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Abstract. Numerous approaches exist that derive executable systems
from well-defined specifications. However, model specifications are not
available in program code of such derived systems, which impedes con-
tinuous validation and verification at run time. We earlier proposed to
embed model specifications into well-defined program code patterns to
bridge this semantic gap. We now present an elaboration of our approach
to monitor such systems at run time with respect to the underlying ab-
stract models. For this purpose, different techniques are considered that
allow to access the modeling information without relying on additional
metadata. Based on this, we present a tool that monitors the execution
of state machines.

1 Introduction

The creation of software based on formal models is supported by means of various
modeling, simulation and verification tools. However, current technologies for
model-driven software development (MDSD) cause a loss of semantic information
when such models are transformed into source code by manual or automated code
generation [1]: The inherent loss of semantic information entails that models are
related to derived systems only implicitly [2], thus preventing us from being able
to monitor the execution with respect to the model semantics.

To bridge this semantic gap, we proposed to embed model specifications in
object-oriented program code [3], for example for state machines [4]. Such embed-
ded models introduce program code patterns representing the abstract syntax of
models. This single-source approach allows not only to verify programs at devel-
opment time with respect to the related models, but also to execute embedded
models at run time by frameworks relying on structural reflection. In this con-
tribution we consider this an opportunity to monitor the execution: Since these
program code patterns represent model specifications completely, different de-
grees of abstraction are available in the code at the same time. Hence we can
monitor model execution at run time without using other representations than
the program code. At the same time we can observe how models behave with
application data.

This paper is structured as follows: Section 2 describes the monitoring ap-
proach by introducing concepts for embedding and identifying modeling infor-
mation in program code. Then we describe different possible techniques to access



the related program code fragments at run time in section 3. Based on these,
a tool for monitoring state machines is introduced in section 4. Afterwards we
give an overview of related work in section 5 and draw conclusions in section 6.

2 Approach

The objective of this contribution is to monitor executed software with respect
to high-level specifications, but without using additional meta information, so
that no inconsistencies can occur and the tool chain is as small as possible. While
monitoring as a way of verifying the execution of software systems at run time
is well-established, few approaches realize verification with respect to formal
models the software is based on. The reason, as mentioned in the introduction,
is that the related specifications are not naturally available in the program code
that constitutes programs at run time: The code usually describes execution
logic only and not its abstract semantics. When it is monitored or verified, the
resulting information is generic, focuses on technical details of program code, or
must rely on tracing metadata to relate the code to formal models. Considering
these problems, we introduce in this section our general approach of coupling
model specifications and program code.

2.1 Embedded Models

A monitoring as described above means that the program code must contain the
specification information. Considering object-oriented programming languages
like Java, we can observe a trend to increase the expressiveness of program code
fragments. For example, embedded DSLs [5] are domain-specific languages that
are embedded into other languages, so that semantics of DSLs are used inside
a general-purpose language. In addition, some general-purpose languages are
able to carry type-safe metadata, e.g., Java Annotations. This enables attribute-
enabled programming [6] making program code interpretable even at run time.

Embedded models build upon these concepts to relate program code to ab-
stract specifications systematically. Each embedded model provides a program
code pattern representing the abstract syntax of a formal model so that a bijec-
tive projection between both exists. The pattern elements rely on the semantics
of the underlying programming language and its expressiveness regarding single
fragments and their interconnections. The statical elements of the programming
language and their relations are considered building blocks constituting the pat-
tern. They are of interest in our context since expressiveness of the monitoring
depends on their accessibility by appropriate mechanisms at run time.

The pattern code is interpreted by means of structural reflection at run time
to execute the model specifications. Each embedded model provides an execution
framework that accesses and invokes the language elements and thus creates
a sequence of actions matching the related model semantics. Considering the
monitoring, it is essential that the program code pattern elements and their
expressiveness regarding relations to the abstract specifications are by this means
accessible at run time.



