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Abstract.
Ontology today is in many ways in a state similar to that of anal-

ysis in the late 18th century prior to arithmetization: it lacks the sort
rigorous theoretical foundations needed to elevate ontology to the
level of a genuine scientific discipline. This paper attempts to make
some first steps toward te development of such foundations. Specif-
ically, starting with some basic intuitions about ontologies and their
content, I develop an expressively rich framework capable of treating
ontologies as theoretical objects whose properties and logical inter-
connections — notably, potential for integration — we can clearly
define and study.

1 Introduction

Ontology today is in a state similar to that of analysis in the late
18th century. The practical power of the calculus had been convinc-
ingly demonstrated in the work or Newton and his great successors.
Moreover, the field of real analysis itself had seen an explosion of
creativity, exemplified most notably in the work of Euler. However,
Euler’s own work also revealed worrisome foundational problems.
For techniques used with great success in one instance to prove deep
and dramatic theorems in another instance could lead to absurdities,
e.g., that the value of certain monotonically increasing infinite series
was−1. Such results led to a conceptual crisis — how can any results
be trusted when the methods that generate them can lead to error?

This crisis was addressed, and successfully eliminated, by the de-
velopment of rigorous foundation for analysis — widely known as
the arithmetization of analysis — by Cauchy, Weierstrass, Bolzano,
and others in the early 19th century. Building on the sound foun-
dation of number theory, mathematicians replaced the intuitive but
undefined notions of analysis — limit, continuity, series, integra-
tion, real number etc. — with clearly defined counterparts (e.g., the
now-familiarε, δ definition of limit) and banished unruly notions like
that of an infinitesimal altogether.2 With these solid underpinnings in
place, mathematicians were able to identify clear conditions of ap-
plicability for their analytic methods that prevented the derivation of
absurdities without limiting their ability to prove desirable results.

A similar foundation is needed in the study of ontologies. As with
analysis prior to arithmetization, the potential of ontologies is evi-
dent, but the fundamental notions remain largely intuitive; notably,
there is no precise characterization of the notion of an ontology, nor
what it is for two ontologies to be intergrated. What we need, then, is
our own “arithmetization” — in a nutshell, we needontology theory:
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a mathematical framework, akin to number theory or modern anal-
ysis, that enables us to characterize the notion of an ontology for-
mally and develop accounts of their properties and the various ways
in which one ontology can be related to another. Note also that the
framework itself might not be used as it stands for any actual ontol-
ogy integration work. It is in the respect analogous to computabil-
ity theory. No one actually programs turing machines (except as a
heuristic exercise). Rather, the notion provides a model of computa-
tion that serves as a foundation for both theoretical and, therefore,
indirectly, applied computer science.

In this brief paper we can only make some first halting steps to-
ward a general ontology theory. The bulk of this paper will be to ar-
gue for, and lay out in varying degrees of detail, a formal framework
with the representational horsepower adequate for a robust ontology
theory.

2 Intuitions

I begin with some intuitions to motivate the design of a framework
for ontology theory.

1. Ontologies consist of propositions.
2. Propositions are not sentences, they are what sentencesexpress;

different sentences in different languages (or possibly the same
language) can express the same proposition.

3. Propositions can be equivalent without being identical.
4. Propositions and ontologies are objects, things we can talk about.
5. The content of an ontology consists of the propositions involv-

ing concepts in the ontology that are entailed by the constituent
propositions of the ontology.

6. Ontologies are comparable in terms of their content. In particular,
two ontologies are equivalent if they have the same content.

3 Desiderata

In developing a general ontology theory our concern is describe the
phenomenon, just as in the development of number theory or real
analysis or, for that matter, computability theory. We therefore place
no computational restrictions on expressiveness, and hence will avail
ourselves of at least full first-order logic.3

However, we will need quite a lot more than that to satisfy the
intuitions in the preceding section. Notably:

• Re (1) above, we need formal notions ofontologyandproposition,
and a notion of the relation between ontologies and the proposi-
tions they consist of.

• Re (2), we need a notion of proposition that is independent of any
particular language.

3 As with both number theory and analysis, of course, we may want to explore
computationally more tractable subtheories of our theory.



• Re (3), we need a notion of proposition robust enough to allow for
distinct logically equivalent propositions.

• Re (4), we need to be able to name and quantify over propositions
and ontologies; i.e., ontologies and propositions must be “first-
class citizens” in ontology theory.

• Re (5), we need to be able to represent the notion of content, and
hence (i) a notion of entailment that can hold between ontologies
and propositions and (ii) a notion of the concepts within an ontol-
ogy.

