UML Profile for Specifying User Interfaces of
Business Applications

Gordana Milosavljevi¢, Igor Dejanovi¢, Branko Perisi¢, and
Branko Milosavljevié

Faculty of Technical Sciences, University of Novi Sad, Serbia
{grist, igord, perisic,mbranko}@uns.ac.rs

Abstract. This paper presents a domain-specific language (DSL) in the
form of a UML profile that facilitates efficient modeling and generation
of fully-functional Uls of enterprise business applications. DSL is based
on an internal HCI standard that defines layout and behaviour of coarse-
grained objects for business applications. Being a regular UML extension,
this language can be used in any general-purpose UML modelling tool
and can easily be integrated with other UML-based models of the appli-
cation.

Key words: user interface, code generation, MDA, UML profile

1 Introduction

Various aspects of model-based development of user interfaces (Uls) are the
subject of intensive research efforts. However, the majority of presented solutions
is hardly applicable to development of real-world information systems because
too much time and effort is spent on developing and synchronisation of different
types of user interface models (for example, presentation model, content model,
navigation model, interaction model), the complexity of sharing the knowledge
embedded in different models, the lack of support in development tools, and the
lack of consensus over which types of models best describe Uls [23]. Most tools
for modelling user interfaces use its own set of notations, thus impeding the
integration with other application models [26]. This is especially the problem in
developing business applications that require tight integration of Ul models with
models that specify business logic.

In order to overcome the problem of integration and to facilitate the exchange
of information among different tools, UML can be used to model all aspects of
an application, including the user interface [3]. Although very powerful, UML
without extensions is not suitable for modelling UIs [26, 3, 19].

This paper presents a UML extension in the form of a UML profile for speci-
fying Uls of business applications named EUIS (Enterprise User Interface Spec-
ification profile). EUIS is developed in order to enable rapid user interface mod-
elling at a high level of abstraction. EUIS is based on an internal HCI (human-
computer interaction) standard of a business application that defines functional



78 G. Milosavljevi¢, I. Dejanovié, B. Perisi¢, and B. Milosavljevié

and presentational features of coarse-grained building blocks thus enabling the
generation of a fully functional Ul, without the need for defining a multitude of
models used for developing Uls in the general case.

It is important to note that the UI model is not a model of an application
(from the implementation standpoint); it defines the structure of the applica-
tion using building blocks at a high abstraction level (different types of screen
forms, reports, procedures) and their relationships. Depending on the develop-
ment platform, the intended application architecture, and the implementation
of a code generator, one class from the Ul model may be mapped to one or
more classes or modules of an application, or may even be not mapped to the
program code at all but to application repository data instead, if a data-driven
application architecture is used (for example, see [13,14]).

PI

Problem domain model T

I
- = PS
~
—\| |
Datab: model ~ |
— Middleware / ~

i logic N |

v == — — —
" \ model N - \ |
! - - - _ _ _~___ User interface model v
: b
Y

t

\'|  Generated

|
Database scripts

meta-data
™

| cimport»
Application repository |— -

Fig. 1. Model transformations

1 i
Middleware ‘ User interface Application elements ’

The development of a whole business application using the EUIS profile com-
prises the following activities (see Figure 1):

— The development of PIM (platform independent model) of a problem domain
by means of class diagrams in a general-purpose UML modelling tool.

— The automatic transformation of a PIM to PSMs (platform-specific model):
database schema model, user interface model, and the middle-tier model (in
the case a three-tier architecture is chosen).

— Automatic generation of artifacts needed for implementation based on PSMs:
database schema creation or alteration scripts, middle-tier implementation
artifacts (such as EJBs), fully functional application UI (depending on the
target architecture of the client application), and atomic “CRUD” transac-
tions implementing creation, retrieval, update, and deletion of every entity
in the persistence layer.

The rest of the paper is structured as follows. Section 2 describes the basics
of the internal HCI standard. Section 3 presents the EUIS profile. Section 4
reviews the related work. The last section concludes the paper and outlines
some directions of future work.



UML Profile for Specifying User Interfaces of Business Applications 79

2 The HCI standard

Our internal human-computer interaction (HCI) standard is aimed at defining
functional and visual features of course-grained application components. Its goals
include the following: simplicity of use, quick user training, and the automation
of user interface construction.

The papers [16, 17] define a number of types of screen forms. For this discus-
sion, the following types are relevant:

standard data management form,
standard panel,

— parent-child form, and
many-to-many form.

Standard form is designed to display data and all available operations so
the user can choose a data item and invoke an operation on it without memorising
commands (the object-action approach [24]). Standard operations common to
all entities are represented by buttons/icons at the top of the form, while specific
operations (if they exist) are represented by links/buttons at the right hand side.
The standard form layout is presented in Figure 2.

Title

—\ Form header

! |
\

=

[ 1111 VI

Specific operations and next forms

Standard operations toolbar

Data display area

Fig. 2. Standard form layout

Operations common to all entities include search (query by form), display,
addition, update, removal, copying, data navigation and view mode toggle (grid
view or single record view). Specific operations include complex data processing
procedures associated with the given entity (transactions), invocation of related
(next) screen forms, and invocation of reports. The standard mandates that the
specific operations always use the currently selected (viewed) record.

