
Monitoring Model Spe
i�
ations inProgram Code PatternsMoritz Balz, Mi
hael Striewe, and Mi
hael Goedi
kePaluno � The Ruhr Institute for Software Te
hnologyUniversity of Duisburg-Essen, Essen, Germany{moritz.balz,mi
hael.striewe,mi
hael.goedi
ke}�s3.uni-due.deAbstra
t. Numerous approa
hes exist that derive exe
utable systemsfrom well-de�ned spe
i�
ations. However, model spe
i�
ations are notavailable in program
ode of su
h derived systems, whi
h impedes
on-tinuous validation and veri�
ation at run time. We earlier proposed toembed model spe
i�
ations into well-de�ned program
ode patterns tobridge this semanti
 gap. We now present an elaboration of our approa
hto monitor su
h systems at run time with respe
t to the underlying ab-stra
t models. For this purpose, di�erent te
hniques are
onsidered thatallow to a

ess the modeling information without relying on additionalmetadata. Based on this, we present a tool that monitors the exe
utionof state ma
hines.1 Introdu
tionThe
reation of software based on formal models is supported by means of variousmodeling, simulation and veri�
ation tools. However,
urrent te
hnologies formodel-driven software development (MDSD)
ause a loss of semanti
 informationwhen su
h models are transformed into sour
e
ode by manual or automated
odegeneration [1℄: The inherent loss of semanti
 information entails that models arerelated to derived systems only impli
itly [2℄, thus preventing us from being ableto monitor the exe
ution with respe
t to the model semanti
s.To bridge this semanti
 gap, we proposed to embed model spe
i�
ations inobje
t-oriented program
ode [3℄, for example for state ma
hines [4℄. Su
h embed-ded models introdu
e program
ode patterns representing the abstra
t syntax ofmodels. This single-sour
e approa
h allows not only to verify programs at devel-opment time with respe
t to the related models, but also to exe
ute embeddedmodels at run time by frameworks relying on stru
tural re�e
tion. In this
on-tribution we
onsider this an opportunity to monitor the exe
ution: Sin
e theseprogram
ode patterns represent model spe
i�
ations
ompletely, di�erent de-grees of abstra
tion are available in the
ode at the same time. Hen
e we
anmonitor model exe
ution at run time without using other representations thanthe program
ode. At the same time we
an observe how models behave withappli
ation data.This paper is stru
tured as follows: Se
tion 2 des
ribes the monitoring ap-proa
h by introdu
ing
on
epts for embedding and identifying modeling infor-mation in program
ode. Then we des
ribe di�erent possible te
hniques to a

ess

the related program
ode fragments at run time in se
tion 3. Based on these,a tool for monitoring state ma
hines is introdu
ed in se
tion 4. Afterwards wegive an overview of related work in se
tion 5 and draw
on
lusions in se
tion 6.2 Approa
hThe obje
tive of this
ontribution is to monitor exe
uted software with respe
tto high-level spe
i�
ations, but without using additional meta information, sothat no in
onsisten
ies
an o

ur and the tool
hain is as small as possible. Whilemonitoring as a way of verifying the exe
ution of software systems at run timeis well-established, few approa
hes realize veri�
ation with respe
t to formalmodels the software is based on. The reason, as mentioned in the introdu
tion,is that the related spe
i�
ations are not naturally available in the program
odethat
onstitutes programs at run time: The
ode usually des
ribes exe
utionlogi
 only and not its abstra
t semanti
s. When it is monitored or veri�ed, theresulting information is generi
, fo
uses on te
hni
al details of program
ode, ormust rely on tra
ing metadata to relate the
ode to formal models. Consideringthese problems, we introdu
e in this se
tion our general approa
h of
ouplingmodel spe
i�
ations and program
ode.2.1 Embedded ModelsA monitoring as des
ribed above means that the program
ode must
ontain thespe
i�
ation information. Considering obje
t-oriented programming languageslike Java, we
an observe a trend to in
rease the expressiveness of program
odefragments. For example, embedded DSLs [5℄ are domain-spe
i�
 languages thatare embedded into other languages, so that semanti
s of DSLs are used insidea general-purpose language. In addition, some general-purpose languages areable to
arry type-safe metadata, e.g., Java Annotations. This enables attribute-enabled programming [6℄ making program
ode interpretable even at run time.Embedded models build upon these
on
epts to relate program
ode to ab-stra
t spe
i�
ations systemati
ally. Ea
h embedded model provides a program
ode pattern representing the abstra
t syntax of a formal model so that a bije
-tive proje
tion between both exists. The pattern elements rely on the semanti
sof the underlying programming language and its expressiveness regarding singlefragments and their inter
onne
tions. The stati
al elements of the programminglanguage and their relations are
onsidered building blo
ks
onstituting the pat-tern. They are of interest in our
ontext sin
e expressiveness of the monitoringdepends on their a

