checker program, was extended to define, on the intermediate code, the same
constraints that were expressed informally on the source code. In this way, the
redundant compiler not only performs a redundant check of the interlocking logic, but
it performs the checking diversely on a different representation of the logic.

Fig. 4. Code compilation using diverse software

source files
memory/block

map file

intermediate
file

source to
intermediate

code generator

compare

intermediate
code checker

intermediate
code

log file

redundant compiler

intermediate
file

decompiler

compiler

object file

source code
checker

object to
intermediate

code generator

source code
translator

translated
source files

source code log
files

object code
compiler

Formal Specification for Design Diversity: Two Case Histories, One Approach 51

4 Formal Development Approach

The choice of VDM++ [5] as the formal specification language for the tools was
based on two criteria: 1) the provision of a standard model-based notation appropriate
to the application, which, being based on the ISO/VDM-SL standard, and having
object-oriented extensions that were ideal for describing the elements of the
interlocking logic and the rules used to generate and check the logic, was easily met
by VDM++; and 2) the availability of tool support, which manifested itself in the
form of the VDM++ Toolbox, offering syntax and type checking facilities for
verifying the specification, an interpreter for validating the specification on test
scenarios, and including the Rose-VDM++ Link add-in, rendering it easy to generate
UML class diagrams (using the Rational Rose CASE tool) to accompany the formal
specifications for documentation purposes.

For those not familiar with the VDM++ notation, Extract 7 and Extract 8 contain
simplified extracts of the specification for the diverse logic generator, used to model
the components of the interlocking logic and define the rules for constructing the
Boolean variables in the equations generated from the logic, which may be
understood from the comments (after the ‘--' sign) and the explanation that follows.

class Component
-- a Boolean variable is transcribed from the component’s name and
-- an extension string derived from the component’s extension type

types

public BooleanVariable ::
name : seq1 of char
extStr : seq1 of char

inv boolVar ==
boolVar.extStr in set rng exts union {"_CR", "_NXC"};

public ExtensionType = <state> | <ilv> | <iln> | … ;

values

protected exts : map ExtensionType to seq1 of char =
{ <ilv>|->"_DI", <iln>|->"_LORCV", … };

instance variables

protected name : seq1 of char;
protected extType : ExtensionType;

end Component

Extract 7. Example VDM++ class (with abridged extension type and string definitions)

Every component has a name (see Figure 2 of Section 2) and an extension type
associated with a descriptive string (for example, the extension types ‘ilv’ and ‘ilv’
are associated with the extension strings “_DI” and “_LORCV”, standing for direct
input and locally received input, respectively). The extension type ‘state’, assigned to
relays appearing in multiple circuits, is associated with two extension strings: "_CR"
and "_NXC", which are used to distinguish whether the values of the corresponding
Boolean variables are to be accessed in the current cycle or in the next cycle.

52 C. Minkowitz

class TerminalComponent is subclass of Component
-- a terminal component is assigned to at most one circuit

instance variables
-- index of that circuit
protected ctInd : [nat1] := nil;

operations
-- output variable of equation generated from that circuit
protected
outputVariable : () ==> BooleanVariable
outputVariable () == is subclass responsibility;

end TerminalComponent

class NonTerminalComponent is subclass of Component
-- a non-terminal component may be assigned to many circuits

instance variables
-- indices of those circuits
protected ctIndSet : set of nat1 := {};

operations
-- input variable of equation generated from a given circuit
protected
inputVariable : nat1 ==> BooleanVariable
inputVariable (ctInd1) == is subclass responsibility;

end NonTerminalComponent

class Relay is subclass of TerminalComponent, NonTerminalComponent
-- a relay may be used both as a terminal or non-terminal component

operations

public
inputVariable : nat1 ==> BooleanVariable
inputVariable (ctInd1) ==

let extStr =
if extType <> <state> then exts(extType)
else

if ctInd = nil then "_CR"
else if ctInd < ctInd1 then "_CR" else "_NXC"

