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Abstract. Formalontological analysisis amethodology thatbuilds
onsomephilosophicalnotionsin orderto guidetheprocessof build-
ing ontologieswhosestructureis correctandlittle or no tangled.
This paperpresentsan ontologymodel that facilitatesformal onto-
logical analysis,by providing a set of metaproperties which char-
acterisethe behaviour of concept propertiesin a concept definition,
while providing a richersemanticsof theconcept.We describecon-
ceptsin termsof theirattributes(characterisingfeatures)andwealso
describethe role playedby thesefeaturesin the concept definition,
whetherthey areprototypical or exceptional,whetherthey areper-
mitted to change over time, andif so,how often this happens,how
likely is a conceptto show thesefeatures,etc. We show that these
metapropertiescansupportamethodology, OntoClean[44] thatuses
formal ontologicalanalysisto build cleanertaxonomies(which are
thusmoresharable).Thesetof metapropertiesfor attributeswe pro-
posecanbe usedto guidein determiningwhich metapropertiesfor
concepts hold for anontologyandthereforecansupport theuseOn-
toClean.

1 Introduction

Many currentapplicationssuchase-commerce or thesemanticweb
rely on the ability of different resourcesor agentsto interoperate
with each others and with users. In some cases,interoperation
becomesmore complex, becauseagentsmay have beenindepen-
dentlydeveloped,thereforetheassumptionthatagentsusethesame
communication languageandthe sameterminologyin a consistent
way cannotbe made.Whendealingwith independently developed
agents,their interoperability with humansand othersdepends on
the agents’ ability to understandthem, which leads us directly
to ontologies.Ontologiesare an explicit, formal specificationof
a sharedconceptualisation,where a ‘conceptualisation’ refers to
an abstractmodel of somephenomenon in the world by having
identifiedtherelevant conceptsof thatphenomenon,‘explicit’ means
that the type of concepts used,and the constraintson their useare
explicitly defined,‘formal’ refersto thefactthattheontologyshould
be machine-readable, and lastly ‘shared’ reflectsthe notion that an
ontologycapturesconsensualknowledge, that is it is not privateto
someindividual, but acceptedby a group [37]. That is ontologies
provide a formally definedspecificationof the meaningof those
termsthatareusedby agentsduringtheinteroperation.
Agentscan differ in their understanding of the world surrounding
them,in their goals,andtheir capabilities,but they canstill interop-
eratein order to perform a task.The interoperationamongagents
is the result of reachingan agreementon a sharedunderstanding,
mainly obtainedby the reconciliationof the differences.This kind
of reconciliationmight be accomplishedby merging the ontologies
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to which the agentsinvolved in the interoperationrefer to, that is,
by building a singleontology that is themergedversionof different
agent’sontologies,whichoftencoversimilaror overlappingdomains
[8].
Ontologymerging startswith theattemptto find theplacesin which
the sourceontologies overlap [24], that is the coalescence of two
semanticallyidentical termsin differentontologiesso that they can
be referredto by the samenamein the resultingontology. This is
theonly stepof themergeprocesswhich is relevant to thescopeof
this article. The coalescenceof termsin diverseontologies hasto
be accomplished bearingin mind that agent’s ontologies might be
heterogeneous,andany kind of heterogeneity hasto bereconciledin
orderto shareknowledge. Heterogeneityis out of the scopeof this
article,however we recognisethat it canhinderattemptsto coalesce
terms,especiallywhenit concernssemantics.Ontologyor semantic
heterogeneity occurswhendifferentontologicalassumptions about
overlappingdomainsaremade[43].
Any consideration on ontology heterogeneityit is usually done
assumingthat the ontologiesinvolved in the merging processare
either built accordingto somekind of engineering methodology,
such as Methontology [6], or ontology taxonomic structuresare
validatedaccordingto somemethodologiessuchasOntoClean[44].
Both methodologiesareaimedto insurethat the ontologyobtained
after applying them is correct, that it doesnot contain cycles or
recursive definitions,and it hasa taxonomic structurethat is no or
little tangled.
Methontology and OntoClean are complementary methodolo-
gies in that Methontology provides the guidelines for building
or re engineeringontologies, whereasOntoClean can be used
either in the validation step (when ontologiesare engineeredor
restructured)or simultaneously with the ontology construction
(when ontologies are built from scratch). These two method-
ologies are currently undergoing an integration process[5] as
part of the activities of the OntoWeb special interest group on
Enterprise-standardsOntology Environments (SIG’s home page:
http://delicias.dia.fi.upm.es/ontoweb/sig-
tools/index.html).
Methodologies to obtain well-built ontologies, however, are not
enoughto supportthe semi-automaticcoalescence process.In fact
in order to recognise whethertwo concepts (that can be affected
by heterogeneity) are similar, we cannot only rely on the the
termsdenotingthem,on the relationshipswith other terms,andon
their descriptions,but we needto have a full understanding of the
concepts.As notedby McGuinness[23], an explicit representation
of thesemanticsof termswouldbeusefulto understandwhethertwo
conceptsaresimilar. It emergesthatthecurrentontologymodelsare
not expressive enough to provide suchan explicit representationof
the semantics.Even when heavyweight ontologiesare considered
(thatis, conceptsdescribedin termsof attributes,linkedby relations,



organisedinto an Is-a relationshipandconstrainedby axioms)their
expressivenessdoesnot allow a full account of thesemanticsof the
conceptsdescribed.
Thispaperis organisedasfollows:Section2 presentstheOntoClean
methodology and the notionsof formal ontological analysis,while
Section3 introduces our proposal for an ontology model encom-
passinga setof metapropertiesfor attributeswhich arediscussedin
the following subsections.This ontologymodel wasalsopresented
in [39], in this paperwe do not discussany implementationissues
andweconcentrateon themetaproperties,clarifying therelationship
with the concept metapropertiesused in OntoCleanand the role
attribute’s metaproperties play in associatingsensesto concepts.
Section4 discussesthe metaproperties and relatesthem with two
notions (identity and rigidity) of formal ontological analysisand
with roles.Thenwe proceedby presentingin Section5 andsubsec-
tions a novel approachto knowledge sharingthat we arecurrently
investigatingandwhich motivatedthe ontology modelpresentedin
Section3. This approach, calledontology clustering, is thought of
beingmoresuitedto openevironments in which agentsinteroperate
with eachothers.We Finally, Section6 draws conclusionsand in
Section7 we describefuturework.

2 The philosophical notions of Identity, Unity,
Essence, and Dependence

OntoClean[44] is a methodology to perform a formal ontolog-
ical analysis on taxonomies in order to to verify which formal
metapropertieshold, thus making clear and explicit the modelling
assumptionsmadewhile designingthe ontologies.The clarification
and explication of the modelling assumptionsis a necessarystep
to perform in order to evaluateontologies,it permits knowledge
engineersto detectandreconcileontologicalconflictsthatmayaffect
oneor moreontologies.Ontologicalconflictsmaybecomeapparent
when two ontologies are compared in order to coalesceterm, and
they reveal casesof ontological heterogeneity. For example two
well known ontologies,presentthe following conflict: one models
PhysicalObjectassubconceptof Amountof matterwherestheother
modelsAmount of matterassubconceptof Physicalobject, this is
a caseof ontologyheterogeneity dueto differentmodellingsof the
concepts. Ontologial conflicts needto be detectedand resolved if
termsareto becoalesced.
OntoCleanis stronglybasedon thephilosophical notionsof identity,
unity, essence(rigidity), and dependence. The attribute metaprop-
ertieswe presentin this paperarerelatedto thesenotions,andwe
discussthembelow.