essibility by appropriate me
hanisms at run time.The pattern
ode is interpreted by means of stru
tural re�e
tion at run timeto exe
ute the model spe
i�
ations. Ea
h embedded model provides an exe
utionframework that a

esses and invokes the language elements and thus
reatesa sequen
e of a
tions mat
hing the related model semanti
s. Considering themonitoring, it is essential that the program
ode pattern elements and theirexpressiveness regarding relations to the abstra
t spe
i�
ations are by this meansa

essible at run time.

2.2 Implementation for State Ma
hinesAn instan
e for embedded models exists for the domain of state ma
hines. Sin
emeaningful monitoring in our
ontext depends on the availability of model el-ements in the program
ode at run time, we will introdu
e the program
odepattern here and refer to it later. Figure 1 shows an example
ontaining all pro-gram
ode stru
tures of interest. The
lass at the top represents a state; the
lass name equals the name of the state. The method in the state
lass repre-sents a transition. It is de
orated with metadata (the annotation �Transition)referring to the target state
lass and a �
ontra
t�
lass
ontaining guards andupdates. An interfa
e type referred to as �a
tor� is passed to transition meth-ods. Its methods are interpreted as a
tion labels whi
h
an be
alled when atransition �res. Thus, a sequen
e of a
tor method invo
ations inside a transitionmethod is interpreted as a sequen
e of a
tion labels for this transition.

Contract Definition in Source Code

public class AfterMeasurementState implements IState

{

@Transition(target = UpUpState.class , contract = BeginUpUpContract.class)

public void beginUpUp(MeasurementModule actor) throws MeasurementAbortedException

{

 actor.doMeasure ();

}

// ...

}

State Definition

Target State Pointer Contract Pointer

Action Label

Transition

State and Transition Definition in Source Code

}

public class BeginUpUpContract implements IContract< IMeasurementVariables >

public boolean checkCondition(IMeasurementVariables vars)

{

 return (!vars.getAbort() && !vars.getRestart() && vars.getTooLow());

}

{

public boolean validate(IMeasurementVariables before , IMeasurementVariables after)

{

 return (after.getNumberOfWorkers() == (before.getNumberOfWorkers() + before.getWorkerDistance()));

}

Contract Definition

Variable DefinitionsCurrent Variable Values

Guard

Update

Variable Labels
Current Variable Values

Cached Variable Values

Variable LabelsFig. 1. A state de�nition with an outgoing transitions and its
ontra
t. The �rstmethod of the
ontra
t evaluates a pre-
ondition with respe
t to the
urrent variablevalues, while the se
ond method evaluates a post-
ondition by
omparing the
urrentvalues to the previous values.Guards and updates are implemented as two methods in a �
ontra
t�
lasswhi
h is shown at the bottom of �gure 1. Both evaluate boolean expressions

and return a single boolean value. The guards use the
urrent variable valuesof the state ma
hine to determine if a transition is able to �re, the updates
ompare the
urrent values with the values from the point in time before thetransition �red to determine the
hanges to the state spa
e. For this purposeboth methods a

