
Applying MDE Tools at Runtime: Experiments
upon Runtime Models

Hui Song, Gang Huang ?, Franck Chauvel, and Yanchun Sun

Key Lab of High Confidence Software Technologies (Ministry of Education)
School of Electronic Engineering & Computer Science, Peking University, China

{songhui06,huanggang,franck.chauvel,sunyc}@sei.pku.edu.cn

Abstract. Runtime models facilitate the management of running sys-
tems in many different ways. One of the advantages of runtime models is
that they enable the use of existing MDE tools at runtime to implement
common auxiliary activities in runtime management, such as querying,
visualization, and transformation. In this tool demonstration paper, we
focus on this specific aspect of runtime models. We discuss the require-
ments of runtime models to enable the use of model-driven tools, and
present our tool to help provide such runtime models on the target sys-
tems. We apply this tool on a wide range of target systems, modeling the
Android mobile system, the Eclipse GUI, the Java class structure, and
the JOnAS inner structure. With the help of these runtime models, we
perform the runtime management on these systems using classical MDE
tools including OCL, QVT, and GMF.

1 Introduction

For a running system, developers often need to retrieve and update its data at
runtime. The runtime data depict the system’s configuration, structure, state, or
environment. By analyzing and changing these runtime data, developers monitor
and control the system at runtime to fix system defects, adapt to the changed
environment, or meet newly emerged requirements. Take a mobile phone as a
sample system, we may care about what wireless network (Wi-Fi) channels are
currently available, as well as their signal intensity. We may also need to switch
channels when necessary and possible.

However, manipulating the runtime data is not an easy task. Currently, most
systems only provide low-level APIs for manipulating the runtime data [1], and
developers have to write low-level code to invoke the APIs. For example, the
code below illustrates how to invoke the Android (a mobile OS) API to print
the signal IDs of available Wi-Fi channels.

1 WifiManager wm=(WifiManager) this
2 .getSystemService(Context.WIFI_SERVICE);

3 List <ScanResult > srs = wm.getScanResults ();

4 for (ScanResult sr in srs)

5 Log.i("Wi -Fi_Signal_ID",sr.ssid);

? corresponding author

Contextcontext : Context

WifiManager ActivityManager

wifiManager
activityManager

wifiManager : WifiManager

ssid = wirelessPKU
level = -79

wirelessPKU : ScanResult

ssid : String
level : Integer

ScanResult

scanResult

ssid = CCMC
level = -64

CCMC : ScanResult

Runtime Model Mata-Model

conforms to

Fig. 1. A runtime model and its meta-model

It is tedious and error-prone to manage the system by directly using the manage-
ment APIs. First, there lacks explicit definition about the data types. Second,
there are different invocation manners for different systems or even different
types of data inside the same system. Third, people have to re-implement many
common auxiliary management activities on each of the APIs, such as querying,
aggregation, visualization, etc.

Runtime model [2, 3, 1] provides a promising way to liberate people from the
tedious APIs, and allow them to manipulate the runtime data in a higher ab-
straction level, utilizing the rich and mature MDE (model-driven engineering)
techniques and tools, such as OCL for evaluation or querying, QVT for aggrega-
tion and analysis, visualization, etc. Figure 1 illustrates a sample runtime model
and its meta-model for the Android system. Developers could use the following
OCL rule to query the signal IDs of Wi-Fi channels.

self.wifiManager.scanResult ->collect(e|e.ssid)

To enable the application of existing MDE tools, the runtime model should
satisfy the following three requirements. Firstly, the model should be organized
in a standardized form. Second, the runtime model must have an explicit meta-
model which defines its semantics. Thirdly and most importantly, the model
must have a causal connection with ever-changing system. That means if the
system evolves, the model will change immediately, and if the model is modified,
the system will change correspondingly.

These requirements call for a software agent to represent the runtime data as
a standard model conforming to a specific meta-model, and to synchronize the
model with the runtime data. We name such agents as “synchronizers”. For a tar-
get system, runtime model providers, who are experts of the system and its API,
develop such synchronizers, and runtime model consumers, usually the common
developers, use the runtime model maintained by the synchronizer to manipu-
late the runtime data, using the MDE tools. Existing approaches on runtime
model usually require runtime model providers to develop such synchronizers by
hand [4, 1].