in return mk_BooleanVariable(name, extStr);

public
outputVariable : () ==> BooleanVariable
outputVariable () ==

let extStr =
if extType <> <state> then exts(extType)
else

if ctIndSet = {} then "_CR"
else

if forall i in set ctIndSet & i <= ctInd
then "_NXC"
else "_CR"

in return mk_BooleanVariable(name, extStr)
pre ctInd <> nil;

end Relay

Extract 8. Example VDM++ operations

Formal Specification for Design Diversity: Two Case Histories, One Approach 53

The terminal component of a circuit is transcribed as the output variable of the
corresponding equation. Each non-terminal component of a circuit is transcribed as an
input variable of the corresponding equation. Each circuit is identified by an index
which determines the order in which its corresponding equation is listed.

If the extension type of a relay is not the state type, the extension string of the
Boolean variable transcribed from the relay will be that associated with the extension
type. Otherwise, the extension string will be determined from the index of the circuit
containing the relay, the rule being that if the value of an output variable of one
equation is set in the current cycle it may be referenced by an input variable in a later
equation in the current cycle, otherwise it may be referenced by an input variable in
an earlier equation of the next cycle. Likewise, the value of an output variable of an
equation is set for the next cycle if all input variables that reference it are contained in
prior equations, otherwise it set for the current cycle. (See Extract 1 of Section 2).

The specifications, which, as stated in the previous sections, were initially
constructed as an aid to the understanding of requirements, were refined to software
design models, intended to be programmed directly to code. The data structures and
algorithms were redesigned to be efficient, without compromising the clarity of the
specifications. For example, data types employing suitable data management
strategies were introduced to replace the use of predefined VDM data types, class
methods were redefined to use state designators to update instance variables
represented as sequences and maps in place of concatenation and override operators,
and functions using tail recursion were redesigned using accumulator arguments.

Common Lisp was used as the programming language for the following reasons.
With its rich dynamic data types and support for both functional and iterative
programming styles, it is straightforward to translate specifications expressed in the
VDM notation into code. Because functions can be created within code expressions
and returned from, and passed to, other functions, it is easy to implement VDM
higher-order predicate, set and sequence expressions (such as the ‘forall’ expression
in Extract 8, which can be coded using the Common Lisp ‘every’ function). The class
types of the specification are realized easily as data types of the Common Lisp Object
System (CLOS), which is comparable to the VDM++ object system (for example, in
its conception of polymorphism and inheritance). Like VDM++, the Common Lisp
language has been made a standard, and good programming environments exist to
support it. Allegro CL was selected as the environment, mainly because its
incremental compiler enables it, on the one hand, to produce efficient code and, on the
other hand, to evaluate the code interactively, in an analogous way to which the
VDM++ Toolbox interpreter evaluates specifications.

In general, the major part of a VDM++ specification may be realized as simple
applications of standard Common Lisp facilities. Where this is not possible, special
purpose functions were provided in a Common Lisp package, named “basics”, which
was used as a library by the two programs. In order to formalize the implementation
process, a VDM++ to Common Lisp guide was written, which suggests how
statements, expressions and data types specified using the VDM++ notation should be
written using equivalent predefined Common Lisp facilities, or functions from the
basics package, and prescribes conventions for structuring the program code and
documenting its interfaces, so as to make it easy to trace back from the program to the
specification. Where performance was critical, based on a sound understanding of the

54 C. Minkowitz

specification, a judgment was made to stray from the implementation guide and use
more efficient Common Lisp facilities that have similar, but not equivalent, meanings
to the recommend ones. For example, many functions in Common Lisp have
“destructive” counterparts, which may cause side effects on their arguments, but can
be used safely in certain circumstance. Optimizations were also made by careful
consideration of the invariants defined on the data types used in the specification.