• Re (6), we need to be able to define notions of comparability in
terms of ontological content.

I will satisfy these desiderata by developing a first-order theory of
structured relations, of which propositions will be one species. On-
tologies will be identified with 1-place relations, which for most pur-
poses can play the role of classes. This theory will satisfy desiderata
(1), (2), (3), and (4). By “structured” I mean that, although they will
not be identified with formulas, relations will have a decomposable
logical form similar to formulas. Together with a primitive modality,
the structured nature of relations in turn will enable us to define a
notion of entailment for propositions that will enable us to define a
notion of content for ontologies, and hence to satisfy desiderata (5)
and (6).

4 A Formal Framework for Ontology Theory

In this section I will define a language with appropriate expressive
power for ontology theory and a corresponding semantics.

4.1 Syntax

To accomodate the narrow columns of the ECAI 2-column format, as
much as anything, I will simply use the basic apparatus of standard
Principia Mathematica-style first-order language, augmented with a
number of useful constructs. I will call the language “L”.

Note that the unfriendliness of such languages in regard to com-
puter processability is no more to the point here than it is with re-
spect to group theory or computability theory. Our goal is theoreti-
cal — a mathematical theory of ontologies. Such work, of course, if
sound, should lead to developments wherein computer processable
languages are critical, but at this point processability is not an issue.

4.1.1 Lexicon

The lexicon consists of a countable set ofindividual constants, a de-
numerable set ofindividual variables, for eachn ≥ 0, a countable
set ofn-place predicate constantsand a denumerable set ofn-place
predicate variables(jointly calledn-place predicates), the reserved
logical symbols¬, ∧, ∨, →, ↔, ∀, ∃, λ, and2, and parentheses
and brackets. Individual variables will consist of lower case letters,
typically x, y, z, possibly with numerical subscripts.n-place pred-
icate variables will consist of upper case letters with numerical su-
perscripts (suppressed where context serves to indicate the arity of
ann-place predicate), typicallyFn,Gn, andHn, possibly also with
numerical subscripts. For purposes here, constants will consist of al-
phanumeric strings — other than the single-character strings already
in use for the variables — beginning with an upper or lower case let-
ter; dashes are also permitted to join alphanumeric strings. Typically,
I will use a strings beginning with a lower case letter for constants
that are intended to denote individual objects and strings beginning
with an upper case letter for constants intended to denote relations.

4.1.2 Grammar

We define formulas and terms by a simultaneous recursion:

1. Any constant or variable (individual or predicate) is aterm.
2. If π is ann-place predicate andτ1, . . . ,τn are any terms,n ≥ 0,

thenπ(τ1, . . . , τn) is an (atomic) formula of L. π is said to oc-
cur in predicate position, and eachτi in argument position, in
π(τ1, . . . , τn). In the case wheren = 0, we omit the empty paren-
theses and say thatπ standing alone is an atomic formula.

3. If ϕ, ψ are formulas, so are¬ϕ, 2ϕ, and(ϕ→ ψ).
4. If ϕ is any formula andν1, . . . , νn any variables, then

(∀ν1 . . . νn)ϕ is a formula.
5. If ϕ is a formula containing no occurrences of2, no bound vari-

ables occurring in predicate position, and no bound predicate vari-
ables, andν1, . . . ,νn are any individual variables that do not occur
free in any term occurring inϕ, then[λν1 . . . νn ϕ] is ann-place
predicate.

6. Nothing else is a term or formula ofL

The usual definitions of∧, ∨,↔, and∃ will be assumed.
There are two particularly distinctive features ofL. First, although

the language ofL contains so-called “higher-order” variables, unlike
standard higher-order languages, these variables, andn-place pred-
icates generally, are considered terms; they can occur as arguments
to other predicates. Semantically speaking, as we will see explic-
itly below, this means that our universe istype-free— everything
is an object; the quantifiers of the language will range over every-
thing alike. Note this doesnot mean that there is no distinction be-
tweenkindsof things. Notably, as noted already, our basic ontology
includes relations as well as ordinary individuals. Rather, in accor-
dance with intuition (4), it simply means that all of these things are
in the universe of discourse, i.e., the range of the quantifiers. All en-
tities — individuals, propositions, properties, and relations alike —
are first-class logical citizens that jointly constitute a single domain
of quantification. As such, properties and relations can themselves
have properties, stand in relations, and serve as potential objects of
reference.