Identity: Identity is the logical relation of numerical sameness,
in which a thing standsonly to itself. Basedon the ideathatevery-
thing is what it is andnot anything else,philosophy hastried for a
long time to identify thecriteriawhich allow a thing to beidentified
for what it is even when it is cognisedin two different forms, by
two different descriptionsand/or at two different times [45, 15].
This comprisesboth aspectsof finding constitutive criteria (which
featuresa thing musthave in orderto be what it is), andof finding
re-identificationcriteria (which featurea thing hasto have in order
to be recognisedassuchby a cognitive agent).Thesearedistinct,
althoughequallyimportantaspectsof identity.In fact,while identity
is notaffectedby thecontext andis basedonthetheintrinsicfeatures
of an object,whereasre-identificationis affectedby context and it
is basedon featuresthat areexternalto the object.For example,an
identity criterionfor people is to have matchingfingerprints,sotwo

peoplearethesameif they have the samefingerprints.Fingerprints
are intrinsic to the individual, they arenot assignedby an external
agent.A re-identificationcriterion might depend on the role played
by the object: one can be a studentand an employee at the same
time, and is re-identifiedas studentby the studentid, whereasis
re-identifiedasemployeeby anemployeenumber.
Although the problemof identifyingwhat featuresan entity should
have in order to be what it is and recognisedas such has been
centralto philosophy, it did not have thesameimpactin conceptual
modellingandmoregenerallyAI. Theability to identify individuals
is central to the modelling process, more precisely, it is not the
mereproblemof identifying an entity in the world that is central
to the ontological representationof the world, but the ability to
re-identifyan entity in all its possibleforms, or more formally re-
identificationin all possibleworlds. 2 That is, theproblemis related
to distinguishinga specificinstanceof a conceptfrom its siblingson
the basisof certaincharacteristicpropertieswhich areuniqueand
intrinsic to that instancein its whole.Intrinsicpropertiescorrespond
to the modellingprimitive attributes. Extrinsic propertiesrepresent
relations between classes,thus corresponding to the modelling
primitive relationship.
This notionis, of courseinherentlytime dependent,sincetime gives
riseto aparticularsystemof possibleworldswhereit is highly likely
that the sameinstanceof a concept exhibits different features3.
This problemis known as identity throughchange: an instanceof a
conceptmay remainthe samewhile exhibiting differentproperties
at different instantsof time. Therefore it becomes important to
understandwhich featuresor propertiescan changeand which
cannot[44], and also the situationsthat can trigger suchchanges.
If we reformulate the identity problem as re-identification we
realisethat re-identificationis also affectedby time; how can we
re-identify the same instanceat different instant of times? We
facethe re-identificationproblemin everyday life; we are able to
recognisethefeaturesthatpermitsusto distinguishaninstancefrom
theothers,andwhenintrinsic featuresarenot available,we ‘attach’
artificial features,thatpermitusto establishidentity. Oneexampleis
the StudentID, which is assignedto university students,in orderto
identify studentsunivocally.

Unity: the notion of unity is often included in a more gener-
alisednotion of identity, although thesetwo notionsare different.
While identity aims to characterisewhat is unique for an entity
of the world when consideredas a whole, the goal of unity is
that of distinguishing the partsof an instancefrom the rest of the
world by meansof a unifying relationthat bindsthemtogether (not
involving anythingelse)[44]. For example,thequestion‘Is this my
car?’ representsa problemof identity, whereasthe question‘Is the
steeringwheelpartof my car?’is aproblemof unity. Also thenotion
of unity is affectedby thenotionof time; for example, cantheparts
of aninstancebedifferentatdifferentinstantsof time?

Essence: The notion of essenceis strictly related to the notion
of necessity[16]. An essentialproperty is a propertythat is neces-
sary for an object, that is, a propertythat is true in every possible
world [22]. Basedon thenotionof essence, Guarinoandcolleagues
[14] have introduced the notion of rigidity. A rigid property is a
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Somephilosophers,e.g.Lewis [21, page39 ff], hold that there is no such
thing astrans-world identity, althoughobjects in oneworld canhave coun-
terpartsin otherworlds.�
Herethe counterpart theory doesnot hold, andso identity through time is
always accepted.



propertythat is necessaryto all instancesin any instantof time, that
is a property � suchthat: �	��

����������������������
�������������������� . For
this formula, and in the remainderof this paper, we usethe modal
notions of necessity� and possibility  quantifiedover possible
worlds (in Kripke’s semantics[18]), meaningthat the extensionof
predicatesconcernswhatexists in any possibleworld. We usethese
operatorsaccording to the following meanings:�!� meansthat �
holdsin all possibleworlds  "� meansthat � is possible,i.e. that �
holdsin at leastonepossibleworld.
Rigidity strictly depends on the notionsof time andmodality [38];
thispointis furtherelaboratedin Section4.2.It is important,however,
not to confusemodal necessitywith temporalpermanence. Modal
necessitymeansthat the property is true in every possibleworld.
Time is undoubtedly one partition of theseworlds, but temporal
permanencemeansthatthepropertyis truein thatworld (time),with
no informationconcerningtheotherpossibleworlds,andthis might
happenby purechance.

Dependence: In OntoClean [44], the notion of dependence is
consideredrelatedto concept properties.In this context, dependence
permitsus to distinguishbetweenextrinsic and intrinsic properties
basedon whetherthey dependon objectsotherthantheonethey are
ascribedto or not.

In order to establishwhether these metapropertieshold, Onto-
Cleanis supportedby a descriptionlogic basedsystemthatcanhelp
knowledge engineersto assignthe metapropertiesto concepts and
to verify the taxonomic structureon the grounds of the modelling
methodology. In this paperwe focus our attentionon the process
of assigning the metaproperties. OntoClean guides knowledge
engineersin this processby askingthemto answersomequestions
suchas“Doesthepropertycarryidentity”. Knowledgeengineerscan
answeryes,no or unsure,in this lattercasemorespecificquestions
canbeasked,suchas“Are instancesof thepropertycountable?”.
The OntoClean methodology depends on the knowledge engi-
neersunderstandingof the ontologiesto analyseand can thus be
problematicif usedto evaluateindependently designedontologies.
Moreover, OntoCleandoesnot take into account the structureof
concept definitions,asit doesnot considerthecharacteristicfeatures
(or attributes) thatmight have beenusedto defineconcepts.
This work proposesan enrichedontology model whoseaim is to
complement theOntoCleanmethodology, by providing anadditional
way to determine metapropertiesto concepts. In our proposal
we describeconcepts in terms of their characterisingproperties,
which are in turn describednot only in terms of their structural
features(suchasrange,domain,cardinalityetc.),but also in terms
of their metaproperties, which describethe contribution given by
thesepropertiesto the concept definition.We describethe enriched
ontology model and the metapropertiesfor attributes in the next
sections.

