
Monitoring Model Spei�ations inProgram Code PatternsMoritz Balz, Mihael Striewe, and Mihael GoedikePaluno � The Ruhr Institute for Software TehnologyUniversity of Duisburg-Essen, Essen, Germany{moritz.balz,mihael.striewe,mihael.goedike}�s3.uni-due.deAbstrat. Numerous approahes exist that derive exeutable systemsfrom well-de�ned spei�ations. However, model spei�ations are notavailable in program ode of suh derived systems, whih impedes on-tinuous validation and veri�ation at run time. We earlier proposed toembed model spei�ations into well-de�ned program ode patterns tobridge this semanti gap. We now present an elaboration of our approahto monitor suh systems at run time with respet to the underlying ab-strat models. For this purpose, di�erent tehniques are onsidered thatallow to aess the modeling information without relying on additionalmetadata. Based on this, we present a tool that monitors the exeutionof state mahines.1 IntrodutionThe reation of software based on formal models is supported by means of variousmodeling, simulation and veri�ation tools. However, urrent tehnologies formodel-driven software development (MDSD) ause a loss of semanti informationwhen suh models are transformed into soure ode by manual or automated odegeneration [1℄: The inherent loss of semanti information entails that models arerelated to derived systems only impliitly [2℄, thus preventing us from being ableto monitor the exeution with respet to the model semantis.To bridge this semanti gap, we proposed to embed model spei�ations inobjet-oriented program ode [3℄, for example for state mahines [4℄. Suh embed-ded models introdue program ode patterns representing the abstrat syntax ofmodels. This single-soure approah allows not only to verify programs at devel-opment time with respet to the related models, but also to exeute embeddedmodels at run time by frameworks relying on strutural re�etion. In this on-tribution we onsider this an opportunity to monitor the exeution: Sine theseprogram ode patterns represent model spei�ations ompletely, di�erent de-grees of abstration are available in the ode at the same time. Hene we anmonitor model exeution at run time without using other representations thanthe program ode. At the same time we an observe how models behave withappliation data.This paper is strutured as follows: Setion 2 desribes the monitoring ap-proah by introduing onepts for embedding and identifying modeling infor-mation in program ode. Then we desribe di�erent possible tehniques to aess

the related program ode fragments at run time in setion 3. Based on these,a tool for monitoring state mahines is introdued in setion 4. Afterwards wegive an overview of related work in setion 5 and draw onlusions in setion 6.2 ApproahThe objetive of this ontribution is to monitor exeuted software with respetto high-level spei�ations, but without using additional meta information, sothat no inonsistenies an our and the tool hain is as small as possible. Whilemonitoring as a way of verifying the exeution of software systems at run timeis well-established, few approahes realize veri�ation with respet to formalmodels the software is based on. The reason, as mentioned in the introdution,is that the related spei�ations are not naturally available in the program odethat onstitutes programs at run time: The ode usually desribes exeutionlogi only and not its abstrat semantis. When it is monitored or veri�ed, theresulting information is generi, fouses on tehnial details of program ode, ormust rely on traing metadata to relate the ode to formal models. Consideringthese problems, we introdue in this setion our general approah of ouplingmodel spei�ations and program ode.2.1 Embedded ModelsA monitoring as desribed above means that the program ode must ontain thespei�ation information. Considering objet-oriented programming languageslike Java, we an observe a trend to inrease the expressiveness of program odefragments. For example, embedded DSLs [5℄ are domain-spei� languages thatare embedded into other languages, so that semantis of DSLs are used insidea general-purpose language. In addition, some general-purpose languages areable to arry type-safe metadata, e.g., Java Annotations. This enables attribute-enabled programming [6℄ making program ode interpretable even at run time.Embedded models build upon these onepts to relate program ode to ab-strat spei�ations systematially. Eah embedded model provides a programode pattern representing the abstrat syntax of a formal model so that a bije-tive projetion between both exists. The pattern elements rely on the semantisof the underlying programming language and its expressiveness regarding singlefragments and their interonnetions. The statial elements of the programminglanguage and their relations are onsidered building bloks onstituting the pat-tern. They are of interest in our ontext sine expressiveness of the monitoringdepends on their aessibility by appropriate mehanisms at run time.The pattern ode is interpreted by means of strutural re�etion at run timeto exeute the model spei�ations. Eah embedded model provides an exeutionframework that aesses and invokes the language elements and thus reatesa sequene of ations mathing the related model semantis. Considering themonitoring, it is essential that the program ode pattern elements and theirexpressiveness regarding relations to the abstrat spei�ations are by this meansaessible at run time.