In this paper, we demonstrate a generative tool, SM@RT 1, which generates
synchronizers for a wide class of systems. As shown in Figure 2, for a kind of

1
SM@RT: Supporting Models at Run-Time, the tool and the case studies are available on line:
http://code.google.com/p/smatrt

system
meta‐model access model

defineas reference
RM providerRM consumer

meta model

inputs

SM@RT
conforms

to

manipulate
runtime data
using OCL

context
generates

Wifi
Manager

Activity
Manager

Synchronizer

Wireless
PKU CCMC

Fig. 2. Tool overview

target systems, like Android, we require the runtime model providers to define a
system meta-model which specifies the types of the runtime data, and an access
model which specifies how to manipulate the data through the API. From these
two inputs, SM@RT automatically generates the synchronizer, which maintains
a MOF standard runtime model for a running system instance, and ensures the
causal connection between this model and the system’s runtime data.

Our contributions can be summarized as follows.

– We propose that runtime models could facilitate the management of systems
by enabling the use of existing model-driven techniques at runtime. We also
identify the key requirements for such runtime models.

– We provide a generic synchronization solution between runtime models and
system data, and based on this solution, we provide a generative tool to
construct synchronizers for a wide class of systems.

– We successfully apply this tool on several systems, and undertake several
experiments to utilize the provided runtime models for managing the sys-
tems. These case studies illustrate how the runtime models facilitate the
management of systems by using model-driven tools, and how our SM@RT
tool implement such runtime models.

The rest of the paper is structured as follows. Section 2 discusses the require-
ments of runtime models. Section 3 presents our SM@RT tool to implement
such runtime models. Section 4 reports our case studies. Section 5 presents some
related approaches and Section 6 concludes this paper.

2 Requirements of Runtime Models

In this section, we discuss what the runtime model should be like in order to
facilitate the system management with the help of MDE techniques and tools.

We summarize the following three requirements, considering the feature of both
runtime management and the MDE tools.

Standardized. First, the format of the runtime models should conform to
some widely accepted modeling framework (the meta-meta-model and the ex-
change format), such as MOF, fractal, XML, etc. Standardized models provide
the runtime model consumers a consistent basis for understanding and manipu-
lating the data. Moreover, since many MDE techniques and tools are defined and
implemented on specific modeling standards, they can be directly reused only if
the model conforms to the same standard. As the OMG’s Meta-Object Facilities
(MOF) has became the most accepted standard, with rich tool support, in this
paper we only consider the runtime models conforming to the MOF standard.

Explicitly defined. The types of runtime models should be explicitly de-
fined by meta-models. Such meta-models provide an intuitive guidance and a
strict constraint for runtime model consumers to understand and reconfigure
the runtime models, and are also necessary reference for MDE tools to process
the models. According to the MOF standard, a meta-model defines the types
of model elements by the classes. For each class, the meta-model defines the
data type of attributes that can be contained by the elements, and the potential
relation between them and the elements of other classes.

Causally connected. Finally, we require the runtime models to have the
causal connection with the running systems. The management agents monitor
and reconfigure the system by reading and writing the model. The causal con-
nection ensures that each time the management agent reads the model, it gets
the information representing the current system state, and similarly, each time
it writes the model, the information it writes causes the proper system change.
Considering the Android example, if the device enters into the scope of a new
Wi-Fi service, there will be a new ScanResult element appearing in the model
immediately, so that the OCL query in Section 1 returns the ID of the new Wi-
Fi service. Causal connection is an important feature of runtime models, which
distinguishes them from the models used in design and development phases.

Notice that there are multiple levels for causal connection. The above re-
quirement is just a basic one. Advanced usages of runtime models may require
the model changes launched by the management agent would be stable as sys-
tem evolves, or even require the model to hold some predefined constraints. But
in this paper, we cares about the minimal requirement to enable MDE tools to
be used for runtime management, and leave the advanced work as the task for
“using the tool in a correct way”.

