
Comparison of Textual and Visual Notations of
DOMMLite Domain-Specific Language

Igor Dejanović, Maja Tumbas, Gordana Milosavljević, and Branko Perǐsić

Faculty of Technical Sciences, University of Novi Sad, Serbia
{igord,majat,grist,perisic}@uns.ac.rs

Abstract. This paper presents a comparison of textual and visual syn-
tax notation of Domain-Specific Language (DSL) programs on the ex-
ample of DOMMLite DSL[3]. Starting from the definition of DOMMLite
meta-model, the prototypes of both textual and graphical editors are
implemented using tools of the Eclipse Modeling Project1. Initial obser-
vations in favor and against both syntax notations are summarized and
the impact of the chosen concrete syntax on the team development and
version control is analyzed.

Key words: language notations, version control, MDE, DSL

1 Introduction

The most powerful weapon we have to fight ever-increasing complexity of soft-
ware and supporting hardware architecture is abstraction. Although powerful,
used abstractions are usually computer-, i.e. solution space-oriented, as opposed
to being application domain-, i.e. problem space-oriented [15]. Developers still
need to perform the mental mapping of concepts found in the solution domain
to concepts found in the problem domain and to apply these mappings manually
during the course of implementation [7]. By leveraging abstraction and providing
adequate Domain-Specific Languages (DSLs), we strive to reduce the semantic
gap between these two domains and eliminate the need for mapping between
them as the ultimate goal.

DSLs in use today are mostly based on textual or graphical notatation or
the mixture of those two (e.g. visual language with OCL2 constraints). One
type of concrete syntax is usually supported for the same DSL. In this paper
we present some initial observation on the differences between graphical and
textual syntaxes and their impact on version control based on our experience
in developing both notations for DOMMLite DSL. DOMMLite is a declarative
language whose aim is the description of statical properties of database-oriented
software applications[3]. It has been designed and implemented using Model-
Driven Engineering (MDE). DOMMLite builds on the concepts of other ER-like

1 http://www.eclipse.org/modeling/
2 Object Constraint Language – http://www.omg.org/technology/documents/

modeling_spec_catalog.htm\#OCL



132 I. Dejanović, M. Tumbas, G. Milosavljević, and B. Perǐsić

languages such as UML Class Diagrams[13], Meta-Object Facility (MOF)[12],
ECore[4], and concepts expressed in Domain-Driven Design[5].

2 Textual vs. Visual Syntaxes

Textual notation and textual editor for DOMMLite language has been fully
developed[3] using openArchitectureware framework3. Although both visual no-
tation and visual editor for DOMMLite language are in the early phase of devel-
opment, we will give some initial findings, based on anecdotal evidence, in favor
and against both textual and visual syntaxes and supporting tools.

Arguments for visual notations and editors

– Model structure is easier to comprehend. It is a popular belief that the
graphical notation is better than the textual. However, it has been reported
that in some circumstances graphical notation does not perform better, or
even that it performs worse than textual[6, 14]. This is usually reported for
the languages used for modeling of control or data flow and for languages
where “secondary notation”[14](see section 4) has a major impact on model
understandability. Nevertheless, for declarative DOMMLite language which
is used to express statical properties of the system, based on anecdotal evi-
dence, we are inclined to think that visual notation perform better at com-
prehension of element relationships and the overall model structure.

– Easier model navigation. Using ubiquitous operations pertinent to mod-
ern visual editors (like zooming, panning etc.), every part of a DOMMLite
model can be visited quickly and with a minimum of effort.

– Visual languages are easier to learn. Arguably, this depends on the ex-
perience and background of the modeler and the choice of visual and textual
representations of language concepts. However, we argue that the learning
curve is steeper for visual notations. Presented with the palette of model-
ing elements, the modeler can almost immediately start placing them on
the drawing canvas and connecting them and learn by the means of trial
and error. Conversely, with textual syntax, the modeler is presented with an
empty file and it is hard to do anything without learning some elements of
the language first (i.e. keywords, syntax and semantic rules etc.).

Arguments against visual notations and editors

– Hard to develop and maintain. Although building graphical editors is
much easier now with the advent of sophisticated tools like GMP4, DEViL5

Tiger6 and VLDesk7, the amount of work to develop and maintain a full-
fledged graphical editor is still considerable, especially in the environment of
evolving languages.