2.2 Implementation for State MahinesAn instane for embedded models exists for the domain of state mahines. Sinemeaningful monitoring in our ontext depends on the availability of model el-ements in the program ode at run time, we will introdue the program odepattern here and refer to it later. Figure 1 shows an example ontaining all pro-gram ode strutures of interest. The lass at the top represents a state; thelass name equals the name of the state. The method in the state lass repre-sents a transition. It is deorated with metadata (the annotation �Transition)referring to the target state lass and a �ontrat� lass ontaining guards andupdates. An interfae type referred to as �ator� is passed to transition meth-ods. Its methods are interpreted as ation labels whih an be alled when atransition �res. Thus, a sequene of ator method invoations inside a transitionmethod is interpreted as a sequene of ation labels for this transition.

Contract Definition in Source Code

public class AfterMeasurementState implements IState

{

@Transition(target = UpUpState.class , contract = BeginUpUpContract.class)

public void beginUpUp(MeasurementModule actor) throws MeasurementAbortedException

{

 actor.doMeasure ();

}

// ...

}

State Definition

Target State Pointer Contract Pointer

Action Label

Transition

State and Transition Definition in Source Code

}

public class BeginUpUpContract implements IContract< IMeasurementVariables >

public boolean checkCondition(IMeasurementVariables vars)

{

 return (!vars.getAbort() && !vars.getRestart() && vars.getTooLow());

}

{

public boolean validate(IMeasurementVariables before , IMeasurementVariables after)

{

 return (after.getNumberOfWorkers() == (before.getNumberOfWorkers() + before.getWorkerDistance()));

}

Contract Definition

Variable DefinitionsCurrent Variable Values

Guard

Update

Variable Labels
Current Variable Values

Cached Variable Values

Variable LabelsFig. 1. A state de�nition with an outgoing transitions and its ontrat. The �rstmethod of the ontrat evaluates a pre-ondition with respet to the urrent variablevalues, while the seond method evaluates a post-ondition by omparing the urrentvalues to the previous values.Guards and updates are implemented as two methods in a �ontrat� lasswhih is shown at the bottom of �gure 1. Both evaluate boolean expressions

and return a single boolean value. The guards use the urrent variable valuesof the state mahine to determine if a transition is able to �re, the updatesompare the urrent values with the values from the point in time before thetransition �red to determine the hanges to the state spae. For this purposeboth methods aess a �variables� type whih is a faade type representing thevariables onstituting the state spae of the state mahine. This type ontains�get� methods for eah variable. The name and return type of eah method areinterpreted as name and data type of the orresponding variable.The exeution framework interprets and invokes these fragments at run time.The surrounding program ode aesses for this purpose the exeution frameworkand passes the lass de�nition of the initial state as well as the variables andator faade types as parameters. The state mahine is then exeuted as follows:1. The initial state's lass and variables interfae are passed to the exeutionframework. All states reahable from the initial state are instantiated.2. The urrent state is set to the initial state.3. All transition methods of the urrent state are visited and the variables typeinstane is passed to the related guard method to determine if the transitionis able to �re.4. The urrent variable values are ahed.5. The method representing the transition that is able to �re is invoked.6. The urrent variable values and the ahed variable values are passed to theupdate method for the validation of variable updates.7. The urrent state is set to the target state of the exeuted transition. Theproess is ontinued until the urrent state is a �nal state or the state mahineruns into a deadlok.2.3 Monitoring at Run TimeAs an be seen in the state mahine example, embedded models introdue pro-gram ode patterns whose elements are related to model spei�ations. Themodels are thus views on the program ode and need not to be stored in sep-arate notations, so that no inonsistenies between model and implementationan our. Consisteny is not only maintained at development time, but also atrun time: Sine the related ode fragments are not supplementary or optional,but instead used by the exeution framework, exeuted systems with embeddedmodels arry omplete information about related spei�ations naturally.This availability of models at run time is important for our objetive tomonitor programs with respet to models, sine the model views an be extratedfrom the ode during exeution. For this purpose the well-de�ned elements ofthe program ode patterns serve as entry points for interpreting and monitoringthe program ode. This enables a validation of programs with two purposes:First, the model view itself is of interest for monitoring the model exeution bythe framework, so that inferenes an be made on orretness of the model fromthis information. Seond, embedded models are tightly integrated with arbitraryprogram ode. This allows for high �exibility during implementation, but auses