3 Enriched ontology model

Theontology modelwe propose comprisesconcepts, attributes, re-
lations, and instances. We do not consider hereaxioms.Concepts
representtheentitiesof thedomainandthe taskswe want to model
in theontology. Concepts aredescribedin termsof definingproper-
ties,which arerepresentedby associatingan attribute with eithera
singlevalueor a setof values.Conceptsareorganisedinto an Is-a
hierarchy, so that a concept attributesandtheir valuesareinherited
by subconcepts.Multiple inheritanceis permitted,so attributesand

their valuescanbeinheritedfrom multiple parents.Thevaluesasso-
ciatedwith anattributecanberestrictedin orderto provide a better
definitionof a concept[19].
Attributesaredescribedin termsof their structuralcharacteristics,
suchastheconceptsthatthey aredefining,their allowedvalues,the
typeof thevalues(string,integer, etc.),andthemaximumandmini-
mumvalues(if attributesarenumeric).Attributesarealsodescribed
in termof thefollowing metaproperties:

# Attribute’s behaviour over time: The metaproperties Mutability,
Mutability Frequency, EventMutability andReversibleMutability
provideabetterdescriptionof attributesby characterisingtheirbe-
haviour overtime,thatis,whetherthey areallowedto changetheir
valueduring the concept lifetime (Mutability) andhow often the
changeoccurs Mutability Frequency), whetherthe change is re-
versible(ReversibleMutability), andwhattriggerschange (Event
Mutability);# Modality: thismeta-propertyis aqualitativedescriptionof thede-
greeof inheritability of aconceptpropertyby its subconcepts;# Prototypesand Exceptions: the metapropertiesPrototypical and
Exceptionalaim to describepropertiesthat are prototypical for
a concept, that is the propertiesthat obtain for the prototypical
(from acognitiveviewpoint,accordingto Rosch[30]) instancesof
a concept. Exceptionsarethosepropertieswhich canbeascribed
to aconcept although beinghighly unusual;# InheritanceandDistinction: inheritedmetapropertiesregardthose
propertiesthat hold becauseinheritedfrom an ancestorconcept,
they maybeoverruledin themorespecificconcept in orderto ac-
commodateinheritancewith exceptions.Distinguishingarethose
propertiesthatpermitus to distinguishamongsiblingsof a same
concept.In other words a distinguishingproperty � is a prop-
erty suchthat  %$%�&�����'�)(* %$%�,+������'� , that is thereis possibly
somethingfor which the property � holds,and thereis possibly
somethingfor which the propertydoesnot hold, and theseare
neither tautologicalnor vacuous [44]. Distinguishingproperties
might causedisjoint conceptsin the ontology’s taxonomicstruc-
ture.

Thesemetaproperties provide meansto distinguishbetweennec-
essaryand sufficient conditionsfor classmembership.Indeed,the
modalitymeta-propertyandthosedescribingthebehaviour overtime
permit the identificationof essential(or rigid) propertiesandneces-
sarypropertiesarethosethat areessentialto all instancesof a con-
cept.Prototypicalpropertiesare good candidatesto identify suffi-
cientconditions,asdiscussedin Section3.3.
Relationsbetweenconceptsaresupported by the model asare in-
stances.Finally, theontologymodelsupportsroles.Conceptsarealso
usedto representroles, which canbe thought of describingthepart
playedby a conceptin a context, (a morecompletediscussionon
roles is postponed to Section4.3). Rolesaredescribedin termsof
their context, andtheformal role relationshipholds,thatis, rolesare
relatedto conceptsby a ‘Role-of’ relations.
Thisontologymodelenrichesthetraditionalmodelproposed initially
by Gruber[12], in that it permitsthe characterisationof a concept
properties.From this viewpoint it shouldbe more expressive. The
solutionof addinginformationcharacterisingconceptpropertiesis
a controversialone.Although we do realisethat often it is not true
that‘more is better’,this work claimsthatanontologymodelwhich
include this type of property’s characterisationmight be helpful to
dealwith ontologyheterogeneityproblemsin two ways.On theone
handthe model complementsthe setof formal ontologicalproper-
ties proposedin [44], andcanguide in assigningtheseto concepts



in awaywhich dependson conceptdefinitionsin termsof attributes.
Thismightresultparticularlyusefulwhenknowledgeengineersneed
to assignformal propertiesto ontologiesthey have not designed.
On the otherhand,this conceptual model for ontologiesfacilitates
a betterunderstandingof theconceptsemantics.Currentlyontology
mergeis performedby handbasedon theexpertiseof theknowledge
engineersandon theontology documentation.Even in this casethe
ontologymodelwe proposecanprove usefulby providing a charac-
terisationof the properties,which canhelp to identify semantically
relatedterms.The following subsections describeall the metaprop-
ertiesfor attributesbut InheritanceandDistinction(whicharetrivial)
morein detail:

3.1 Behaviour over time

Themetapropertieswhich modelthebehaviour of theattributesover
timeare:

# Mutability, which modelsthe liability of a concept property to
change, a property is mutableif it canchangeduring theconcept
lifetime;# Mutability Frequency, which modelsthe frequency with which a
propertycanchange in a concept description;# EventMutability, which modelsthe reasonswhy a propertymay
change; Reversible Mutability, which modelsreversiblechanges
of theproperty.

Thesemetapropertiesdescribethe behaviour of fluents over time,
wherethe termfluent is borrowed from situationcalculusto denote
a propertyof the world that can changeover time. Modelling the
behaviour of fluentscorresponds to modellingthe changesin prop-
ertiesthat arepermittedin a concept descriptionwithout changing
theessenceof theconcept. Describingthebehaviour over time also
involvesdistinguishing propertieswhosechangeis reversible from
thosewhosechangeis irreversible.
Propertychanges over time are causedeither by the natural pas-
sageof timeor aretriggeredby specificeventoccurrences.Weneed,
therefore,to usea suitabletemporalframework that permitsus to
reasonwith time andevents.In [39] we choseEventCalculus[17]
to accommodatetherepresentationof changes.Eventcalculusdeals
with local event andtime periodsandprovides the ability to reason
aboutchange in propertiescausedby a specificevent andalso the
ability to reasonwith incompleteinformation.
Changesof propertiescanbemodelledasprocesses[35]. Processes
canbedescribedin termsof theirstartandendpointsandthechanges
thathappenin between.We candistinguishbetweencontinuousand
discrete changes, the former describingincremental changesthat
take placecontinuously while the latter describechangesoccurring
in discretestepscalledevents. Analogouslywecandefinecontinuous
propertiesto be thosechanging regularly over time,suchastheage
of a person,versusdiscretepropertieswhich arecharacterisedby an
eventwhichcausesthepropertyto change. If aproperty’s mutability
frequency is regular (thatis it changesregularly), thentheprocessis
continuous, if it is volatile the processis discrete,andif it changes
onceonly in theconceptlifetime, thentheprocessis considereddis-
creteandthetriggeringeventis setequal to time-point=T.
Any regularoccurrenceovertimecanbe,however, expressedin form
of an event, since most of the forms of reasoningfor continuous
propertiesrequirediscreteapproximations. Thereforein the ontol-
ogy modelwe presenthere,continuouspropertiesarethought of as
discretepropertieswheretheeventtriggeringthechangein property
is thepassingof time from the instant � to the instant � � . Eventsare

alwaysthought of aspointevents, andweconsider durational events
(eventswhich have a duration)asbeinga collectionof point events
in which the propertywhosemutability is modelledby the set of
metapropertieshold aslong astheevent lasts.