ess a �variables� type whi
h is a fa
ade type representing thevariables
onstituting the state spa
e of the state ma
hine. This type
ontains�get� methods for ea
h variable. The name and return type of ea
h method areinterpreted as name and data type of the
orresponding variable.The exe
ution framework interprets and invokes these fragments at run time.The surrounding program
ode a

esses for this purpose the exe
ution frameworkand passes the
lass de�nition of the initial state as well as the variables anda
tor fa
ade types as parameters. The state ma
hine is then exe
uted as follows:1. The initial state's
lass and variables interfa
e are passed to the exe
utionframework. All states rea
hable from the initial state are instantiated.2. The
urrent state is set to the initial state.3. All transition methods of the
urrent state are visited and the variables typeinstan
e is passed to the related guard method to determine if the transitionis able to �re.4. The
urrent variable values are
a
hed.5. The method representing the transition that is able to �re is invoked.6. The
urrent variable values and the
a
hed variable values are passed to theupdate method for the validation of variable updates.7. The
urrent state is set to the target state of the exe
uted transition. Thepro
ess is
ontinued until the
urrent state is a �nal state or the state ma
hineruns into a deadlo
k.2.3 Monitoring at Run TimeAs
an be seen in the state ma
hine example, embedded models introdu
e pro-gram
ode patterns whose elements are related to model spe
i�
ations. Themodels are thus views on the program
ode and need not to be stored in sep-arate notations, so that no in
onsisten
ies between model and implementation
an o

ur. Consisten
y is not only maintained at development time, but also atrun time: Sin
e the related
ode fragments are not supplementary or optional,but instead used by the exe
ution framework, exe
uted systems with embeddedmodels
arry
omplete information about related spe
i�
ations naturally.This availability of models at run time is important for our obje
tive tomonitor programs with respe
t to models, sin
e the model views
an be extra
tedfrom the
ode during exe
ution. For this purpose the well-de�ned elements ofthe program
ode patterns serve as entry points for interpreting and monitoringthe program
ode. This enables a validation of programs with two purposes:First, the model view itself is of interest for monitoring the model exe
ution bythe framework, so that inferen
es
an be made on
orre
tness of the model fromthis information. Se
ond, embedded models are tightly integrated with arbitraryprogram
ode. This allows for high �exibility during implementation, but
auses

the need to validate
orre
tness of the surrounding
ode with respe
t to themodel. This is supported with appropriate monitoring sin
e the behaviour ofthe model with appli
ation data
an be observed.Monitoring of embedded models thus
onsiders program
ode pattern in-stan
es, for example of state ma
hines, as well as program
ode of the exe
utionframework: Sin
e it
ontrols the exe
ution, it is an entry point for a
tions tobe monitored. Inside the exe
ution framework for state ma
hines, the followingsteps
an be
onsidered:� The exe
ution framework iterates on the state ma
hine �ow until a �nalstate is rea
hed. The
urrent a
tive state is denoted by a variable inside thisiteration pointing to the state
lass de�nition. Changes to this variable mustbe monitored in order to determine state a
tivation.� On
e a state is a
tivated, the exe
ution framework iterates the
ontainedtransition methods. The transition under examination is also denoted by avariable that must therefore be observed.� For ea
h transition the exe
ution framework invokes the guard and updatemethods and passes the variables fa
ade instan
e as a parameter. Of interestare all operations inside this methods, espe
ially those that
omprise statema
hine variable values. To interpret the guards and updates thoroughly,the
omposition of the overall result of these methods from single operationresults is also important to monitor.We will now introdu
e appropriate monitoring te
hniques and afterwards atool that implements the approa
h.3 Monitoring Te
hniquesOur obje
tive is to use this approa
h for monitoring program exe
ution withrespe
t to models at run time, but without arti�
ial tra
ing information. Thusit is important to
onsider the a