the need to validate orretness of the surrounding ode with respet to themodel. This is supported with appropriate monitoring sine the behaviour ofthe model with appliation data an be observed.Monitoring of embedded models thus onsiders program ode pattern in-stanes, for example of state mahines, as well as program ode of the exeutionframework: Sine it ontrols the exeution, it is an entry point for ations tobe monitored. Inside the exeution framework for state mahines, the followingsteps an be onsidered:� The exeution framework iterates on the state mahine �ow until a �nalstate is reahed. The urrent ative state is denoted by a variable inside thisiteration pointing to the state lass de�nition. Changes to this variable mustbe monitored in order to determine state ativation.� One a state is ativated, the exeution framework iterates the ontainedtransition methods. The transition under examination is also denoted by avariable that must therefore be observed.� For eah transition the exeution framework invokes the guard and updatemethods and passes the variables faade instane as a parameter. Of interestare all operations inside this methods, espeially those that omprise statemahine variable values. To interpret the guards and updates thoroughly,the omposition of the overall result of these methods from single operationresults is also important to monitor.We will now introdue appropriate monitoring tehniques and afterwards atool that implements the approah.3 Monitoring TehniquesOur objetive is to use this approah for monitoring program exeution withrespet to models at run time, but without arti�ial traing information. Thusit is important to onsider the aessibility of the program ode patterns andtheir elements during exeution. We will introdue the basi tehnologial ap-proahes for this purpose here. While all of them have already been used by otherapproahes for monitoring, our ontribution here is the appliation to programode patterns arrying the abstrat syntax of formal models. We will thereforenot fous on the general tehnologies, but on their adequay for monitoring thereferenes to model spei�ations at run time, in whih we enounter importantdi�erenes.3.1 Listener ApproahSine all information about the running system and the embedded state mahinesemantis is available inside the state mahine exeution framework, the easiestway for monitoring is to extend this framework in order to emit information ofinterest for monitoring. The exeution framework is based on strutural re�etion

and aesses and interprets a onsiderable part of the program ode struturesonstituting the pattern. Besides setting listeners programmatially, module-based platforms (like OSGi [7℄ in the ontext of Java) allow for a loose oupling ofexeution framework and omponents reeiving information about the exeution.In the ase of state mahines, listeners an be noti�ed about events for everyoperation performed on the embedded model:� Initialization and start of a state mahine. This inludes information aboutall states, transitions and variables as extrated from the Java ode viare�etion. States are uniquely identi�ed by their fully quali�ed lass names.� Ativation of states. This indiates that guard evaluation and transitionseletion in this state will happen subsequently.� Seletion of transitions. This indiates that program ontrol will be handedover to the business logi in this transition.� Validation of updates after a transition. The variable values are updatedin this event. Additionally, the ahed variable values are supplied to allowfor omparisons. Additional information is supplied if the validation failed.When this event is �red, program ontrol has been taken over by the statemahine exeution framework again.The advantage of listeners is their easy integration into tools based on theJava platform, espeially in module-based environments. Sine the listeners areaessible from inside the same Java Virtual Mahine (provided appropriateprogramming interfaes or module lookup servies exist), even self-monitoringof appliations is possible. Thus an appliation an gain information about itsown exeution inside the state mahine. This is possible without onurrenyproblems sine the framework passes ontrol of the program �ow to the listenersduring noti�ations, so that all ations are handled sequentially.While the approah is working at this level, the degree of detail is limited:Method ontents in Java are not aessible by means of re�etion and thus blakboxes. For this reason operations inside guards and updates are not visible, butonly their results after the related method was invoked by the framework.3.2 Aspet-Oriented ApproahAspet-oriented programming (AOP) aims to separate ross-utting onernsfrom business logi. Monitoring and traing are often-mentioned examples forAOP usage: Emission of monitoring information is formulated as aspets thatare woven into program ode. To monitor state mahine exeution, the odestrutures of interest are aessed by pointuts. Appropriate advie written inAspetJ [8℄ are shown in listing 1.1. The �rst and the third pointut wrap aroundguard and update methods, invoke them and read the result. Afterwards themonitor is noti�ed about the ontrat lass and the urrent result. The seondpointut is invoked before a transition method is exeuted, i.e., any method ina lass implementing the IState interfae. It noti�es the monitor about therelated state lass and transition method name.