Perhaps the strongest linguistic evidence for type freedom is the
phenomenon of nominalization, whereby any verb phrase can be
transformed into a noun phrase of one sort or another, most com-
monly, a gerund. So, for example, the verb phrase ‘is famous’ indi-
cates a property that can be predicated of individuals, as in ‘Quentin
is famous’. Its gerundive counterpart, however, ‘being famous’,
serves to denote a subject of further predication, as in, e.g., ‘Being
famous is all Quentin thinks about’. Intuitively, the verb phrase indi-
cating the property predicated and the gerund indicating the object of
Quentin’s thoughts (i.e., the object possessing the property of being
thought by Quentin) are the very same thing, the property of being
famous.

In L, this “dual role” of properties and relations — thing predi-
cated vs. object of predication — is reflected in the fact that the same
constant can play both traditional syntactic roles of predicate symbol
and individual constant. Thus, inL, we can write both

(1) Famous(quentin)

and

(2) (∀F )(ThinksAbout(quentin, F )↔ (F = Famous))

(L retains no representation of the grammatical distinction between
verb phrases — e.g., ‘is famous’ — and their gerundive counterparts
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— e.g., ‘being famous’. One could be added easily enough, of course,
but as there is no semantic difference between verb phrases and their
gerunds on a type free conception, any such representation would be
semantically otiose.)

Because all objects are of the same logical type, it follows that
any property can be predicated of any property and, in particular,
a property can be predicated of (and, indeed, can exemplify) itself.
Again, this comports with natural language; the property of being a
property, for instance, is a property, and hence exemplifies itself. This
is naturally represented inL in the obvious way:

(3) Property(Property)

It must be emphasized that the fact that we will be quantifying
over properties, propositions, and relations generally doesnot in and
of itself mean thatL is higher-order. For that, one’s semantics must
involve higher-order quantifiers whose range includes a power set
construction of some ilk over a domain of logical individuals. In our
semantics, there is no such construction; there is but a single domain
over which a single type of quantifier ranges.

The second distinctive feature ofL, and arguably the most promi-
nent, is the presence of complex terms[λν1 . . . νn ϕ]. Intuitively,
these terms denote complex relations. For instance, the term

(4) [λx Enjoys(x, salmon)∧Prefers(x, red_wine,white_wine)]

indicates the property of enjoying salmon and preferring red wine to
white. Terms with no boundλ-variables indicate 0-place relations,
i.e., propositions. In this case theλ can be dropped. Thus,

(5) [∀x(Planet(x)→ Larger(sun, x))]

indicates the proposition that the sun is larger than all of the planets.
This feature ofL is particularly important, as ontologies in the pro-
posed theory will be characterized roughly as classes of propositions,
and the logical connections between ontologies will be expressed in
terms of logical relations between propositions.λ-terms enable us
to talk about the propositions in a given ontology explicitly. And as
we will see, they are also extremely useful for defining a variety of
important auxiliary notions.

4.1.3 On Syntactic Restrictions on Term Formation

Clause (5) in the grammar forL imposes a number of restrictions
on the formation of complex terms. The most noteworthy of these
is the restriction permitting only individual variables to be bound by
theλ operator in complex terms. This restriction avoids the Russell
paradox, as without that restriction the term[λF ¬F (F )] — indicat-
ing, intuitively, the property of non-self-exemplification — would be
legitimate. The grammar would then permit the construction of the
atomic formula[λF ¬F (F )]([λF ¬F (F )]), which, by the logical
principle ofλ-conversion ((10) below), could be proven equivalent
to its negation. However, the restriction that prevents the paradox is
notad hoc. Its justification — which will become clear in Section 4.2
— is that there is simply no intuitive logical operation that yields re-
lations whose logical form corresponds to such terms, and hence no
warrant for permitting them. The avoidance of Russell’s paradox falls
out as a consequence of this restriction, and hence isexplainedrather
than merely avoided: the paradox arises from a theoretically unwar-
ranted assumption about the structure of complex relations, much as
the corresponding paradox of self-membership arises from a theoret-
ically unwarranted assumption about the nature and structure of sets
(see, e.g., [2]).

Clause (5) imposes a number of other restrictions on the formation
of terms that are, in fact, dispensable in the sense that we could in fact
provide a reasonable semantics for them. Specifically:

• The requirement thatλ-bound variables all occur free inϕ rules
out such terms as[λxy Px] that contain vacuousλ-bound vari-
ables;4

• The restriction on free occurrences ofλ-bound variables
within complex terms occurring inϕ rules out such terms as
[λxy P [λzQxz]y];5

• The restriction on bound occurrences of predicate variables
within complex terms occurring inϕ rules out such terms as
[λy (∃F 1)y = F 1];6

However, the terms that would be permitted without these restric-
tions are inessential to our purposes here and hence allowing them
would introduce unnecessary technical complexity.