2.2 Implementation for State Machines

An instance for embedded models exists for the domain of state machines. Since
meaningful monitoring in our context depends on the availability of model el-
ements in the program code at run time, we will introduce the program code
pattern here and refer to it later. Figure 1 shows an example containing all pro-
gram code structures of interest. The class at the top represents a state; the
class name equals the name of the state. The method in the state class repre-
sents a transition. It is decorated with metadata (the annotation @Transition)
referring to the target state class and a “contract” class containing guards and
updates. An interface type referred to as “actor” is passed to transition meth-
ods. Its methods are interpreted as action labels which can be called when a
transition fires. Thus, a sequence of actor method invocations inside a transition
method is interpreted as a sequence of action labels for this transition.

public class AfterMeasurementState implements IState ‘—0 State Definition

{ [ Target State Pointer [—. Contract Pointer
@Transition(target =|UpUpState.class|, contract —\BeganpUpContract class\)

public void beginUpUp(MeasurementModule actor) throws MeasurementAbortedException

{
actor.doMeasure| () ;
} —. Transition
/7.
} ———® Action Label
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( L .
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public boolean checkCondition( ‘IMeasurementVariables vars‘)

return (!vars.getjAbort)() && !vars.ge() && vars.getTooLow|());
}
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Update

)
‘——————@ Variable Labels &———
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public boolean validate( IMeasurementVarlables, IMeasurementVarlables
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return ( after.getNumberOfWorkers|() == ( before. get umberOfWorkers|() + before. geWOrkerDlstance()) )i
! |
} \—0 Vanable Labels .—1

Contract Definition in Source Code

FO Current Variable Values

Fig.1. A state definition with an outgoing transitions and its contract. The first
method of the contract evaluates a pre-condition with respect to the current variable
values, while the second method evaluates a post-condition by comparing the current
values to the previous values.

Guards and updates are implemented as two methods in a “contract” class
which is shown at the bottom of figure 1. Both evaluate boolean expressions



and return a single boolean value. The guards use the current variable values
of the state machine to determine if a transition is able to fire, the updates
compare the current values with the values from the point in time before the
transition fired to determine the changes to the state space. For this purpose
both methods access a “variables” type which is a facade type representing the
variables constituting the state space of the state machine. This type contains
“get” methods for each variable. The name and return type of each method are
interpreted as name and data type of the corresponding variable.

The execution framework interprets and invokes these fragments at run time.
The surrounding program code accesses for this purpose the execution framework
and passes the class definition of the initial state as well as the variables and
actor facade types as parameters. The state machine is then executed as follows:

1. The initial state’s class and variables interface are passed to the execution
framework. All states reachable from the initial state are instantiated.

2. The current state is set to the initial state.

3. All transition methods of the current state are visited and the variables type
instance is passed to the related guard method to determine if the transition
is able to fire.

4. The current variable values are cached.

5. The method representing the transition that is able to fire is invoked.

6. The current variable values and the cached variable values are passed to the
update method for the validation of variable updates.

7. The current state is set to the target state of the executed transition. The
process is continued until the current state is a final state or the state machine
runs into a deadlock.

2.3 Monitoring at Run Time

As can be seen in the state machine example, embedded models introduce pro-
gram code patterns whose elements are related to model specifications. The
models are thus views on the program code and need not to be stored in sep-
arate notations, so that no inconsistencies between model and implementation
can occur. Consistency is not only maintained at development time, but also at
run time: Since the related code fragments are not supplementary or optional,
but instead used by the execution framework, executed systems with embedded
models carry complete information about related specifications naturally.

This availability of models at run time is important for our objective to
monitor programs with respect to models, since the model views can be extracted
from the code during execution. For this purpose the well-defined elements of
the program code patterns serve as entry points for interpreting and monitoring
the program code. This enables a validation of programs with two purposes:
First, the model view itself is of interest for monitoring the model execution by
the framework, so that inferences can be made on correctness of the model from
this information. Second, embedded models are tightly integrated with arbitrary
program code. This allows for high flexibility during implementation, but causes



the need to validate correctness of the surrounding code with respect to the
model. This is supported with appropriate monitoring since the behaviour of
the model with application data can be observed.

Monitoring of embedded models thus considers program code pattern in-
stances, for example of state machines, as well as program code of the execution
framework: Since it controls the execution, it is an entry point for actions to
be monitored. Inside the execution framework for state machines, the following
steps can be considered:

— The execution framework iterates on the state machine flow until a final
state is reached. The current active state is denoted by a variable inside this
iteration pointing to the state class definition. Changes to this variable must
be monitored in order to determine state activation.