// Wrap guard method invoation and notify about the resultboolean around(Objet vars) : exeution(* IContrat.hekCondition(..)) && args(vars) {boolean result = proeed(vars);monitor.notifyGuard(thisJoinPointStatiPart.getSignature().getDelaringType(), result);return result;}// Notify about forthoming transition method invoationbefore() : exeution(* *.*(..)) && target(IState) {monitor.notifyTransition(thisJoinPointStatiPart.getSignature().getDelaringType(),thisJoinPointStatiPart.getSignature().getName());}// Wrap update method invoation and notify about the resultboolean around(Objet before, Objet after) :exeution(* IContrat.validate(..)) && args(before, after) {boolean result = proeed(vars);monitor.notifyUpdate(thisJoinPointStatiPart.getSignature().getDelaringType(), result);return result;}Listing 1.1. The AspetJ monitoring aspet. All points of interest in theprogram ode pattern are learly identi�able by simple rules regarding theirlasses and method names, so that pointuts an be de�ned unambiguously.The main advantage of AOP in this ontext is that monitoring an be appliedwithout the need to modify the exeution framework. With load-time weaving,monitoring apabilities an even be supplemented in systems after the programode has been ompiled. This allows for �exible mehanisms that an be applieddepending on the ontext. This is enabled by the fat that the pattern elementsof embedded models are well-known and obligatory: Aspets an identify themso that advie and pointuts an address program ode elements related to modelelements. Similar as with listeners, this also allows for self-monitoring.However, while this exterior view on the pattern allows for dynami exten-sion of suh software, it prevents full aess to information of interest: Pointutsan handle information regarding the loation of program ode in whih theyare exeuted (keyword thisJoinPointStatiPart). But, they do not gain a-ess to information in terms of sequenes of pointuts: In eah state, a ertainnumber of guards is evaluated. Afterwards, one transition method is invoked.While pointuts are informed about the single ations, they annot determinewhih guard belongs to the transition being exeuted; this information has to beguessed or supplemented by interpreting the program ode afterwards. To solvethis problem, the exeution framework ould be hanged to make pointers to theobjets of interest available as �elds.3.3 Debugging ApproahThe debugging approah delegates low-level observation of the program stateto the exeuting platform. The related Java Platform Debugger Arhiteture(JPDA) [9℄ provides well-de�ned programming interfaes to aess related eventsso that those of interest for our monitoring approah an be �ltered from the

