
Towards a Modularized Semantic Web

Raphael Volz, Daniel Oberle
Institute AIFB,

University of Karlsruhe,
76128 Karlsruhe, Germany

Alexander Maedche
FZI Forschungszentrum Informatik

University of Karlsruhe,
76131 Karlsruhe, Germany

ABSTRACT
Modularization is an established principle in software engineering.
It has also been considered as a core principle when developing the
World Wide Web. Along the same lines, the Semantic Web has to
be based on modularization principles. This paper provides a first
step into a modularized Semantic Web. It provides an elaborated
and carefully evaluated view on existing technologies for naming,
referring and modularization in the Web. Based on this analysis
we propose means to import and include (parts) of RDF models by
extending the RDF(S) meta-model, introducing new primitives for
modularity.

1. INTRODUCTION
One general principle of powerful software systems is that they

are built of many elements. Thus, when designing a system, the
features of a system should be broken into relatively loosely bound
groups of relatively closely bound features. Power comes from the
interplay between the different elements. This interplay results in
essential interdependencies and increases the ability to reuse and
modify. Hence, future changes and consecutive testing can be lim-
ited to the relevant module. This will allow other people to inde-
pendently change other parts at the same time. Modular design
hinges on the simplicity and abstract nature of the interface defi-
nition between the modules. Notably, modularity was one of the
core design goals for the World Wide Web.1. Along the same lines,
the Semantic Web will not consist of neat ontologies that expert AI
researchers have carefully constructed. Instead of a few large, com-
plex, consistent ontologies that great numbers of users share, one
will see a great number of small ontological elements consisting
largely of pointers to each other [1].

We agree with this view and carefully evaluate existing technolo-
gies for naming, referring and modularization in the Web. We show
that these technologies do not suffice for the task of building a truly
modular Semantic Web. Based on our analysis we propose means
to support this vision by extending the RDF meta-model, introduc-
ing new primitives for modularity. Namely, means for import and
inclusion of (parts) of other RDF models. Additionally, we present
�
see http://www.w3.org/DesignIssues/Principles.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission by the authors.
Semantic Web Workshop 2002 Hawaii, UAS
Copyright by the authors.

an architectural setting for tools implementing this kind of modu-
larization and finally give a set of engineering guidelines for build-
ing modularized Semantic Web applications on the basis of these
novel means.

The structure follows the outlined procedure, thus section 2 pro-
vides an elaborated overview and evaluation of technologies rel-
evant for modularization. Section 3 presents requirements for a
modular Semantic Web and crafts an extension of the RDF meta-
model to reflect these requirements. Section 4 provides reference
applications using modularized ontologies and the aforementioned
engineering guidelines for modularized Semantic Web applications
from an ontology building perspective. Before we conclude and re-
capitulate our contribution in section 6, we give a short survey on
related work in section 5.

2. TECHNOLOGIES
This section provides an elaborated overview and evaluation of

technologies providing modularization technology for the Web in
general. Our overview is roughly separated into referring technolo-
gies and modularization technologies defined for XML.

2.1 Referring technologies
Links between Web resources are commonly called arches. Us-

ing or following a link for any purpose is called traversal. The
traversal’s origin is called the starting resource and the destination
is the ending resource.

HTML Arches. present the simplest and oldest mechanism for
referring in the Web. They provide simple outbound links between
different resources which can be named for display purposes. Links
to points inside other HTML documents are implemented using
URI fragments.

XLink. [3] presents the referring technology adopted for XML
and extends HTML’s possibilities tremendously. Xlink allows to
specify binary relations as found in RDF (see figure 1).

Additionally, it allows to link sets of elements with another by
using arcs. Each set is qualified using a string label, all set ele-
ments use xlink:label with the same attribute value to specify set
membership. In figure 2 for example, a one-to-many link has been
generated, something neither possible in HTML nor in RDF. Inter-
esting is also that XLink permits both inbound and outbound links.
An inbound link is constituted by an arc from an external resource,
located with a locator-type element, into an internal resource and is
one possibility for modularity in XML.