Standard panel has the appearance and the behaviour of the standard
form but, instead being shown in its own window, it is used as an element of a
complex form. Standard panels are regularly used for parent-child and many-to-
many forms.

A parent-child form is used for data that have hierarchical structure, where
each element in the hierarchy is modelled as an entity in the database. Each
element in the hierarchy is represented by a standard panel, where a panel at



80 G. Milosavljevi¢, I. Dejanovié, B. Perisi¢, and B. Milosavljevié

the n-th hierarchy level filters its content according to the selected data item at
the level n — 1.

The many-to-many form is used for intensive management of data be-
longing to entities connected by “many-to-many” relationships, with or without
associate classes. Its layout is presented in Figure 3. This screen form is used as
follows:

— A number of desired records are selected in the upper panel. These records
are “dragged” to the lower panel by clicking the button with the downwards
arrow. If a record is dragged by mistake, it can be revoked back by clicking
the upwards arrow button.

— The values of non-key attributes of a record selected in the lower panel may
be changed.

Title Form header
T

Panel for choosing records
Downwards arrow and
upwards arrow buttons

S,

Panel for chosen records
C 11

Buttons for specific operations

Fig. 3. Many-to-many form layout

Relationships among screen forms are represented by three mechanisms:
zoom, next, and activate. The zoom mechanism represents the invocation of
the form associated with the given entity where the user can choose a data item
and “drag” it (pick its values) to the fields of the previously viewed form.

The next mechanism, invoked from the form associated with the current
entity, displays the form associated with the child entity with its data filtered
so that only connected objects are displayed. The key or a representation of the
parent entity is displayed in the form header, so the user easily recognises the
current context. A mext can be invoked by menu items, buttons, or links.

The activate mechanism enables direct invocation of a form by another form,
without restrictions on the data displayed. The invoked form does not need to
be related to the current one.

3 The EUIS Profile

The EUIS profile extends the following metaclasses from the UML::Kernel pack-
age: Element, Class, Property, Operation, Parameter, Constraint, and Package.
It is complementary to the profile for modelling persistent data that is available



UML Profile for Specifying User Interfaces of Business Applications 81

in a majority of modelling tools (see Figure 4). Therefore, EUIS is independent
on modelling tools, persistence layer and the database of choice. Profile that
models persistent data comprises only the stereotypes present in the majority
of modelling tools (possibly under a different name): persistent class, persistent
property, persistent data type, and persistent operations (methods implemented
in the persistence layer) — see Figure 5. When using the EUIS profile, these
stereotypes are replaced with concrete stereotypes of the chosen modelling tool.

r——--- I Kernel
| «import»
EUISProfile
I
————— > PersistenceProfile
«import»

Fig. 4. Profile structure

«metaclass» «metaclass» «metaclass» «metaclass»
Class DataType Property Operation
«stereotype» «stereotype» «stereotype» «stereotype»

PersistentProperty

identifier : Boolean [0..1] = false]
unique : Boolean [0..1] = false
identity : Boolean [0..1] = false
nullable : Boolean [0..1] = true

PersistentClass PersistentDataType

length : Integer [0..1]
precision : Integer [0..1]

PersistentOperation

-

persistentDataType

*

Fig. 5. Persistence profile

In order to specify additional information needed for transforming a problem
domain model to a user interface model, another profile is developed (see Figure
6) that provides the following: defining a set of one or more properties as a
business key — the BusinessKey stereotype [4], designation of a method as a
complex business procedure — the Transaction stereotype, and the designation
of a method as a report — the Report stereotype.

«metaclass» «metaclass»
Property Operation
«stereotype»
«stereotype» BusinessOperation
BusinessKey
«stereotype» «stereotype»
Report Transaction

Fig. 6. Profile used in the problem domain model

Stereotypes and enumerated types of the EUIS profile are organised in the
following categories:

— a visible element: extension of Element metaclass



82 G. Milosavljevi¢, I. Dejanovié¢, B. Perisi¢, and B. Milosavljevié

— visible classes (panels): extensions of Class metaclass

— visible properties: extensions of Property metaclass

— visible methods: extensions of Operation metaclass

— visible parameter: extension of Parameter metaclass

— a group of elements: extension of Property metaclass

— visible association ends: extensions of Property metaclass
— validators: extension of Constraint metaclass

— a business subsystem: extension of Package metaclass

Due to space constraints, the rest of the section presents only the most im-
portant stereotypes and tags. Validators, business subsystem and formal OCL
constraints are not presented.

3.1 Visible Elements

Stereotype VisibleElement (see Figure 7) represents a model element that is
mapped to a user interface element in the generated application. Since Element
metaclass is a common superclass of all UML metaclasses, this facilitates the
representation of all model elements with a Ul component and a label, where
applicable.

«enumeration»
ComponentType
«metaclass» textField

Element passwordField
textArea
column
checkBox
comboBox
«stereotype» selectionList
VisibleElement radioButton
label
label : String [0..1] image
visible : Boolean [1] = true tabbedPane
component : ComponentType [0..1 panel
grid
border
menu
menultem
button

Fig. 7. Visible element

The enumerated type ComponentType defines a set of available Ul component
types. The set of components is designed to be platform-independent. Mapping
these values to particular Ul components of the chosen development platform is
performed in the application generator.

