
Meta-Modeling Runtime Models

Grzegorz Lehmann1, Marco Blumendorf1, Frank Trollmann1, Sahin Albayrak1,

1 DAI-Labor, Technische Universität Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

{Grzegorz.Lehmann, Marco.Blumendorf, Frank.Trollmann, Sahin.Albayrak}@dai-labor.de

Abstract. Runtime models enable the implementation of highly adaptive

applications but also require a rethinking in the way we approach models.

Metamodels of runtime models must be supplemented with additional runtime

concepts that have an impact on the way how runtime models are built and

reflected in the underlying runtime architectures. The goal of this work is the

generalization of common concepts found in different approaches utilizing

runtime models and the provision of a basis for their meta-modeling. After

analyzing recent works dealing with runtime models, we present a meta-

modeling process for runtime models. Based on a meta-metamodel it guides the

creation of metamodels combining design time and runtime concepts.

Keywords: Meta-modeling, Models@Runtime, runtime models, meta-

metamodel.

1 Introduction

(Self-)Adaptive applications are required to adapt dynamically at runtime, often to

situations unforeseeable at design time. Application code generated from design time

models fails to provide the required flexibility, as the design rationale held in the

models is not available at runtime. To tackle this issue the use of runtime models (or

models@run.time) has been proposed. Runtime models enable the reasoning about

the decisions of developers when they are no longer available. Additionally, they

provide appropriate abstractions from code-level details of the applications at runtime.

Although the idea of utilizing models at runtime is not new, there is still a lack of

common understanding and suitable methodologies for the definition of runtime

models. Moving the models from design time to runtime raises questions about the

connection of the models to the runtime architecture, about synchronization and valid

modifications of the models at runtime or the identification of model parts specified at

design time and those determined at runtime.

The goal of this work is the generalization of common concepts found in different

approaches utilizing runtime models and the provision of a basis for their meta-

modeling. The approach brings:

 A common understanding of runtime models and their concepts

 Means for comparing and discussing about different runtime models

 Basis for achieving future interoperability

 Basis for the definition of a meta-modeling process for runtime models

The next section presents some exemplary works dealing with runtime models

(2.1) and discusses their common properties (2.2). In section 3 our approach to meta-

modeling runtime models is described. Section 4 concludes this paper.

2 Related Work

Model-driven engineering is a promising approach to the development of complex

systems and applications. Since its emergence, model-based development aims at

expressing different aspects of application on different levels of abstraction within

different models. Utilizing formal models takes the design process to a computer-

processable level, on which design decisions become understandable for automatic

systems. The principles of model-driven architectures [9] have been successfully

applied in different domains, e.g. the user interface engineering domain, where

application code is generated from models.

Modern context-sensitive applications are required to adapt dynamically to context

of use situations unforeseeable at design time. This requirement leads to the recent

extension of model utilization's scope from design time to runtime.

2.1 Approaches Utilizing Models at Runtime

Models are utilized at runtime in different domains and for different purposes. This

section analyzes exemplary approaches from several fields, ranging from model-

based simulation and validation, adaptive and self-managing systems, to executable

and reconfigurable models. Depending on the application domain the models fulfill

different roles, but some shared similarities can be identified.

[12] describes the Cumbia platform, as a runtime system for executable runtime

models, aiming at the provisioning of reusable monitoring and control tools.

Integrating the execution logic and semantics behind the evolution of the model over

time as part of the model leads to self-contained executable models. Cumbia's models

are based on the idea of open objects, consisting of an entity, a state machine

describing the entity’s lifecycle and a set of actions triggered by the transitions of the

state machine. Cumbia identifies four types of runtime model information:

 Structure of models - the static information about the application

 State of the elements in the models

 Historical information - the trace of model elements’ state during the execution

 Derived information - additional information not directly included in the
model but derived from it, e.g. by means of calculations

A slightly different approach to application monitoring is presented in [1]. The

authors show how state machine logic can be embedded in object-oriented code. A

runtime environment extracts the annotated state chart information at runtime and

executes it. This way the runtime environment provides control of the application,

enables the logging of its workflow and debugging of events. In the implementation,

Java code is connected to the state charts by means of special classes, interfaces and

annotations. Rather than being created and manipulated at design time, the state

machine model is extracted from code at runtime.