Arc-type elements may have traversal attributes, one category
are behavioral attributes which allows a certain kind of modularity,
namely presentation time inclusion. If the attribute show=”embed”

<!-- A local resource -->
<actress xlink:label="maria">

<firstname>Brigitte</firstname<
<surname>Helm</surname<

</actress>
<!-- A remote resource -->

<movie xlink:label="metropolis"
xlink:href="metropolis.xml"/>

<!-- An arc that binds them -->
<acted xlink:type="arc" xlink:from="maria"

xlink:to="metropolis"/>

Figure 1: Binary links with XLink

<divas xlink:title="German divas 1920s">
<actress xlink:label="maria">

<firstname>Brigitte</firstname>
<surname>Helm</surname>

</actress>

<movie xlink:label="silent" xlink:title="Metropolis"
xlink:href="metropolis.xml"/>

<movie xlink:label="silent" xlink:title="Alaraune"
xlink:href="alaraune.xml"/>

<acted xlink:type="arc" xlink:from="maria"
xlink:to="silent"/>

...
<divas>

Figure 2: N-ary links for XLink

is stated for an Xlink arc, the referenced resource is embedded into
the current document at interpretation-time (this is kı́nd of a lazy-
load). The additional attribute actuate controls the event when the
arc should be traversed2.

This kind of lazy evaluation is problematic with regard to on-
tologies. As ontologies provide logical theories, “all knowledge”
of any inferencing or deduction task must be gathered a-priori to
ensure logical correctness. Additionally, the handling of an XLink
is left to the application3

2.2 Inclusion technologies
In this subsection we focus on the modularization technologies

recently proposed for XML. These technologies may be distin-
guished into:

1. External parsed (or text) entities, as defined by the XML 1.0
Recommendation [2]

2. XLinks (with embed behavior), as defined by the W3C XLink
Working Draft.

3. XInclusions [10], as defined by the W3C XInclusion Work-
ing Draft.

External entities. An external parsed entity is declared in an
XML (or SGML) document by an entity declaration without a nota-
tion. A reference to a parsed entity may occur practically anywhere
in a document, between elements or within them, using the syntax
&entity;. The entity itself may contain text, complete elements, or
a mixture of them. It may not contain any declarations. XML does
require that entity content be well-formed XML. In other words,
�
traversal can take place onload or onactivate�
“...embedding affects only the display of the relevant resources; it

does not dictate permanent transformation of the starting resource”
[3]. If for example the ending resource is XML, it is not parsed as
if it was part of the starting resource. Thus, embedded functionality
of XLink is aimed at display behavior and not at true inclusion.

one cannot have an element start tag in the document whose end
tag is in a referenced entity, or vice versa. This is necessary so
that a document may be checked to be well-formed even if the en-
tity references are not replaced. This technology is not suitable for
the Semantic Web, as the declaration of external entities requires
DTDs. Additionally, the DOCTYPE declaration requires that the
document element must be named, which is a unnecessary require-
ment.

XInclude [10]. is a processing model and syntax for general
purpose inclusion. Inclusion is accomplished by merging a number
of XML Infosets into a single composite Infoset. This implies that
such processing occurs b̈elowẗhe application level and without its
intervention. Thus, the XInclude processor is responsible for vali-
dating the result infoset. The merging of infosets possibly leads to
ID/IDREF conflict resolution and namespace preservation issues,
not addressed by the working draft. Furthermore, the possibility
to use XPOINTER range references exists, which makes maintain-
ability questionable again.

XML Schema. The need for inclusion was also recognized for
XML Schema. Due to the non-existence of general solutions at the
time of creation a proprietary solution was sought. XML Schema
[11] provides means to export certain elements of the schema for
public usage. Additionally, facilities for importing elements from
other schemas and a mechanism to completely include a referenced
schema exist. This inclusion is not made visible to agents consum-
ing the composite schema. This raises severe digital rights prob-
lems as the original provider is not recognizable anymore. The idea
of defining a set of exported elements, stemming from experience
with programming languages and distributed database schema def-
inition systems, does not make sense for the Semantic Web. This
export set suggests that there is value in distinguishing the inter-
nal implementation of a module from the features or interfaces that
it provides for reuse by others4, which is surely not the intent for
ontologies.

3. EXTENDING RDF
This section is separated into two main parts. First, we collect

different requirements for enabling a modularized Semantic Web.
Second, these different requirements serve as input for defining a
language extension to RDF that enables a modularized Semantic
Web that recognizes the means offered by existing technologies.

