
Using Models at Runtime For Monitoring and
Adaptation of Networked Physical Devices:

Example of a Flexible Manufacturing System

Mathieu Vallée1, Munir Merdan2, and Thomas Moser3

1 Institute of Computer Technologies
2 Automation and Control Institute

3 Institute for Software Technology and Interactive Systems
Vienna University of Technology, Austria
{firstname.lastname}@tuwien.ac.at

Abstract. The emergence of software-intensive systems connecting phys-
ical devices to network-based applications involves new design challenges.
As an example, flexible manufacturing systems composed of multiple
networked devices in interaction with the physical world, are subject to
imprecision and to unpredictable breakdowns. Applications and control
software are therefore highly complex, and must operate in heterogeneous
and rapidly changing environments.
To address these issues, we describe an approach using models at runtime
for efficiently monitoring and adapting the software controlling mecha-
tronic devices. We consider a decentralized system, in which each device
is represented as an agent. Each agent maintains a model integrating
a representation of itself, of its environment and of the agent society,
and uses this model to detect inconsistencies, to envision possible future
states and to create explanations based on past states. In this paper,
we focus on presenting our model and highlighting the results, benefits
and challenges arising from using models at run-time with networked
physical devices.

1 Introduction

The emergence of software-intensive systems connecting physical devices to network-
based applications offers new exciting possibilities. Among them, flexible manu-
facturing systems providing a faster, more efficient response to market changes
are envisioned [10]. However, engineering such complex systems operating in
heterogeneous and rapidly changing environments poses numerous challenges.
Traditional control approaches cannot cope with new requirements, due to their
rigidity and limited capability for agile adaptation to unexpected internal and
external disturbances [8]. The application of decentralized control architectures,
based on autonomous and co-operative agents, is considered as a promising ap-
proach. Intelligent agents offer a convenient way of modeling processes that are
distributed over space and time, making the control of the system decentral-
ized [7], increasing flexibility and enhances fault tolerance. Using agent-based

software for controlling a flexible manufacturing system has been largely investi-
gated in the recent years. However, most work focus on planning and scheduling
issues [8] (disconnected from the actual control of physical devices [3]) or use sim-
ple, reactive agents for producing specialized adaptation behaviors. Currently,
concerns about robustness and stability prevent the wide industrial adoption
of these initial solutions [15]. Advances on self-awareness, self-adaptation and
self-healing are needed [4].

To address these issues, we proposed an approach in which agents use mod-
els for efficiently monitoring and adapting the software controlling mechatronic
devices. Each agent manages a model integrating a representation of itself, of its
environment and of the agent society, and enabling it to detect inconsistencies,
to envision possible future states and to create explanations based on past states.
In recent works [18, 11, 9], we showed how this approach supports complex tasks
such as detection of anomalies of sensor reading, failure recovery and runtime
reconfiguration. In this paper, we focus on presenting our use of models at run-
time with networked physical devices and discussing the challenges arising from
this approach.

This paper is structured as follows. Section 2 introduces some background
and example about distributed intelligent control of a flexible manufacturing
system. Section 3 details the world model of an automation agent, forming the
central piece of our approach. Section 4 discusses our results and lessons learned.
Section 5 discussed related work and section 6 concludes with a summary.

2 Background: Distributed Intelligent Control of a
Flexible Pallet Transfer System

As an example for monitoring and adapting software in interaction with net-
worked physical devices, our current studies focuses on flexible manufacturing
systems. In this paper, we use the example of a pallet transport system, located
in the Odo-Struder-Laboratory4. Due to their role to connect different parts of
the system and to carry and route materials between them, transportation sys-
tems are in most cases seen as a key element, but the increasing need for more
flexibility significantly complicates the control of these systems.