3.2 Modality: Weighing the validity of attributes’
properties

Thetermmodalityis usedto expresstheway in whichastatementis
trueor false,which is relatedto establishwhetherastatementconsti-
tutesa necessary truth andto distinguishnecessityfrom possibility
[18]. The term canbe extendedto qualitatively measurethe way in
whichastatementis trueby trying to estimatethenumberof possible
worlds in which sucha truth holds.This is theview we take in this
work, by denoting the degreeof confidence that we can associate
with finding a certainworld with the meta-property modality. This
notionis analogousto therankingsdefinedby GoldszmidtandPearl
[10]: ‘Each world is rankedbya non-negativeinteger - representing
thedegreeof surpriseassociatedwith findingsuch a world’.
Herewe usethe term modality to denotethe degreeof surprisein
finding a world wheretheproperty . holding for a concept / does
not hold for one of its subconcepts /�� . The additional semantics
encompassedin this meta-propertyis importantfor reasoningwith
statementsthat have differentdegreesof credibility. Indeedthereis
a differencein assertingfactssuchas‘Catsarepets’and‘All felines
arepets’,theformer is generallymorebelievable thanthe latter, for
which many morecounterexamplescanbefound.Theability to dis-
tinguishfactswhosetruth holdswith differentdegreesof strengthis
importantin orderto find whichfactsaretruein everypossibleworld
andthereforeconstitutenecessarytruth.
Theability to evaluatethedegreeof confidencein apropertydescrib-
ing aconcept is alsorelatedto theproblemof reasoningwith ontolo-
gies obtainedby merge. In sucha case,mismatchescan ariseif a
conceptinheritsconflicting properties.In orderto be ableto reason
with theseconflictssomeassumptions have to be made,concerning
onhow likely it is thatacertainpropertyholds.In caseof conflict the
property’s degreeof credibility canbe usedto apply someforms of
non monotonic reasoningor belief revision. For example,we could
rank thepossiblealternativeson thegroundsof thedegreeof credi-
bility following anapproachsimilar to theonepresentedin [10].

3.3 Prototypes, exceptions, and concepts

In order to get a full understanding of a conceptit is not sufficient
to list thesetof propertiesgenerallyrecognisedasdescribinga typ-
ical instanceof the concept but we needto considerthe known ex-
ceptions.In this way, we partially take the cognitive view of proto-
typesandgradedstructures,which is alsoreflectedby the informa-
tion modelledin themeta-propertymodality. In this view all cogni-
tive categoriesshow gradientsof membershipwhich describehow
well a particularsubclassfits people’s ideaor imageof thecategory
to which the subclassbelong[30]. Prototypesare the subconcepts
which bestrepresent a category, while exceptionsare thosewhich
areconsideredexceptionalalthoughstill belongingto the category.
In otherwordsall thesufficientconditionsfor classmembershiphold
for prototypes.For example,let us considerthe biological category
mammal: a monotreme(a mammalwho doesnot give birth to live
young) is anexample of anexceptionwith respectto thepropertyof
giving birth to live young.Prototypesdependon thecontext (that is
on the specificdomainthat is conceptualised); thereis no universal
prototypebut thereareseveralprototypesdepending on thecontext,



thereforea prototype for the category mammalcould be cat if the
context takenis thatof animalsthat canplay therole of petsbut it is
lion if theassumedcontext is animalsthatcanplay theroleof circus
animals. In the ontologymodelpresentedabove the context canbe
partially describedby the rolesapplicableto the conceptfor which
prototypicalandexceptionalpropertiesaremodelled.By providing
this examplewe do not meanthatany memberof thecategory ani-
malsthat canplay therole of petscouldbea prototype,but just that
prototypesvary if we vary the perspective we aretaking on the do-
main.Thereforethereis nouniqueprototypefor thecategory animal
but a number of prototypes,depending on how people conceptualise
thedomain,andthis impliesalsocontextual information,for exam-
ple whatis therole playedby animals.
Ontologiestypically presupposecontext andthis featureis a major
sourceof difficulty whenmergingthem,sinceinformationaboutcon-
text is not alwaysmadeexplicit.
Prototypesarealsoquite importantin that they provide a frameof
referencefor linguistic quantifierssuchastall, short, old, etc.These
quantifiersareusuallydefinedor at leastrelatedto the prototypical
instanceof the conceptwhich is beingdescribed,and indeedtheir
definitionchangesif we changethepoint of reference.
Thereforeincluding the notionsof prototypesand exceptionsper-
mits us to provide a frameof referencefor definingthesequalifiers
with respectto a specificconcept. For thepurposeof building ontolo-
gies,distinguishingtheprototypicalpropertiesfrom thosedescribing
exceptionsincreasesthe expressive power of the description.Such
distinctionsdo not aim at establishingdefault valuesbut ratherto
guaranteethe ability to reasonwith incompleteor conflicting con-
ceptdescriptions.
The ability to distinguishbetweenprototypesandexceptionshelps
to determinewhichpropertiesarenecessaryandsufficientconditions
for concept membership. In factapropertywhich is prototypicaland
thatis alsoinheritedby all thesubconceptsbecomesanaturalcandi-
datefor anecessarycondition.Prototypes,therefore,permittheiden-
tification of thesubconceptsthatbestfit the cognitive category rep-
resentedby theconceptin thespecificcontext givenby theontology.
On the otherhand,by describingwhich propertiesareexceptional,
we provide a betterdescriptionof the membershipcriteria in that it
permitsusto determinewhatarethepropertiesthat,althoughrarely
holding for that concept,arestill possiblepropertiesdescribingthe
cognitive category.
Prototypesand exceptionscan prove useful in dealing with con-
flictsarisingfrom ontologymerging.Whennospecificinformationis
madeavailableabout a conceptandit inheritsconflictingproperties,
thenwe canassumethattheprototypicalpropertieshold for it.

4 Discussion

The ontologymodelpresentedin previous sectioncould be imple-
mentedin any kind of ontology representationformalisms.In [39]
we presentedan implementationof the ontologymodelabove in a
frame-basedrepresentationformalism,thereforeattributeswerede-
scribedby associatingvaluesto slots,andtheirstructuraldescription
andmetapropertiesweremodelledby theslot’s facets.
By addingthemetapropertiesto theontologymodel,we provide an
explicit representationof the attributes’ behaviour over time, their
prototypicalityandexceptionality, and their degreeof applicability
to subconcepts.This explicit representationmay be usedto support
andcomplement the OntoCleanmethodology [44], in that they can
help in determiningwhich metapropertieshold for concepts,aswe
will illustratein remainderof this section.