essibility of the program
ode patterns andtheir elements during exe
ution. We will introdu
e the basi
 te
hnologi
al ap-proa
hes for this purpose here. While all of them have already been used by otherapproa
hes for monitoring, our
ontribution here is the appli
ation to program
ode patterns
arrying the abstra
t syntax of formal models. We will thereforenot fo
us on the general te
hnologies, but on their adequa
y for monitoring thereferen
es to model spe
i�
ations at run time, in whi
h we en
ounter importantdi�eren
es.3.1 Listener Approa
hSin
e all information about the running system and the embedded state ma
hinesemanti
s is available inside the state ma
hine exe
ution framework, the easiestway for monitoring is to extend this framework in order to emit information ofinterest for monitoring. The exe
ution framework is based on stru
tural re�e
tion

and a

esses and interprets a
onsiderable part of the program
ode stru
tures
onstituting the pattern. Besides setting listeners programmati
ally, module-based platforms (like OSGi [7℄ in the
ontext of Java) allow for a loose
oupling ofexe
ution framework and
omponents re
eiving information about the exe
ution.In the
ase of state ma
hines, listeners
an be noti�ed about events for everyoperation performed on the embedded model:� Initialization and start of a state ma
hine. This in
ludes information aboutall states, transitions and variables as extra
ted from the Java
ode viare�e
tion. States are uniquely identi�ed by their fully quali�ed
lass names.� A
tivation of states. This indi
ates that guard evaluation and transitionsele
tion in this state will happen subsequently.� Sele
tion of transitions. This indi
ates that program
ontrol will be handedover to the business logi
 in this transition.� Validation of updates after a transition. The variable values are updatedin this event. Additionally, the
a
hed variable values are supplied to allowfor
omparisons. Additional information is supplied if the validation failed.When this event is �red, program
ontrol has been taken over by the statema
hine exe
ution framework again.The advantage of listeners is their easy integration into tools based on theJava platform, espe
ially in module-based environments. Sin
e the listeners area

essible from inside the same Java Virtual Ma
hine (provided appropriateprogramming interfa
es or module lookup servi
es exist), even self-monitoringof appli
ations is possible. Thus an appli
ation
an gain information about itsown exe
ution inside the state ma
hine. This is possible without
on
urren
yproblems sin
e the framework passes
ontrol of the program �ow to the listenersduring noti�
ations, so that all a
tions are handled sequentially.While the approa
h is working at this level, the degree of detail is limited:Method
ontents in Java are not a

essible by means of re�e
tion and thus bla
kboxes. For this reason operations inside guards and updates are not visible, butonly their results after the related method was invoked by the framework.3.2 Aspe
t-Oriented Approa
hAspe
t-oriented programming (AOP) aims to separate
ross-
utting
on
ernsfrom business logi
. Monitoring and tra
ing are often-mentioned examples forAOP usage: Emission of monitoring information is formulated as aspe
ts thatare woven into program
ode. To monitor state ma
hine exe
ution, the
odestru
tures of interest are a

essed by point
uts. Appropriate advi
e written inAspe
tJ [8℄ are shown in listing 1.1. The �rst and the third point
ut wrap aroundguard and update methods, invoke them and read the result. Afterwards themonitor is noti�ed about the
ontra
t
lass and the
urrent result. The se
ondpoint
ut is invoked before a transition method is exe
uted, i.e., any method ina
lass implementing the IState interfa
e. It noti�es the monitor about therelated state
lass and transition method name.