3.1 Requirements

3.1.1 Import mechanisms
RDF only supports binary named links between different resources.

While this is sufficient for schemaless metadata it only presents
the basic technologies for conceptual relations, viz. the means for
references between concepts in ontologies, but no means exist to
determine whether referenced entities are actually defined and con-
ceptually valid structures.

For example (see figure 3) the property hasFather in the peo-
ple ontology is supposed to be a sub property of hasParent, which
was defined in the animal ontology. Neither can one assure that
hasParent exists nor that it is a property6.
�
[11] : “For example, a schema defined to describe an automobile

might intend that its definitions for ’automobile’ and ’engine’ be
building blocks for use in other schemas, but that other constructs
such as ’screw’ or ’bolt’ be reserved for internal use.”.�
Thus, the people ontology cannot be validated to be correct RDF

Animal ontology (available at &animal; 5):

<rdf:RDF
xmlns="&animal;#"
xmlns:rdf="&rdf;#"
xmlns:s="&s;#">

<s:Class rdf:about="#Animal"/>
<s:Class rdf:about="#Male">

<s:subClassOf rdf:resource="#Animal"/>
</s:Class>
<s:Class rdf:about="#Female">

<s:subClassOf rdf:resource="#Animal"/>
</s:Class>
<s:Class rdf:about="#Human">

<s:subClassOf rdf:resource="#Animal"/>
</s:Class>
<s:Class rdf:about="#Lion">

<s:subClassOf rdf:resource="#Animal"/>
</s:Class>

<rdf:Property rdf:about="#hasParent">
<s:domain rdf:resource="#Animal"/>
<s:range rdf:resource="#Animal"/>

</rdf:Property>

<rdf:Description rdf:about="#Marjan">
<rdf:type rdf:resource="#Lion" />

</rdf:Description> </rdf:RDF>

People ontology

<rdf:RDF
xmlns="&people;#"
xmlns:rdf="&rdf;#"
xmlns:s="&s;#">

<s:Class rdf:about="#Man">
<s:subClassOf rdf:resource="&animal;#Human"/>
<s:subClassOf rdf:resource="&animal;#Male"/>

</daml:Class>

<s:Class rdf:about="#Woman">
<s:subClassOf rdf:resource="&animal;#Human"/>
<s:subClassOf rdf:resource="&animal;#Female"/>

</s:Class>

<rdf:Property rdf:about="#hasFather">
<s:subPropertyOf

rdf:resource="&animal;#hasParent"/>
<s:range

rdf:resource="&animal;#Male"/>
</rdf:Property> </rdf:RDF>

Figure 3: Two Example RDF ontologies

Thus, in order to enable conceptual references across RDF mod-
els in a Web-like manner, we need a means to import entities that
are defined somewhere else to take RDF out of ontological opaque-
ness. Clearly such an import primitive must locate the point of im-
port. The established URIs without fragments suffice for this task,
of course. We do not consider URNs here as they are not widely
used.

3.1.2 Inclusion mechanisms
Inclusion mechanisms are different from import mechanisms with

respect to the extension: Here, the complete RDF model is included
whereas only specific parts are included with respect to importing.

Inclusion allows the decomposition of ontologies into individual
parts and should therefore be a requirement for the Semantic Web,
as it minimizes the effort to construct new ontologies. First, the
overall effort required for the engineering of ontologies can be split
among many shoulders. Second, decomposition not only simplifies
construction and maintenance of ontologies, but also facilitates that

Schema using tools such as the validating RDF parser [12]

ontologies become logically cohesive. Therefore leading to loosely
coupled modules that denote single abstractions - a requirement for
reusability in other applications.

3.1.3 Digital rights
It is clear that when using modularization in the Semantic Web

one has to provide means for copyright management. This is needed
in order to know who provided which information and created which
artefact.

3.2 RDF Language Extension

3.2.1 rdfm:include
We propose to extend the basic RDF vocabulary by a new prop-

erty rdfm:include (cf. figure 4) for the inclusion of another RDF
model into the calling RDF model. This primitive can be under-
stood by RDF parsers and specialized processors (working after
parse time).