3 http://www.openarchitectureware.org/
4 http://www.eclipse.org/modeling/gmp/
5 http://devil.cs.upb.de/
6 http://user.cs.tu-berlin.de/~tigerprj/
7 http://www.dmi.unisa.it/people/risi/www/vldesk/index.html



Comparison of Textual and Visual Notations of DOMMLite DSL 133

– Serialization format is different from the presentation format. It can
be problematic if the need arises to drill down to the serialized representation,
which still is the case with current version control systems (see section 3).

Arguments for textual notations and editors

– Existing tools can be used as a fall-back option. A plain-text editor
can be used to visualize and edit models based on textual notations.

– Existing text-based version control systems can be used. See section
3.

– Programmers are used to textual syntaxes. Most programmers are
used to textual syntaxes, so it is easier to introduce text-based modeling to
current software development processes and practices.

Arguments against textual notations and editors

– Notation verbosity. Textual notation, despite all precaution, can become
quite verbose. No part of model can be hidden and visualized at the will of
a modeler (with the sole exception of code folding support).

– The structure of the model is harder to comprehend. The modeler
needs to provide substantial effort to build a mental model of relationships
among model elements. In DOMMLite, for example, references to other enti-
ties and inheritance hierarchy are not easy to convey from textual notation.

– Navigation is not as intuitive as is the case with visual editors. Navi-
gation can be performed by scrolling sequentially through the text, searching
for text patterns, listing and jumping to all usages of certain model element
(i.e. all references) etc. For DOMMLite generated editor, the only overview is
presented in the form of a tree-like code outline which conveys only language-
level containment structure.

3 Impact of the Type of Concrete Syntax on Version
Control

The issue of paramount importance when it comes to team development is ver-
sion control, i.e. identification, preservation, visualization and merging of model
differences. Although there are well established tools and techniques for version
control of plain textual artifacts (i.e. source code)[16, 9], the version control in the
field of model-driven engineering with emphasis on model syntax and semantics
is an active field of research[1, 2, 10].

Traditional text-based systems for version control works at file level and
considers content of files as an array of lines of text without trying to utilize
language syntax or semantics. Using these tools for version control of models
can be troublesome. Even if model are serialized in textual XMI format, it is
still unwieldy for a modeler to drop down to the verbose and hardly readable
XMI format when trying to do the merge of concurrent changes.



134 I. Dejanović, M. Tumbas, G. Milosavljević, and B. Perǐsić

Fig. 1. Three-way compare of concurrent changes using XMI format

Modeling tools are rich in visual hierarchy and graphical representation,
which are not found in the linear text files of source code representation[8].

Although models can be serialized to textual (e.g. XML) formats, it is hard
to visualize differences and resolve conflicts using this form of representation.

We argue that a carefully crafted textual notation has a positive side-effect
of the possibility to utilize existing text-based version control systems until the
appropriate model-based tools become available.

For example, figure 1 shows the three-way compare of concurrent changes
when a model is serialized using XMI format. The same changes, using DOMM-
Lite textual notation are presented in figure 2. It is evident that verbosity of
XMI syntax decreases readability of the model and makes conflict resolution of
concurrent changes harder in comparison to the DOMMLite textual notation.

Fig. 2. Three-way compare of concurrent changes using DOMMLite textual notation



Comparison of Textual and Visual Notations of DOMMLite DSL 135

4 Related Work

Work related to the topics discussed in this paper includes development of a DSL
with various notations and research on the impact of using different language
notation on performance of the developers and existing tools utilization.

In [3] DOMMLite language is introduced with it’s textual syntax, text-based
editor and source code generator.

In [14] the author investigates a so called “secondary notation” (lay-outing,
clustering, white-spaces, colors) which is a way that practitioners of visual lan-
guages use the non-formal features and techniques to specify information and
give hints to the reader.

In [6] authors report comparisons between the comprehensibility of textual
and visual programs and paradoxically come to a conclusion that the compre-
hensibility of the graphical notation is worse than textual.

Visual language and environment for specification of attributed grammars
(AG) is presented in [11]. The authors conclude that, by using a visual language,
the mental gap between the required text-based AG specification imposed by
several compiler generator tools and the habitual way of sketching AGs in the
form of a decorated tree has been shortened.

Difficulties and problems related to text-based version control of models are
presented in [8, 1].