While the restrictions to non-modal formulas in the formation of
terms is, like the two above, also inessential, it has a certain intuitive
warrant. For, unlike the three restrictions above, this restriction re-
flects an important feature of the intended domain guiding the devel-
opment of the current framework. Specifically, we are formulating a
theory offirst-orderontologies, that is, ontologies whose constituent
propositions are expressible by sentences in a non-modal first-order
language (hence in any weaker sublanguage thereof). This is, of
course, not to say that there are no modal (or higher-order) ontolo-
gies. However, the vast majority of existing ontologies are first-order,
and it seems quite unlikely that this will change with the development
of the Semantic Web if the expressiveness of its basic language is to
be on the order of DAML+OIL. Therefore, to provide the capacity to
express modal propositions, at this point, seems unwarranted.

A theoryof ontologies, however, does need this expressive power.
Specifically, modality is useful for characterizing the nature of on-
tologies and their logical connections. Most notably, perhaps, as will
be seen explicitly in Section 7 below, the modal component of the
language of our theory enables us to define a robust notion of en-
tailment which, in turn, can be used to formulate a correspondingly
robust notion of ontological content.

4.2 Semantics

In this section I will build upon work by Bealer [1], Zalta [7], and
Menzel [5] to develop a rich “meta-ontology” of structured relations.

4.2.1 Model Structures

A model structureM for L is a 5-tuple〈D,W, dom,Op, ext〉. Here
D =

⋃
{A,R} is thedomainof M, and consists of the union of two

mutually disjoint setsA andR.A is the set ofindividualsofD andR
is the set ofrelations, of which we considerpropositionsa species.R
itself can be partitioned in two significant ways. First,R is the union
of two mutually disjoint nonempty setsRp andRc , intuitively, the
sets of logically primitive and logically complex relations, respec-
tively. Additionally,R is the union of denumerably many nonempty
setsR0,R1, . . . , eachRn being, intuitively, the class ofn-place rela-
tions. We letRp

n andRc
n beRp ∩Rn andRc ∩Rn, respectively.W

4 Such terms are easily accommodated by means of a further set of logical
operationsVaci that insert vacuous argument places into theith “slot” in
the argument structure of a relation.

5 See Menzel [5] for an account of the semantics of such terms and surround-
ing philosophical issues.

6 Again, see [5] for the semantics of such terms.
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is a nonempty set, intuitively, a set of “possible worlds” or “possible
situations.” More formally,W provides us with a model of modal-
ity that enables us to represent entailment and other logical relations
between ontologies. Accordingly,dom is a function that maps every
elementw of W to a subsetdom(w) of D representing, intuitively,
the set of things that “exist” in the possible worldw.

The next element of a model structure,Op is a set of five sets of
logical operations: a set ofpredicationoperations,{Predni1...ik :
0 < i1 < . . . < ik ≤ n; k ≥ 07}; a set of twobooleanoperations,
{Neg , Impl}; a set ofuniversalizationoperations,{Univ i1...ik :
1 ≤ i1 < . . . < ik ≤ n; }; a set ofconversionoperations,
{Conv ij : 1 ≤ i < j < ω}; and a set ofreflectionoperations,
{Refl ij : 1 ≤ i < j < ω}. These operations “construct” logically
complex relations from individuals and less complex relations inD.
Specifically, for alln:

• Predni1...ik : Rn × Dk −→ Rcn−k (1 ≤ i1 < . . . < ik ≤
n; k ≥ 1);

• Neg : Rn −→ Rcn;
• Impl : Rn ×Rm −→ Rcn+m;
• Univ i1...ik : Rn −→ Rcn−k, for k ≤ n.
• Conv ij : Rn −→ Rcn (1 ≤ i < j ≤ n);
• Refl ij : Rn −→ Rcn−1 (1 ≤ i < j ≤ n);

We stipulate thatPredn (i.e., Predni1...ik for k = 0) is just the
identity relation onRn,8 and thatRc is just the union of the ranges
of the logical operations, i.e.,Rc = {

⋃
Range(f) : f ∈

⋃
Op}.

To capture fine-grainedness, it is assumed that all of these operations
are one-to-one and that the ranges of all of the operations are pairwise
disjoint — similar to their syntactic counterparts, the “logical forms”
of relations formed from these operations are all distinct from one
another.