<rdf:RDF
xmlns="&rdfm;#"
xmlns:rdf="&rdf;#"
xmlns:s="&s;#">

<!-- Source tagging -->

<rdf:Property rdf:ID="source">
<s:comment>
Identifies the source URI of a statement
</s:comment>
<s:domain rdf:resource="#Statement" />

</rdf:Property>

<!-- Inclusion mechanism -->

<rdf:Property rdf:ID="include" />

<!-- Import mechanisms -->

<rdf:Property rdf:ID="importFrom" />

<rdf:Property rdf:ID="transitiveImportFrom">
<s:subPropertyOf rdf:resource="#importFrom"/>

</rdf:Property>

<rdf:Property rdf:ID="schemaAwareImportFrom">
<s:subPropertyOf rdf:resource="#transitiveImportFrom"/>

</rdf:Property>
</rdf:RDF>

Figure 4: Modular RDF: the extended RDF vocabulary
7

This property could be used in any RDF model to include the
statements declared in another RDF model. Thus, the following
statement would include the content of the animal ontology (cf.
figure 3) in another RDF model:

<rdf:Description rdf:about="">
<rdfm:include rdf:resource="&animal;"/>

</rdf:Description>

To meet the aforementioned requirement of digital rights, all
statements found in the included RDF file have to be identified
with their source. This can be implemented by tagging statement
with their respective source URIs. Tagging statements can only be
achieved using reification. Thus, we need to augment the RDF vo-
cabulary (cf. figure 4) with a new property rdf:source that can only
be validly applied to Statements 8.
�
The reader may note that multiple source tags can be defined if

identical statements occur in different source files

Thus, for each statement in an included RDF model, new reified
statements are added to the calling RDF model. Consider the fol-
lowing statement in the animal ontology (cf. figure 3) for example

<s:Class rdf:about="&animal;#Animal"/>

This statement would be added in reified and tagged form, using
the following set of statements:

<rdf:Description>

<rdf:subject rdf:resource="&animal;#Animal" />

<rdf:predicate
rdf:resource="&rdf;#type"/>

<rdf:object rdf:resource=&s;#Class"/>

<rdf:type
rdf:resource="&rdf;#Statement"/>

<rdfm:source rdf:resource="&animal;"/>

</rdf:Description>

3.2.2 rdfm:import
Notably, rdfm:include includes all statements found in another

RDF file. This does not meet the demands of an import mechanism,
which has to work on a lower granularity. To meet this demand, the
RDF vocabulary has to be augmented with several new primitives
that provide:

� A means to import statements about a given resource
� A means to transitively import statements about a given re-

source
� A means to schema-aware import of statements

rdfm:importFrom. In the simplest case only all statements on
a given resource should be imported into the calling RDF model.
We introduce a new property rdfm:importFrom to achieve this (cf.
figure 4). The subject of a statement using the property9 speci-
fies the resource which should be imported into the calling RDF
model whereas the object of the statement specifies the source RDF
model, where statements about the subject should be taken from.
Imported statements are represented in reified form with additional
source identification to meet the digital rights requirement.

For example, the following statement

<rdf:Desciption rdf:about="&animal;#Male">
<rdfm:importFrom rdf:resource="&animal;" />

</rdf:Description>

would add all statements about the resource Male from the ani-
mal ontology to the calling RDF model. In our example only one
statement is found about Male, namely that it is a class. Hence,
only one statement would be added:

<rdf:Description>

<rdf:subject rdf:resource="&animal;#Male"/>

<rdf:predicate
rdf:resource="&rdf;#type" />

<rdf:object
rdf:resource="&s;#Class"/>

<rdf:type
rdf:resource="&rdf;#Statement"/>

<rdfm:source rdf:resource="&animal;"/> </rdf:Description>

�
These are statements of the following form: (resource,

rdfm:importFrom, source)

rdfm:transitiveImportFrom. In many applications the import-
From is not sufficient as we can only embed the first level of re-
source references using importFrom. Consider the following ex-
ample:

<rdf:Desciption rdf:about="&animal;#hasParent">
<rdfm:transitiveImportFrom

rdf:resource="&animal;"/>
</rdf:Description>

Here, the importFrom operation would only add statements that
have hasParent as a subject, viz. the information that hasParent is
a property whose domain is a resource Animal and whose range is
again Animal. No information about Animal, e.g. that it is a class,
would be included by importFrom.