Rather than generating the program code manually, an evaluation was made of the
use of the C++ code generator tool (included in the VDM++ Toolbox Professional
version), which generates code built using the services of predefined C++ classes that
realize the VDM++ constructs. However, it was decided that the use of the classes
would result in code that was less efficient, and less traceable to the specification,
than hand-crafted Common Lisp code, and that the small overhead of manual
translation, using the implementation guide, and the slight risk of generating code that
was non-conformant to the specification, were not outweighed by the potential
advantages of a code generator that has no software safety integrity claim and
produces less maintainable code.

4.1 Approach Applied to Diverse Logic Generator

Following the prescribed approach, an initial specification of the diverse logic
generator described in Section 2 was constructed in VDM++ as a means of
understanding the nature of the schema meta-language and how it is interpreted by the
Prolog program. Using the VDM++ Toolbox interpreter, the specification was
validated by testing it on the example scenarios.

The VDM++ specification was then refined into a design, using approved software
design practices, with particular attention to the definition of data structure invariants
and operation preconditions. All aspects of the software were specified formally,
including user interaction, localization and error handling.

The software provides the following three main functions.

Load the knowledge base reads the expressions in the input files and
converts them into data structures conforming to
the specified schema representation.

Generate the interlocking logic constructs the circuit diagrams that describe the
interlocking logic by applying the schema’s
rules to its facts.

Output the Boolean equations converts the circuit diagram representation of the
interlocking logic into Boolean equations to be
output as the result of the application.

The functions are realized in the design by classes organized into self-contained
packages, which represent the different layers of the software. Each package is
contained in a separate specification document. The packages were assembled
together as a project, in the VDM++ Toolbox project, along with predefined VDM++
libraries providing input and output operations and mathematical functions, so that the
specification could be checked and interpreted as a whole.

Formal Specification for Design Diversity: Two Case Histories, One Approach 55

The packages of the software design are summarized as follows.

Interface provides user operations, including operations to
load the knowledge base, construct the interlocking
logic and output the Boolean equations.

Interlocking Logic contains classes used to represent the interlocking
logic as circuit diagrams, including classes defining
the various types of components and network
connections, and operations to construct the logic
and format the logic as Boolean equations.

Knowledge Base API comprises the interface used to define the schema
templates and rules and to assert the facts.

Interlocking Logic Schema contains classes used to represent the schema
definitions, and operations to apply the schema to
the facts.

Deductive Reasoning provides the deduction mechanism used by the
schema applications, by furnishing classes
representing logical conditions and operations for
resolving them.

Pattern Matching provides a mechanism for unifying patterns in the
schema definitions against asserted facts or deduced
predicates.

Data Management supplies classes used to store and retrieve data in the
knowledge base in an efficient manner.

Support Operations defines values, types and functions used by the other
packages, such as string handling utilities and error
codes.

The design choices for the deductive reasoning, pattern matching and data
management packages were critical to the performance of the software, and the data
structures and algorithms were optimized in these packages during the refinement
process.

The knowledge base API package provides operations, corresponding to the
commands and expressions of the Prolog based meta-language, to construct the
knowledge base. In order to ensure the integrity of the knowledge base, the
specification in the package defines the invariants on the schema definitions and the
error messages that are output if the invariants are not satisfied by the operation calls

The calls to the operations of the knowledge base API package are made by the
interface package as part of the user operation to load the knowledge base. The
interface package contains a model of the user interaction of the software, using
preconditions that act as guards on the user operations.

The specification was transformed into a Common Lisp program, using the
implementation rules and the basics library described previously. The program is
organized in Common Lisp packages in line with the specification packages. Because
the program uses the same input files as the Prolog program, an additional package

56 C. Minkowitz

was implemented to convert the schema definitions and facts in these file to an
alternative representation, based on the VDM syntax used for the specification of the
knowledge base API package (see Extract 3 of Section 2). The user interface of the
program consists of a simple form, constructed using the Common Lisp graphics
library, containing controls to invoke the user operations, which are enabled
according to the preconditions defined in the specification of the interface package.