— Once a state is activated, the execution framework iterates the contained
transition methods. The transition under examination is also denoted by a
variable that must therefore be observed.

— For each transition the execution framework invokes the guard and update
methods and passes the variables facade instance as a parameter. Of interest
are all operations inside this methods, especially those that comprise state
machine variable values. To interpret the guards and updates thoroughly,
the composition of the overall result of these methods from single operation
results is also important to monitor.

We will now introduce appropriate monitoring techniques and afterwards a
tool that implements the approach.

3 Monitoring Techniques

Our objective is to use this approach for monitoring program execution with
respect to models at run time, but without artificial tracing information. Thus
it is important to consider the accessibility of the program code patterns and
their elements during execution. We will introduce the basic technological ap-
proaches for this purpose here. While all of them have already been used by other
approaches for monitoring, our contribution here is the application to program
code patterns carrying the abstract syntax of formal models. We will therefore
not focus on the general technologies, but on their adequacy for monitoring the
references to model specifications at run time, in which we encounter important
differences.

3.1 Listener Approach

Since all information about the running system and the embedded state machine
semantics is available inside the state machine execution framework, the easiest
way for monitoring is to extend this framework in order to emit information of
interest for monitoring. The execution framework is based on structural reflection



and accesses and interprets a considerable part of the program code structures
constituting the pattern. Besides setting listeners programmatically, module-
based platforms (like OSGi [7] in the context of Java) allow for a loose coupling of
execution framework and components receiving information about the execution.
In the case of state machines, listeners can be notified about events for every
operation performed on the embedded model:

— Initialization and start of a state machine. This includes information about
all states, transitions and variables as extracted from the Java code via
reflection. States are uniquely identified by their fully qualified class names.

— Activation of states. This indicates that guard evaluation and transition
selection in this state will happen subsequently.

— Selection of transitions. This indicates that program control will be handed
over to the business logic in this transition.

— Validation of updates after a transition. The variable values are updated
in this event. Additionally, the cached variable values are supplied to allow
for comparisons. Additional information is supplied if the validation failed.
When this event is fired, program control has been taken over by the state
machine execution framework again.

The advantage of listeners is their easy integration into tools based on the
Java platform, especially in module-based environments. Since the listeners are
accessible from inside the same Java Virtual Machine (provided appropriate
programming interfaces or module lookup services exist), even self-monitoring
of applications is possible. Thus an application can gain information about its
own execution inside the state machine. This is possible without concurrency
problems since the framework passes control of the program flow to the listeners
during notifications, so that all actions are handled sequentially.

While the approach is working at this level, the degree of detail is limited:
Method contents in Java are not accessible by means of reflection and thus black
boxes. For this reason operations inside guards and updates are not visible, but
only their results after the related method was invoked by the framework.

3.2 Aspect-Oriented Approach

Aspect-oriented programming (AOP) aims to separate cross-cutting concerns
from business logic. Monitoring and tracing are often-mentioned examples for
AOP usage: Emission of monitoring information is formulated as aspects that
are woven into program code. To monitor state machine execution, the code
structures of interest are accessed by pointcuts. Appropriate advice written in
AspectJ [8] are shown in listing 1.1. The first and the third pointcut wrap around
guard and update methods, invoke them and read the result. Afterwards the
monitor is notified about the contract class and the current result. The second
pointcut is invoked before a transition method is executed, i.e., any method in
a class implementing the IState interface. It notifies the monitor about the
related state class and transition method name.



// Wrap guard method invocation and notify about the result

boolean around(Object vars) : execution(* IContract.checkCondition(..)) && args(vars) {
boolean result = proceed(vars);
monitor.notifyGuard(thisJoinPointStaticPart.getSignature().getDeclaringType(), result);
return result;

}

// Notify about forthcoming transition method invocation
before() : execution(* *.x(..)) && target(IState) {
monitor.notifyTransition(thisJoinPointStaticPart.getSignature().getDeclaringType(),
thisJoinPointStaticPart.getSignature().getName());
}

// Wrap update method invocation and notify about the result
boolean around(Object before, Object after) :
execution(* IContract.validate(..)) && args(before, after) {
boolean result = proceed(vars);
monitor.notifyUpdate(thisJoinPointStaticPart.getSignature() .getDeclaringType(), result);
return result;

}

Listing 1.1. The AspectJ monitoring aspect. All points of interest in the
program code pattern are clearly identifiable by simple rules regarding their
classes and method names, so that pointcuts can be defined unambiguously.