event queue. In the ase of embedded state mahines, state ativation and transi-tion seletion are monitored by observing �elds ontaining the related referenesin the exeution framework with ModifiationWathpointEvents. For guardsand updates, MethodExitEvents are of interest that are triggered after all odeof a method has been exeuted, but before the method is left. We use them toaess return values of variable interfae methods when they are invoked. To-gether with information about loal variable values we an monitor evaluation ofguards and updates with suh events, too: Sine only expressions are used insidethese methods, the evaluation is fully omprehensible afterwards by inspetionof the values of loal variables. The return value of the method and thus theresult of the evaluation is also available in this event.A debugger an hene aess all elements of the program ode pattern inmodel implementations as well as all loal variables in the exeution framework.Di�erent to the listener and AOP approahes, this allows for monitoring guardand update method ontents. Sine all details of expressions are available, theevaluation of guards and updates an be reorded and presented to the devel-oper for eah step. The debugging approah is therefore the only one able toaess all elements of the program ode pattern. Aess to variables and methodinvoation results is possible without additional e�ort when they are aessedby the appliation itself. For the state mahine model this is su�ient sine thevariables are of interest only when they are evaluated in guards. A debuggerwould also allow to invoke methods at any time. This ould be of interest forvariable methods to determine their urrent value. This is, however, intrusive tothe program �ow, sine variable methods may ontain arbitrary business logi,whih would be exeuted at times not expeted by the developer.The main in�uene of debuggers, however, is the need for two running in-stanes: The appliation being debugged and the debugger itself that ontrolsexeution. All information that an be gained is aessible only by the latter, sothat a self-monitoring of appliations is not possible. In addition, debuggers ingeneral have a strong impat on performane, so that a monitoring of produtionsystems is urrently not desirable with this tehnology. We thus expet that thisapproah an be used as debuggers are used in general � when the appliationsare validated during development or maintenane. In this ase the relation toabstrat models is more meaningful than debugging at the soure ode level only.4 Monitoring ToolThese approahes enable monitoring of program ode based on embedded modelswithout using traing information or other metadata, but by onsidering well-de�ned ode strutures only. We will now introdue a tool that is based on suhapproahes and monitors the related information. Its user interfae shown in�gure 2 re�ets our requirements for the pratial use of the monitoring.The graphial view allows to wath ativated state lasses and transitionmethods. Current and ahed variable values are shown to exhibit the urrentstate spae and to enable monitoring of hanges during transitions. Updates that

Fig. 2. A state mahine model being monitored. Left hand we see the state mahinewith the ative state and transition highlighted, right hand the variable values onsti-tuting the state spae.ould not be validated suessfully are listed separately; sine updates do nothave impat on the program �ow, this information allows developers to look forthe auses of suh inonsistenies later on. The state mahine �ow altogetheran be paused and resumed by the user. This is possible sine business logi isinvoked during transitions, and exeution ontrol will afterwards return to thestate mahine. The third button visible on top of the sreenshot noti�es theexeution framework that the state mahine �ow should pause after the urrenttransition; the button to the right allows then for stepwise exeution.The tool is realized on the Elipse platform, making it easy to be integrated inElipse-based development tools. It uses listeners that are loosely oupled overthe OSGi servie registry that is provided by the Elipse platform: Listenerslike our tool are hene OSGi bundles being deployed alongside, but independentfrom business logi. The listener is registered as a named OSGi servie that isdeteted by the exeution framework. The resulting arhiteture as skethed in�gure 3 allows to use almost arbitrary tools to be noti�ed about events for everyoperation performed on the embedded state mahine.5 Related WorkFollowing our objetive to monitor the exeution of program ode that is re-lated to model spei�ations, we must onsider related work with respet to two

