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Abstract. a mathematical framework, akin to number theory or modern anal-
Ontology today is in many ways in a state similar to that of anal-ysis, that enables us to characterize the notion of an ontology for-
ysis in the late 18th century prior to arithmetization: it lacks the sortmally and develop accounts of their properties and the various ways
rigorous theoretical foundations needed to elevate ontology to tha which one ontology can be related to another. Note also that the
level of a genuine scientific discipline. This paper attempts to makdramework itself might not be used as it stands for any actual ontol-
some first steps toward te development of such foundations. Specibégy integration work. It is in the respect analogous to computabil-
ically, starting with some basic intuitions about ontologies and theirity theory. No one actually programs turing machines (except as a
content, | develop an expressively rich framework capable of treatindpeuristic exercise). Rather, the notion provides a model of computa-
ontologies as theoretical objects whose properties and logical intetion that serves as a foundation for both theoretical and, therefore,
connections — notably, potential for integration — we can clearlyindirectly, applied computer science.
define and study. In this brief paper we can only make some first halting steps to-
ward a general ontology theory. The bulk of this paper will be to ar-
gue for, and lay out in varying degrees of detail, a formal framework
with the representational horsepower adequate for a robust ontology

Ontology today is in a state similar to that of analysis in the latetheory.

18th century. The practical power of the calculus had been convinc-

ingly demonstrated in the work or Newton and his great successor® |ntuitions

Moreover, the field of real analysis itself had seen an explosion of

creativity, exemplified most notably in the work of Euler. However, | begin with some intuitions to motivate the design of a framework
Euler's own work also revealed worrisome foundational problemsfor ontology theory.

For techniques used with great success in one instance to prove d

%EPontologies cons v
. . ; ... L.-Ontologies consist of propositions.
and dramatic theorems in another instance could lead to absurdities, Propositions are not sentences, they are what senterpesss

e.g., that the value of certain monotonically increasing infinite series™ . - .
- different sentences in different languages (or possibly the same
was—1. Such results led to a conceptual crisis — how can any results | h "
be trusted when the methods that generate them can lead to error?, anguagg) can express t. € same _proposm_on. . .
3. Propositions can be equivalent without being identical.

This crisis was addressed, a.nd successfullly ellmllnated, by the q Propositions and ontologies are objects, things we can talk about.
velopment of rigorous foundation for analysis — widely known as

. s . . 5. The content of an ontology consists of the propositions involv-
the arithmetization of analysis — by Cauchy, Weierstrass, Bolzano, ing concepts in the ontology that are entailed by the constituent

and others in the early 19th century. Building on the sound foun- o
dation of number theory, mathematicians replaced the intuitive b propositions of the ontology.
’ u Y it P INTUIEV . Ontologies are comparable in terms of their content. In particular,

L_undeflned notions of anal)_/5|s — limit, _contlnwty, series, Integra- two ontologies are equivalent if they have the same content.
tion, real number etc. — with clearly defined counterparts (e.g., the
now-familiare, ¢ definition of limit) and banished unruly notions like

that of an infinitesimal altogeth&With these solid underpinningsin 3 Desiderata

place, mathematicians were able to identify clear conditions of app, geyeloping a general ontology theory our concer is describe the
plicability for their analytic methods that prevented the derivation Ofphenomenon just as in the development of number theory or real
absurdities without limiting their ability to prove desirable results. analysis or, for that matter, computability theory. We therefore place

A similar foundation is needed in the study of ontologies. As with \\, .o tational restrictions on expressiveness, and hence will avail
analysis prior to arithmetization, the potential of ontologies is eVi-urselves of at least full first-order logic.

dent, but the fundamental notions remain largely intuitive; notably, However, we will need quite a lot more than that to satisfy the

there is no precise characterization of the notion of an ontology, NOJtuitions in the preceding section. Notably:

what it is for two ontologies to be intergrated. What we need, then, is

our own “arithmetization” — in a nutshell, we needtology theory e Re (1) above, we need formal notionsooftologyandproposition

7 - — - and a notion of the relation between ontologies and the proposi-
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2 Ironically, the very foundational work that began with the arithmetization ® Re (2), we need a notion of proposition that is independent of any
of analysis and led to the development of mathematical logic ultimately particular language.
resurrected the notion of an infinitesimal and an alternative foundation foc
analysis built thereon — so-called “nonstandard” analysis. See, e.g., [4} As with both number theory and analysis, of course, we may want to explore
Chapter 3. computationally more tractable subtheories of our theory.