Furthermore,theenrichedontology modelweproposeforcesknowl-
edgeengineersto makeontological commitmentsexplicit, thatis the
agreementon the meaningof the termsusedto describea domain
[13]. Knowledge sharingis possibleonly if the ontological com-
mitmentof the differentagentsis madeexplicit. Realsituationsare
information-richevents,whosecontext is sorich that,asit hasbeen
arguedby Searle[32], it cannever be fully specified.Whendealing
with realsituationsonemakesmany assumptionsaboutmeaningand
context [31], andthesearerarelyformalised.But whendealingwith
ontologiestheseassumptionsmustbeformalisedsincethey arepart
of the ontological commitmentsthat have to be madeexplicit. En-
richingthesemanticsof theattributedescriptionswith thingssuchas
thebehaviour of attributesover timeor how propertiesaresharedby
thesubconceptsmakessomeimportantassumptionsexplicit.
The enrichedsemanticsis essentialto reconcile casesof ontology
heterogeneity. By addinginformationon the attributeswe arealso
aiming to measurethe similarity betweenconcepts moreprecisely
andto disambiguatebetweenconcepts that seemsimilar while they
arenot.
A possibledrawbackof enrichingtheontology modelis thatknowl-
edgeengineersarerequireda deeperanalysisof a domain.We re-
alise that it makes the processof building an ontology even more
timeconsuming but we believe thata morepreciseontologicalchar-
acterisationof thedomainat leastbalancestheincreasedcomplexity
of thetask.Indeed,in orderto includetheattribute’s metaproperties
to theontologymodel,knowledge engineers needto have a full un-
derstandingnot only of the conceptthey aredescribing,but alsoof
the context in which the concept is used.Arguably, they needsuch
knowledge if they areto performthemodellingtaskthoroughly.
The evaluationof the cost to pay for this enrichedexpressiveness
andof thekind of reasoninginferencespermittedby this modelare
strictly dependenton thedomainandthetaskathand. Wecanimag-
ine that the automaticcoalescence of termsmight requiremoreso-
phisticatedinferenceswhosecost we cannot evaluatea priori . In
someothercases,the simplematchingbetweenproperties’charac-
tersiationsmight help in establishingor ruling out the possiblityof
semanticrelatedness.For example,two concepts are describedby
the samepropertiesbut with different characterisations,this might
indicatethattheconceptshave beenconceptualiseddifferently.

4.1 Identity

Theideaof modellingthepermittedchangesfor aproperty is strictly
relatedto the philosophical notion of identity. The metaproperties
modellingthebehaviour over timeare,thus,relevantfor establishing
the identity of concept descriptions[44], sincethe proposed ontol-
ogy modeladdresses the problemof modelling identity whentime
is involved,namelyidentity throughchange, which is basedon the
commonsensenotionthatanindividual mayremainthesamewhile
showing differentpropertiesat differenttimes[16]. The knowledge
model we propose explicitly distinguishesthe propertiesthat can
changefrom thosewhich cannot,anddescribesthechangesin prop-
ertiesthatan individual canbesubjectedto, while still beingrecog-
nisedasaninstanceof a certainconcept.
Prototypicalandexceptional propertiesandthemodality metaprop-
ertiesdescribinghow thepropertyis inheritedin thehierarchycanall
contribute to determinewhatarethenecessaryandsufficient condi-
tions for classmembership.Necessaryandsufficient conditionsare
ultimatelytheconditionsthatpermitus to definethepropertiescon-
stitutive of identity and to distinguishthemfrom thosethat permit
re-identification.



In orderto find suitableidentity criteria (which permit to identify a
concept), knowledge engineershouldlook atessentialproperty, that
is thosepropertieswhichhold for anindividual in every possiblecir-
cumstancein which the individual exists.It is importantto notethat
essentialpropertiesshouldalsobeintrinsic if they have to beusedto
determineidentity.
Also inheritanceanddistinctioncontributeto identify identitycondi-
tions,in thatidentity conditions have to belookedfor amongdistin-
guishingproperties.

4.2 Rigidity

Identity throughchangeis alsorelevantto determinerigidity. In Sec-
tion 2 a rigid propertyis definedas a propertythat is essentialto all
its instances.
In [38] we have relatedthe notion of rigidity to thoseof time and
modality; and,by including in our ontology modela meta-property
modalityandthat concerningthe behaviour over time, we canpre-
cisely identify rigidity in the subsetof the set of possibleworlds.
Indeed,sinceanontology definesa vocabulary, we canrestrictour-
selves to the set of possibleworlds which is definedas the set of
maximaldescriptionsobtainableusingthevocabularydefinedby the
ontology[26]. By characterisingtherigidity of apropertyin thissub-
setof possibleworlds we aim to provide knowledgeengineersthe
meansto reachabetterunderstanding of thenecessary andsufficient
conditionsfor the classmembership. However, this doesnot mean
that the rigidity of a propertydepends on any accountof whether
the propertyis usedto determineclassmembership or not. That is,
thefinal aim is to try to separatethepropertiesconstitutive of iden-
tity from thosethatpermitre-identification.Undertheassumptionof
restrictingthediscourseto this setof possibleworlds, rigid proper-
tiesarethosepropertieswhich areinheritedby all subconcepts,and
thuswhich have a certaindegreeof belief associatedwith themeta-
propertymodalityandthatcannot change in time.
It is importantto notethat,althoughin [39] we have modelledthis
informationasafacetwhichcantakevaluein theset 0 All, Almostall,
Most,Possible, AFew, Almostnone, None1 , thechoiceof suchasetis
totally arbitrary, andit wasmeantto be such.Knowledge engineers
shouldbe able to associatewith this meta-property eithera proba-
bility value,if they know theprobabilitywith which the propertyis
inheritedby subconcepts,or a degreeof belief (suchasa - -value,as
in [10], whichdependsona 2 whosevaluecanbechangedaccording
to the knowledgeavailable,thuscausingthe - function to change),
if theprobability functionis not available.

4.3 Roles dependence on identity and rigidity

Rigidity is not only centralin orderto distinguishnecessarytruthbut
alsoto recogniserolesfrom concepts.Thenotionof role is ascentral
to any modellingactivity asthoseof objectsandrelations.
A definition of role that makes use of the formal metaproperties
and includesalso the definition given by Sowa [34] is provided by
Guarinoand Welty. In [44] they definea role as: ‘ the properties
expressingthe part played by one entity in an event, often exem-
plifying a particular relationshipbetweentwo or more entities.All
rolesare anti-rigid and dependent... A property � is said to beanti-
rigid if it is not essentialto all its instances,i.e. �3��
4���5���������5���6�
 %$7���%+���������������� ...
A property � is (externally) dependent on a property 8 if, for all
its instances� , necessarilysomeinstanceof 8 mustexist, which
is not a part nor a constituentof � , i.e. 

���3�9�:���4�,�;$%<=87��<>�?(

+�.@��<4���4��(A+?/B��<4���4��� ’ , where .@��<4���'� denotesthat < is a part of �
while /B��<4���'� denotesthat < is a constituentof � . In otherwordsa
conceptis a role if its individualsstandin relationto otherindivid-
uals,and they canenteror leave the extent of the concept without
losing their identity. From this definition it emergesthat the ability
of recognisingwhetherrigidity holdsfor someproperty� is essential
in orderto distinguishwhether� is a role.
Rolesmay be ‘naturally’ determinedwhen social context is taken
into account, andthe socialcontext determinesthe way in which a
role is acquiredandrelinquished. For example,the role of Pres-
ident of the country is relinquisheddifferently depending
on thecontext providedby thecountry. So,for example,in Italy the
role may be acquiredandrelinquishedonly oncein the lifetime of
an individual, whereasif the country is the United Sates,the role
canbe acquiredandrelinquishedtwice, becausea presidentcanbe
re-elected.Socialconventions may alsodeterminethat oncea role
is acquiredit cannot be relinquishedat all. For example,the role
Priest in a catholiccontext is relinquishedonly with thedeathof
thepersonplayingtherole.Theability to distinguishrolesgivesalso
a deeper understanding of the possiblecontexts in which a concept
canbeused.Recognising a role canbeequivalent to defininga con-
text, andthe notion of context is the basison which prototypes and
exceptionsaredefined.
In [36] Steimanncomparesthe different characteristicsthat have
beenassociatedin the literaturewith roles.From this comparison
it emergesthatthenotionof role is inherentlytemporal,indeedroles
areacquiredandrelinquisheddependenton eithertime or a specific
event. For examplethe object person acquiresthe role teenager if
the personis between13 and 19 yearsold, whereasa personbe-
comesstudentwhenthey enroll for adegreecourse.Moreover, from
the list of featuresin [36] it derivesthat many of the characteristics
of roles are time or event related,suchas: an object may acquire
andabandon rolesdynamically, may play differentrolessimultane-
ously, or may play the samerole several time, simultaneously, and
the sequence in which rolesmay be acquiredand relinquishedcan
besubjectedto restrictions.Indeed, whatdistinguishesa role from a
concept,in the modellingprocess,is thata role holdsduring a spe-
cific spanof time in which somepropertyholds.For example,the
role ‘Student’ is applicableonly if the propertyof beingregistered
to a university holds.Therefore,the metaproperties that model the
behaviour over timepermitstherepresentationof theacquisitionand
relinquishmentof a role.
For theaforementionedreasons,waysof representingrolesmustbe
supportedby somekind of explicit representationof timeandevents.
Indeedtheproposed modelprovidesaway to modelrolesasfluents;
moreover, by modellingthereasonfor which a propertychange,we
provideknowledgeengineerstheability to modeltheeventsthatcon-
straintheacquisitionor therelinquishmentof a role.