4.2 Approach Applied to Diverse Code Checker

The definitions of the various types of code objects in the formal specification of
the interlocking logic for System B applications (such as those nominated in Extract 6
of Section 3) contain invariants that specify the constraints that the objects must
satisfy. In other words, the objects may only be constructed if they comply with these
constraints. The constraints are either expressed individually for each type, as type
invariants, or as consistency constraints between different types. A code object may
only be constructed if its properties satisfy its type invariants. Collections (or blocks)
of code objects may only be constructed if the blocks satisfy the consistency
constraints mutually imposed on them. Furthermore, the blocks may only be
processed by the interlocking interpreter if the code satisfies certain completeness
constraints. Extract 10 shows how the completeness and consistency constraints are
specified on the interlocking logic as a whole, and Extract 9 shows how the
consistency constraints are specified on a given type of code object.

class StatementList

instance variables

private stmnts : seq1 of Statement;

operations

public
initialise : seq1 of Statement ==> StatementList
initialise (stmnts_) == (stmnts := stmnts_; return self;);

-- is consistent if all statements are consistent
public
consistent : InterlockingLogic ==> bool
consistent (logic) ==

return
forall stmnt in set elems stmnts &

stmnt.consistent(logic);

-- executes each statement in turn, provided they are consistent
public
execute : InterlockingState * InterlockingLogic ==> ()
execute (state, logic) ==

for stmnt in stmnts do stmnt.execute(state, logic)
pre consistent(logic);

end StatementList

Extract 9. Example VDM++ specification of code object type

Formal Specification for Design Diversity: Two Case Histories, One Approach 57

class InterlockingLogic

instance variables
-- memory allocations by function type- map ids to memory indices
private memoryInds :

inmap Memory`TypeName to
inmap Name`FunctionId to

InterlockingState`MemoryIndex := {|->};
-- execution block declarations- map block labels to block indices
private execBlockInds :

inmap Name`BlockLabel to BlockIndex := {|->};
-- execution block definitions – map block indices to code blocks
private execBlocks : inmap BlockIndex to ExecutionBlock := {|->};

operations

public -- all execution blocks called must be defined, etc.
complete : () ==> bool
complete () ==

return
dom execBlocks = rng execBlockInds and …
;

public -- id is declared if allocated in memory map
memoryAllocated : Memory`TypeName * Name`FunctionId ==> bool
memoryAllocated (typeName, functionId) ==

return functionId in set dom memoryInds(typeName);

public -- if no error detected, adds execution block definition
defineExecutionBlock : Name`BlockLabel * StatementList ==> ()
defineExecutionBlock (blockLabel, statementList) == (

if not executionBlockAllocated(blockLabel) –- declare block if
then declareExecutionBlock(blockLabel); -- no call made yet
let blockInd = executionBlockIndex(blockLabel)
in (-- if statements inconsistent or recursive call to block

if not statementList.consistent(self) or
(exists blockCall in set statementList.blockCalls() &

blockCall.targets(self, <execution>, blockInd)) or
executionBlockDefined(blockInd) –- or block redefinition

then error; -- flag error
execBlocks(blockInd) :=

new ExecutionBlock().initialise(blockInd, statementList);
);

);

public -- constructs set route command
setRouteCommand : Name`RouteId ==> SetRouteCommand
setRouteCommand (routeId) == (

if not memoryAllocated(mk_token(<route>), routeId)
then return undefined; -- exception if route id not declared
return

new RouteStateCommand().initialise(
memoryIndex(mk_token(<route>), routeId)

);
);

end InterlockingLogic

Extract 10. Excerpt of simplified VDM++ specification of interlocking logic

58 C. Minkowitz

The source code to intermediate generator of the System B compilation system (see
Figure 4 of Section 3) ensures that the type invariants of the intermediate code are
respected. The intermediate code checker program checks the other constraints on the
interlocking logic, which are defined in the formal specification.