1 Introduction




e Re (3), we need a notion of proposition robust enough to allow for4,1.2 Grammar
distinct logically equivalent propositions.
e Re (4), we need to be able to name and quantify over proposition

and ontologies; i.e., ontologies and propositions must be flrst-ll Any constant or variable (individual or predicate) ieem

class citizens” in ontology theory. . 2. If m is ann-place predicate and, ..., T, are any termsy > 0,
e Re (5), we need to be able to represent the notion of content, and then (1 7.) is an @tomig formulaof £. = is said to oc-

hegce ()a _r:_otlon ofder]tallmetr_lt tha}ttﬁan hold b;etwgtir_] ontolo?ulas cur in predicate positionand eachr; in argument positionin
and propositions and (ii) a notion of the concepts within an ontol- #(71,..., 7). Inthe case where — 0, we omit the empty paren-

09y ) . ... . theses and say thatstanding alone is an atomic formula.
e Re (6), we need_ to be able to define notions of comparability i ¢ o, ¥ are formulas, so arey, O, and(p — 1b).

terms of ontological content. 4. If ¢ is any formula andvi, ..., v, any variables, then
(Vv1...vn)pis aformula.
If ¢ is a formula containing no occurrencesofno bound vari-
ables occurring in predicate position, and no bound predicate vari-

\é\/e define formulas and terms by a simultaneous recursion:

I will satisfy these desiderata by developing a first-order theory o
structured relations, of which propositions will be one species. On-"
tologies will be identified with 1-place relations, which for most pur-

poses can play the role of classes. This theory will satisfy desiderata ables, and, ...,y are any individual variables that do not occur
(1), (2), (3), and (4). By “structured” | mean that, although they will gfe%:zaetlgy term occurring ifp, then[Avs ... va ] is ann-place

not be identified with formulas, relations will have a decomposabl
logical form similar to formulas. Together with a primitive modality,
the structured nature of relations in turn will enable us to define @ e ysual definitions of. V. <. and3 will be assumed.

notion of entailment for propositions that will enable us to define a There are two particularly distinctive featuresfFirst, although

notion of content for ontologies, and hence to satisfy desiderata (S}, language of contains so-called “higher-order” variables, unlike

and (6). standard higher-order languages, these variablespgpidce pred-
icates generally, are considered terms; they can occur as arguments

4 A Formal Framework for Ontology Theory to other predicates. Semantically speaking, as we will see explic-
itly below, this means that our universetigpe-free— everything

In this section | will define a language with appropriate expressives an object; the quantifiers of the language will range over every-

%. Nothing else is a term or formula gf

power for ontology theory and a corresponding semantics. thing alike. Note this doesot mean that there is no distinction be-
tweenkindsof things. Notably, as noted already, our basic ontology
4.1 Syntax includes relations as well as ordinary individuals. Rather, in accor-

dance with intuition (4), it simply means that all of these things are

To accomodate the narrow columns of the ECAI 2-column format, asn the universe of discourse, i.e., the range of the quantifiers. All en-
much as anything, | will simply use the basic apparatus of standaréties — individuals, propositions, properties, and relations alike —
Principia Mathematicastyle first-order language, augmented with a are first-class logical citizens that jointly constitute a single domain
number of useful constructs. | will call the languag&'* of quantification. As such, properties and relations can themselves