5 A novel proposal to knowledge sharing

We have illustratedand discusseda ontology model which is en-
richedwith metapropertiesproviding a bettercharacterisationof at-
tribute.This characterisationis meantto helpin disambiguatinghet-
erogeneousconceptswhenmergingontologies,sinceweassumethat
twoconceptscanbematchedif :

# their descriptioncomprisesattributeswith matchingnames(syn-
onyms,thenameof anattributeis includedinto theother, etc.);# candidatematchingattributesaredescribedby matchingstructural
definitions(rangeof theattribute,cardinality, etc.);



# candidateC matchingattributesshow the samebehaviour in mod-
elling the concept,that is, the samemetaproperties hold for the
attributes.

Matchingsimilar conceptsplaysa pivotal role in thoseapproaches
to knowledgesharingwhich rely on sharedontologiesin order to
performthe translationbetweenconceptsin heterogeneousontolo-
gies.Usually, knowledgesharingis obtainedby creatingoneshared
ontologiesto which all the agentscommit. However, suchan ap-
proachhasbeencomparedto imposinga standardandsuffers from
the samedrawbacks [42]. In this paperwe propose a novel archi-
tectureto knowledge sharing,which is thought to be morescalable
andmaintainable,andthusoffersmoresupportto theSemanticWeb
paradigmwe have discussedin theSection1.
In contrastto an approachin which all resourcesshareone body
of knowledgeherewe proposeto locatesharedknowledge in mul-
tiple but smallersharedontologies.This approachis referredto as
ontology-basedresourceclustering,or shortly, ontology clustering
[33]. Resourcesno longer commit to one comprehensive ontology
but they areclusteredtogetheron the basisof the similarities they
show in the way they conceptualise the commondomain.Thus,we
have not one,but multiple sharedontologiesaggregatedinto clus-
ters.
Eachclustercanbe thought of asa micro-theorysharedby all the
agentsthatconformto thatcluster. Eachmicro-theoryis in turngen-
eralisedandthey areall eventually generalisedby thetop-level ontol-
ogy which is a standardupperontologylike theUpper-Cyc [20], so
asto obtainastructurethatis ableto reconciledifferenttypesof het-
erogeneity. We discussherethe feasibility of building sucha struc-
ture,andin particular, we have investigatedthe differentsimilarity
measuresthatcanbeusedin orderto build clustersof ontologies.
This approachis analogous to modularisationin softwareengineer-
ing andis thought of having thesameadvantages,which are:

# Modularity/separability: Eachclusteris like a modulein soft-
wareengineeringandrepresentsa specificaspectof thedomain;# Composability: Differentclustersarecomposed by generalising
the concepts that are commonto them.This is the first stepto
permitheterogeneousresourcesto communicate;# Scalability: The addition of a new resourceto the architecture
requiresonly theproductionof themapping rulesbetweentheon-
tologyassociatedto thenew resourceandtheclusterto whichthis
resourcebelongs;# Impact of change minimisation: If a concept descriptionneeds
to be changed only the mappingrules betweenthe updatedon-
tology andthe clusterto which this ontology belongsneedto be
rewritten;# Division of ontology authoring efforts: Ontologiescomposinga
clusterdo not needto be authoredby thesamepeopleaslong as
their conceptscanbemapped into theconceptsof thecluster.# Accommodation of diverse formalisations: A cluster can be
comprisedof ontologiesrepresentingdifferent formalisationsof
thesamedomain,suchasdifferenttemporalontologies.

This approachhasnot beentestedyet, thereforewe canonly foresee
somedisadvantages:

# Thereis no methodology which permit to build the structureof
ontologyclusters;# Complexity of thefirst orderclusteringproblemfrom themachine
learningviewpoint;# Lack of semantic-sensitive similarity measureto useto assessthe
similarity amongconcepts;

# Lackof toolsthatcansupportthebuilding of theontologyclusters.

5.1 Ontology clusters

Ontology clusteringis basedon the similarities betweenthe con-
ceptsknown to different resources,whereeachresourcerepresents
a different aspectof the domain knowledge. We assumethat the
ontologiesmodelling the resourcesare consistent,non-redundant,
andwell structured.We alsoassumethat the ontologieshave been
built with a methodology includinga formalevaluationstep,suchas
Methontology [11]. Wealsoassumethattheontologiesarespecified
by usinga languagethatconforms to theontology modeldescribed
above.
Sinceour resourcesneedto communicatein a sensiblefashionthey
areall supposedto be familiar with somehigh level concepts.We
grouptheseconceptsin an ontologyrootedat the top of the hierar-
chy of ontologies.As it describesconcepts that arespecificto the
domainandtasksathandwe referto thisontologyastheapplication
ontology(following VanHeijstandcolleagues,[41]. Theseconcepts
are reusablewithin the applicationbut not necessarily outsidethe
application.The concept definitionsin the applicationontology are
chosenfrom an existing top-level ontology, which in our caseis
WordNet [25]. The applicationontology thus containsa relevant
subsetof WordNetconcepts. For eachconcept oneor moresenses
are selected,depending on the domain. If some resourcesshare
conceptsthat are not sharedby other resourcesthen this leadsto
the creationof two (or more)sibling ontologies. Eachsibling is a
consistentextensionof its parentontology, but heterogeneous with
respectto its peers.We do not poseany restrictionto the typesof
heterogeneity thatcanaffect theontologies.
A clusteris referredto asa groupof consistent ontologies(possibly
one) in our structure and is describedby an ontology which is
shared by thosecomposingthe cluster. Both ontology clustersand
ontologieswithin eachclusterareorganisedin ahierarchicalfashion
where eachsibling cluster specialisesthe concepts that are in its
parent cluster. However, while multiple inheritanceis permitted
within the ontologies, it is not permitted between ontologies,
thereforethestructureof clustersis a tree.In thisstructure,thelower
level clustershave morepreciseconcept definitionsthanthe higher
levels,makingthelattermoreabstract.
Clustersare linked by restriction or overriding relations, that is
conceptsin oneparentontologyareinheritedby its childrencluster,
but overriding is permitted [42]. The link betweenthe resources
and the local ontologies,on the other hand, is different, and is a
mappingrelationasdefinedin [42], thatis a functionpreservingthe
semantics.
Figure1 illustratesan example of this structure,whereLocal Ont.
arethelocal ontologies.
Since different siblings can extend their parent cluster concepts
in different ways the clusterhierarchypermits the co-existenceof
heterogeneous(sibling)ontologies.Figure1 illustratesthisparticular
structure,where D:EGFIH>J7KML'�IN � , D?EOFPH%JQKML4�PN � , D:EOFPH%JQKML4�PN � , and
D:EOFPH%JRKML'�IN S are the local ontologies, T�U�H=VXWZY ��� is the ontology
sharedby the local ontologies 1 and 2. Analogously T�U�H=VXWZY � S is
the ontology sharedby the local ontologies 3 and 4. T�U�H=VGWZY ����� S
indicatesthe ontology sharedby the two below that is T�U�H=VGW[Y ���
and T�U�H=VGWZY � S , and in this example is the application ontology
itself, here denotedby Application Ontology. If someontologies
shareconcepts that arenot sharedby otherontologies thenthereis
a reasonto createa new cluster. A new ontology clusterhereis a
child ontologythatdefinescertainnew conceptsusingthe concepts