Overview of the Pallet Transfer System The pallet transfer system (Fig.
1) consists of software-controlled manufacturing components: transport compo-
nents such as conveyor belts (dark green lines) and diverters (yellow circles); and
assembly machines (colored rectangles with round corners). Product parts are
transported on pallets (colored rectangles; colors represent the target machines).
Each pallet carries an RFID tag providing information on its destinations, which
diverters can access through RFID readers (rectangles on conveyors). Figure 2

4 Industrial automation systems laboratory of the Automation and Control Institute,
Vienna University of Technology

Fig. 1. Overview of the pallet transfer system

(a) Mechatronic component (diverter)

A
ut

om
at

io
n

Ag
en

t

High-Level Control
World
Model

Repository

Decision
Making

Commu-
nication

Management

Low-Level Control

Low-Level
Interface

Mechatronic Component

(b) Architecture of the automation agent

Fig. 2. Automation agent controlling a diverter

(a) depicts the mechatronic component realizing a diverter. It is mainly com-
posed of a switch (directing a pallet), sensors (detecting the presence of a pallet)
and blockers (preventing a pallet from moving).

Architecture of an Automation Agent In order to support the design of
distributed intelligent control software for manufacturing systems, we introduced
a generic architecture for automation agents in [17]. The architecture is depicted
on Fig. 2 (b), and consists of two software layers, in addition to the mecha-
tronic component. The low-level control (LLC) layer is in charge of controlling
the hardware. The high-level control (HLC) layer is in charge of diagnostics, of
coordination with other agents and of self-adaption based on the representation
of the world. In the case of the diverter, a “diverter agent” contains a LLC layer
responsible for moving the switch depending on the destination of on incoming
pallets, and a HLC layer responsible for , e.g, redefining routes in response to
disturbances at other components or validating sensor readings with information
from other agents. Distinguishing LLC and HLC within each automation agent
is fundamental for devices in interaction with the physical world. In our architec-
ture, the LLC is responsible for performing all necessary operations in real-time,
while the HLC is only responsible for non-functional monitoring and adapta-
tion, which might require longer computation time and interactions with others
agents or even with human operators. To enforce this layering while enabling ef-
ficient adaptation, we base our LLC on the IEC 61499 standard, enhanced with
programmable reconfigurations capabilities [22, 9].

Figure 2 (b) also depicts more precisely the four main modules composing
the inner architecture of the HLC. The world model repository contains a world
model, i.e., a symbolic representation of the world of the agent. The low-level
interface enables the HLC to monitor and to adapt the LLC. It especially pro-
vides facilities for receiving event notifications about the current operations of
the LLC and for requesting reconfiguration in the LLC. The communication
manager provides facilities for managing the communication with other agents.
The decision-making component is in charge of coordinating the reasoning about
states of the world and deciding what to do (e.g., communicate with other ma-
chines, request an operation from the LLC, issue notifications to an operator).
Event notifications generated by the LLC, by communication with other agents
or by the world model trigger the decision-making procedures.

3 World Model of an Automation Agent

The world model plays a central role in the architecture of an automation agent.
In this section, we describe its content and illustrate it using the example of the
diverter agent.

3.1 Properties

The world model has to provide two key properties. Firstly it should integrate
information about different views of the world, which are sometimes overlapping.

Situation Model
Domain Models

Facts

Diverter Conveyor

Pallet
hasInside

connectsTo

D1 isA Diverter
D1 connectsTo C12
D1 connectsTo C25
D1 connectsTo C33
D1 hasInside P123
P123 hasDestination DS2

Sensor
Blocker Switch

Routing
Control

hasOn

monitors

controls

controls

RoutingAgentSenderAgent ReceiverAgent
receivesFrom sendsTo

D1 monitors Sensor_L
D1 controls Blocker_L
D1 controls Three-way-switch
D1 receivesFrom C12
D1 sendsTo C25
D1 sendsTo C33

Fig. 3. Situation Model for the diverter agent

type: "Observing P123
entering from C12"

timing: (15, 15)

Activity Model
Classification of
activities

Expectations /
Observations

Observing Pallet Entering Routing Pallet

Observing Pallet entering from C12 Routing Pallet on (C25 or C33) Observing Pallet leaving to
(C25 or C33)

subClassOf

Activity
subClassOf

Observing Pallet Leaving

Routing palletToDS2 on C25 Routing palletToDS3 on C33
subClassOf subClassOf

type: "Routing palletToDS2 on c25"
timing: (t0, t1=t0+d)

type: "Observing palletToDS2
entering from c12"

timing: (t0, t0)

type: "Observing palletToDS2
leaving to C25"

timing: (t1, t1)

role-dep: requires
time-dep: atStart

role-dep: requires
time-dep:atEnd

type: "Detecting switch
failure"

timing: (t0, t1)

role-dep: preventedBy
time-dep: during

Expectation Observation

type: "Detecting stuck
pallet"

timing: (t0, t1)

Fig. 4. Activity Model for the diverter agent

It must integrate information about the state of its environment (the physical
world in which it is evolving), about the agent society (the other agents with
which it is interacting, their roles and tasks), and about its own internal structure
and processes. Clearly, this is related to reflection, so the representation of the
agent itself is a key element of the world model [17].