Finally, letDn be the set of alln-tuples overD and letD∗ =⋃
0<n<ωD

n. ext is a function onR × W such that for allr ∈
Rn, w ∈ W , ext(r, w) ⊆ Dn. Note that, forr ∈ R0, only two
extensions are possible:{〈〉}, i.e.,D0 itself, and the empty set∅. In
this case it is useful to think of the former as the truth value> (truth)
and the latter as the truth value⊥ (falsity).

The behavior ofext is constrained further by the logical opera-
tions in

⋃
Op. Some notational conventions will be helpful for stat-

ing these constraints. ForA ⊆ Dn, letA beDn−A. Wheres_s′ is
the concatenation of two sequences (tuples)s, s′, for subsetsA,B of
Dn andDm, respectively, letA_B = {a_b : a ∈ A, b ∈ B}.
Where1 ≤ i1 < . . . < ij ≤ n, we let 〈b1, . . . , bn〉

i1...ij
a1...aj be

result of replacing eachbik with ak, and we let〈b1, . . . , bn〉i1...ij
be the result of deleting eachbik from 〈b1, . . . , bn〉. Given this, let
r ∈ Rn, q ∈ Rm; then:

• ext(Predni1...ik (r, a1, . . . , ak), w) =

{〈b1, . . . , bn〉i1...ik : 〈b1, . . . , bn〉i1...ika1...ak ∈ ext(r, w)};9

• ext(Neg(r), w) = ext(r, w);
• ext(Impl(q, r), w) = ext(q, w)_Dn ∪Dm_ext(r, w)
• ext(Univ i1,...,ij (r), w) =

{〈a1, . . . , an〉i1...ij : ∀b1, . . . , bj ∈ dom(w),

〈a1, . . . , an〉
i1...ij
b1...bj

∈ ext(r, w)}

7 If k = 0, theni1 . . . ik is the null sequence, which we want to allow here.
8 This stipulation will yield as logical truths all instances ofπ =

[λν1 . . . νn π(ν1, . . . , νn)], for all n-place predicatesπ.
9 Note that by the definition of thePred functions, we always havek ≤ n in

Predni1...ik .

• ext(Conv ij(r), w) =
{〈a1, . . . , ai−1, aj , . . . , aj−1, ai, . . . , an〉 : 〈a1, . . . , an〉 ∈
ext(r, w)}

• ext(Refl ij(r), w) =
{〈a1, . . . , aj−1, aj+1, . . . , an〉 : 〈a1, . . . , an〉 ∈
ext(r, w) and ai = aj}

Constituency and Logical Form The intuitive picture here is a
“quasi-constructive” one similar to the intuitive picture that under-
lies the iterative conception of sets. We begin with a setA of in-
dividuals and a setRp of logically simple relations. The logically
simple relations are thought of as the meanings of the primitive pred-
icates in an ontology. The predication functions applied to primitive
relations and individuals yield basic atomic relations — notably, ba-
sic atomic propositions — and the remaining logical operations ap-
plied to these yield logically complex relations. These in turn, can
be arguments to further applications of the logical operations, yield-
ing an “iterative hierarchy” of relations of increasing complexity. In-
tuitively, then, relations inR are either primitive or are “built up”
from individuals and other relations via the logical operations, and
the manner in which a relation is so built up can be thought of as
its logical form. So, for example, our example proposition (5) —
[∀x(Planet(x) → Larger(sun, x))] — that the sun is larger than
every planet would be built up from the property of being a planet, the
2-place relation of being larger than, and the sun as follows.Pred2

1

applied to the larger-than relation and the sun yields the property

(6) [λy Larger(sun, y)]

of being something that the sun is larger than.10 The boolean “ma-
terial implication” operatorImpl applied to the property of being a
planet and (6) yields the relation

(7) [λxy Planet(x)→ Larger(sun, y)]

thata bears tob just in casea is not a planet or the sun is larger than
b. The reflection operationRefl1

2 applied to (7) “collapses” its two
argument places into one to yield the property

(8) [λx Planet(x)→ Larger(sun, x)]

of being something such that if it is a planet, then the sun is larger
than it. Finally, application of the “quantification” operatorUniv1

yields our desired proposition (5). In a single equation, then, we have

(9) (5) = Univ1(Refl1
2(Impl(Planet ,Pred2

1(Larger , sun)))).