Figure 1. Thehierarchy of multiple sharedontologies

alreadycontainedin its parentontology. Ultimately, ontologiesare
likely to have conceptsthatarenot sharedwith any otherontology.
In our ontologystructure,we thencreatea separate,domain-specific
ontology as sub ontology of the cluster in which the ontology
resides.We refer to theseontologies as local ontologies.The local
ontologiesare the leaf nodesof our ontology hierarchy. In each
of the ontologies in the structure,concepts are describedin terms
of attributes and inheritancerelations holding in the ontology’s
structure.Conceptsarehierarchicallyorganisedandthe inheritance
(with exceptions) allows the passingdown of information through
the hierarchy. Multiple inheritanceis only permitted within the
ontologies.
Conceptsare expressedin terms of inherited and distinguishing
attributes.To thesetof inheritedattributesotherattributesareadded
to distinguishthespecificconcept from themoregeneralone.These
attributesdescribethe characteristicdifferencesbetweena concept
and its siblings. The distinguishing attributes are used to map
concepts from a sourceontology into a target ontology preserving
themeaningof theconcept.

5.2 Towards the semi-automatic construction of
ontology clusters

The structureof ontology clustersintroducedin Section5.1 builds
on theability of identifying similar conceptsin differentontologies.
Identifying which conceptsaresimilar andassessingthe degreeof
semanticsimilarity betweenthemare,thus,two essentialstepsin the
processof building ontology clusters.However, assessingthe sim-
ilarity betweenconceptsin diverseontologiesis not a trivial task
becauseof the heterogeneity that canaffect conceptsand their de-
scriptions.
Theproblemof assessingsemanticsimilarity hasreceivedmuchat-
tention in the artificial intelligencefield [27], [3]. In theseefforts,
‘semanticsimilarity’ refersto a form of semanticrelatednessusinga
network representation. In particular, Radaandcolleagues [28] sug-
gestthat similarity in semanticnetworks canbe assessedsolely on
the basisof the IS-A taxonomy, without considering othertypesof
links. Oneof the easiestway to evaluatesemanticsimilarity in tax-
onomiesis to measurethedistancebetweenthenodescorresponding
to theitemsbeingcompared, thatis theshorterthepathbetweenthe
nodes,themoresimilarthey are.Thiswayof assessingsemanticsim-
ilarity might be useful for semanticnetworks,however hasthe ma-
jor drawbackof computing thesemanticdistancebetweenconcepts

which have a commonancestor, and thus it is not suitablefor as-
sessingthesimilarity of heterogeneouslocal ontologiesthathave to
beclustered.Moreover, this methoddoesnot fully exploit thestruc-
tureof theconceptrepresentation,sinceit doesnot take into account
theconcept descriptionin termsof attributes,relationships,etc.thus
makingit moresensitive to synonym andhomonym heterogeneity.
In fact, only few efforts are addressingthe problemof facilitating
the(semi)automaticreconciliationof differentontologies,andthey
have beenmainly developed for merging differentontologies.Rec-
onciling differentontologies involvesfinding all theconcepts in the
ontologieswhicharesimilar to oneanother, determinewhatthesim-
ilarities are,andeitherchangethe sourceontologiesto remove the
overlapsor recorda mappingbetweenthe sourcesfor future ref-
erence[9]. Similarity in theseefforts is mainly lexical and not se-
mantic.Most systemsfor ontology merging rely on dictionariesto
determinesynonyms,commonsubstringsin theconceptnames,and
conceptswhosedocumentationsharemany unusualwords.They do
not take into accounttheinternalstructureof conceptrepresentation
andthestructureof theontology.
Theontologymerging environmentChimaera[24] partially consid-
ers the ontology structurein that it assesssimilarity betweencon-
ceptsalsoon thegroundsof thesubclass-superclassrelationshipand
theattributesattachedto theconcept.Anchor-PROMPT [9] reconciles
ontologiesby finding matching terms, that is, termsfrom different
sourceontologiesthat representsimilar concepts.Anchor-PROMPT

assessboth lexical andsemanticmatchesexploiting thecontentand
structureof the sourceontologies(namesof classesandslots,sub-
classes,superclassesdomainsandrangesof slotvalues,etc.),andthe
user’s actionsin merging theontologies.However, themethodused
in Anchor-PROMPT is basedon the assumptionthat if the ontolo-
giesto be mergedcover the samedomain,the termswith the same
nameare likely to representthe sameconcepts.Suchan assump-
tion is a good rule of thumb,but doesnot take into accountcasesof
heterogeneity amongthesourceontologies.In fact,similar concepts
might have differentnames,andbedescribedby attributeswith dif-
ferentnames.Moreover, thehierarchicalstructureof the sourceon-
tologiesmight be different, thusa certainsubclass-superclassrela-
tionshipholdingin onesourceontologymightnothold in theothers.
The ontologymodelwe have presentedhasbeeninspiredby a par-
ticularapproach to assesssemanticsimilarity [29], wheretheauthors
proposea methodfor assessingsemanticsimilarity which takesinto
accountthedifferencesin thelevel of explicitnessandformalisation
of thesourceontologiesspecifications.Thismethoddoesnot require
an a priori sharedontology, andthusmakesit suitablefor building
the ontology clusters.The similarity betweenconcepts in different
sourcesontologiesis assessedby a matchingprocessover synonym
sets(thusaccountingfor lexical similarity), semanticneighborhood,
anddistinguishingfeatures.Theuseof distinguishingfeaturesto as-
sesssimilarity enablestheauthorsnot only to handle binarysimilar-
ity measures,typicalof lexical similarity (two termsareeithersimilar
or not), but alsoto consider gradientsof similarity. This is basedon
the assumptionthat, in order for concepts to be consideredsimilar,
they shouldpresentsomecommonfeatures.By assessingsimilar-
ity on the groundsof the distinguishingandcommonfeatures,this
methodaccounts for thoseproblemof synonym termsheterogeneity
thatcanaffect bothconceptsandattributes.
In [29] the authorsarguethat from an analysisof differentfeature-
basedmodelsfor semanticsimilarity hasemerged the necessityto
accountfor thecontext dependenceof therelative importanceof dis-
tinguishingfeaturesandasymmetriccharacteristicof similarity as-
sessments.