3.2 Visible Classes

Stereotype VisibleClass (see Figure 8) represents a class that is mapped to a
panel (a regular or a tabulated panel) in the application UL If a panel is associ-
ated to an empty window or a web page, it becomes a screen form that can be
independently activated (opened).



UML Profile for Specifying User Interfaces of Business Applications 83

StdPanelSettings O
i defaultOperationMode : OperationMode [1] = viewMode
defaultViewMode : ViewMode [1] = tableView

«stereotype» confirmDelete : Boolean = true
VisibleClass staylnAddMode : Boolean = true
goTolLastAdded : Boolean = true

«stereotype»
VisibleElement

«stereotype» modal : Boolean [1] = true
PersistentClass
persistentClass| Kincomplete, disjoint} StandardOperations O
PanelType add : Boolean [1] = true
update : Boolean [1] = true
I I copy : Boolean [1] = true
«stereotype» «stereotype» «stereotype» «stereotype» delete : Boolean [1] = true
anel Panel C . 0 search : Boolean [1] = true
changeMode : Boolean [1] = true

dataNavigation : Boolean [1] = true

{incomplete, disjoint}
ContainerKind

StdPanelSettin «stereotype» «stereotype» «stereotype»
ParentChild ManyToMany PanelGroup

StandardOperations

DataSettings O

dataFilter : String [0..1]

«stereotype»
VisibleProperty

D:

«ent » ent

0 i Vi
addMode tableView
updateMode inputPanelView
copyMode
searchMode
viewMode

Fig. 8. Visible classes

Stereotype VisibleClass is not abstract because of the possibility of modelling
specific panels that are not comprised by the HCI standard, but still occur rarely
enough that there is no need to extend the HCI standard with a new element.

The inherited tag label is used as a window title or a label that explains the
purpose of the panel if displayed within a complex panel.

Stereotype StandardPanel denotes that the given persistent class is asso-
ciated with a standard panel whose layout and behaviour are defined by the
internal HCI standard. The standard panel implements three interfaces: Stan-
dardOperations — operations defined by the HCI standard: add, update, copy,
delete, search, change mode, navigate data; StdPanelSettings — settings that de-
fine panel’s runtime behaviour; and DataSettings — defines data filtering and
sorting.

Stereotype ParameterPanel represents a class that is mapped to a panel
for entering parameters for a visible method (see VisibleOperation stereotype)
that is invoked by a button or a menu item. Since the majority of parameter
panels in an application is created implicitly, as a result of a visible method
and its parameters, classes with this stereotype rarely occur. It can be used in
situations where a user successively invokes a number of methods with the same
set of parameter values.

The ContainerPanel is an abstract stereotype that represents a complex
panel that can contain other panels (simple or complex), as well as a number
of properties and methods. It defines additional attributes, methods, and con-
straints for its descendants (ParentChild, ManyToMany, and PanelGroup). The
layout and behaviour of ParentChild and ManyToMany panels is defined by the
HCI standard, while their relationship to the contained panels is defined by hier-
archical relationships (associations with ends having the Hierarchy stereotype).
For details on associating panels, see section 3.7.



84 G. Milosavljevi¢, I. Dejanovié¢, B. Perisi¢, and B. Milosavljevié

The layout and behaviour of a PanelGroup is not defined by the HCI stan-
dard. It is used for modelling special-purpose complex panels. The class with a
PanelGroup stereotype defines only the contained elements, while their relation-
ship is implemented in application code.

Classes with the MainPanel stereotype are used for modelling the main form
of a business subsystem

3.3 Visible Properties

«stereotype» «metaclass»
VisibleElement Property
«enumeration» «stereotype» defaultValueGetter | «metaclass»

AggregateFunction VisibleProperty * 0.1 Operation

min columnLabel : String [0..1]

max displayFormat : String [0..1]

sum representative : Boolean [1] = false

avg autoGo : Boolean [1] = false

count disabled : Boolean [1] = false «stereotype»

default : String [0..1] PersistentProperty
incomplete, disjoint} persistentProperty | 1
PropertyType
[ I 1

«stereotype» «stereotype» «stereotype» |*

Aggregated Calculated Persistent {incomplete, disjoint}
function : AggregateFunction [1]| [expression : String [0..1] PersistentType
selection : String [0..1] ,_;

T «stereotype» «stereotype»
«stereotyper Editable ReadOnly
aggregatingAttribute 1 Lookup T T
«stereotype» performsAggregation | «stereotype» «stereotype»
PersistentProperty 0..1 erformsCalculation AutoDupli A
«metaclass» 0.1 lookupClass|0..1 incrementSpec : String [0..1]
Operation «stereotype»
VisibleClass

performsincrement
0.1

+modal : Boolean [1] = trug

«metaclass»
Operation
Fig. 9. Visible properties

Stereotype Visible Property (see Figure 9) is a property of a “visible” class and
is mapped to a Ul component contained in the panel associated to the class. Its
tags provide customisation of appearance and behaviour of the Ul component,
or the table column in the case of tabular display of data (label, columnLabel,
dataFormat, disabled), default values in the UI component (default, defaultVal-
ueGetter), and automatic focus traversal (autoGo). Tag default contains an OCL
expression that defines the initial value, while defaultValueGetter contains the
reference to the method used for fetching the default value (in cases when OCL
expression cannot be used). Tag representative indicates that the given prop-
erty can be used to represent the whole class from the users’ point of view (for
example, company name, first name + ” 7 + last name).