Note that the unfriendliness of such languages in regard to comhave properties, stand in relations, and serve as potential objects of
puter processability is no more to the point here than it is with re-reference.
spect to group theory or computability theory. Our goal is theoreti- Perhaps the strongest linguistic evidence for type freedom is the
cal — a mathematical theory of ontologies. Such work, of course, ifphenomenon of nominalization, whereby any verb phrase can be
sound, should lead to developments wherein computer processaltlansformed into a noun phrase of one sort or another, most com-
languages are critical, but at this point processability is not an issuemonly, a gerund. So, for example, the verb phrase ‘is famous’ indi-
cates a property that can be predicated of individuals, as in ‘Quentin
is famous'. Its gerundive counterpart, however, ‘being famous’,
serves to denote a subject of further predication, as in, e.g., ‘Being
The lexicon consists of a countable setrafividual constantsa de- ~ famous is all Quentin thinks about'. Intuitively, the verb phrase indi-
numerable set ahdividual variables for eachn > 0, a countable cating the property predicated and the gerund indicating the object of
set ofn-place predicate constantnd a denumerable setofplace  Quentin’s thoughts (i.e., the object possessing the property of being
predicate variablegjointly called n-place predicates), the reserved thought by Quentin) are the very same thing, the property of being
logical symbols—, A, V, —, <, ¥, 3, A, andO, and parentheses famous.
and brackets. Individual variables will consist of lower case letters, In £, this “dual role” of properties and relations — thing predi-
typically z, y, z, possibly with numerical subscripts-place pred- cated vs. object of predication — is reflected in the fact that the same
icate variables will consist of upper case letters with numerical suconstant can play both traditional syntactic roles of predicate symbol
perscripts (suppressed where context serves to indicate the arity ahd individual constant. Thus, i, we can write both
ann-place predicate), typically', G™, andH", possibly also with
numerical subscripts. For purposes here, constants will consist of all) Famous(quentin)
phanumeric strings — other than the single-character strings alreada/nd
in use for the variables — beginning with an upper or lower case let-
ter; dashes are also permitted to join alphanumeric strings. Typically; ; ; _
I will use a strings b?aginning witJh a Iovr\)/er case letter fc?r coﬁtant;( 2) (VE)(ThinksAbout(quentin, F) < (F = Famous))
that are intended to denote individual objects and strings beginnin¢C retains no representation of the grammatical distinction between
with an upper case letter for constants intended to denote relationsverb phrases — e.g., ‘is famous’ — and their gerundive counterparts

4.1.1 Lexicon



—e.g., ‘being famous’. One could be added easily enough, of course, Clause (5) imposes a number of other restrictions on the formation
but as there is no semantic difference between verb phrases and theirterms that are, in fact, dispensable in the sense that we could in fact
gerunds on a type free conception, any such representation would Ipeovide a reasonable semantics for them. Specifically:
semantically otiose.)

Because all objects are of the same logical type, it follows that® The requirement that-bound variables all occur free ip rules
any property can be predicated of any property and, in particular, Out such terms af\zy Pz| that contain vacuous-bound vari-
a property can be predicated of (and, indeed, can exemplify) itself. ables?
Again, this comports with natural language; the property of being a2 The restriction on free occurrences of-bound variables
property, for instance, is a property, and hence exemplifies itself. This Wwithin complex terms occurring i rules out such terms as

is naturally represented il in the obvious way: zy P[A2Quz]y];°
e The restriction on bound occurrences of predicate variables
(3) Property(Property) within complex terms occurring i rules out such terms as

. , oo Py BFYy = PP
It must be emphasized that the fact that we will be quantifying
over properties, propositions, and relations generally doe and However, the terms that would be permitted without these restric-
of itself mean thatC is higher-order. For that, one’s semantics musttjons are inessential to our purposes here and hence allowing them
involve higher-order quantifiers whose range includes a power s&lould introduce unnecessary technical complexity.
construction of some ilk over a domain of logical individuals. In our  \while the restrictions to non-modal formulas in the formation of
semantics, there is no such construction; there is but a single domajarms is, like the two above, also inessential, it has a certain intuitive
over which a single type of quantifier ranges. warrant. For, unlike the three restrictions above, this restriction re-
The second distinctive feature 6f and arguably the most promi-  flects an important feature of the intended domain guiding the devel-
nent, is the presence of complex terids ... vn ¢]. Intuitively,  opment of the current framework. Specifically, we are formulating a
these terms denote complex relations. For instance, the term theory offirst-orderontologies, that is, ontologies whose constituent
propositions are expressible by sentences in a non-modal first-order
language (hence in any weaker sublanguage thereof). This is, of
indicates the property of enjoying salmon and preferring red wine t¢*0Urse, not to say that there are no modal (or higher-order) ontolo-
white. Terms with no bound-variables indicate 0-place relations, 9ies. However, the vast majority of existing ontologies are first-order,