Themethodproposedby RodŕiguezandEgenhoferis basedonTver-
sky [40] matchingprocess,whichproducesasimilarity valuethatde-
pendson both commonanddifferentcharacteristic.In orderto take
into accountcommonanddistinguishingfeaturesinto thematching
process,theusualontologymodelis extendedto includealsoanex-
plicit specificationof the features.By featuresthe authorscollec-
tively meanthesetof functions,partsandattributes. Functionsrep-
resentthe intendedpurposeof the instancesof theconceptthey de-
scribe.For examplethe function of a university is to educate.Parts
are the structuralelementof a concept, and they do not necessar-
ily coincidewith thoseexpressingthepart-of relationship,while at-
tributescorrespond to additionalcharacteristicsof a concept thatare
not consideredto beneitherpartsnor functions.
It couldbearguedthatenrichingtheconceptstructureby distinguish-
ing betweenparts,functionsandattributescangive riseto thearticu-
lationof new typesof mismatchesassociatedwith theclassifications
of features.However, theauthorsclaimthattheadvantagesof enrich-
ing theconceptstructure,namelya matchingprocessthatcompares
corresponding characteristicsof concepts, and the ability to distin-
guishdifferentaspectsof thecontext, modelledby thefeatures,over-
weightsthepossibledisadvantagesderiving from ahighernumber of
mismatches.
Webelieve thatRodŕiguezandEgenhoferapproachto assessseman-
tic similarity risesan importantissue,which is that, in order to be
able to have a betterassessment of semanticsimilarity (that gives
alsogradientsof similarity andnot only a binary function) it is nec-
essaryto provide aricherdescriptionof thestructureof theconcepts
in thesourceontologies.However, webelieve thatthedistinguishing
featuresproposed in [29] overlapwith the semanticsalreadymod-
elledby somerelationships,suchaspart-of.

6 Conclusions

Sharingontologiesindependently developedis a burning issuethat
needsto be solved.This paperpresentsa setof metapropertiesde-
scribingconceptcharacteristicfeatures(attributes)that canbe used
to support both the processof building correctontologies(by com-
plementingandsupportingtheformalontologicalanalysisperformed
by theOntoCleanmethodology [44]) andthedisambiguationof cases
of ontologyheterogeneity. Formalontologicalanalysisis usuallyde-
mandingto performandwebelieve thatthesetof metapropertiesfor
attributeswe proposecansupportknowledge engineersin determin-
ing the metapropertiesholding for the conceptsby forcing themto
make theontologicalcommitmentsexplicit.
Themetapropertieswe propose,namelyMutability, Mutability Fre-
quency, Reversible Mutability, Event Mutability, Modality, Proto-
typicality, Exceptionality, InheritanceandDistinctionencompassse-
manticinformationaimingto characterisethebehaviour of properties
in theconceptdescription.We have arguedthatsucha precisechar-
acterisationmight help to disambiguateamongconceptsthat only
seemsimilar, andin turn cansupportmappingsacrossthe structure
of multiple sharedontologiesthat we have devisedasalternative to
thecurrentapproachesto knowledgesharing.Weclaimthatthischar-
acterisationof theconcept propertiesis alsovery importantin order
to provide a precisespecificationof the semanticsof the concepts.
Suchcharacterisationis essentialif we wantto performa formal on-
tologicalanalysis,in whichknowledgeengineerscanpreciselydeter-
mine which formal tools they canusein orderto build an ontology
whichhasataxonomythatis cleanandnotvery tangled.Thenovelty
of thischaracterisationis thatit explicitly representsthebehaviour of
attributesovertimeby describingthepermittedchangesin aproperty

thatdescribeaconcept.It alsoexplicitly representstheclassmember-
shipmechanismby associatingwith eachattribute(representedin a
slot)aqualitativequantifier representing how propertiesareinherited
by subconcepts.Finally, themodeldoesnot only describetheproto-
typicalpropertiesholdingfor aconceptbut alsotheexceptionalones.
By providing thisexplicit characterisation,weareaskingknowledge
engineersto make morehiddenassumptionsexplicit, thusproviding
a betterunderstandingnot only of thedomainin general,but alsoof
therole aconcept playsin describinga specificdomain.
This paperhasalsopresenteda structureof multiple sharedontolo-
giesfor knowledgesharing.Although this is still on goingresearch,
we believe thatsucha structurehasadvantages over theothersespe-
cially if consideredin thecontext of anopenenvironment suchasthe
Internet.Webelieve thatthiskind of modularisationis thekey to ap-
plicationswhereintelligentagents(whoseknowledgeis represented
by ontologies)interoperatedynamically, by agreeingon thevocabu-
lary (andsharedknowledge)whichis closerto theconceptualisations
of only thoseagents which are involved in the interoparation and
not of all agentsthatcanbepotentiallyinvolved.We realisethatwe
have not investigatedin sufficient detail the issuesrelatedto build-
ing suchstructurein an efficient andcosteffective manner, andthe
relationshipsexisting within andbetweentheontologiescomposing
thestructure(both topicsarefuture researchdirectionsthatwe will
consider, seenext section);but we think thatwe have laid the basis
for futureresearch.

7 Future work

Futureresearchon ontologyclustersconcernsthe relationshipsbe-
tweenandwithin ontologies,which needto beclarifiedwith respect
to previous work presentedin the literature.Two candidate setsof
relationshavebeenidentified,theseareBorst’sontology projections:
includeandextend,includeandspecialise,includeandmap[2]; and
Visserand Cui’s ontology relations: subset/superset,extension, re-
striction,mapping[42]. Anotherissueemergingfrom thisresearchis
how knowledgesources(or agents),reachconsensus on which clus-
ter in the structureof multiple sharedontologies they have to join
in orderto achieve interoperation.This kind of consensusshouldbe
basedon suitablesimilarity measure,that take into accountthe se-
manticsof theconcepts involved,andthesemanticsof their proper-
ties.Thereareno similarity functionsof this type,thatwe areaware
of, andit wouldbeinterestingto investigatecomplex similarity mea-
sures,suchas thosefor symbolic objects[4]. We are particularly
interestedin investigatingsimilarity functionsthat make useof the
extra semanticsprovided by the conceptual metamodel,in a way
analogous to the similarity measurepresentedin [29]. Thesekind
of similarity functionsusually provide a measureof the degreeof
similarity amongdifferentconcepts,andnot just a binary measure
thatindicateswhethertwo conceptsaresimilaror not.
From the viewpoint of the ontology conceptual metamodel, future
work includeunderstanding thekind of inferencesandthereasoning
mechanismsthataresupportedby theadditionalsemanticsincluded
in the ontologymetamodel.In order to supportcomplex reasoning
inferences,wewill considertheimplementationof themetamodelin
somedescriptionlogic’s basedlanguage, which shouldprovide the
capabilitiesto performthe inferences.This model is alsoquite de-
mandingto use,future work shouldconcentratealsoon identifying
thekinds of applicationsthatcanbenefitfrom theexpressive power
providedby this model.
In order to test the effectivenessof the conceptual metamodel, we
areplanningto includethe metaproperties in tools to build ontolo-



giessuch\ asWebOde[1] or Prot́eǵe [7].

Acknowledgements

Theauthorswish to thankAsuncíon Gómez-Ṕe. ThePhDpresented
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