// Wrap guard method invo
ation and notify about the resultboolean around(Obje
t vars) : exe
ution(* IContra
t.
he
kCondition(..)) && args(vars) {boolean result = pro
eed(vars);monitor.notifyGuard(thisJoinPointStati
Part.getSignature().getDe
laringType(), result);return result;}// Notify about forth
oming transition method invo
ationbefore() : exe
ution(* *.*(..)) && target(IState) {monitor.notifyTransition(thisJoinPointStati
Part.getSignature().getDe
laringType(),thisJoinPointStati
Part.getSignature().getName());}// Wrap update method invo
ation and notify about the resultboolean around(Obje
t before, Obje
t after) :exe
ution(* IContra
t.validate(..)) && args(before, after) {boolean result = pro
eed(vars);monitor.notifyUpdate(thisJoinPointStati
Part.getSignature().getDe
laringType(), result);return result;}Listing 1.1. The Aspe
tJ monitoring aspe
t. All points of interest in theprogram
ode pattern are
learly identi�able by simple rules regarding their
lasses and method names, so that point
uts
an be de�ned unambiguously.The main advantage of AOP in this
ontext is that monitoring
an be appliedwithout the need to modify the exe
ution framework. With load-time weaving,monitoring
apabilities
an even be supplemented in systems after the program
ode has been
ompiled. This allows for �exible me
hanisms that
an be applieddepending on the
ontext. This is enabled by the fa
t that the pattern elementsof embedded models are well-known and obligatory: Aspe
ts
an identify themso that advi
e and point
uts
an address program
ode elements related to modelelements. Similar as with listeners, this also allows for self-monitoring.However, while this exterior view on the pattern allows for dynami
 exten-sion of su
h software, it prevents full a

ess to information of interest: Point
uts
an handle information regarding the lo
ation of program
ode in whi
h theyare exe
uted (keyword thisJoinPointStati
Part). But, they do not gain a
-
ess to information in terms of sequen
es of point
uts: In ea
h state, a
ertainnumber of guards is evaluated. Afterwards, one transition method is invoked.While point
uts are informed about the single a
tions, they
annot determinewhi
h guard belongs to the transition being exe
uted; this information has to beguessed or supplemented by interpreting the program
ode afterwards. To solvethis problem, the exe
ution framework
ould be
hanged to make pointers to theobje
ts of interest available as �elds.3.3 Debugging Approa
hThe debugging approa
h delegates low-level observation of the program stateto the exe
uting platform. The related Java Platform Debugger Ar
hite
ture(JPDA) [9℄ provides well-de�ned programming interfa
es to a

ess related eventsso that those of interest for our monitoring approa
h
an be �ltered from the

event queue. In the
ase of embedded state ma
hines, state a
tivation and transi-tion sele
tion are monitored by observing �elds
ontaining the related referen
esin the exe
ution framework with Modifi
ationWat
hpointEvents. For guardsand updates, MethodExitEvents are of interest that are triggered after all
odeof a method has been exe
uted, but before the method is left. We use them toa

ess return values of variable interfa
e methods when they are invoked. To-gether with information about lo
al variable values we
an monitor evaluation ofguards and updates with su
h events, too: Sin
e only expressions are used insidethese methods, the evaluation is fully
omprehensible afterwards by inspe
tionof the values of lo
al variables. The return value of the method and thus theresult of the evaluation is also available in this event.A debugger
an hen
e a

ess all elements of the program
ode pattern inmodel implementations as well as all lo
al variables in the exe
ution framework.Di�erent to the listener and AOP approa
hes, this allows for monitoring guardand update method
ontents. Sin
e all details of expressions are available, theevaluation of guards and updates
an be re
orded and presented to the devel-oper for ea
h step. The debugging approa
h is therefore the only one able toa

ess all elements of the program
ode pattern. A

ess to variables and methodinvo
ation results is possible without additional e�ort when they are a

essedby the appli
ation itself. For the state ma
hine model this is su�
ient sin
e thevariables are of interest only when they are evaluated in guards. A debuggerwould also allow to invoke methods at any time. This
ould be of interest forvariable methods to determine their
urrent value. This is, however, intrusive tothe program �ow, sin
e variable methods may
ontain arbitrary business logi
,whi
h would be exe
uted at times not expe
ted by the developer.The main in�uen
e of debuggers, however, is the need for two running in-stan
es: The appli
ation being debugged and the debugger itself that
ontrolsexe
ution. All information that
an be gained is a