Aggregated represents an aggregated property, whose value is calculated using
one of the aggregation functions (min, max, sum, avg, count) over the selected
property (aggregatingAttribute). The set of values being aggregated is specified
by an OCL expression (selection) or by a method (performsSelection).



UML Profile for Specifying User Interfaces of Business Applications 85

Stereotype Calculated represents a property whose value is calculated accord-
ing to the given formula over the values in objects of this or some other class.
Calculation method can be specified by an OCL expression (expression) or by a
method (performsCalculation).

Abstract stereotype Persistent represents a property that is mapped to a per-
sistent property in the problem domain model. Its descendants include Editable
(enables editing the value of the persistent property in the Ul component) and
ReadOnly (disables editing). Editing values is allowed if the user has appropriate
permissions.

Editable has an AutoDuplicate descendant that represents a persistent prop-
erty where the value entered in the UI component is kept as default when entering
a new record. It is usually applied to properties whose values are repeated across
many records, so the user is spared some effort while entering data.

ReadOnly has an Autolncrement descendant that denotes a persistent prop-
erty whose value is automatically incremented with each new record entered.
Contrary to identity columns or database sequences, this property allows the
counter value to be reset if a condition is met (using an OCL expression in
incrementSpec or a method in performsIncrement).

Stereotype Lookup describes a property whose value is formed from property
values of referenced objects, directly or indirectly. Direct reference means that
there is an association with the class that provides the data; indirect reference
means that such class can be reached by traversing a series of associations. Prop-
erties forming a lookup can be specified as an OCL expression (ezpression) or by
specifying the class that provides the data. In the latter case, the representative
property of that class is used.

3.4 Visible Parameters

«stereotype» «metaclass»
VisibleElement Parameter

1

«stereotype» persistentDataType|0..1
VisibleParameter

«stereotype»

N displayFormat : String [0..1] PersistentDataType
Operation | valueGetter valueSpecification : String [0..1]
0.1 disabled : Boolean [1] = false

«metaclass»

Fig. 10. Visible parameters

Stereotype VisibleParameter (see Figure 10) denotes a parameter of a visible
method (having the VisibleOperation stereotype) that behaves as follows. If it
is an input or an input/output parameter, then

— it enables entering parameter values by means of a Ul component contained
in the parameter panel associated with a visible method, or

— it defines the way of fetching the parameter values in the case when the
user is not supposed to enter its value (using tag valueSpec contains an OCL
expression that calculates the value, or tag valueGetter that specifies the
method for calculating the value).



86 G. Milosavljevi¢, I. Dejanovié, B. Perisi¢, and B. Milosavljevié

If it is an output parameter or a method result, it enables the display of its value
by means of a Ul component contained in the parameter panel associated with

a visible method.

3.5 Groups of Elements

I
element

«stereotype»
VisibleElement

«metaclass»
Property

«enumeration»
GroupAlignment

«enumeration»
GroupLocation

left
center

componentPanel
header
operationPanel
toolbar

right
justify

«stereotype»
ElementsGroup
orientation : GroupOrientation [1]

location : GroupLocation [0..1]
alignment : GroupAlignment [0..1

nextSubmenu
mainMenu

{ordered}

«enumeration»
GroupOrientation

ownerOrientation
horizontal
vertical

area

Fig. 11. Groups of elements

Stereotype FElementsGroup (see Figure 11) represents an attribute of a class
with the VisibleClass stereotype used for grouping its elements (properties,
methods, associations), thus forming semantic groups that map to groups of
UI components in a panel associated with the class. Each group can define the
following: an ordered collection of contained elements (tag element), the UI ele-
ment orientation in layout (orientation), the location of the group in the panel
(location), and the alignment of elements in the group (alignment).

The inherited tag label represents a label displayed in a Ul component as-
sociated with the group (frame title, panel title, name of the menu item that
opens a submenu).

3.6 Visible Methods

Stereotype VisibleOperation (see Figure 12) denotes the method of a visible class
that has an associated Ul component (a button or a menu item) that enables
its invocation by the user. If the method has input parameters, they must have
the VisibleParameter stereotype (see section 3.4).

Abstract stereotype BusinessOperation represents a method that is mapped
to an activity in the problem domain. Its descendants are Report and Trans-
action. Report describes a method that invokes a report created by one of the
reporting tools. Report’s tags enable specifying the report name, and the filtering
and sorting criteria. Transaction represents a complex business transaction that
is implemented as a stored procedure in the database or a method in a middle
tier. Its tags enable specifying the UI behaviour immediately before and after
its invocation (requesting the confirmation from the user, display refresh mode,
error display mode, etc).