The main advantage of AOP in this context is that monitoring can be applied
without the need to modify the execution framework. With load-time weaving,
monitoring capabilities can even be supplemented in systems after the program
code has been compiled. This allows for flexible mechanisms that can be applied
depending on the context. This is enabled by the fact that the pattern elements
of embedded models are well-known and obligatory: Aspects can identify them
so that advice and pointcuts can address program code elements related to model
elements. Similar as with listeners, this also allows for self-monitoring.

However, while this exterior view on the pattern allows for dynamic exten-
sion of such software, it prevents full access to information of interest: Pointcuts
can handle information regarding the location of program code in which they
are executed (keyword thisJoinPointStaticPart). But, they do not gain ac-
cess to information in terms of sequences of pointcuts: In each state, a certain
number of guards is evaluated. Afterwards, one transition method is invoked.
While pointcuts are informed about the single actions, they cannot determine
which guard belongs to the transition being executed; this information has to be
guessed or supplemented by interpreting the program code afterwards. To solve
this problem, the execution framework could be changed to make pointers to the
objects of interest available as fields.

3.3 Debugging Approach

The debugging approach delegates low-level observation of the program state
to the executing platform. The related Java Platform Debugger Architecture
(JPDA) [9] provides well-defined programming interfaces to access related events
so that those of interest for our monitoring approach can be filtered from the




event queue. In the case of embedded state machines, state activation and transi-
tion selection are monitored by observing fields containing the related references
in the execution framework with ModificationWatchpointEvents. For guards
and updates, MethodExitEvents are of interest that are triggered after all code
of a method has been executed, but before the method is left. We use them to
access return values of variable interface methods when they are invoked. To-
gether with information about local variable values we can monitor evaluation of
guards and updates with such events, too: Since only expressions are used inside
these methods, the evaluation is fully comprehensible afterwards by inspection
of the values of local variables. The return value of the method and thus the
result of the evaluation is also available in this event.

A debugger can hence access all elements of the program code pattern in
model implementations as well as all local variables in the execution framework.
Different to the listener and AOP approaches, this allows for monitoring guard
and update method contents. Since all details of expressions are available, the
evaluation of guards and updates can be recorded and presented to the devel-
oper for each step. The debugging approach is therefore the only one able to
access all elements of the program code pattern. Access to variables and method
invocation results is possible without additional effort when they are accessed
by the application itself. For the state machine model this is sufficient since the
variables are of interest only when they are evaluated in guards. A debugger
would also allow to invoke methods at any time. This could be of interest for
variable methods to determine their current value. This is, however, intrusive to
the program flow, since variable methods may contain arbitrary business logic,
which would be executed at times not expected by the developer.

The main influence of debuggers, however, is the need for two running in-
stances: The application being debugged and the debugger itself that controls
execution. All information that can be gained is accessible only by the latter, so
that a self-monitoring of applications is not possible. In addition, debuggers in
general have a strong impact on performance, so that a monitoring of production
systems is currently not desirable with this technology. We thus expect that this
approach can be used as debuggers are used in general — when the applications
are validated during development or maintenance. In this case the relation to
abstract models is more meaningful than debugging at the source code level only.

4 Monitoring Tool

These approaches enable monitoring of program code based on embedded models
without using tracing information or other metadata, but by considering well-
defined code structures only. We will now introduce a tool that is based on such
approaches and monitors the related information. Its user interface shown in
figure 2 reflects our requirements for the practical use of the monitoring.

The graphical view allows to watch activated state classes and transition
methods. Current and cached variable values are shown to exhibit the current
state space and to enable monitoring of changes during transitions. Updates that
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Fig. 2. A state machine model being monitored. Left hand we see the state machine
with the active state and transition highlighted, right hand the variable values consti-
tuting the state space.

could not be validated successfully are listed separately; since updates do not
have impact on the program flow, this information allows developers to look for
the causes of such inconsistencies later on. The state machine flow altogether
can be paused and resumed by the user. This is possible since business logic is
invoked during transitions, and execution control will afterwards return to the
state machine. The third button visible on top of the screenshot notifies the
execution framework that the state machine flow should pause after the current
transition; the button to the right allows then for stepwise execution.