The operation transitiveImportFrom targets this issue by addi-
tionally importing all statements on referenced resources. Thus,
for the given example the following set of statements would addi-
tionally be pasted into the calling RDF model10:

<rdf:Description>

<rdf:subject rdfm:resource="&animal;#Animal"/>

<rdf:predicate
rdf:resource="&rdf;#type"/>

<rdf:object
rdf:resource="&s;#Class"/>

<rdf:type
rdf:resource="&rdf;#Statement"/>

<rdfm:source rdf:resource="&animal;"/>

</rdf:Description>

rdfm:schemaAwareImportFrom. One can easily see that even
transitiveImportFrom is not sufficient to take RDF out of ontolog-
ical opaqueness. For example if one transitively imports all infor-
mation on the lion Marjan11, of course all information on Marjan
as well as all super classes of Lion are imported into the calling on-
tology but not the properties that are valid for any of these classes,
thus another primitive is required to take the semantics of a RDF
schema into account. Eventually

<rdf:Desciption rdf:about="&animal;#Marjan">
<rdfm:schemaAwareImportFrom
rdf:resource="&animal;" />

</rdf:Description>

would therefore add all statements on the property hasFather.
Of course, the implementation of schemaAwareImportFrom is the
most complex operation a processor has to fulfill.

Discussion. The following points are finally important to men-
tion with respect to our presented proposal for extending RDF with
import facilities:
�	�

Additionally to the statements about hasParent, which are not
shown for sake of brevity.�
�
Marjan is the lion who survived years of conflict and ill-treatment

in Afghanistan and died at Kabul zoo. The 25 year-old beast who
was half-blind, lame and almost toothless died of old age only
weeks after an international animal rescue mission arrived to help
him. The only lion in Kabul zoo, he was a gift from Germany in
more peaceful times 23 years ago, and became something of a sym-
bol of survival against the odds. Among his reported exploits are
killing and eating a Taleban fighter who climbed into his enclosure
to prove his bravery. The man’s brother attacked the lion with a
grenade in revenge, leaving it lame and blind in one eye.

� It does not rely on XInclude, as this approach is not appli-
cable for RDF. The proposed merging of infosets would lead
to two � RDF �� /RDF � elements, which is incompatible
with the RDF syntax specification. Furthermore, the source
identification is not possible, as inclusion is invisible to the
document consumers.

� The operation rdfm:include and the rdfm:importFrom prop-
erty family are left in the RDF model. As statements from
modules are only inserted at runtime this is not problematic.
It is also important information for consuming agents that are
interested in the way the viewed information is assembled.

� Modularization operations are generally transitive. Cyclic
references are allowed. The usefulness of cyclic references
has been shown in [4]. Even if cyclic references suggest that
modules should be merged. We still keep the ability for orga-
nizational purposes. Infinite recursion can be avoided using
simple means.

4. APPLICATIONS AND GUIDELINES
In this section we introduce applications where the foundations

of our conceptual framework for modularizing RDF-based models
have been successfully used. Additionally, we provide engineering
guidelines for modularized ontologies.

4.1 Re-engineering Existing Resources
Experiences have shown that when developing an ontology-based

system, conceptual resources, e.g. in the form of thesauri, lexical-
semantic nets, related domain and application ontologies are al-
ready available. Furthermore, it has been seen that for the devel-
opment of ontology-based information systems typically only parts
of existing resources are to be used. Therefore, in our approach,
we convert existing resources onto a common representation for-
mat, namely RDF-Schema. Based on this representation we gen-
erate application specific modules by applying bottom-up ontology
pruning techniques based on a given set of text relevant for a spe-
cific domain [7].

Figure 5: Applying Ontology Pruning to create modules

We take the assumption that the occurrence of specific concepts
and conceptual relations in web documents are vital for the decision
whether or not a given concept or relation should remain in an on-
tology. We take a frequency based approach determining concept
frequencies in a corpus. Entities that are frequent in a given corpus
are considered as a constituent of a given domain. To determine
domain relevance ontological entities retrieved from a domain cor-
pus are compared to frequencies obtained from a generic corpus.

The user can select several relevance measures for frequency com-
putation. The ontology pruning algorithm uses the computed fre-
quencies to determine the relative relevancy of each concept con-
tained in the ontology. All existing concepts and relations which
are more frequent in the domain-specific corpus remain in the on-
tology. The user may also control the pruning of concepts that are
neither contained in the domain-specific nor in the generic corpus.
This pruning approach has been successfully applied in the follow-
ing domains:

� GermaNet pruning for an insurance intranet application [7]:
In this approach we used the German version of WordNet
as a basis for generating an insurance-specific module, that
supported an intranet-based knowledge management appli-
cation.