(4) [z Enjoys(z, salmon) A Prefers(z, red_wine, white_wine)]

i.e., propositions. In this case thecan be dropped. Thus, and it seems quite unlikely that this will change with the development
of the Semantic Web if the expressiveness of its basic language is to
(5) [Vx(Planet(z) — Larger(sun,z))] be on the order of DAML+OIL. Therefore, to provide the capacity to

o . ) express modal propositions, at this point, seems unwarranted.
|nd_|cate3 the proposmqn that the sun is larger than gll of_ the planets. 5 theoryof ontologies, however, does need this expressive power.
This feature ofL is particularly important, as ontologies in the pro- gpecifically, modality is useful for characterizing the nature of on-
posed theory will be characterized roughly as classes of propositiongy|gies and their logical connections. Most notably, perhaps, as will
and the logical connections between ontologies will be expressed i geen explicitly in Section 7 below, the modal component of the
terms of logical relations between propositionsterms enable Us  |anguage of our theory enables us to define a robust notion of en-

to talk about the propositions in a given ontology explicitly. And as tajiment which, in turn, can be used to formulate a correspondingly
we will see, they are also extremely useful for defining a variety of,5p st notion of ontological content.

important auxiliary notions.

. - . 4.2 Semantics
4.1.3 On Syntactic Restrictions on Term Formation
. . . In this section | will build upon work by Bealer [1], Zalta [7], and
Clause (5) in the grammar fof imposes a number of restrictions  \jenze| [5] to develop a rich “meta-ontology” of structured relations.
on the formation of complex terms. The most noteworthy of these

is the restriction permitting only individual variables to be bound by
the \ operator in complex terms. This restriction avoids the Russel-2.1 Model Structures

.para.dox., as without that restriction the tefh# TE(F,)] —indicat- A model structur@ for £ is a 5-tuple(D, W, dom, Op, ext). Here
ing, intuitively, the property of non-self-exemplification —would be p, — | jr 4, R} is thedomainof 9t, and consists of the union of two
legitimate. The grammar would then permit the construction of themtyally disjoint setst andR. A is the set oindividualsof D andR
atomic formula[AF" —F(F)|([\F" ~F(F)]), which, by the logical s the set ofelations of which we considepropositionsa speciesi
principle of A-conversion ((10) below), could be proven equivalent jiseif can be partitioned in two significant ways. FirBtis the union

to its negation. However, the restriction that prevents the paradox igs tywq mutually disjoint nonempty set8” and R°, intuitively, the
notad hoc Its justification — which will become clear in Section 4.2 gets of |ogically primitive and logically complex relations, respec-
— is that there is simply no intuitive logical operation that yields re- jyely. Additionally, R is the union of denumerably many nonempty
lations whose logical form corresponds to such terms, and hence NQtsRo, Ry, ..., eachR, being, intuitively, the class of-place rela-

warrant for permitting them: The ayo!dance of Russgll'§ paradox fallsjons. We letR?, and RS be R” N R,, andR° N R.,, respectivelylV’
out as a consequence of this restriction, and heneggkainedrather
than merely avoided: the paradox arises from a theoretically unwar Such terms are easily accommodated by means of a further set of logical
ranted assumption about the structure of complex relations, much asoPerationsvac; that insert vacuous argument places intoafe"slot” in

the corresponding paradox of self-membership arises from a theoreﬁ-the argument structure of a refation.

; p gp ) p See Menzel [5] for an account of the semantics of such terms and surround-
ically unwarranted assumption about the nature and structure of setsing philosophical issues.

(see, e.g., [2])- 6 Again, see [5] for the semantics of such terms.




is a nonempty set, intuitively, a set of “possible worlds” or “possible o ext(Com;j- (r),w) =
situations.” More formallyJ¥” provides us with a model of modal- {{a1,...,aqi—1,05,...,a5-1,Gi,...,an) : {a1,...,an) €
ity that enables us to represent entailment and other logical relations ext(r,w)}
between ontologies. Accordinglgom is a function that maps every o ext(Reﬂg(r), w) =
elementw of W to a subsetlom(w) of D representing, intuitively, {{ar,...,a;-1,aj41,...,an) : (a1,...,an) €
the set of things that “exist” in the possible world ext(r,w) and a; = a;}

The next element of a model structu@p is a set of five sets of

Ioglcgl operatlons: a set qfregilcatlonoperatlons,{Pred?I_”i,? : Constituency and Logical Form The intuitive picture here is a
0<ir < <tk <mk >0 } a set of twgbooleanqperatlons, “quasi-constructive” one similar to the intuitive picture that under-
{Neg, Impl}; a set ofunlversfal|_zat|onoperat|ons,{_Umvilmi,? lies the iterative conception of sets. We begin with a_4ebf in-