The intermediate file input to the intermediate code checker takes the form of a
sequence of operation calls used to define blocks of code (see again Extract 6 of
Section 3), where the interface used to express the operation calls is defined by the
signatures of the operations of the formal specification (e.g. see the signatures of the
defineExecutionBlock and setRouteCommand operations in Extract 10). By reading
and evaluating each operation call in the file in turn, the intermediate code checker
program constructs a model of the interlocking logic, in accordance with the formal
specification. For each block definition, the program constructs a block object, with
the code objects that it contains, and associates the block with the interlocking logic.
Once the model is fully constructed, the program checks that the interlocking logic
satisfies the specified completeness constraints.

By definition, the model of the interlocking logic only permits code objects that
have well formed and consistent properties to be assigned to and associated with the
logic. This behaviour is imposed in the formal specification via the use of the
undefined expression and error statement, where an undefined expression implies a
failure to construct an object of the code, due to a non-conformity in the object’s
definition, and an error statement implies a failure to assign a property to the
interlocking logic or a failure to associate an object with it, due to an inconsistency
with other properties or associations of the code. The semantics of the undefined
expression and error statement are such that, if the formal specification were to be
executed directly, the execution would abort on the first occurrence of a non-
conformity. Because the intermediate code checker program is required to report all
existing non-conformities in the code, the implementation does not strictly apply the
interpretations of the undefined expression and error statement. Instead, wherever in
the specification there is an error statement in the definition of an operation intended
to update the interlocking logic, the corresponding Common Lisp function flags an
error and continues with its execution. Similarly, wherever in the specification there is
an undefined expression in the definition of an operation intended to return a code
element to a caller operation, the corresponding Common Lisp function flags an error
and returns an “undefined” result, allowing the caller function to continue execution.
In order to report all possible errors in compositions or collections of code objects,
four functions named ‘f-and’, ‘f-or’, ‘f-every’ and ‘f-some’ have been provided in the
basics library and used, where appropriate, in place of the Common-Lisp ‘and’ and
‘or’ macros and ‘every’ and ‘some’ functions normally used, which unlike their
Common-Lisp counterparts, have been defined to evaluate all of their arguments.

5 Conclusions

Returning to the list of techniques for design diversity in Section 1, it is clear that
the diverse logic generator and diverse code checker were conceived and realised
using the first four techniques, as they each are part of a set of redundant tools

Formal Specification for Design Diversity: Two Case Histories, One Approach 59

developed independently by separate teams using different programming languages
and tools. It is also evident that the fifth technique was applied, given that the diverse
logic generator was developed using a formal refinement approach, in contrast to the
prototyping approach used for the Prolog program counterpart, and given that the
specification used for the diverse code checker also constitutes its design, whereas the
specifications used for the source code checker of the System B compiler were used
for reference purposes only. The sixth technique was intentionally applied for the
diverse code checker, in order to derive an abstract syntax of the interlocking data that
is different from both the source code and object code syntax. Similarly, the formal
specification of the diverse logic generator provided a different model of the
interlocking data, in both its meta-language and circuit diagram forms, and also of the
rules used to process them. Given that the diverse logic generator was designed with
no working knowledge of the Prolog logic generator, apart from what was
documented in its user manual, some assumed requirements of the diverse logic
generator resulted in behaviour that was complementary (in a positive sense) to that of
the Prolog program, and given that the diverse code checker and the diverse logic
generator (which also performs checks on the data) defined the constraints to check in
an alternative way to their counterparts, and generated different error messages
accordingly, the seventh and eighth techniques were also, less apparently, applied.