Native model-based version control approaches are presented in [1, 2, 10]

5 Conclusions and Future Work

There is no definite answer whether textual or graphical syntax is better. There
are papers that support either point of view. It is a popular belief that visual
languages are easier to understand but, for certain language constructs, it has
been empirically proved that comprehensibility can be worse than for textual
languages [6]. The graphical notation is also more prone to the “secondary no-
tation” which is not part of the formal system and thus it is left to developers
to freely create their own style and ways of encoding additional information
and hints. One way to remedy this would be to make elements of “secondary
notation” a part of the formal specification.

We have outlined trade-offs between textual and visual notations on the basis
of our experience in development of the DOMMLite DSL. If development and
maintenance of both syntaxes is not an issue, we suggest using graphical syntax
for model overview, navigation and structural changes (e.g. editing relationships)
and textual syntax for defining non-structural properties of the model (e.g. for
DOMMLite it would be the definition of attribute names and types, constraints
etc.). Also, we find that using textual syntax as the canonical serialization for-
mat enables utilization of existing, industry proven, text-based version control
systems until native model based version control systems mature.

Further research and development will be focused on platforms and tools
for supporting development, version control and co-evolution of languages and
different concrete syntaxes.



136 I. Dejanović, M. Tumbas, G. Milosavljević, and B. Perǐsić

References

1. Alanen, M., Porres, I.: Version control of software models. Advances in UML and
XML-based Software Evolution (2005)

2. Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Schwinger, W., Seidl,
M., Wimmer, M.: AMOR–Towards Adaptable Model Versioning. In: 1st Interna-
tional Workshop on Model Co-Evolution and Consistency Management (MODELS
’08) (September 2008)

3. Dejanović, I., Milosavljević, G., Perǐsić, B., Tumbas, M.: A domain-specific lan-
guage for defining static structure of database applications. Computer Science and
Information Systems 7(3), 409–440 (June 2010), http://www.comsis.org/ComSIS/
Vol7No3/RegularPapers/paper2.htm

4. Eclipse Foundation: Eclipse Modeling Framework - EMF. Online http://

www.eclipse.org/modeling/emf/, http://www.eclipse.org/modeling/emf/, ac-
cessed June, 2010

5. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional (2004)

6. Green, T., Petre, M.: When visual programs are harder to read than textual pro-
grams. In: Human-Computer Interaction: Tasks and Organisation, Proceedings of
ECCE-6 (6th European Conference on Cognitive Ergonomics). GC van der Veer,
MJ Tauber, S. Bagnarola and M. Antavolits. Rome, CUD. Citeseer (1992)

7. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley-IEEE Computer Society Pr (March 2008)

8. Lin, Y., Zhang, J., Gray, J.: Model comparison: A key challenge for transformation
testing and version control in model driven software development. Object Oriented
Programing, Systems, Languages and Applications (2004)

9. Mackall, M.: Towards a better scm: Revlog and mercurial. In: Proceedings of the
Linux Symposium. vol. 2, pp. 83–90. Ottawa, Ontario, Canada (July 2006)

10. Oliveira, H.L.R., Murta, L.G.P., Werner, C.: Odyssey-vcs: a flexible version control
system for uml model elements. In: Proceedings of the 12th International Work-
shop on Software Configuration Management, SCM 2005. pp. 1–16. ACM, Lisbon,
Portugal (September 2005)

11. Oliveira, N., Pereira, M.J.V., Henriques, P.R., da Cruz, D., Cramer, B.: Visuallisa:
A visual environment to develop attribute grammars. ComSIS – Computer Science
an Information Systems Journal, Special issue on Advances in Languages, Related
Technologies and Applications 7(2), 266 – 289 (April 2010)

12. OMG: Meta Object Facility (MOF) Core Specification, Version 2.0 (January 2006)
13. OMG: OMG Unified Modeling Language (OMG UML), Infrastructure, Version

2.1.2 (November 2007), oMG Document formal/2007-11-04
14. Petre, M.: Why looking isn’t always seeing: readership skills and graphical pro-

gramming. Communications of the ACM 38(6), 33–44 (1995)
15. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Computer

39(2), 25–31 (2006)
16. The Apache Software Foundation: Apache subversion. Online http://subversion.

apache.org/, http://subversion.apache.org/, accessed June, 2010