� WordNet pruning for Reuters news document clustering: Word-
Net has been used as a semantic backbone for clustering
Reuters news documents. The overall Wordnet lexical se-
mantic net has been pruned on the basis of a set of selected
Reuters documents, thus a news-specific module has been
generated

� AGROVOC12 pruning for the animal feed application: Fi-
nally, AGROVOC is a thesaurus provided by United Nations
Food and Agricultural Organization, describing terms in the
context of food and agriculture. It has been used as a ba-
sis for developing a module that exclusively describes the
“animal feed” domain, for which a metadata-driven search
engine will be built.

Using modularization techniques on top of the pruning results has
the advantage that we do not create new ontologies. Instead we
focus on the application specific part of a given ontology without
defining new resources.

In general, we want to mention that there is a lack of modu-
larity in current ontologies. Although, there exists the clear and
good separation of top-level, domain, task and application ontolo-
gies (see [6]), there are no real-world ontologies and applications
that are based on this principle. Most ontologies are not modular,
neither by task, nor by domain. Therefore, ontology integration
should modularize the namespace of a domain and separate task-
oriented knowledge from the domain knowledge.

4.2 Engineering Guidelines
Much work has been described in the area of merging, mapping

and integrating ontologies using very different approaches. The
point of all those approaches is that they try to establish interoper-
ability between syntactically and semantically heterogeneous con-
ceptual models. Typically, this is done in an “ex-post” way, when
the systems have already been established and are running.

Our engineering approach for modularized ontologies pursues
another idea, namely the “ex-ante” establishment of interoperabil-
ity. This approach allows the ontology engineer to import reusable
modules from existing ontologies. The reader may note that this
approach is already implicitly used in several existing commer-
cial software products, e.g. in the area of knowledge management.
Typically, these systems are divided in a standard basic conceptual
model (describing basic concepts like documents, person’s meta-
data, etc.) and a domain specific part of the conceptual model (de-
scribing domain-specific concepts like topic hierarchies, etc.). The
point is that every KM application based on the basic conceptual
data model can exchange data on this level, but it cannot exchange
���

http://www.fao.org/agrovoc/

data on the domain-specific part of the conceptual model. We pick
up this approach in an explicit way in the sense that we provide
basic conceptual models in the form of ontology modules, e.g. for
documents, persons, etc. There are many design goals within this
modularization framework, e.g. to create coherent sets of semanti-
cally related modules, to support the creation of subsets and super-
sets of ontology modules for specific purposes, to facilitate future
development by allowing modules to be upgraded or replaced in-
dependently of other modules and to encourage and facilitate the
reuse of common modules by developers.

In the Semantic Web, modules have to be made accessible via a
search engine for ontology modules. The search allows to query on
a lexical (e.g. by providing a set of concept and property labels that
should be contained in the module) and a conceptual layer (e.g. by
providing a set of RDF statements that should be contained in the
module). We are currently developing such a “ontology search en-
gine” on the basis of our previous work for measuring the similarity
between ontologies and parts of it [9].

5. RELATED WORK
Modularization is an established principle in software engineer-

ing, nevertheless, generally only acyclic inclusions are possible.
Import mechanisms exist in all major programming languages and
allow programmers to use classes, functions and methods defined
in other modules by explicit naming.

Knowledge based systems introduced means for modularization
in the early nineties. The LOOM system [8] provided an acyclic
graph of inclusion relationships. Means for importing are not in-
cluded, although references to symbols defined in other (non-included)
ontologies are possible. Notably, the declarative semantics of on-
tologies are endangered by this, as the definition of those symbols
is not visible.

Ontolingua [4] allows for modular organization in the ontology
library system, organizes units into modules and allows cyclic in-
clusions. Additionally referenced ontologies can be extended by
polymorphic refinement and restriction. RDF automatically sup-
ports some of those refinements (i.e. adding new domains and
ranges13). Notably, we cannot support restrictions as RDF is not
expressive enough to support the required translation axioms.

ONIONS [5] is a methodology that highlights the stratified de-
sign of ontologies. They propose different naming policies to achieve
the modular organization or stratified storage of ontologies [5].
They show that disjointed partitioning of classes can facilitate mod-
ularity, assembling and integrating of ontologies.