essible only by the latter, sothat a self-monitoring of appli
ations is not possible. In addition, debuggers ingeneral have a strong impa
t on performan
e, so that a monitoring of produ
tionsystems is
urrently not desirable with this te
hnology. We thus expe
t that thisapproa
h
an be used as debuggers are used in general � when the appli
ationsare validated during development or maintenan
e. In this
ase the relation toabstra
t models is more meaningful than debugging at the sour
e
ode level only.4 Monitoring ToolThese approa
hes enable monitoring of program
ode based on embedded modelswithout using tra
ing information or other metadata, but by
onsidering well-de�ned
ode stru
tures only. We will now introdu
e a tool that is based on su
happroa
hes and monitors the related information. Its user interfa
e shown in�gure 2 re�e
ts our requirements for the pra
ti
al use of the monitoring.The graphi
al view allows to wat
h a
tivated state
lasses and transitionmethods. Current and
a
hed variable values are shown to exhibit the
urrentstate spa
e and to enable monitoring of
hanges during transitions. Updates that

Fig. 2. A state ma
hine model being monitored. Left hand we see the state ma
hinewith the a
tive state and transition highlighted, right hand the variable values
onsti-tuting the state spa
e.
ould not be validated su

essfully are listed separately; sin
e updates do nothave impa
t on the program �ow, this information allows developers to look forthe
auses of su
h in
onsisten
ies later on. The state ma
hine �ow altogether
an be paused and resumed by the user. This is possible sin
e business logi
 isinvoked during transitions, and exe
ution
ontrol will afterwards return to thestate ma
hine. The third button visible on top of the s
reenshot noti�es theexe
ution framework that the state ma
hine �ow should pause after the
urrenttransition; the button to the right allows then for stepwise exe
ution.The tool is realized on the E
lipse platform, making it easy to be integrated inE
lipse-based development tools. It uses listeners that are loosely
oupled overthe OSGi servi
e registry that is provided by the E
lipse platform: Listenerslike our tool are hen
e OSGi bundles being deployed alongside, but independentfrom business logi
. The listener is registered as a named OSGi servi
e that isdete
ted by the exe
ution framework. The resulting ar
hite
ture as sket
hed in�gure 3 allows to use almost arbitrary tools to be noti�ed about events for everyoperation performed on the embedded state ma
hine.5 Related WorkFollowing our obje
tive to monitor the exe
ution of program
ode that is re-lated to model spe
i�
ations, we must
onsider related work with respe
t to two

Fig. 3. Component ar
hite
ture with the monitoring listener. Appli
ations are
om-posed of
omponents using the exe
ution framework based on the OSGi platform. Thelistener
omponent is optional and hen
e only
oupled via the servi
e registry.topi
s: First, general approa
hes that relate program
ode to high-level spe
i�-
ations whi
h are in theory appropriate for monitoring; se
ond, the appli
ationof monitoring in spe
i�
 te
hnologi
al environments.Round-trip engineering [10℄ relates generated program
ode to models buttargets the development time instead of the run time and
annot be fully auto-mated [11℄. Informal spe
i�
ations
an be inferred from program
ode by dete
t-ing patterns [12℄, and similar, spe
i�
ations
an be extra
ted from program
odebased on design patterns [13℄. However, this requires manual e�ort or is basedon heuristi
s and not appropriate for a pre
ise monitoring. Exe
utable models[14℄ are a

essible at run time, too. However, they are only appropriate for ap-pli
ations
ompletely expressed as models, while we
onsider
ases where modelsare
onne
ted to program
ode and thus monitor the related data ex
hange.Monitoring for
omplian
e with so-
alled design models [15℄ or design pat-tern
ontra
ts [16℄ is based on low-level semanti
s of detailed patterns. Similarly,model
he
kers for program
ode work with low-level semanti
s of the program-ming language and thus
onsider whole appli
ations as models [17℄. In
ontrast,monitoring with embedded models is related to abstra
t spe
i�
ations. For thisreason it
an also
learly be distinguished from general debugging approa
hes.We do not aim to present a notation for the spe
i�
ation of all possible sys-tem models like the Java Modeling Language (JML) [18℄ or the approa
hto use Smalltalk with its introspe
tion
apabilities as a meta language [19℄. In
ontrast to stati
 analysis tools like Dis
oTe
t [20℄ we do not target dete
-tion of unknown stru
tures and models, but fo
us on well-known models that
an thus be examined more thoroughly and with respe
t to a formally-foundedba
kground. We also do not require
hanges in the program
ode to introdu
ereferen
es to spe
i�
ations as is ne
essary for PathFinder's veri�
ation state-ments [21℄ or the approa
hes to monitor OCL
onstraints with aspe
t orientation[22, 23℄, whi
h rely on metadata in sour
e
ode
omments. Instead, we
an inferall model spe
i�
ations dire
tly from the program
ode pattern.6 Con
lusionWe presented our approa
h to monitor model spe
i�
ations that are embeddedin obje
t-oriented program
ode. We were a
ting on the assumption that the re-