The manner in which a relation is built up from individuals and
other relations can be thought of as its logical form. We can make this
idea rigorous as follows. Say that aconstituency treefor an element
r ∈ R is any labeled ordered treeT whose nodes are inD and
whose root node isr, such that, for every nodee of T , the daughter
nodese1, . . . , ej of e are such that, for some operationF ∈

⋃
Op,

F (e1, . . . , ej) = e. A constituency treeT for r is completeiff every
leaf nodeo of T is an individual or a primitive relation, i.e., iffo ∈
A ∪ Rp. Given the constraints on our logical operations it is easy to
show that everyr ∈ R has exactly one complete constituency tree,
which we can therefore identify with thelogical formof r. We define
an objecto ∈ D to be aconstituent ofa relationr ∈ R just in case

10 I am of courseusingthe term ‘[λy Larger(sun, y)]’ here, not mentioning
it; I am not talking about the term itself, but rather the property it intuitively
denotes under the standard English meanings of the constituent constants.
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e is a node in the complete constituency tree forr. o is a primitive
constituent ofr iff o is a constituent ofr and o ∈ A ∪ Rp. The
notion of constituency will be important for defining the concept of
ontological content in Section 7 below.

4.2.2 Denotations, Interpretations, and Truth

Denotations for the terms ofL relative to a model structureM are
determined by partitioning the class of complex terms according to
their syntactic form. In brief, whereτ is [λν1 . . . νn ϕ], if the order
of the λ-bound variables inϕ does not correspond toν1, . . . , νn,
thenτ is the conversionij of an appropriate termτ ′. Otherwise, if one
of theλ-bound variables occurs free more than once inϕ, thenτ is
a reflectionij of an appropriateτ ′. Otherwise,τ is classified as the
universalizationi1,...,ij , implication, negation, or predicationni1,...,ik
of the appropriate sort depending on the logical form ofϕ. Complex
terms of the form[λν1 . . . νn π(ν1, . . . , νn)], for any predicateπ —
i.e., those of the form predicationn — are said to betrivial , as they
indicate no more logical complexity than the constitutive predicate
π.

Given a model structureM, letd be a function assigning elements
of the domainD of M to the individual constants and variables of
L and elements ofRn to then-place predicates ofL. Such ad is
known as adenotation functionfor L relative toM. Denotations for
complex terms are then assigned by extendingd in an obvious way
that exploits the close parallel between the syntactic form of complex
terms and the logical forms of complex relations:

• If τ is the conversionij of τ ′, thend(τ) = Conv ij(d(τ ′)).
• If τ is the reflectionij of τ ′, thend(τ) = Refl ij(d(τ ′)).
• If τ is the universalizationi1,...,ij of τ , then d(τ) =

Univ i1,...,ij (d(τ ′)).
• If τ is the implication of τ ′ and τ ′′, then d(τ) =

Impl(d(τ ′), d(τ ′′)).
• If τ is the negation ofτ ′, thend(τ) = Neg(d(τ ′)).
• If τ is the predicationni1,...,ij of τ ′ of τ1, . . . , τj , thend(τ) =

Predni1,...,ij (d(τ ′), d(τ1), . . . , d(τj)).

We say that a denotation functiond′ for L relative toM is a ν-
variant of d, for any variableν, just in case, for all variablesµ 6= ν,
d′(µ) = d(µ).11

An interpretationA of L is a pair〈M, d〉 consisting of a model
structureM = 〈D,W, dom,Op, ext〉 and a denotation functiond
for L relative toM. For any variableν, aν-variant of A = 〈M, d〉
is any interpretationA′ = 〈M, d′〉 such thatd′ is aν-variant ofd.

Let A = 〈M, d〉 be an interpretation, whereM =
〈D,W, dom,Op, ext〉. Truth at a worldw ∈ W in A for the for-
mulas ofL is defined in the standard sort of way:

• π(τ1, . . . , τn) is true at w in A iff 〈d(τ1), . . . , d(τn)〉 ∈
ext(d(π), w).

• ¬ϕ is true atw in A iff ϕ isn’t.
• (ϕ→ ψ) is true atw in A iff eitherϕ isn’t orψ is.
• ∀νϕ is true atw in A iff ϕ is true atw in all ν-variants ofA.
• 2ϕ is true atw in A iff ϕ is true atw′ in A, for allw′ ∈W .

5 Proof Theory

The proof theory for this semantics is an extension of classical first-
order logic with identity. Notably, there are principles of identify for

11 Thus, as it is often informally put,d′ differs from d at most in what it
assigns toµ.

complex terms that ensure fine-grainedness, e.g., that no universal-
ization is an implication or a negation, that predications are identical
iff they are predications of the same relation of exactly the same ob-
jects, and so on.