3 The SM@RT Tool to Implement Runtime Models

We provide a generitive tool, the SM@RT, to help implement runtime models
that satisfy the above requirements. Specifically, for a target system with a
management API, the tool accepts a MOF meta-model defining the system data,
and a description about the management API to access such data. Then it
automatically generates a synchronizer for the target system, which represents

the system data as a MOF standard model conforming the system meta-model,
and maintain the causal connection between the model and the system data.

3.1 Tool Input

To provide a runtime model for a specific system, we need the information about
“what kind of data can be manipulated” in this system, and “how to manipulate
them through the system’s API”. The former is defined by the MOF meta-model
as discussed in Section 2. For the latter, we defined an API description language
to specify how to access (invoke) the API to manipulate each type of the data.

The API access is described as code snippets annotated with their effects on
the data. Look over the sample code in Section 1 for invoking the Android API.
The first line tells us that from the root system element this, whose type is
Context, how we can get its child named wifiManager. The above statement
comprises three kinds of information for manipulating the system data, i.e., the
manipulation target (an aggregation named Context.wifiManager), the manip-
ulation type (get), and the action (Lines 1-2 in this code snippet). From this
point of view, we define the access model for an API as follows.

AccItem : MetaElement×Manipulation −→ Code

Here MetaElement is the set of all the elements in the system meta-model
(classes, attributes, etc.), Manipulation is the set of 9 types of manipulations,
including getting and setting attribute values, creating and deleting model
elements, etc., and Code is a piece of Java code [5].

3.2 Tool Output

The output of SM@RT is a “synchronizer” that maintains the causal connection
between the runtime model and the running system.

The mechanism inside such synchronizers can be briefly described as “lazy
and local refreshment”. Specifically, the synchronizer maintains an in-memory
MOF standard model, in the form of a set of Java objects implementing the
EObject interface defined in Eclipse EMF. During runtime, the synchronizer
keeps on listening to the external reading and writing operations on this run-
time model. For reading operation, the synchronizer calculates what system data
are required, collects the data via the management API, and refreshes or com-
plements the model according to the collected data. Similarly, for a writing
operation, the synchronizer identifies the modifications on the model, calculates
the corresponding changes on the system, and invokes the API to implement the
changes. For different kinds of operations (getting, setting, adding etc.) and their
target meta-elements (classes, attributes, single or multiple valued associations),
the calculation methods are different. We name these methods as the synchro-
nization strategies. We summarized and designed a set of synchronization strate-
gies covering all the potential combinations of operations and meta-elements, as
presented in our previous work [5].

3.3 Generating the Synchronizer

SM@RT automatically generates the synchronizers from the API description.
The tool has two parts, a common library and a code generation engine. The
common library implements the generic solutions inside the synchronizers, such
as maintaining the mapping between model elements and system parts, and
the hard-coded synchronization strategies for different kinds of elements and
different operations. The code generation engine generates the parts of the syn-
chronizers which are specific to the target system, such as all the standard model
operations (depending on the system meta-model) and the effective API invoca-
tions to manipulate each kind of system data (depending on the access model).
We generate the model operations by directly reusing Eclipse EMF generator,
and generate system operations according to the items defined in the access
model, using the defined API-invoking code snippets as the body of the system
operation. The generated operations follows a strict naming convention, so that
the synchronization strategy know the semantical relation between model and
system operations, automatically.

4 Demonstration

We demonstrate four case studies for SM@RT, using it to provide runtime mod-
els for four different target systems, including Android mobile systems, Eclipse
SWT windows, Java classes and JOnAS JEE enterprise systems. We describe
the Android case in detail, showing how to construct the system-model synchro-
nizer, how to use the MDE tool (the OCL query engine in this case) upon the
runtime model, and how the synchronizer works to maintain the runtime model.

4.1 The Android Case

Android is a mobile operating system developed by Open Handset Alliance2. It
allows developers to write managed code in Java to manipulate (read or write)
a device, by invoking the API of a set of Google-developed Java libraries.