lated program
ode pattern stru
tures are pre
ise enough to allow for inferen
eto model spe
i�
ations even at run time. To show this, di�erent approa
hes forinformation retrieval have been evaluated as possible alternatives. Our
on
lu-sion is that all are appropriate to monitor the state ma
hine semanti
s, althoughin di�erent degree of detail and with di�erent impa
t on the ne
essary
hangesto the program
ode. All are non-intrusive regarding the sour
e
ode of the mon-itored system and two of them are even non-intrusive to the sour
e
ode of theexe
ution framework. However, the degree of detail varies sin
e only debuggingapproa
hes allow to monitor guards and updates in detail. On the other hand,listeners and AOP require less overhead at run time. With AOP, monitoringaspe
ts
an even be atta
hed dynami
ally to the programs sin
e they
an workon the pattern spe
i�
ations after
ompilation.For the
urrent implementation of a monitoring tool, the listener approa
hwas
hosen sin
e it allows to a

ess the most important information with littlee�ort and provides the ability for self-monitoring. However, if the required en-vironment is available, the debugging approa
h is more thorough and allows tomonitor every detail of the state ma
hine exe
ution. Future work will thus in-
lude the development of an appropriate monitoring tool. Due to the maturity ofthe JPDA and related user interfa
es in integrated development environments,we will then be able to integrate the monitoring with the debugging user in-terfa
e of development environments. With this integration, the monitoring ofabstra
t model spe
i�
ations
an be seamlessly integrated with debugging of ar-bitrary Java appli
ations, thus making model validation at run time an integralpart of the development pro
ess.Referen
es1. Brown, A.W., Iyengar, S., Johnston, S.: A Rational approa
h to model-drivendevelopment. IBM Systems Journal 45(3) (2006) 463�4802. Ti
hy, M., Giese, H.: Seamless UML Support for Servi
e-based Software Ar
hite
-tures. In Gue�, N., Artesiano, E., Reggio, G., eds.: Pro
eedings of the InternationalWorkshop on s
ientiFi
 engIneering of Distributed Java applI
ations (FIDJI) 2003,Luxembourg. Volume 2952 of Le
ture Notes in Computer S
ien
e., Springer-Verlag(November 2003) 128�1383. Balz, M., Striewe, M., Goedi
ke, M.: Continuous Maintenan
e of Multiple Abstra
-tion Levels in Program Code. In: Pro
eedings of the 2nd International Workshop onFuture Trends of Model-Driven Development - FTMDD 2010, Fun
hal, Portugal.(2010) 68�794. Balz, M., Striewe, M., Goedi
ke, M.: Embedding State Ma
hine Models in Obje
t-Oriented Sour
e Code. In: Pro
eedings of the 3rd Workshop on Models�run.timeat MODELS 2008. (2008) 6�155. Kabanov, J., Raudjärv, R.: Embedded Typesafe Domain Spe
i�
 Languages forJava. In: PPPJ '08: Pro
eedings of the 6th International Symposium on Prin
iplesand Pra
ti
e of Programming in Java, New York, NY, USA, ACM (2008) 189�1976. S
hwarz, D.: Peeking Inside the Box: Attribute-Oriented Programming with Java1.5. ONJava.
om (June 2004) http://www.onjava.
om/pub/a/onjava/2004/06/30/insidebox1.html.