More relevant for ontology theory, however, is a principle ofλ-
conversion that takes as axioms all instances of:

(10) [λν1 . . . νn ϕ](τ1, . . . , τn)↔ ϕν1,...,νnτ1,...,τn ,

whereϕν1,...,νnτ1,...,τn is the result of replacing every free occurrence ofνi
in ϕ with τi. This principle lets us move freely between statements
about individuals and the attribution of complex properties and rela-
tions to those individuals, e.g.,

(11)
[λx Enjoys(x, salmon) ∧ Prefers(x,wine, beer)](jo)
↔ Enjoys(jo, salmon) ∧ Prefers(jo,wine, beer)

Notably, as we will see below, this principle will give us the ability
to move fromtalking aboutthe propositions in an ontology tousing
them in logical inferences. Like the other axioms of our theory, (10)
is easily shown to be valid relative to the semantics above.

6 The Logic of Constituency

The notion of constituency enables us to capture the intuitive fact that
different ontologies contain different concepts: the concepts in an on-
tology are simply the properties and relations that are constituents of
the propositions of that ontology. Our fine-grained, structured notion
of properties, relations, and propositions gives us a rigorous foun-
dation for analyzing and exploiting the notion of constituency. We
have characterized constituency model theoretically above in Section
4.2.1. In this section we capture the notion axiomatically. We begin
with a schema:12

(12)
Const(τ, τ ′),whereτ ′ is a nontrivial complex term and
τ occurs free inτ ′

That is, any term occurring free within a complex term indicates a
constituent of the relation denoted by the complex term.

Next, we note that the constituency relation is a strict partial or-
dering, i.e., it is transitive and asymmetric (hence also irreflexive):

(13) (Const(p, q) ∧ Const(q, r))→ Const(p, r)

(14) Const(q, r)→ ¬Const(r, q)

Finally, we can define an object to be primitive just in case it has
no constituents:

(15) Prim(x) =df ¬(∃q)Const(q, x)

This reflects the model theoretic fact that the ranges of the logical
operations (other than the “trivial”Predn operations) are all subsets
of Rc.

7 Content

As indicated, content is best cashed out in terms of some notion of
entailment. In classical first-order logic, entailment is usually under-
stood model theoretically. Ciociou and Nau [3] have taken some steps
in this direction in developing a formal notion of intertranslatability
between ontologies. For them, ontologies are understood as sets of

12 Recall that a trivial complex term is of the form
[λν1 . . . νn π(ν1, . . . , νn)].
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sentences, and the content of an ontology is understood in terms of
its formal models: the content of an ontologyO consists in the set of
its semantic consequences, i.e., the set of sentences that are true in
all the models ofO. This approach thus can yield a robust notion of
common ontological content across different languages in terms of
shared models.

This approach is clear and insightful, but suffers from two short-
comings. First, though a notion of common content is possible on
this approach, the notion of ontology is still language-dependent; an
ontology is a set of sentences in some language. This violates intu-
itions 1 and 2 above, which jointly imply that ontologies are classes
of language-independent propositions. More seriously, however, the
approach — as a basis for a general theory of ontologies — is un-
wieldy. Content is understood in terms of the models of a theory.
Hence, on this approach, one has to import the full apparatus of first-
order model theory — basic set theory, formal languages, interpre-
tations, model theoretic truth and entailment, etc — just to define a
reasonable notion of ontological content. Moreover, the model theo-
retic approach makes for a rather austere and formal notion of content
— to identify themeaningof a sentence with a set of models is rather
far removed from ordinary semantic notions.

Though the present approach has a strong model theoretic com-
ponent, that component serves only to ground a first-order theory of
ontologies and their content; no linguistic or model theoretic entities,
properties, or relations are introduced into the theory.13 Rather, it de-
velops an account of ontologies and their content that is language
independent and grounded in the intuitive notion of propositions —
rather than the austere and abstract notion of a model — as the basic
semantical unit of meaning.