UML Profile for Specifying User Interfaces of Business Applications 87

«stereotype» «metaclass»
VisibleElement Operation
«stereotype»

VisibleOperation

leieotypey logErrors : Boolean [1] = true]
PersistentOperation
persistentOperation|0..1 T * 0.1
«'stereotype» ) importedOperation
BusinessOperation
hasParametersForm : Boolean [1] = trug

filteredByKey : Boolean [1] = true

{incomplete, disjoint}
T OperationType
«stereotype»
«stereotype» «stereoty!)e» VisibleClass
Report Transaction
reportName : String [1] refreshRow : Boolean [0..1] = true activateForm refreshPanel
dataFilter : String [0..1] refreshAll : Boolean [0..1] = false *
sortBy : String [0..1] askConfirmation : Boolean [1] = truq 0.1
confirmationMessage : String [0..1]
showErrors : Boolean [1] = true

Fig. 12. Visible methods
3.7 Visible Association Ends

Abstract stereotype VisibleAssociationEnd (see Figure 13) is applied to a prop-
erty belonging to a binary association between two visible classes. It defines the
relationship between the panel belonging to the class that owns the property
(activation panel) and the panel belonging to the class at the other end (desti-
nation panel). The nature of the relationship is determined by this stereotype’s
descendants. VisibleAssociationEnd only introduces common properties and con-
straints that enable destination panel to adjust its layout and behaviour to the
context it is used in. For this purpose, VisibleAssociationEnd implements the fol-
lowing interfaces: StandardOperations, DataSettings, StdPanelSettings, and Pan-
elAdjustment. Tag values specified by PanelAdjustment can be set for all types
of panels (VisibleClass and its descendants), while tag values specified by Stan-
dardOperations, DataSettings, and StdPanelSettings can be applied to standard
panels only (stereotype StandardPanel, see section 3.2).

If tag values are not defined at the association end, values defined at the
standard panel are used. If values of tags add, update, copy, delete, search, and
changeMode are set to false in the standard panel, the value set at the association
end is ignored. This helps adhering to rules that are usually consequences of
problem domain constraints independent of the usage context.

Stereotypes Zoom, Next, and Activation model the corresponding type of
activation as defined by the HCI standard. Stereotype Hierarchy denotes that
the destination panel has the role of an element in the parent-child or many-to-
many panel. Role of the destination panel is set by the value of the level tag.
For many-to-many complex panels, level = 1 is the panel that represents the
header, level = 2 is the panel for choosing data, and level = 3 is the panel
that contains the transferred data (for example, see class PickAuthors in Figure
15). For parent-child complex panels, level = 1 is the standard panel being the



88 G. Milosavljevi¢, I. Dejanovié, B. Perisi¢, and B. Milosavljevié

«stereotype»
VisibleElement
AN

«stereotype»

D/O ElementsGroup
1A}

hiddenGroup|*

«stereotype»
VisibleAssociationEnd

O/ hiddenPropert,
StdPanelSettings " «stereotype»
{incomplete, disjoint} PanelAdjustment O VisibleProperty
| ] *

AssociationEndType

«stereotype» «stereotype» «stereotype» disabledProperty
Zoom Hierarchy Activate
comboZoom : Boolean [1] = false| |level : Integer [1] hiddenOperation .
«stereotype»
BussinesOperation
«stereotype» appliedToPane|0..1 pe
«stereotype» 0.1
Next "] viaAssociationEnd | GroupElement «stereotypen

autoActivate : Boolean [1] = false «metaclass» anel
displayldentifier : Boolean [1] = true Property
displayRepresentative : Boolean [1] = true]

Fig. 13. Visible association ends

root, of the tree, level = 2 is the child panel, level = 3 is the child of the child
panel, and so forth: for n > 2, level = n is a panel that is the child for panel at
level = n — 1 (for example, see class JournalPaperComposite in Figure 15).

Composing parent-child and many-to-many complex panels requires defining
only levels of hierarchy for each contained panel; runtime association of panels
is performed by analysing their associations. If two or more associations exist
between two panels, or there is a recursive association, association end to be
used must be explicitly stated in the viaAssociationEnd tag.

Stereotype GroupElement denotes that the destination panel is an element
of a complex panel, where its role and behaviour are defined in the application
code and/or using values of tags inherited from VisibleAssociationEnd.

3.8 Example

Figure 14 presents a domain model of a part of a CERIF-compliant research
management system presented in [17]. All classes and attributes in this model
are persistent, but their stereotypes are not displayed for the sake of brevity.

The problem domain model in Figure 14 is automatically transformed into
the UI model presented in Figure 15 that contains an initial version of the user
interface. The application developer can manually change this version to meet
the users’ requirements. The diagram in Figure 15 shows manually added classes
PickAuthors (a many-to-many form for choosing paper authors) and Journal-
PaperComposite (a parent-child form for managing journal papers) with corre-
sponding associations. Properties with Lookup and FElementsGroup stereotypes
in all classes are also manually added. The rest of the model is automatically gen-
erated: persistent classes from the domain model was mapped to Ul classes with
StandardPanel stereotype, persistent properties to Ul properties with Editable
stereotype, association ends with cardinality 0..* to Ul association ends with
Next stereotype and association ends with cardinality 0..1 or 1 to Ul association
ends with Zoom stereotype.