Fig. 3. Component arhiteture with the monitoring listener. Appliations are om-posed of omponents using the exeution framework based on the OSGi platform. Thelistener omponent is optional and hene only oupled via the servie registry.topis: First, general approahes that relate program ode to high-level spei�-ations whih are in theory appropriate for monitoring; seond, the appliationof monitoring in spei� tehnologial environments.Round-trip engineering [10℄ relates generated program ode to models buttargets the development time instead of the run time and annot be fully auto-mated [11℄. Informal spei�ations an be inferred from program ode by detet-ing patterns [12℄, and similar, spei�ations an be extrated from program odebased on design patterns [13℄. However, this requires manual e�ort or is basedon heuristis and not appropriate for a preise monitoring. Exeutable models[14℄ are aessible at run time, too. However, they are only appropriate for ap-pliations ompletely expressed as models, while we onsider ases where modelsare onneted to program ode and thus monitor the related data exhange.Monitoring for ompliane with so-alled design models [15℄ or design pat-tern ontrats [16℄ is based on low-level semantis of detailed patterns. Similarly,model hekers for program ode work with low-level semantis of the program-ming language and thus onsider whole appliations as models [17℄. In ontrast,monitoring with embedded models is related to abstrat spei�ations. For thisreason it an also learly be distinguished from general debugging approahes.We do not aim to present a notation for the spei�ation of all possible sys-tem models like the Java Modeling Language (JML) [18℄ or the approahto use Smalltalk with its introspetion apabilities as a meta language [19℄. Inontrast to stati analysis tools like DisoTet [20℄ we do not target dete-tion of unknown strutures and models, but fous on well-known models thatan thus be examined more thoroughly and with respet to a formally-foundedbakground. We also do not require hanges in the program ode to introduereferenes to spei�ations as is neessary for PathFinder's veri�ation state-ments [21℄ or the approahes to monitor OCL onstraints with aspet orientation[22, 23℄, whih rely on metadata in soure ode omments. Instead, we an inferall model spei�ations diretly from the program ode pattern.6 ConlusionWe presented our approah to monitor model spei�ations that are embeddedin objet-oriented program ode. We were ating on the assumption that the re-

lated program ode pattern strutures are preise enough to allow for infereneto model spei�ations even at run time. To show this, di�erent approahes forinformation retrieval have been evaluated as possible alternatives. Our onlu-sion is that all are appropriate to monitor the state mahine semantis, althoughin di�erent degree of detail and with di�erent impat on the neessary hangesto the program ode. All are non-intrusive regarding the soure ode of the mon-itored system and two of them are even non-intrusive to the soure ode of theexeution framework. However, the degree of detail varies sine only debuggingapproahes allow to monitor guards and updates in detail. On the other hand,listeners and AOP require less overhead at run time. With AOP, monitoringaspets an even be attahed dynamially to the programs sine they an workon the pattern spei�ations after ompilation.For the urrent implementation of a monitoring tool, the listener approahwas hosen sine it allows to aess the most important information with littlee�ort and provides the ability for self-monitoring. However, if the required en-vironment is available, the debugging approah is more thorough and allows tomonitor every detail of the state mahine exeution. Future work will thus in-lude the development of an appropriate monitoring tool. Due to the maturity ofthe JPDA and related user interfaes in integrated development environments,we will then be able to integrate the monitoring with the debugging user in-terfae of development environments. With this integration, the monitoring ofabstrat model spei�ations an be seamlessly integrated with debugging of ar-bitrary Java appliations, thus making model validation at run time an integralpart of the development proess.Referenes1. Brown, A.W., Iyengar, S., Johnston, S.: A Rational approah to model-drivendevelopment. IBM Systems Journal 45(3) (2006) 463�4802. Tihy, M., Giese, H.: Seamless UML Support for Servie-based Software Arhite-tures. In Gue�, N., Artesiano, E., Reggio, G., eds.: Proeedings of the InternationalWorkshop on sientiFi engIneering of Distributed Java applIations (FIDJI) 2003,Luxembourg. Volume 2952 of Leture Notes in Computer Siene., Springer-Verlag(November 2003) 128�1383. Balz, M., Striewe, M., Goedike, M.: Continuous Maintenane of Multiple Abstra-tion Levels in Program Code. In: Proeedings of the 2nd International Workshop onFuture Trends of Model-Driven Development - FTMDD 2010, Funhal, Portugal.(2010) 68�794. Balz, M., Striewe, M., Goedike, M.: Embedding State Mahine Models in Objet-Oriented Soure Code. In: Proeedings of the 3rd Workshop on Models�run.timeat MODELS 2008. (2008) 6�155. Kabanov, J., Raudjärv, R.: Embedded Typesafe Domain Spei� Languages forJava. In: PPPJ '08: Proeedings of the 6th International Symposium on Priniplesand Pratie of Programming in Java, New York, NY, USA, ACM (2008) 189�1976. Shwarz, D.: Peeking Inside the Box: Attribute-Oriented Programming with Java1.5. ONJava.om (June 2004) http://www.onjava.om/pub/a/onjava/2004/06/30/insidebox1.html.