7. OSGi Allian
e: OSGi Servi
e Platform, Core Spe
i�
ation, Release 4, Version 4.1.IOS Press, In
. (2005)8. Colyer, A., Clement, A., Harley, G.: E
lipse Aspe
tJ. Addison-Wesley (2004)9. Sun Mi
rosystems, In
.: JavaTMPlatform Debugging Ar
hite
ture API http://java.sun.
om/javase/te
hnologies/
ore/toolsapis/jpda/.10. Sendall, S., Küster, J.: Taming Model Round-Trip Engineering. In: Pro
eedingsof Workshop on Best Pra
ti
es for Model-Driven Software Development. (2004)11. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in a Large Industrial Con-text � Motorola Case Study. In Briand, L., Williams, C., eds.: Model Driven En-gineering Languages and Systems, 8th International Conferen
e, MoDELS 2005,Montego Bay, Jamai
a, O
tober 2-7, 2005, Pro
eedings. Volume 3713 of LNCS.,Springer (2005) 476�49112. Philippow, I., Streitferdt, D., Riebis
h, M., Naumann, S.: An approa
h for reverseengineering of design patterns. Software and Systems Modeling 4(1) (February2005) 55�7013. Mili, H., El-Boussaidi, G.: Representing and Applying Design Patterns: WhatIs the Problem? In Briand, L.C., Williams, C., eds.: MoDELS. Volume 3713 ofLe
ture Notes in Computer S
ien
e., Springer (2005) 186�20014. Hen-Tov, A., Lorenz, D.H., S
ha
hter, L.: ModelTalk: A Framework for Devel-oping Domain Spe
i�
 Exe
utable Models. In: Pro
eedings of the 8th OOPSLAWorkshop on Domain-Spe
i�
 Modeling. (2008)15. Se�ka, M., Sane, A., Campbell, R.H.: Monitoring Complian
e of a Software Sys-tem With Its High-Level Design Models. In: ICSE '96: Pro
eedings of the 18thInternational Conferen
e on Software Engineering, Washington, DC, USA, IEEEComputer So
iety (1996) 387�39616. Soundarajan, N., Hallstrom, J.O., Tyler, B.: Monitoring Design Pattern Contra
ts.In: Pro
eedings of the the 3rd FSE Workshop on the Spe
i�
ation and Veri�
ationof Component-Based Systems. (2004) 87�9317. Holzmann, G.J., Joshi, R., Gro
e, A.: Model driven
ode
he
king. AutomatedSoftware Engineering 15(3-4) (2008) 283�29718. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A Notation for Detailed Design. InKilov, H., Rumpe, B., Simmonds, I., eds.: Behavioral Spe
i�
ations of Businessesand Systems, Kluwer (1999) 175�18819. Du
asse, S., Gîrba, T.: Using Smalltalk as a Re�e
tive Exe
utable Meta-language.In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Model Driven EngineeringLanguages and Systems, 9th International Conferen
e, MoDELS 2006, Genova,Italy, O
tober 1-6, 2006, Pro
eedings. Volume 4199 of Le
ture Notes in ComputerS
ien
e., Springer (2006) 604�61820. Yan, H., Garlan, D., S
hmerl, B., Aldri
h, J., Kazman, R.: Dis
oTe
t: A Systemfor Dis
overing Ar
hite
tures from Running Systems. In: ICSE '04: Pro
eedingsof the 26th International Conferen
e on Software Engineering, Washington, DC,USA, IEEE Computer So
iety (2004) 470�47921. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Che
king Programs.Automated Software Engineering Journal 10(2) (2003)22. Ri
hters, M., Gogolla, M.: Aspe
t-Oriented Monitoring of UML and OCL Con-straints. In: Pro
eedings of Workshop Aspe
t-Oriented Software Development withUML. (2003)23. Chen, F., D'Amorim, M., Ro³u, G.: A formal monitoring-based framework for soft-ware development and analysis. In: Pro
eedings of the 6th International Conferen
eon Formal Engineering Methods (ICFEM'04). Volume 3308 of LNCS., Springer-Verlag (2004) 357�373