UML Profile for Specifying User Interfaces of Business Applications

-otherFormatNames 0..* Person -author -authored | PaperAuthor
PersonName birthYear : int 1 0..* |order : int
firstName : String institution : String
lastName : String title : String - . "
otherNames : Siring |-name _ |vocation : String authoredBy 0. v :
X : Sex «enumeration» «enumeration»|
1 uri : String T ionType Sex
-paper| 1 —
original male
JournalPaper humanTranslation | |female
startPage : int machineTranslation|
endPage : int
-keywords 0..* -interests [0..* tota\Paggeslz int
l y l l volume : String
[ 1 [ | number : String "
[ ] 1 ] year : int notes
uri : String 0.*
-subtitles | 0.. “keywords |0.*
PaperSubtitle
e -abstracts |0..* | PaperKeywords
R PaperAbstract
-titles [ 1..*
PaperTitle
MultiLangContent Language
" name : String
Ditext : String L
Ditrans : TranslationType < -lang code : String
0.* 1

Fig. 14. A domain model of a part of CERIF-compatible system

«Next»
otherFormatName:

«Zoom»  paper «StandardPanel»
«StandardPanel» Person author __ «Nexty PaperAuthor
- 0. [order : int
: ;mng 'stdrilné in «Lookup»paperTitle : String g+
: String
- String  String )
ox «Hierarchy»{evel =3 }
i i String «Zoom»
7 paper |1
- «StandardPanel»
cHierarchysAcivate» JournalPaper
flevel =2} «Lookup»journalTitle : String
Next Next;
key“woer:s” o interasto| 0. «Editable»volume : String
B - «Editable»number : String
«StandardPanel» | [ «StandardPanel» JRiopctanys) | <Nexts int
— pi Y7 : String
Y {ovel = 1} | «Editable»startPage : int
«EditablerendPage : int
y Pages Hint Nexv|
fevel=1} notes| 0..
PaperNote
«StandardPanel» «Next» «Next «Next»
MultiLangContent titles 1. subtitles|0..* abstracts [0..* keywords [0..*
«Editablentext : String N
«Editablextrans : TranslationType «Hierarchy»| o berTitle perKey
{level =2}

Sex «ParentChild» L «Zoom»[  «StandardPanel»
male L= d ype MultiLangContent lang Language
female «ElementsGroup»panels original . " -* 1 |«Editable»name : String

humanTranslation | | «Editablentext : String «Editablexcode : String
et ranclation | «Editablextrans : TranslationType

Fig. 15. A Ul model of a part of CERIF-compatible system

89



90 G. Milosavljevi¢, I. Dejanovié, B. Perisi¢, and B. Milosavljevié

An example of a web-based form generated for JournalPaperComposite is
presented in Figure 16.

Journal Paper

Details Caonnections

s
Year |[Title Authors ~|  Subtitles

2009 A library circulation system for city Tesendic, Milosavijevic, Surla Keywords:
2009 XML editor for search and retrieval - Boberic, Surla ™ Abstracts:

Notes:
Journal: ]
Volume: 27
Number: 1
Year: 2009

Start page:  [162

End page:  [195

Page count:

URI: doi-10.1108/02640470910934663

Titles

Title Language [Translation
A library circulation system for city and special English  Original

Title: Alibrary circulation system for city and special libraries

Language:  English | [ ]
Translation: [Qriginal v

Sawe

<< Done

Fig. 16. Managing journal papers data

4 Related Work

In order to compare the EUIS profile with other profiles presented in the lit-
erature, this section reviews recent papers ranging in subject from modelling
user interfaces of business applications to complete methodologies and tools for
information system development, including its presentation aspects. Papers that
deal with developing user interfaces in general are not discussed here.

The papers [21, 22], like this paper, propose the use of the problem domain
model as a starting point that is transformed into a model of the user interface.
The approach to modelling of application views based on the available classes
(various complex panels, navigation among them) is also similar. However, [21,
22] introduces more transformation levels in order to achieve portability across
different implementation platforms while not restricting to a particular fixed set
of components (we deal with portability as well, but with a limited set of com-
ponents). Besides, [21,22] require the development of an information retrieval
model in order to implement fetching of data used in the user interface, while
we opt for implicit mapping of the user interface model to the persistence layer
(the cases where implicit mapping is insufficient are defined by OCL constraints
or an associated method).

The papers [10, 5] present a way of automatic user interface generation based
on the following: a business logic model (UML activity diagrams) and a user
interface model (UML class diagrams). An activity diagram is supplied with
elements of the UML profile for defining system and user actions with the spec-
ified inputs and outputs, while the class diagram that is produced from the



UML Profile for Specifying User Interfaces of Business Applications 91

activity diagram is supplied with elements of the UML profile for user interface
specification (e.g., ContainerElement, GuiElement, ActionElement). The profile
does not support modelling the relationships between forms (navigation is omit-
ted). Furthermore, obtaining classes that provide management of data from the
problem domain model is not specified, although their presence is assumed (the
dataProvider attribute in the ChoiceElement stereotype, and the methodURL
attribute in the ActionElement stereotype).

In [23], the authors propose the use of patterns for accelerating the user
interface development. Those patterns are at a higher abstraction level and may
be used in task models, presentation models, and component layout models.
This paper also proposes the use of a number of tools that guide the designer
in the choice and the application of patterns during modelling, assist in model
synchronisation, and generate the user interface.

Compared to elements of the standard presented in Section 2, the patterns
used in [23] represent finer-grained application components. The paper [23] does
not specify neither the relationship between the problem domain model and the
user interface model, nor if there is a mapping of the generated user interface to
the data persistence layer (whether the generated user interface is immediately
testable in the real users’ environment).