Secondly and most importantly, the world model must support a flexible
synchronization with the real world. In particular, it is in general not possible
to assume that the model provides a complete and up-to-date view on the real
world. We must cope with partial and scarce observations, and we use models to
compensate for the lack of direct information with assumptions about what the
state of the world should be. As a consequence, the model must be validated and
revised anytime new information is received. More precisely, it should provide
three key features:

– The detection of inconsistencies between the current world model and new
information (received from LLC or other agents). In a real world setting,
inconsistencies may arise both from inaccuracy of the model on the one side,
and from imprecision of the information sources on the other side.

– The derivation of possible future states of the world and their relevant char-
acteristics (answering “what-if” questions). It should be possible to define
expectations about the future state of the world, and to plan meaningful
observations accordingly. It should also be possible to envision multiple pos-
sibilities about the future in order to be prepared for adaptation.

– The derivation of explanations from past states of the world (answering
“why” questions). Although all information about the world may not be
accessible, models can be used to explain current observations with assump-
tion about past states of the world which could not be observed directly. In
some casesw, this can trigger additional observation to confirm assumptions.
This is particularly useful for diagnosis, when root causes for failures can be
identified from reasoning on the world model.

3.2 Elements of the World Model

The world model consists of two parts. Figures 3 and 4 illustrate the world model
for the diverter agent example.

The situation model (Fig. 3) holds knowledge about the agent situation. The
situation of an agent consists both of its own characteristics and its relations to
other entities in the world. The domain models (top) are models of the type of
entities in the domain of the agent. They defines relevant classes of entities as
well as relations between entities. For our example, we define that a diverter is
connected to conveyors and can have a pallet located inside. Such concepts and
relations can be extracted from existing models, such as the one presented in
[12]. The facts (bottom) express the current knowledge about the world. Facts
are expressed using the vocabulary defined by the models. They represent an
abstraction of some meaningful aspects of the world, which can be used for

realizing high-level control tasks. For our example, facts express that D1 is a
diverter, which is connected to conveyors C12, C25 and C33.

The activity model (Fig. 4) contains knowledge about the activities of the
agent, i.e., the events and processes occurring in the world in which the agent is
participating (as actor or observer). The classification of activities(top) models
the types of activities in which the agent can be involved. Types are defined
formally using description logic formulas and are organized hierarchically based
on the subsumption relationship [2], noted subClassOf . Primitive types are de-
fined as direct subclasses of Activity. Derived types are defined by restricting the
primitive types to take into account the actual world of the agent. For instance,
the generic type “Routing Pallet” is refined to more specific types like “Routing
palletToDS2 on C25” corresponding to the case of the diverter agent.

The expectations and observations (bottom) model the activities that are
expected and observed by the agent. Expectations and observations are defined
by the specification of a type (based on the classification of activity types) and
timing, expressed using time intervals [1]. Expectations are linked by depen-
dencies, indicating how observations on one expectation can have consequences
on other expectations. For instance, it is expected that “Routing palletToDS2
on C25”, taking place between t0 and t1, requires both that “Observing Pallet
entering from C12” takes place at t0 and “Observing Pallet leaving to C25” takes
place at t1 (with a given tolerance). Additionally, it is expected that this activ-
ity would be prevented by “Detecting Switch Failure” during the same interval of
time. Assuming that a pallet P123, with destination DS2, enters the diverter, an
observation is added to the model, indicating that the activity “Observing P123
entering from C12” takes place at time 15.

3.3 Runtime Synchronization

The world model, and in particular the model of expectations and observations
about activities, is synchronized incrementally, whenever new information is re-
ceived from the LLC or from other agents. It is thus constantly evolving at
runtime to reflect the current knowledge about the world as well as the current
expectations that could be derived from this knowledge. Conversely, the changes
in the model can be reflected in the underlying software, especially thanks to
the LLC reconfiguration abilities.