7. OSGi Alliane: OSGi Servie Platform, Core Spei�ation, Release 4, Version 4.1.IOS Press, In. (2005)8. Colyer, A., Clement, A., Harley, G.: Elipse AspetJ. Addison-Wesley (2004)9. Sun Mirosystems, In.: JavaTMPlatform Debugging Arhiteture API http://java.sun.om/javase/tehnologies/ore/toolsapis/jpda/.10. Sendall, S., Küster, J.: Taming Model Round-Trip Engineering. In: Proeedingsof Workshop on Best Praties for Model-Driven Software Development. (2004)11. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in a Large Industrial Con-text � Motorola Case Study. In Briand, L., Williams, C., eds.: Model Driven En-gineering Languages and Systems, 8th International Conferene, MoDELS 2005,Montego Bay, Jamaia, Otober 2-7, 2005, Proeedings. Volume 3713 of LNCS.,Springer (2005) 476�49112. Philippow, I., Streitferdt, D., Riebish, M., Naumann, S.: An approah for reverseengineering of design patterns. Software and Systems Modeling 4(1) (February2005) 55�7013. Mili, H., El-Boussaidi, G.: Representing and Applying Design Patterns: WhatIs the Problem? In Briand, L.C., Williams, C., eds.: MoDELS. Volume 3713 ofLeture Notes in Computer Siene., Springer (2005) 186�20014. Hen-Tov, A., Lorenz, D.H., Shahter, L.: ModelTalk: A Framework for Devel-oping Domain Spei� Exeutable Models. In: Proeedings of the 8th OOPSLAWorkshop on Domain-Spei� Modeling. (2008)15. Se�ka, M., Sane, A., Campbell, R.H.: Monitoring Compliane of a Software Sys-tem With Its High-Level Design Models. In: ICSE '96: Proeedings of the 18thInternational Conferene on Software Engineering, Washington, DC, USA, IEEEComputer Soiety (1996) 387�39616. Soundarajan, N., Hallstrom, J.O., Tyler, B.: Monitoring Design Pattern Contrats.In: Proeedings of the the 3rd FSE Workshop on the Spei�ation and Veri�ationof Component-Based Systems. (2004) 87�9317. Holzmann, G.J., Joshi, R., Groe, A.: Model driven ode heking. AutomatedSoftware Engineering 15(3-4) (2008) 283�29718. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A Notation for Detailed Design. InKilov, H., Rumpe, B., Simmonds, I., eds.: Behavioral Spei�ations of Businessesand Systems, Kluwer (1999) 175�18819. Duasse, S., Gîrba, T.: Using Smalltalk as a Re�etive Exeutable Meta-language.In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Model Driven EngineeringLanguages and Systems, 9th International Conferene, MoDELS 2006, Genova,Italy, Otober 1-6, 2006, Proeedings. Volume 4199 of Leture Notes in ComputerSiene., Springer (2006) 604�61820. Yan, H., Garlan, D., Shmerl, B., Aldrih, J., Kazman, R.: DisoTet: A Systemfor Disovering Arhitetures from Running Systems. In: ICSE '04: Proeedingsof the 26th International Conferene on Software Engineering, Washington, DC,USA, IEEE Computer Soiety (2004) 470�47921. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Cheking Programs.Automated Software Engineering Journal 10(2) (2003)22. Rihters, M., Gogolla, M.: Aspet-Oriented Monitoring of UML and OCL Con-straints. In: Proeedings of Workshop Aspet-Oriented Software Development withUML. (2003)23. Chen, F., D'Amorim, M., Ro³u, G.: A formal monitoring-based framework for soft-ware development and analysis. In: Proeedings of the 6th International Confereneon Formal Engineering Methods (ICFEM'04). Volume 3308 of LNCS., Springer-Verlag (2004) 357�373