The implementation of the diverse logic generator program was verified using the
same tests that were performed on the VDM++ specification. After delivery, the
program has been used, in collaboration with the Prolog program, to prepare the
interlocking logic for a variety of System A applications. Only two program
anomalies have been reported, one defect due to an incorrect transformation of an
operation of the VDM++ specification used to output the Boolean equations to a file,
and one capacity problem due to an inefficient algorithm used as part of the logic to
Boolean equation conversion process. New versions of the program have been
delivered since completion of the first version, as have new versions of the Prolog
program, due to new requirements. For each new version, the formal specification
was updated and validated, using the VDM++ Toolbox, and the Common Lisp
program altered accordingly.

The intermediate code checker program has been verified, along with the other
System B compilation system components, using an industry standard safety approval
process, and is now being used to configure System B applications. Rigorous
requirements were defined for the compilation system as a whole, including
operational and non-functional requirements not covered by the functional
requirements defined in the diverse specification documents that were used for the
individual subsystem developments. Specially designed tests tracing back to all the
requirements were performed as part of a formal V&V process that provided input to
safety approval process. In particular, a single dataset containing non-conformities
violating all constraints specified on the interlocking logic was used for tests on both
the compiler and redundant compiler, to ensure that they yield similar results.

Apart from its use as a diverse representation, the formal specification of each
program was essential for understanding its requirements, assisting, particularly, in
the analysis of the software whose behaviour the program was meant to, diversely,
reproduce. The specification also provides indispensable documentation for the
program’s software design. The VDM++ to Common Lisp implementation guide

60 C. Minkowitz

served as a coding standard for the program’s construction. With the aid of the guide,
the implementation of each program took a, nearly insignificant, fraction of its overall
development time, the bulk of which was spent in formalizing a software model that
was correct and conformant to requirements.

In its analysis of the pros and cons of the design diversity techniques, [1] warns
that the additional overhead of using diverse specifications may lead to an increase in
system design effort. The previous argument would suggest, however, that an
alternative specification may decrease overall development costs, especially if it is
used as the basis of a formal refinement approach, such as the one described here.

The approach itself has proved to be an efficient software development in general,
particularly recommended for applications of considerable complexity with
unapparent requirements (such as the ones presented here, which are more complex
than may appear from their simplified descriptions) and whose performance is not the
most crucial concern (e.g. tools like the SMARTLOCK configuration tools, which are
intended to be run in single-shot batch mode). The same approach has, in fact, been
used subsequently to develop another System B configuration tool (a less complex
SIL0 program, whose requirements were not obvious at the start of the development,
and whose specification benefited from the use of the higher-order functional style
support provided by VDM), which took only a month to design and program.

Of course, the approach does not exclude the use of other specification notations
for defining diverse representations, providing that they are substantially different
from the notations used for the alternative representations, and that they have enough
expressiveness to define representations that lend themselves easily to code
transformation, either manually or using a code generators.

In conclusion, it is hoped that this paper offers a contribution to the literature
promoting best practices for the configuration of safety-related data, which, at the
outset of the work reported here (as confirmed by [5] in its analysis of the subject),
was notably lacking.

References

1. A. G. Faulkner, P. A. Bennett, R. H. Pierce, I. H. A. Johnston, N. Storey, The Safety
Management of Data-Driven Safety-Related Systems, Proceedings of the 19th International
Conference on Computer Safety, Reliability and Security, Springer-Verlag Lecture Notes in
Computer Science, Vol. 1943, 2000

2. CENELEC EN 50128, Railway applications—Communications, signalling & processing
systems—Software for railway control & protection systems, March 2001

3. L. Strigini, B. Littlewood, A discussion of practices for enhancing diversity in software
designs, Centre for Software Reliability, Technical Report LS_DI_TR_04, 2000

4. C. Minkowitz, J. Atkiss, An object-oriented formal specification of a configuration language
for railway interlockings, Proceedings of the Third Northern Formal Methods Workshop,
September 1998

5. Fitzgerald, J. S., Larsen, P. G., Sahara, S. VDMTools: advances in support for formal
modeling in VDM. CS-TR-1057, 2007