1 < oS e S < m;}; a set ofconversionoperations, i iqals and a seR? of logically simple relations. The logically
{C‘m}’i 1 1 =i <j < w} and a set ofeflectionoperations, g6 rejations are thought of as the meanings of the primitive pred-
{Refly = 1 <1 <j <w}. These operations “construct” logically jcaieq in an ontology. The predication functions applied to primitive
complex relations from individuals and less complex relation®in  ¢|ations and individuals yield basic atomic relations — notably, ba-
Specifically, for alln: sic atomic propositions — and the remaining logical operations ap-
plied to these yield logically complex relations. These in turn, can

. Pred?lmi{c RoxDF — R, , (1 <in <...<ig< be arguments to further applications of the logical operations, yield-
nik > 1); - ing an “iterative hierarchy” of relations of increasing complexity. In-

® Neg : Rn — Ry; . tuitively, then, relations inR are either primitive or are “built up”

o Impl : Ry X R — IE““"; from individuals and other relations via the logical operations, and

° U”wiil‘-ik t B — Ry, for‘lc < - the manner in which a relation is so built up can be thought of as

° CO”Z’J’ ¢ Rp — }fn (1< <J= n); _ its logical form So, for example, our example proposition (5) —

o Refl; + Bn — Ry (1<i<j<n); [Vz(Planet(x) — Larger(sun,z))] — that the sun is larger than

every planet would be built up from the property of being a planet, the
2-place relation of being larger than, and the sun as folld¥vsd?
applied to the larger-than relation and the sun yields the property

We stipulate thatPred™ (i.e., Predy, ;, for k = 0) is just the
identity relation onR,, 2 and thatR® is just the union of the ranges
of the logical operations, i.eR® = {|J Range(f) : f € JOp}.
To capture fine-grainedness, it is assumed that all of these operatioré) [
are one-to-one and that the ranges of all of the operations are pairwise
disjoint — similar to their syntactic counterparts, the “logical forms” of being something that the sun is larger th&ihe boolean “ma-
of relations formed from these operations are all distinct from oneerial implication” operatodmp! applied to the property of being a
another. planet and (6) yields the relation

Finally, let D™ be the set of alh-tuples overD and letD* =
Uo<ncw P"- ext is a function onR x W such that for allr (7) [Mzy Planet(xz) — Larger(sun,y)]

R,,w € W, ext(r,w) C D". Note that, forr € R°, only two

extensions are possiblg()}, i.e., D itself, and the empty set. In thata bears td just in cases is not a planet or the sun is larger than
this case it is useful to think of the former as the truth valugruth) - The reflection operatiokefl; applied to (7) “collapses” its two
and the latter as the truth value(falsity). argument places into one to yield the property

The behavior ofezt is constrained further by the logical opera-
tions in|J Op. Some notational conventions will be helpful for stat-
ing these constraints. Far C D™, let Abe D™ — A. Wheres ~ s’ is
the concatenation of two sequences (tupes), for subsetsA, B of
D™ andD™, respectively, ledA ~B = {a~b : a € A,b € B}.

Ay Larger(sun,y)]

(8) [Az Planet(z) — Larger(sun,x)]

of being something such that if it is a planet, then the sun is larger
than it. Finally, application of the “quantification” operatdiniv,
yields our desired proposition (5). In a single equation, then, we have

Wherel < iy < ... < i; < n, we let(by,...,by)a; 4, be

result of replacing each;, with ax, and we let(bs, ..., b,)" % (9) (5) = Univy(Refly(Impl(Planet, Pred; (Larger, sun)))).

be the result of deleting eadh, from (b1, ...,by). Given this, let

r € Ry, q € Ry,; then: The manner in which a relation is built up from individuals and

other relations can be thought of as its logical form. We can make this

o ext(Predy, ; (r,a1,...,ar),w) = idea rigorous as follows. Say thatanstituency treéor an element
(b1, .. b)) s (by, . by )R € eat(r,w) )0 r € R is any labeled ordered tréE whose nodes are i and

o ext(Neg(r),w) = ext(r, w); whose root node is, such that, for every nodeof T, .the daughter

o ext(Impl(q,r), w) = ext(q, w) ~ D" U D™~ ext(r, w) nodeses,...,e; of e are sgch that, for some operatiéhe U Op,

o ext(Univiy,...i,(r), w) = F(e1,...,ej) = e. A constituency tre€’ fo_r_r is corr_lplet_ef'f every