Figure 5 depicts the general workflow for updating the model:

1. Integration. Whenever new information about the world is available, it is
integrated in the world model by expressing the related type of activity and
timing.

2. Identification. Forming a new observation requires identifying how it relates
to existing expectations in the model. A matching is performed using the
type and timing information. In case no expectation can be identified, an
anomaly is reported.

3. Propagation. The addition of a new observation may trigger the creation
of new expectations, Propagation occurs by considering dependencies be-

Decision MakingWorld Model

LLC notification
Agent message

Activity Type
+ Timing

Observation Derived
Expectations

Monitoring Task
delayed observation

Action Task

Communication
behavior

LLC feature
1. integration

2. identification

3. propagation

anomaly
inconsistency

4. scheduling

5. activation

Fig. 5. Runtime synchronization of the world model

tween expectations and creating new expectations if needed. At this step,
inconsistencies may be detected.

4. Scheduling. When new expectations are added to the world model, new
decision-making tasks may be added to reflect them. We use monitoring
tasks to trigger observations based on timing constraints (typically, these
are observations about something that did not happen). Action tasks trigger
external actions, either from the LLC or from other agents.

5. Activation. Relevant changes and anomalies in the activity model are noti-
fied to the decision making component, which is in charge of initiating the
appropriate actions. Typical actions are setting up a communication behav-
ior (i.e., initiating/terminating an interaction or cooperation protocol with
other agents) or a LLC feature (i.e., adding/removing components in the
LLC).

4 Results and Lessons Learned

We used the automation agent architecture and the world model as a basis
for designing flexible manufacturing systems. In this section, we summarize our
results by giving an overview of tasks involving the world model at runtime. We
then discuss some important points and lessons learned.

4.1 Benefits of using a Model at Runtime

We designed the automation agent architecture and its world model to be generic
and to apply to different classes of problems. Indeed, we could address several is-
sues in a flexible manufacturing system using the model described in the previous
section.

Detection of anomalies When interacting with the physical world, we are
constantly faced with anomalies, disturbances and failures. Detecting anomalies
before they cause more critical disturbances and failures is a definite advan-
tage. Using its world model, an automation agent is able to detect anomalies
which would otherwise be unnoticed by classical control software. For instance,
we showed in [18] how an automation agent models its expectation about the
completion of a transport task, and monitors relevant sensors to verify it. In case
the sensor reading does not occur as expected, an anomaly is raised, indicating
that a pallet is possibly stuck, or that the sensor in not working properly. Such
a mechanism also benefits from the decentralized approach, enabling scalability
and direct detection close to the relevant hardware.

Online diagnostics To enable the robust operation of a flexible manufacturing
system, diagnostics and fault-recovery mechanisms are needed. The presented
world model is especially helpful for the identifications of causes for a failures,
and supports searching for explanations when an anomaly is observed [11]. This
mechanism relies on defining expectations that could lead to the observation,
and trying to verify them. Several directions can be exploited for verifying an
expectation, for instance self-testing (e.g., trying to detect if a pallet was stuck
by moving the switch to release it) and cooperation with other agents (e.g.,
asking a neighboring agent whether it detected a pallet which seems lost).

Runtime reconfiguration One of the most advanced features of a flexible
manufacturing system is runtime reconfiguration, which is especially helpful to
address challenges posed by an heterogeneous and continuously changing envi-
ronment. As an example, in a pallet transport system, a destination may become
unreachable due to the unexpected breakdown of a component. In order to keep
the system running, we have studied solutions based on local reconfiguration,
enabling conveyor belts to run in the opposite direction and intersections to
modify their routing behavior. This requires a profound reconfiguration of the
low-level control software, which our architecture allows. As presented in [9], the
world model is directly involved in this task, both for identifying the need for
reconfiguration and for preparing reconfiguration operations.