The paper [27] presents a method for developing web-based information sys-
tems based on problem domain models, applications and navigations that are
directly mapped to existing development frameworks. The mapping is provided
by the UML profile named FrameWeb whose stereotypes correspond with the
categories of the framework used, so that the development team can deliver the
implementation in a straightforward way (the implementation is manual, there
are no code generators used). The majority of stereotypes in the presented UML
profile are aimed at the development of the problem domain model and its map-
ping to the persistence layer, while support for specifying the user interface is
relatively modest (there are only four stereotypes that specify the type of the
web page).

The series of papers [2,8,7, 18] presents a methodology for developing web-
based information systems UWE (UML-based Web Engineering) that uses a
UML profile for modelling hypermedia and the ArgoUWE tool that provides
for definition of different application models, their transformation, and semi-
automatic code generation. The UML profile provides for the creation of navi-
gation models, navigation structure models, and presentation models.

The concept of modelling an application in UWE methodology is the closest
to the proposition in this paper — in both cases, the starting point is the prob-
lem domain model expressed as a class diagram that is automatically mapped
to the application model, data model, and other models needed. Thanks to this
approach, there is a direct mapping of application elements to the layer that
implements business logic, a feature missing in the majority of reviewed solu-
tions. The most notable differences between UWE and EUIS approaches are the
following:



92 G. Milosavljevi¢, I. Dejanovié¢, B. Perisi¢, and B. Milosavljevié

— The UWE methodology and profile are focused solely on developing web-
based systems, while the methods presented here can be applied to both
web and “classical” information systems.

— The UWE method does not rely on an internal HCI standard (there is only
one type of forms).

— Our approach proposes a single user interface model that defines coarse-
grained application building elements, their structure and layout (using the
ElementsGroup stereotype), and navigation among them. Sketches of forms
need not be made thanks to the mechanism for intelligent component layout
that forms a usable user interface according to rules and groups, and which
can be further adapted during implementation.

Although not based on a UML profile, the concept of specifying GUI forms
and generating the database schema and the functional prototype of the ap-
plication using the IIS*Case tool [20,11, 6] is similar to the solution presented
here, apart from the order in which artifacts are implemented. Using IIS*Case,
the modelling starts with specifying form types, while database schema and the
prototype application are generated. Here we start with the model of the prob-
lem domain, that is used to generate the user interface model, database schema
model, and the middle-tier model (in the case of three-tier architectures). After
manual changes applied to these automatically obtained models, the application
is generated.

Our previously implemented tools for generating Uls of business applications
for various platforms are presented in [12-16,9]. All tools are based on the in-
ternal HCI standard presented in Section 2, but the difference is that Ul model
was not generated from the domain model, but was kept as metadata in the
application repository. Metadata was further customised by the Form Genera-
tor tool, which utilised this information to generate source code. Metadata in
the application repository, although stored in the database or an XML file and
edited by a special-purpose tool, can be considered to be a DSL (domain specific
language) for the description of Uls. The UI model enriched with EUIS stereo-
types is based on the same metadata, but this UML-based form is more suitable
for team work of experts from different fields (developers, UI design specialists,
problem domain specialists, users) during application development.

5 Conclusions

Automatic generation of Uls in the general case requires the development of a
number of UI models and thus requires much time and effort, often with unsat-
isfactory results. Synchronisation and integration among different UI models, as
well as with domain models, is another big problem.

If we restrict to the problem of developing special-purpose Uls, these prob-
lems are largely simplified. This paper presents UML profile that facilitates ef-
ficient modeling and generation of fully-functional Uls of enterprise business
applications which is based on an internal HCI standard that defines layout and



UML Profile for Specifying User Interfaces of Business Applications 93

behaviour of coarse-grained objects for business applications. Relying on this
standard has enabled the rapid development of Uls for this particular type of
applications. Being a regular UML extension, this language can be used in any
general-purpose UML modelling tool and can easily be integrated with other
UML-based models of the application.

Our tools developed to support the presented concepts [12-16, 9] are used for
the implementation of more than 70 projects of business information systems
by several different development teams. The percentage of the generated code in
the overall code base (database, middle tier, UI) ranged from 81.8% to 98.2%,
depending on the type of application. The code generation tool that relies on
the presented EUIS profile is still in development, but initial results show that
the percentage of the generated code will increase when all elements are imple-
mented. The current version does not support parsing OCL constraints. Since
we have already implemented a dynamic general-purpose parser Arpeggio [1],
the support for OCL expressions is soon to be finalised.

References

1. Arpeggio Parser, http://code.google.com/p/arpeggio/

2. Baumeister, H., Koch, N., Mandel, L.: Towards a UML Extension for Hypermedia
Design, In: Proceedings of The Unified Modelling Language Conference: Beyond
the Standard (UML 1999), France R. and Rumpe B., Eds, LNCS vol. 1723, pp.
614-629, Springer Heidelberg (1999)

3. van den Bergh, J., Coninx, K.: Using UML 2.0 and Profiles for Modelling Con-
textSensitive User Interfaces, In: Model Driven Development of Advanced User
Interfaces, Montego Bay, Jamaica (2005)

4. Dejanovié, 1., Milosavljevié, G., Perisi¢, B., Tumbas, M.: A Domain-Specific Lan-
guage for Defining Static Structure of Database Applications, Computer Science
and Information Systems 7(3), (June 2010), pp. 409 - 440