(a1, .’anyl.‘,i_j : Wby, ..., b; € dom(w), leaf nodeo of T is an individual or a primitive relation, i.e., ifi €

A U RP. Given the constraints on our logical operations it is easy to
show that every: € R has exactly one complete constituency tree,
which we can therefore identify with thegical formof r. We define

"If k = 0, then ... iy, is the null sequence, which we want to allow here. an objecto € D to be aconstituent ofa relationr € R just in case
8 This stipulation will yield as logical truths all instances af =

(ar, .o an)y Y, € eat(r,w)}

[Avi...vm (v, .. ., vn)], for alln-place predicates. _ 10 | am of coursausingthe term {Ay Larger(sun, y)]’ here, not mentioning
9 Note that by the definition of thBred functions, we always have < n in it; | am not talking about the term itself, but rather the property it intuitively
Predi ;. . denotes under the standard English meanings of the constituent constants.



e is a node in the complete constituency treesfoo is a primitive complex terms that ensure fine-grainedness, e.g., that no universal-
constituent ofr iff o is a constituent of ando € A U RP. The ization is an implication or a negation, that predications are identical
notion of constituency will be important for defining the concept of iff they are predications of the same relation of exactly the same ob-

ontological content in Section 7 below. jects, and so on.

More relevant for ontology theory, however, is a principle)ef
4.2.2 Denotations, Interpretations, and Truth conversion that takes as axioms all instances of:
Denotations for the terms df relative to a model structur®t are  (10) [Avi...vn @)(T1, ..., Tn) < @502,

determined by partitioning the class of complex terms according to ] )

their syntactic form. In brief, where is [Av: ... v, ¢, if the order ~ Wherewr; 7 is the result of replacing every free occurrenceof

of the A-bound variables in» does not correspond ey, .. . , vy, in o w_|th Ti- This principle Iet_s us move freely between_ statements
thenr is the conversiopof an appropriate term’. Otherwise, if one e_lbout |nd|V|duf':1Is_a_nd the attribution of complex properties and rela-
of the A-bound variabies occurs free more than oncejithenr is  tions to those individuals, e.g.,

a reflectiory of an appropriate-’. Otherwise,r is classified as the
universalization, ... ;;, implication, negation, or predicatifin._;,
of the appropriate sort depending on the logical fornpo€omplex

terms of the formAw ..., w(v1,. .., v,)], for any predicater —  Notably, as we will see below, this principle will give us the ability
i.e., those of the form predicatién— are said to bérivial, as they  to move fromtalking aboutthe propositions in an ontology tesing
indicate no more logical complexity than the constitutive predicatethem in logical inferences. Like the other axioms of our theory, (10)

. is easily shown to be valid relative to the semantics above.
Given a model structurt, letd be a function assigning elements

of the domainD of 91 to the individual constants and variables of . .

L and elements oR,, to then-place predicates of. Such ad is 6 The Logic of Constituency

known as adenotation functiorfor £ relative toft. Denotations for  The notion of constituency enables us to capture the intuitive fact that
complex terms are then assigned by extending an obvious way  different ontologies contain different concepts: the concepts in an on-
that exploits the close parallel between the syntactic form of complexology are simply the properties and relations that are constituents of
terms and the logical forms of complex relations: the propositions of that ontology. Our fine-grained, structured notion
of properties, relations, and propositions gives us a rigorous foun-
dation for analyzing and exploiting the notion of constituency. We
have characterized constituency model theoretically above in Section
4.2.1. In this section we capture the notion axiomatically. We begin
with a schemd?

[Az Enjoys(x, salmon) A Prefers(z, wine, beer)](jo)

(11) — Enjoys(jo, salmon) A Prefers(jo, wine, beer)

e If 7 is the conversiopof 7/, thend() = Conv’(d(")).

o If 7 is the reflectioh of 7/, thend(r) = Refl’(d(7")).

e If 7 is the universalizatioq, . ., of 7, then d(r)
Univil’m,ij(d(’?'/)).

e If 7 is the implication of v and 7", then d(r) =
Impl(d("),d(T")).