4.2 Lessons Learned

Besides the presented benefits, we can point out some lessons learned. They
underline some important issues about the usage of models at runtime with net-
worked physical devices, such as the ones encountered in a flexible manufacturing
system. We identify three main challenges:

Challenge 1: Modeling dynamic aspects of the world. For dealing with
a physical system, modeling dynamics is very important. A static view, even
if regularly updated, is insufficient, as relevant information may not be acces-
sible or integrated it in a timely manner. Modeling dynamic aspects enable

to obtain information from reasoning rather than from direct observation.
Models and formal methods for managing time, time dependencies [21] as
well as time imprecision are required.

Challenge 2: Synchronizing models incrementally. Physical devices op-
erate under time constraints, and real-time execution is often incompatible
with expensive model-based representation and reasoning. In order to cope
with time constraints, we adopted an approach in which a fast LLC is fully
responsible for performing all the functional operations of the system, while
the slower HLC only performs complementary tasks to adapt and improve
the behavior of the system. We found this approach suitable, but it also
brings new challenges in terms of how the world model can reflect the reality
while having only intermittent access to information from the world, and
how it can synchronize to the real-world. Incremental synchronization of a
model at runtime is essential [19].

Challenge 3: Integrating models in evolving systems. Working with net-
worked physical devices requires the management of fragmented models
over distributed agents. Moreover, large-scale systems require components to
evolve independently. Ontologies are a general solution for interoperability
[13], but are often unsuitable at runtime, since processing is overly complex.
Considering that the system is rarely open, we consider just-in-time model-
based generation of adapters and ad-hoc classifiers as more efficient, while
ontologies provide a suitable abstraction for designers at design time.

5 Related Work

Model-driven engineering in gradually taking up in manufacturing systems [16].
However, these efforts mostly focus on models at design time, and do not seek
to address issues regarding flexibility and robustness at runtime.

Previous works on using models at runtime are therefore highly relevant to
our work. The general approach of using reasoning on a model to reconfigure a
component-based system was already described by Oreizy et al. [14]. More recent
effort have been focusing on modeling variability and adaptation in this approach
in a generic way [5], providing a basis for the specification and validation of dy-
namic adaptive systems. One of the shortcomings for a direct application of
such solutions in our domain is the lack of modeling of the dynamic behavior
of the system, which we require for anticipating future states, detecting anoma-
lies, as well as diagnosing past states in the presence of limited observations.
Some works address more directly the behavioral modeling of some aspects of a
dynamic adaptive system [20], as well as model-based runtime detection of er-
rors [6]. However, we are not aware of a general solution for modeling activities
among a distributed system of networked devices, which is required in our case.

6 Summary

In this paper, we presented an approach in which automation agents use mod-
els for efficiently monitoring and adapting the software controlling mechatronic

devices. Each agent manages a model integrating a representation of itself, of
its environment and of the agent society, and enabling it to detect inconsisten-
cies, to envision possible future states and to create explanations based on past
states. We detailed the generic architecture and the model we use for represent-
ing the world of an agent. This model features a static part, called the situation
model, and a dynamic part, called the activity model. One essential feature of
our approach lies in the incremental synchronization of the activity model using
information from low-level control software and from other agents.

As a further contribution of this paper, we presented results and lessons
learned in this work. We have showed that the proposed approach using a model
at runtime is the basis for monitoring and adapting control software in a flexible
manufacturing systems. It provides significant improvement in terms of flexibil-
ity, robustness and performance. However, we point out that this approach raises
new challenges regarding modeling dynamic aspects of the world, synchronizing
models incrementally, and integrating models in evolving systems. Although our
work partially addresses this challenges, further research in these directions is
needed.

References

1. Allen, J.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

2. Baader, F., Horrock, I., Sattler, U.: Description logics. In: Handbook on ontologies,
pp. 3–28. Springer (2004)

3. Brennan, R.: Toward Real-Time distributed intelligent control: A survey of research
themes and applications. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 37(5), 744–765 (2007)

4. Chituc, C.M., Restivo, F.J.: Challenges and trends in distributed manufacturing
systems: Are wise engineering systems the ultimate answer? In: Second Interna-
tional Symposium on Engineering Systems MIT, Cambridge, Massachusetts (2009)

5. Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., Jzquel, J.M.: Modeling and
validating dynamic adaptation. In: Models in Software Engineering, pp. 97–108.
Springer (2009), http://dx.doi.org/10.1007/978-3-642-01648-6 11