As reported in section 2, several means for modularization are
proposed for the XML world. XLink allows presentation time in-
clusion. Handling of inclusion in XLink is left to the application,
which is not sufficient for the Semantic Web. No means for im-
porting exist. XInclude introduces real inclusion for XML but does
not allow for importing either. Furthermore the issue of conflicting
XML identifiers is not recognized, which will come up in imple-
mentations.

XML Schema introduces proprietary means for inclusion as well
as importing, but these operations are not made visible to agents
consuming the composite schema. This raises severe digital rights
problems as the original provider is not recognizable anymore. The
idea of defining a set of exported elements, stemming from expe-
rience with programming languages and similar schema definition
systems, does not make sense for the Semantic Web. This export set
suggests that there is value in distinguishing the internal implemen-
tation of a module from the features or interfaces that it provides for
�	�

Multiple ranges are demanded by the RDF Working Group

reuse by others.
The recently proposed DAML+OIL ontology language recog-

nized the need for modularity but only considers inclusion. Unfor-
tunately, the established wording was not conceived. DAML+OIL
follows the tradition of SHOE, where usage of other ontologies can
be specified. Both approaches make the source of modular infor-
mation opaque and present specialized approaches for ontologies
only. Neither one presents means for imports.

6. CONCLUSION
Based on the general principle of modularization that has been

an important design issue for the World Wide Web, and, in general
the basis for powerful software systems, we have presented general
principles and an approach for establishing a modularized Semantic
Web.

Thus, ontologies and other RDF models can become a unit of
composition which make context dependencies explicit. RDF mod-
els can be deployed independently and are subject to composition
by third parties. This way, ontologies become logically cohesive,
loosely coupled modules that denote single abstractions. There-
fore they simplify the construction and maintenance and ensure
reusability in other contexts. They also meet modularization re-
quirement that was recognized for the upcoming Ontology Web
Language14 .

In the future we plan to provide a simple implementation for a
modularity processor and embed modularity management in our
ontology engineering environment. We will also further our con-
siderations of using URNs to allow replication of mission-critical
RDF models.

7. REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic

Web. Scientific American, 2001.
[2] T. Bray, J. Paoli, and C.M. Sperberg-McQueen. Extensible

markup language (XML) 1.0. Technical report, W3C, 1998.
http://www.w3.org/TR/1998/REC-xml-19980210.

[3] Steve DeRose, Eve Maler, and David Orchard. XML Linking
Language (XLink) Version 1.0, W3C Recommendation,
2001. http://www.w3.org/TR/xlink/.

[4] R. Fikes, A. Farquhar, and J. Rice. Tools for assembling
modular ontologies in ontolingua. Technical Report
KSL-97-03, Knowledge Systems Laboratory,Stanford
University, 1997.

[5] Aldo Gangemi, Domenico M. Pisanelli, and Geri Steve. An
overview of the ONIONS project: Applying ontologies to the
integration of medical terminologies. Data Knowledge
Engineering, 31(2):183–220, 1999.

[6] N. Guarino. Formal ontology and information systems. In
Proceedings of FOIS’98 – Formal Ontology in Information
Systems, Trento, Italy, 6-8 June 1998. IOS Press, 1998.

[7] J.-U. Kietz, R. Volz, and A. Maedche. A method for
semi-automatic ontology acquisition from a corporate
intranet. In EKAW-2000 Workshop “Ontologies and Text”,
Juan-Les-Pins, France, October 2000., 2000.

[8] R. MacGregor. LOOM users manual. Technical Report
ISI/EP-22, USC/ Information Sciences Institute, 1990.

[9] A. Maedche and S. Staab. Measuring similarity between
ontologies. In Technical Report, E0448, University of
Karlsruhe, 2001.

� �
See requirement 3 in the OWL requirements document, currently

at http://km.aifb.uni-karlsruhe.de/owl

[10] Jonathan Marsh and David Orchard. XML Inclusions
(XInclude) Version 1.0, W3C Working Draft , 2001.
http://www.w3.org/TR/xinclude/.

[11] Henry S. Thompson, David Beech, Murray Maloney, and
Noah Mendelsohn. XML Schema – W3C Recommendation,
2001. http://www.w3.org/TR/xmlschema-1/.

[12] Karsten Tolle. Validating rdf parser: A tool for parsing and
validating rdf metadata and schemas. Master’s thesis,
University of Hannover, 2000.