Const(r,7"), wherer’ is a nontrivial complex term and

e If 7is the negation of’, thend(r) = Neg(d(7')). 12)  occurs free in’
e If 7isthe predicatiofy . ;, of 7" of 71,...,7;, thend(r) = . . o o
Predy. , (d('),d(r), ..., d(;)). That is, any term occurring free within a complex term indicates a
Y constituent of the relation denoted by the complex term.
We say that a denotation functiet for £ relative to9) is av- Next, we note that the constituency relation is a strict partial or-

variant of d, for any variablev, just in case, for all variables # v, dering, i.e., it is transitive and asymmetric (hence also irreflexive):
d'(p) = d(p).
An interpretation2( of £ is a pair (M, d) consisting of a model ~ (13) (Const(p, q) A Const(q,r)) — Const(p,r)
structuredt = (D, W, dom, Op, ext) and a denotation functiod
for £ relative toft. For any variables, av-variant of 2 = (9, d) (14) Const(q,r) — = Const(r, q)

is any interpretatioRl’ = (901, d’) such thatd’ is av-variant ofd. Finally, we can define an object to be primitive just in case it has
Let A = (9M,d) be an interpretation, wher&t = no constituents:

(D, W, dom, Op, ext). Truthat a worldw € W in 2 for the for-

mulas ofZ is defined in the standard sort of way: (15) Prim(z) =4 —(3g) Const(q, z)

o w(T1,...,7) IS true atw in A iff (d(1),...,d(m,)) € This reflects the model theoretic fact that the ranges of the logical
ext(d(r), w). operations (other than the “trivialPred™ operations) are all subsets

e —pistrue atw in 2 iff © isn't. of R

e (¢ — 1) is true atw in 2 iff either ¢ isn’t or ¢ is.

e Yupistrue atw in 2 iff o is true atw in all v-variants of2l. 7 Content

e Ogpistrue atw in A iff ¢ is true atw’ in &, forallw’ € W.

As indicated, content is best cashed out in terms of some notion of
entailment. In classical first-order logic, entailment is usually under-
stood model theoretically. Ciociou and Nau [3] have taken some steps
The proof theory for this semantics is an extension of classical firstin this direction in developing a formal notion of intertranslatability
order logic with identity. Notably, there are principles of identify for between ontologies. For them, ontologies are understood as sets of

5 Proof Theory

11 Thus, as it is often informally puy’ differs from d at most in what it 12 Recall that a trivial complex term is of the form
assigns tqu. [BYZ TS 79 { (Z Ty Ve | §



sentences, and the content of an ontology is understood in terms @hus, combining (19) and (20), we have the notion of entailment we
its formal models: the content of an ontolo@yconsists in the set of are after:
its semantic consequences, i.e., the set of sentences that are true in
all the models oD. This approach thus can yield a robust notion of (21) StrEntails(O, F°) =4 Entails(O, F°) A ShPrim(O, F°).
common ontological content across different languages in terms of
shared models. That is, an ontology) strongly entails a propositiof™ just in case
This approach is clear and insightful, but suffers from two short-O e”_ta”SFo andEO andO share primitives; that is, intuitively, i
comings. First, though a notion of common content is possible orfNtailsF* and F” is “built up” from the same pool of concepts and
this approach, the notion of ontology is still language-dependent; aRPiects — the same “conceptual vocabulary” — as the propositions
ontology is a set of sentences in some language. This violates intd? O- We will sometimes write® = F*"for * Strfintails(O, F°)".
itions 1 and 2 above, which jointly imply that ontologies are classes 11€ content of an ontology, then, can be thought of as all of the
of language-independent propositions. More seriously, however, thBropositions that it strongly entails. As it happens, we cannot strictly
approach — as a basis for a general theory of ontologies — is unQleflnethe content of an ontolpgy as an object. However, for theo-
wieldy. Content is understood in terms of the models of a theoryretical purposes, strong entailment appears to be all we need. For
Hence, on this approach, one has to import the full apparatus of firs@*@mple, we can say that one ontola@ysubsumeanother0” just
order model theory — basic set theory, formal languages, interprel ¢ase the content @' is included in that oD, i.e., just in cas®©
tations, model theoretic truth and entailment, etc — just to define £trongly entails every proposition that does:
reasonable notion of ontological content. Moreover, the model theo-
retic approach makes for a rather austere and formal notion of conteii22)
— to identify themeaningof a sentence with a set of models is rather
far removed from ordinary semantic notions. , Ontologies can then be said to bquivalentjust in case they sub-
Though the present approach has a strong mgdel theoretic COM{;me each other:
ponent, that component serves only to ground a first-order theory of
ontologies and their content; no linguistic or model theoretic entities(23) Equiv (0, 0') =4 Subsumes(O,0') A Subsumes(O’, O).
properties, or relations are introduced into the théd®ather, it de-
velops an account of ontologies and their content that is language Subtler metrics for comparison are of course also possible, e.g.,
independent and grounded in the intuitive notion of propositions —two non-equivalent ontologies might nonetheless share all or some
rather than the austere and abstract notion of a model — as the basi€ their primitives. More generally, the notions defined above pro-
semantical unit of meaning. vide a rich framework for analyzing a wide variety of notions rel-
To get at the relevant notion of entailment in our theory, recallevant to understanding the nature of, and logical relations between,
once again that, intuitively, ontologies can be thought of as classes @ntologies.
propositions. The notion of a proposition is easily defined in terms
of our “higher-order” quantifiers:

Subsumes(0,0") =4 Ont(O) A Ont(O") A
(Vp)(O" =p— O =p)

8 Integration

16) P iti =y (3F%)p=F° . . :
(16) Proposition(p) =aj ( p A major extension of this work that goes far beyond the current scope

Understanding classes as properties, we can now define an ontolo¥{fll consist in developing a theory of integration. At a purely abstract

to be a nonempty class of propositions: level, integration is fairly straightforward. One can import several
ontologies into the languag&of our approach by creating a separate
17) Ont(0) =4 (3IFHO=F'A (3$)F1($) A namespace for the terms in each ontology and translating them from
Vp(F" (p) — Proposition(p)) the language of the ontology int6. There will thus be, initially,

no possibility of name conflicts. Because the principhe — ¢ is

The tr_wotlo? of er:_tfllmentvv\\;e ?ret ?jft?_r involves F_tOth Tofa"ty a;mljvalid, it will be possible to move seamlessly back and forth between
ournotion of constituency. YVe first define a constituent ot an onto “usingthe axioms of a given ontology to investigate its properties and
ogy O to be a constituent of one of the proposition€in

talking more generally about the ontology and its content.

(18) OntConst(xz,0) =45 Ont(O) A (3p)(O(p) A Const(x,p)) Because distinct ontologies are imported with separate names-
paces, there is no danger of logical inconsistency arising from incom-

Next, say that an ontolog® entails a propositiod® just in caseF patible ontologies. Integration can proceed by identifying or other-

must be true if all the propositions @ are true: wise logically connecting the concepts (objects, properties, relations,
‘ o and propositions) expressed across ontologies. Thus, for instance, it

(19) Entails(O, F7)  =ar O”t(og/\ . . . might be postulated that two concepts (properties) from different on-
a((vG")(O(G”) — G”) — I7) tologies are identical; or that one concept subsumes the other; or that

for every instance of one there are two instances of the other that
bear some relation ta; and so on. In this way the logical connec-
tions between ontologies can be mapped clearly and rigorously and
ShPrim(F°,0) =4 Ont(O) A with ever greater precision.

(Vz)((Prim(z) A Const(z, F°)) — OntConst(z, O)) However, while this account of integration is theoretically ade-
guate as far as it goes, a complete treatment will have to include a
'3 Though of course we define a model theory for teguageL of our  theory of languages that connects sets of sentences with the ontolo-

theory, but that's just a matter of our own metatheoretic housekeeping: if,. . . R
simply provides a proper theoretical foundation for the language we arebles that they express, and which should lead to more practical ap

using to express our theory; the model theory £ois not itself a part of  plications of the theory. Investigating integration at this more applied
ontology theory. level will be the next phase of this project.

Now say thatF® and O share primitivesif every primitive con-
stituent of F° is a constituent 0:

(20)
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Conclusion

It will be possible for ontology to make significant progress toward
the lofty goals workers in the area are pursuing only if it has proper
theoretical foundations. For such goals can be reached only if there
is a clear, generally shared understanding of the subject matter of
ontology, one that makes it possible clearly to define the scope of
the discipline, to identify its subject matter, and chart a course to-
ward the resolution of its outstanding problems. The approach in this
paper shows promise for providing these essential theoretical under-
pinnings
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