5. Funk, M., Hoyer, P., Link, S.: Model-driven Instrumentation of Graphical User
Interfaces, In: Second International Conference on Advances in Computer-Human
Interaction, Cancun, Mexico (2009)

6. Govedarica, M., Lukovié, I., Mogin, P.: Generating XML Based Specifications of
Information Systems, Computer Science And Information Systems 1(1), pp. 117—
140 (2004)

7. Knapp, A., Koch, N., Zhang, G.: Modelling the Structure of Web Applications
with ArgoUWE, LNCS vol. 3140, Springer Heidelberg (2004)

8. Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering, In:
Proc. 2nd International Workshop on Web Oriented Software Technology, pp. 105—
119 (2002)

9. Komazec, S., Milosavljevi¢, B., Konjovié¢, Z.: XML Schema-Driven GUI Forms
Environment, In: 11th TASTED Intl. Conf. Software Engineering and Applications,
pp. 342-348, Cambridge, MA (2007)

10. Link, S., Schuster, T., Hoyer, P., Abeck, S.: Focusing Graphical User Interfaces
in Model-Driven Software Development, In: First International Conference on Ad-
vances in Computer-Human Interaction, Saint Luce, Martinique (2008)

11. Lukovié, I., Mogin, P., Pavievi, J., Risti, S.: An Approach to Developing Complex
Database Schemas Using Form Types, Software: Practice and Experience 37(15),
pp. 1621-1656 (2007)



94

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

G. Milosavljevi¢, I. Dejanovié¢, B. Perisi¢, and B. Milosavljevié

Milosavljevié¢, B., Vidakovié¢, M., Milosavljevié¢, G.: Automatic Code Generation
for Database-Oriented Web Applications, In: Power, J., Waldron, J. (eds): Recent
Advances in Java Technology: Theory, Application, Implementation. pp. 89-97,
Trinity College Dublin (2003) ISBN 0954414500

Milosavljevié, B., Vidakovi¢, M., Komazec, S., Milosavljevi¢, G.: User Interface
Code Generation for EJB-Based Data Models Using Intermediate Form Represen-
tations, In: Principles and Practice of Programming in Java, pp. 125—132, Kilkenny,
Ireland (2003)

Milosavljevié, B., Vidakovié, M., Komazec, S., Milosavljevi¢, G.: User Interface
Code Generation for Data-Intensive Applications with EJB-Based Data Models,
In: Software Engineering Research and Practice (SERP’03), pp. 23-27, Las Vegas,
NV (2003)

Milosavljevié, G., Perisié¢, B.: Really Rapid Prototyping of Large-Scale Business
Information Systems, In: IEEE Intl. Workshop on Rapid System Prototyping, pp.
100-106, San Diego, CA (2003)

Milosavljevié¢, G., Perisi¢, B.: A Method and a Tool for Rapid Prototyping of Large-
Scale Business Information Systems, Computer Science And Information Systems
2(1), pp. 57-82 (2004)

Milosavljevié, G., Ivanovié, D., Surla, D., Milosavljevi¢, B.: Automated Construc-
tion of the User Interface for a CERIF-Compliant Research Management System,
The Electronic Library (in print)

Moreno, N., Melia, S., Koch, N.; Vallecillo, A.: Addresing New Concerns in Model-
Driven Web Engineering Approaches, In: Proc. Web Information Systems Engi-
neering (WISE), LNCS vol. 5175, pp. 426-442, Springer Heidelberg (2008).
Paterno, F.: Towards a UML for Interactive Systems, In: Proc. Engineering for
Human-Computer Interaction, pp. 7-18, Toronto, Canada, (2001)

Pavicéevié, J., Lukovié, 1., Mogin, P., Govedarica, M.: Information System Design
And Prototyping Using Form Types, In: International Conference on Software and
Data Technologies, pp.157-160, Setubal, Portugal (2006)

Schattkowsky, T., Lohmann, M.: Towards Employing UML Model Mappings for
Platform Independent User Interface Design, In: Model Driven Development of
Advanced User Interfaces, Montego Bay, Jamaica (2005)

Schattkowsky, T., Lohmann, M., UML Model Mappings for Platform Independent
User Interface Design, In: MoDELS 2005 Workshops, LNCS 3844, pp. 201-209,
Springer, Heidelberg (2006)

Seffah, A., Gaffar, A.: Model-Based User Interface Engineering with Design Pat-
terns, Journal of Systems and Software 80(8), pp. 1408-1422 (2007)
Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Addison-Wesley, Third Edition (1998)

da Silva, P.P.: User Interface Declarative Models and Development Environments:
A Survey, In: Proc. Design, Specification and Verification of Interactive Systems,
LNCS vol. 1946, pp. 207226, Limerick, Ireland (2000)

da Silva, P.P., Paton, N.W.: Improving UML Support for User Interface Design:
A Metric Assessment of UMLi, In: Workshop on Bridging the Gaps Between Soft-
ware Engineering and Human-Computer Interaction at International Conference
on Software Engineering (ICSE 03), pp. 76-83, Portland, Oregon, USA (2003)
Estévao Silva Souza, V., Almeida Falbo, R., Guizzardi, G.: A UML Profile for
Modelling Framework-based Web Information Systems, In: Workshop on Exploring
Modelling Methods for Systems Analysis and Design (EMMSAD’07), pp. 149-158,
(2007)