Figure 3 shows the system meta-model we define for Android runtime data.
In this demonstration, we care about the memory, connections, running tasks
and Wi-Fi. We define each type of system data as a class, and define the relations
between them as properties. For example, this meta-model tells us that from a
root element in type of Context, we can first get its wifiManager, and then get
the manager’s scanResult to enumerate all the Wi-Fi signals. For each scanned
signal, we can get its attributes like ssid, frequency, etc. This meta-model is
not only an input to our synchronizer, but also a guidance for using the runtime
model (like writing the OCL query) and a reference of the MDE tool (like the
OCL engine).

Figure 4 shows an excerpt of the access model, which defines how to get
a Context’s wifiManager. The annotations (keywords starting with “@”) in-
dicates the constitution of the item, i.e. a AccItem containing a MetaElement,

2
http://www.android.com

Fig. 3. Tool overview

1 @AccItem @MetaElement=Context::wifiManager
2 @Manipulation=Get @Code=@Begin
3 $sys::result=($sys::type)$sys::this
4 .getSystemService($sys::type.WIFI_SERVICE);

5 @End @EndAccItem

Fig. 4. Access model for Android

Manipulation and a Code fragment, and whose values are defined on the right
hand side of the equal signs. Inside the code fragment, we define a piece of Java
code to say that to get a wifiManager ($sys::result) from a Context instance
($sys::this), we should invoke a method named getSystemService with a pa-
rameter Context.WIFI SERVICE. The entire access model contains 95 items like
this, with 431 lines of code (including the structural lines like "@AccItem").

We use these two inputs to generate the synchronizer. The generation result
is in the form of Java source code. We compile it as an Android package, and
deploy it onto an Android supported mobile phone, the “HTC Magic (G2)”.

The generated synchronizer allow the device users to use OCL for querying
the device data. Figure 5 shows the snapshots of four scenarios for executing OCL
rules on Android. For the first scenario, we want to list the IDs of all the Wi-Fi
signals available for the device. Initially, we know that the root element (we refer
to it as self in the OCL rules) is in type of Context. Then we check the system
meta-model and find that Context has an association named wifiManager. The
target class WifiManager has an multiple-valued association named scanResult.
And finally, the target class ScanResult has an attribute named ssid. According
to terminology of Wi-Fi technique, we know that we can list the signal IDs
by querying out the values of these ssids. We input the OCL rule as shown
in Figure 5(a), click the button, and the result is printed under the button.
Similarly, Figure 5(b) shows how we print the detailed information of the first
Wi-Fi channel. Figure 5(c) shows how we calculate the total number of clients
registered on all the running services. Figure 5(d) shows a relatively complex
query: We want to see what services have more than one clients listening to them.
The OCL rule means “getting the running services, selecting the ones from them

() (b) () (d)(a) (b) (c) (d)

Fig. 5. Android screen shots

Model User Model Listener Planner

sync

Image Pool System Proxy

lookup

refresh
end_sync

end_get

Model Proxy

get

create

get

get

Fig. 6. A sample behavior of the synchronizers

whose client count is greater than 1, and finally retrieving the process name of
the selected running services”.

The above scenarios are implemented by directly using the Eclipse OCL
engine. We compile the OCL engine on Android platform, and deploy it on the
same device. After the user clicking the Apply button, the GUI retrieves the
inputted OCL rule, instantiates a root element in type of Context from the
synchronizer, and invoke the evaluate method of the OCL engine using this
root element and the OCL rule. During the execution of the OCL engine, it
will manipulate the model from this root element, by means of standard model
invocation defined by EMF. And in the same time, the synchronizer breaks the
invocation, and synchronizes the model with system on-demand.

Figure 6 illustrates how the synchronizer works, when we evaluate the OCL
query in Section 1 on the runtime model as shown in Figure 1. Each life-line
in this sequence diagram represents a component that constituting the syn-
chronizer. At first, the initial model only contains one root model element, in
type of Context. Following the query, the interpreter first retrieves the root’s
child named wifiManager, by invoking get on the model. The model listener
interrupts this invocation, and asks the planner to perform synchronization. Ac-
cording to the synchronization strategy for “getting single-valued aggregation”
[5], the planner first looks up the image pool and finds that this root element

corresponds to a context object provided by the Android API. Then the planner
performs get on this context object. The logic of this system get operation is
just the one defined in the description item shown in Figure 1. This get opera-
tion returns a system object which points to the Wi-Fi manager, and the planner
creates a model element in type of WifiManager as an image for this object,
refreshes the image pool, and notifies the model listener about the end of this
synchronization. The model listener then invokes get on the model again, and
returns the newly created model element as a result to the interpreter. Following
the remaining parts of the OCL query, the interpreter performs get operations
successively to obtain the WifiManager’s scanResult, and to obtain these re-
sults’ ssids. The behavior of the synchronizers is similar as shown before.