To get at the relevant notion of entailment in our theory, recall
once again that, intuitively, ontologies can be thought of as classes of
propositions. The notion of a proposition is easily defined in terms
of our “higher-order” quantifiers:

(16) Proposition(p) =df (∃F 0)p = F 0

Understanding classes as properties, we can now define an ontology
to be a nonempty class of propositions:

(17)
Ont(O) =df (∃F 1)O = F 1 ∧ (∃x)F 1(x) ∧

∀p(F 1(p)→ Proposition(p))

The notion of entailment we are after involves both modality and
our notion of constituency. We first define a constituent of an ontol-
ogyO to be a constituent of one of the propositions inO:

(18) OntConst(x,O) =df Ont(O) ∧ (∃p)(O(p) ∧ Const(x, p))

Next, say that an ontologyO entails a propositionF 0 just in caseF 0

must be true if all the propositions inO are true:

(19)
Entails(O,F 0) =df Ont(O)∧

2((∀G0)(O(G0)→ G0)→ F 0)

Now say thatF 0 andO share primitivesif every primitive con-
stituent ofF 0 is a constituent ofO:

(20)
ShPrim(F 0, O) =df Ont(O) ∧
(∀x)((Prim(x) ∧ Const(x, F 0))→ OntConst(x,O))

13 Though of course we define a model theory for thelanguageL of our
theory, but that’s just a matter of our own metatheoretic housekeeping: it
simply provides a proper theoretical foundation for the language we are
using to express our theory; the model theory forL is not itself a part of
ontology theory.

Thus, combining (19) and (20), we have the notion of entailment we
are after:

(21) StrEntails(O,F 0) =df Entails(O,F 0) ∧ ShPrim(O,F 0).

That is, an ontologyO strongly entails a propositionF 0 just in case
O entailsF 0 andF 0 andO share primitives; that is, intuitively, ifO
entailsF 0 andF 0 is “built up” from the same pool of concepts and
objects — the same “conceptual vocabulary” — as the propositions
inO. We will sometimes write “O ⇒ F 0” for “ StrEntails(O,F 0)”.

The content of an ontology, then, can be thought of as all of the
propositions that it strongly entails. As it happens, we cannot strictly
definethe content of an ontology as an object. However, for theo-
retical purposes, strong entailment appears to be all we need. For
example, we can say that one ontologyO subsumesanotherO′ just
in case the content ofO′ is included in that ofO, i.e., just in caseO
strongly entails every proposition thatO′ does:

(22)
Subsumes(O,O′) =df Ont(O) ∧Ont(O′) ∧

(∀p)(O′ ⇒ p→ O ⇒ p)

Ontologies can then be said to beequivalentjust in case they sub-
sume each other:

(23) Equiv(O,O′) =df Subsumes(O,O′) ∧ Subsumes(O′, O).

Subtler metrics for comparison are of course also possible, e.g.,
two non-equivalent ontologies might nonetheless share all or some
of their primitives. More generally, the notions defined above pro-
vide a rich framework for analyzing a wide variety of notions rel-
evant to understanding the nature of, and logical relations between,
ontologies.

8 Integration

A major extension of this work that goes far beyond the current scope
will consist in developing a theory of integration. At a purely abstract
level, integration is fairly straightforward. One can import several
ontologies into the languageL of our approach by creating a separate
namespace for the terms in each ontology and translating them from
the language of the ontology intoL. There will thus be, initially,
no possibility of name conflicts. Because the principle[ϕ] ↔ ϕ is
valid, it will be possible to move seamlessly back and forth between
usingthe axioms of a given ontology to investigate its properties and
talking more generally about the ontology and its content.

Because distinct ontologies are imported with separate names-
paces, there is no danger of logical inconsistency arising from incom-
patible ontologies. Integration can proceed by identifying or other-
wise logically connecting the concepts (objects, properties, relations,
and propositions) expressed across ontologies. Thus, for instance, it
might be postulated that two concepts (properties) from different on-
tologies are identical; or that one concept subsumes the other; or that
for every instancea of one there are two instances of the other that
bear some relation toa; and so on. In this way the logical connec-
tions between ontologies can be mapped clearly and rigorously and
with ever greater precision.

However, while this account of integration is theoretically ade-
quate as far as it goes, a complete treatment will have to include a
theory of languages that connects sets of sentences with the ontolo-
gies that they express, and which should lead to more practical ap-
plications of the theory. Investigating integration at this more applied
level will be the next phase of this project.

6



9 Conclusion

It will be possible for ontology to make significant progress toward
the lofty goals workers in the area are pursuing only if it has proper
theoretical foundations. For such goals can be reached only if there
is a clear, generally shared understanding of the subject matter of
ontology, one that makes it possible clearly to define the scope of
the discipline, to identify its subject matter, and chart a course to-
ward the resolution of its outstanding problems. The approach in this
paper shows promise for providing these essential theoretical under-
pinnings
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