The tool is realized on the Eclipse platform, making it easy to be integrated in
Eclipse-based development tools. It uses listeners that are loosely coupled over
the OSGi service registry that is provided by the Eclipse platform: Listeners
like our tool are hence OSGi bundles being deployed alongside, but independent
from business logic. The listener is registered as a named OSGi service that is
detected by the execution framework. The resulting architecture as sketched in
figure 3 allows to use almost arbitrary tools to be notified about events for every
operation performed on the embedded state machine.

5 Related Work

Following our objective to monitor the execution of program code that is re-
lated to model specifications, we must consider related work with respect to two
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Fig. 3. Component architecture with the monitoring listener. Applications are com-
posed of components using the execution framework based on the OSGi platform. The
listener component is optional and hence only coupled via the service registry.

topics: First, general approaches that relate program code to high-level specifi-
cations which are in theory appropriate for monitoring; second, the application
of monitoring in specific technological environments.

Round-trip engineering [10] relates generated program code to models but
targets the development time instead of the run time and cannot be fully auto-
mated [11]. Informal specifications can be inferred from program code by detect-
ing patterns [12], and similar, specifications can be extracted from program code
based on design patterns [13]. However, this requires manual effort or is based
on heuristics and not appropriate for a precise monitoring. Executable models
[14] are accessible at run time, too. However, they are only appropriate for ap-
plications completely expressed as models, while we consider cases where models
are connected to program code and thus monitor the related data exchange.

Monitoring for compliance with so-called design models [15] or design pat-
tern contracts [16] is based on low-level semantics of detailed patterns. Similarly,
model checkers for program code work with low-level semantics of the program-
ming language and thus consider whole applications as models [17]. In contrast,
monitoring with embedded models is related to abstract specifications. For this
reason it can also clearly be distinguished from general debugging approaches.

We do not aim to present a notation for the specification of all possible sys-
tem models like the JAVA MODELING LANGUAGE (JML) [18] or the approach
to use Smalltalk with its introspection capabilities as a meta language [19]. In
contrast to static analysis tools like D1SCOTECT [20] we do not target detec-
tion of unknown structures and models, but focus on well-known models that
can thus be examined more thoroughly and with respect to a formally-founded
background. We also do not require changes in the program code to introduce
references to specifications as is necessary for PATHFINDER’s verification state-
ments [21] or the approaches to monitor OCL constraints with aspect orientation
[22, 23], which rely on metadata in source code comments. Instead, we can infer
all model specifications directly from the program code pattern.

6 Conclusion

We presented our approach to monitor model specifications that are embedded
in object-oriented program code. We were acting on the assumption that the re-



lated program code pattern structures are precise enough to allow for inference
to model specifications even at run time. To show this, different approaches for
information retrieval have been evaluated as possible alternatives. Our conclu-
sion is that all are appropriate to monitor the state machine semantics, although
in different degree of detail and with different impact on the necessary changes
to the program code. All are non-intrusive regarding the source code of the mon-
itored system and two of them are even non-intrusive to the source code of the
execution framework. However, the degree of detail varies since only debugging
approaches allow to monitor guards and updates in detail. On the other hand,
listeners and AOP require less overhead at run time. With AOP, monitoring
aspects can even be attached dynamically to the programs since they can work
on the pattern specifications after compilation.

For the current implementation of a monitoring tool, the listener approach
was chosen since it allows to access the most important information with little
effort and provides the ability for self-monitoring. However, if the required en-
vironment is available, the debugging approach is more thorough and allows to
monitor every detail of the state machine execution. Future work will thus in-
clude the development of an appropriate monitoring tool. Due to the maturity of
the JPDA and related user interfaces in integrated development environments,
we will then be able to integrate the monitoring with the debugging user in-
terface of development environments. With this integration, the monitoring of
abstract model specifications can be seamlessly integrated with debugging of ar-
bitrary Java applications, thus making model validation at run time an integral
part of the development process.
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