6. Hooman, J., Hendriks, T.: Model-based run-time error detection. In: Second Inter-
national Workshop on Models@run.time (2007)

7. Jennings, N., Bussmann, S.: Agent-based control systems: Why are they suited
to engineering complex systems? IEEE Control Systems Magazine 23(3), 61–73
(2003), http://dx.doi.org/10.1109/MCS.2003.1200249

8. Leitão, P.: Agent-based distributed manufacturing control: A state-of-the-art sur-
vey. Engineering Applications of Artificial Intelligence 22(7), 979–991 (2009),
http://dx.doi.org/10.1016/j.engappai.2008.09.005

9. Lepuschitz, W., Zoitl, A., Vallée, M., Merdan, M.: Towards self-reconfiguration of
manufacturing systems using automation agents. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews IN PRESS, 1–18 (2010),
http://dx.doi.org/10.1109/TSMCC.2010.2059012

10. McFarlane, D., Marik, V., Valckenaers, P.: Guest editors’ introduction: Intelligent
control in the manufacturing supply chain. IEEE Intelligent Systems 20(1), 24–26
(2005), http://dx.doi.org/10.1109/MIS.2005.8

11. Merdan, M., Vallée, M., Lepuschitz, W., Zoitl, A.: Monitoring and diagnostics of
industrial systems using automation agents. International Journal of Production
Research Special Issue on Multi-agent and Holonic Techniques for Manufacturing
Systems: Technologies and Applications, IN PRESS (2011)

12. Merdan, M., Koppensteiner, G., Hegny, I., Favre-Bulle, B.: Application of an
ontology in a transport domain. In: IEEE International Conference on Indus-
trial Technology (IEEE-ICIT 2008). Sichuan University, Chengdu, China (2008),
http://dx.doi.org/10.1109/ICIT.2008.4608572

13. Obitko, M., Vrba, P., Mark, V., Radakovic, M.: Semantics in industrial distributed
systems. In: IFAC (2006)

14. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to
self-adaptive software. IEEE Intelligent Systems and Their Applications 14(3),
054–62 (1999), http://dx.doi.org/10.1109/5254.769885

15. Pěchoucěk, M., Mař́ık, V.: Industrial deployment of multi-agent technologies: re-
view and selected case studies. Autonomous Agents and Multi-Agent Systems
17(3), 397–431 (Dec 2008), http://dx.doi.org/10.1007/s10458-008-9050-0

16. Strasser, T., Rooker, M., Hegny, I., Wenger, M., Zoitl, A., Ferrarini, L., Dede,
A., Colla, M.: A research roadmap for model-driven design of embedded systems
for automation components. In: 7th IEEE International Conference onIndustrial
Informatics (INDIN 2009). pp. 564 –569 (jun 2009)

17. Vallée, M., Kaindl, H., Merdan, M., Lepuschitz, W., Arnautovic, E.,
Vrba, P.: An automation agent architecture with a reflective world model
in manufacturing systems. In: IEEE International Conference on Sys-
tems, Man, and Cybernetics (SMC09). San Antonio, Texas, USA. (2009),
http://dx.doi.org/10.1109/ICSMC.2009.5346161

18. Vallée, M., Merdan, M., Vrba, P.: Detection of anomalies in a transport
system using automation agents with a reflective world model. In: Pro-
ceedings of the IEEE International Conference on Industrial Technologies
(IEEE-ICIT 2010). pp. 489 – 494. Viña del Mar-Valparaso, Chile (2010),
http://dx.doi.org/10.1109/ICIT.2010.5472751

19. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental model
synchronization for efficient run-time monitoring. In: Fourth International Work-
shop on Models@run.time (2009), http://ceur-ws.org/Vol-509/paper 8.pdf

20. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: International Conference on Software Engineering (ICSE’06). China
(2006), http://dx.doi.org/10.1145/1134285.1134337

21. Zhang, J., Cheng, B., , Goldsby, H.: Amoeba-rt: Run-time verification of adaptive
software. In: Second International Workshop on Models@run.time (2007)

22. Zoitl, A.: Real-Time Execution for IEC 61499. No. ISBN: 978193439-4274, ISA-
o3neidaA, USA (2009)