4.2 The Eclipse-SWT Case

In this case, our target systems are SWT-based Eclipse UI parts, which could be
“views”, “editors” or “dialogs” running on an Eclipse platform. Such UI parts,
also known as Shells according to the SWT terminology, are constituted of a
set of Controls, like the Labels for presenting information, the Text fields for
inputting texts, the Buttons for triggering commands, etc. Each Control has its
own configurations which can be retrieved and updated at runtime, such as the
presented text, the background color, etc. The Controls and their configurations
form the runtime data of such Shells. The main idea of this case study is to
provide runtime models for Eclipse windows, so that developers could reconfig-
ure the windows intuitively at runtime. That means developers do not need to
completely decide the appearance of the windows, and reconfigure the window
at runtime. Moreover, this configuration is simply editing models, through visu-
alized model editors. This is a prototype for “design at runtime”, and may be
useful in customizable GUIs or WYSIWYG GUI development.

The foreground image of Figure 7 presents a simplified version of the sys-
tem meta-model. We defined three common types of controls, and defined some
typical attributes for them. The background snapshot illustrates how to use the
runtime model. The snapshot is an Eclipse platform, with the target system
(the bottom part, an Eclipse “view”) and the runtime model (the top part, a
model opened in a tree-based visual model editor), together. The model elements
reflect the controls in the window, and their attributes reflect the controls’ con-
figurations. We change the system by typing “Hi” on the text field, the model
element’s text attribute changes instantly. We can edit the model to manipulate
the system: We change the background of the first Label into “red”, and then
the color of the system label changes automatically. Finally, we add a new model
element in the type of Button, and a new button appears in the window .

4.3 The Java Class Structure Case

This case is a reproduction of the Jar2UML tool3, which reflects the class struc-
ture in a Jar file as a UML model. We utilized the UML meta-model (defined

3
http://ssel.vub.ac.be/ssel/research/mdd/jar2uml, a use case of MoDisco

Fig. 7. Visual management of an SWT window

by Eclipse UML24) as our system meta-model, and define the API provided by
the BCEL library5 for analyzing Java binary code. We used Eclipse UML2 tools
to visualize the reflected UML model as a class diagram.

4.4 The JOnAS Case

Our last case study is to equip a JOnAS JEE application server6 with runtime
model. This model reflects the inner structure (e.g. what applications and EJBs
are deployed), the configuration (e.g. the size of data source’s connection pool),
and the state (e.g. the number of EJB instances) of a running JOnAS server.

The system meta-model defines all the 21 types of MBeans supported by
JOnAS, including EJBs, applications, middleware services, etc. The API descrip-
tion specifies how to manipulate these elements and their properties through
the JMX API provided by JOnAS. We deploy the generated synchronizer on
a JOnAS server with a Java Pet Store application deployed on it, and utilize
Eclipse GMF7 to visualize the runtime model maintained by the synchronizer.
The graphical model editor based on GMF can be used as a graphical JOnAS
management tool: We can see the inner structure of the current JOnAS server,
deploy new applications or EJBs by adding model elements, and check the sys-
tem elements’ current states and modify their configurations. We also use the
QVT transformation to synchronize this runtime model with a software archi-
tecture model in C2 style, reproducing the architecture-based runtime evolution

4
http://www.eclipse.org/uml2

5
Byte Code Engineering Library, http://jakarta.apache.org/bcel/

6
http://jonas.ow2.org

7
http://www.eclipse.org/modeling/gmf

Table 1. Summary of case studies

system API meta-model access model generated compared tools
elems items/LOC LOC LOC

Android Android 87 95/431 21732 - OCL

Eclipse SWT 43 36/220 11290 - EMF

Java class BCEL 29 13/109 10518 3108 UML2

JOnAS JMX 305 47/270 37263 5294 GMF, QVT

proposed by Oreizy et al. [6]. The details of this case study could be found in
our earlier work [7]

4.5 Summary and discussion

Table 1 summarizes the case studies. For each case, we list the target system
and its management API, the number of elements in the system meta-model,
and the number of items in the API description. After that, we list the size of
the generated synchronizer. For the last two cases, we also list the sizes of the
hand-written programs with the equivalent capabilities, which are developed by
ourselves or other developers [4]. Finally, we list the model-driven techniques we
applied upon the runtime model to implement runtime data manipulation.

These case studies illustrate the following aspects of SM@RT.

– Feasibility. The case studies covers a wide class of systems, from enterprise
systems to mobile devices.

– Efficiency for development. It is not a hard task to define the system meta-
model and API description, comparing with the multi-time-larger generated
code (which approximately reflects the work required to support runtime
model) and the actual manual effort to realize runtime models.

– Effectiveness. The generated synchronizers enable the existing MDE tools
to be directly used for runtime management. In particular, we use OCL for
runtime data querying, and use GMF/EMF, and UML2 for different purpose
of visualization and manipulation of runtime data. All the MDE tools are
directly used upon the synchronizers.

5 Related Work

There are many research approaches towards runtime models, according to a
recent survey [3] and the annual workshops [2]. As an emerging topic, many
of these approaches focus on how to utilize the runtime models, but not how
to implement runtime models on existing systems, which is exactly the target
of SM@RT. We share the similar idea with Sicard et al. [1] and the MoDisco
project [4], i.e. wrapping the systems’ APIs to reflect runtime data as standard
models. Their wrappers or discoverers play the similar role as our synchronizers.
The difference is that they require runtime model providers to manually develop
the wrappers or discoverers, while our SM@RT tool automatically generates the

synchronizers. Our API description language shares the similar idea as feature-
based code composition [8]. The common synchronization mechanism roots in
the earlier research on reflective middleware [9], and the model synchronization
approach towards runtime management [10].

6 Conclusion

In this paper, we focus on a specific usage of runtime models, i.e., facilitating the
runtime management by enabling the use of existing MDE techniques and tools
at runtime. We discuss the requirements of such runtime models, and present
our SM@RT tool to help on providing them. We evaluate our idea and the tool
through a set of case studies on a wide range of target systems.

ACKNOWLEDGEMENT This work is supported by the National Basic Re-
search Program of China under Grant No. 2011CB302604, the National Natural
Science Foundation of China under Grant No. 60933003, 60873060; the High-
Tech Research & Development Program of China under Grant No. 2009AA01Z116,
and the National S&T Major Project under Grant No. 2009ZX01043-002-002,
the EU Seventh Framework Programme under Grant No. 231167.

References

1. Sicard, S., Boyer, F., De Palma, N.: Using components for architecture-based
management: the self-repair case. In: ICSE. (2008) 101–110

2. Bencomo, N., Blair, G., France, R.: Summary of the workshop Models@run.time
at MoDELS 2006. In: Satellite Events at the MoDELS 2006 Conference, LNCS,.
(2006) 226–230

3. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Future of Software Engineering, in ICSE. (2007) 37–54

4. Bruneliere, H.: The MoDisco Project, http://www.eclipse.org/gmt/modisco/
5. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H.: Generating syn-

chronization engines between running systems and their model-based views. In:
MoDELS Workshops 2009, LNCS 6002. (2009) 140–154

6. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software
evolution. In: ICSE. (1998) 177–186

7. Huang, G., Song, H., Mei, H.: Sm@rt: Applying architecture-based runtime man-
agement into internetware systems. Int. J. Software and Informatics 3(4) (2009)
439–464

8. Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages with round-
trip engineering. In: MoDELS. (2006) 692–706

9. Huang, G., Mei, H., Yang, F.: Runtime recovery and manipulation of software
architecture of component-based systems. Auto. Soft. Eng. 13(2) (2006) 257–281

10. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental model
synchronization for efficient run-time monitoring. In: MoDELS Workshops. (2009)
124–139