Another approach for model-based (rapid) development of software is discussed in

[7]. The authors propose a layered debugging architecture for their model-based

applications. In an example the authors extend the UML state diagram metamodel

with elements holding dynamic runtime information. The metamodel is thus split into

a static and a dynamic part. However the categorization of design and runtime

information is not further generalized.

The utilization of models at runtime is also common in approaches dealing with

model-based design and adaptation of large, (self-) adaptive systems, like [14], [5]

and [6]. The configuration of the systems and the possible adaptations are held in

models at runtime. Adaptations are performed on the running system by transforming

the models of the system.

In the ALIVE approach [14] executable code is generated from application models

by means of transformations. If an adaptation is necessary at runtime, the models are

modified and the executable code is regenerated. A monitoring mechanism assures

that the application is paused for the time of adaptation and restarted when the new

executable code is loaded.

In [5] an adaptation model holds information about possible variants of the system,

constraints expressing valid configurations of the system and rules defining when

adaptations should be performed. A context model represents the environment of the

application and is the basis for the adaptation rules. Sensors deployed in the

environment and in the system assure that the information in the models is up-to-date.

In the Rainbow framework [6] the architecture monitors and adapts the system

through abstract models. The system layer consists of probes and effectors. The

former observe and measure system states. The latter carry out the adaptations

performed on the model level in the system. On the architecture layer, adaptation

operators and strategies are provided. Operators determine the reconfiguration action

that can be performed on the system. Strategies describe how operators need to be

applied to achieve certain system properties.

The idea of utilizing models at runtime drives the design of executable models and

languages. Kermeta, presented in [11], extends the Essential Meta Object Facility

(EMOF) with action semantics. The composition of an existing meta language with an

action metamodel results in an executable meta-language, enabling the definition of

domain specific languages with precisely defined operational semantics. The Kermeta

metamodel enhances the EMOF metamodel with typical action expressions (e.g.

Conditional, Assignment, Loop).

[10] present Kermeta at RunTime (K@RT), a framework for adaptive software

systems reconfigurable at runtime. K@RT supervises component-based systems by

maintaining a reference model at runtime. The model provides a high-level view of

the system. Modifications performed on the model are propagated into the underlying

running system by automatically generated reconfiguration scripts. The authors

propose a generic and extensible Metamodel for Runtime Models that represents

component-based systems at runtime and aims at abstracting a running system.

Composed of three packages (type, instance and implementation) and compatible with

the Service Component Architecture (SCA), the metamodel enables the description of

component-based software structures.

[8] propose FAME as a polyglot library capable of maintaining the connection of

models and code at runtime. FAME enables the adaptation of software at runtime

through modifications of the models and even the meta-models by means of a set of

basic operations (Get, Set, Create, Delete). FAME is capable of maintaining the

causal connection between models and several programming languages, e.g.

Smalltalk, Ruby or Java (with some limitations).

This presented some exemplary works utilizing runtime models. The next section

discusses what the common properties of the different approaches are and what

definitions can be used to generalize runtime models.

2.2 Generalizing Runtime Models

Although many approaches utilize models at runtime, none known to us does

explicitly deal with the issues of creating metamodels of runtime models. Most works

in the area of runtime models focus on defining special adaptation (e.g. as

transformations executable at runtime) or system models (e.g. component networks),

rather than looking at the common characteristics of runtime models.

An analysis of model dynamics and executability has been performed in [3]. The

therein proposed classification of model elements in executable models comes nearest

to a meta-metamodel. The authors differentiate three parts of dynamic models:

 Definition part – is the static part of a model, defined at design time

 Situation part – includes all elements describing the dynamic state of a model
during its execution, and finally the

 Execution part – specifying the transitions of the model from one state to
another, in other words its execution logic

The proposed classification has been a good starting point for our work, but,

because of its focus on executable models, it does not fully apply to runtime models.

For example, not every runtime model must have a definition part defined at design

time. There are surely runtime models built up completely at runtime. Thus we have

searched for a different basis for classifying runtime models.

In our view, the key for classifying and generalizing elements of runtime models

lies in their causal connection. In [2] a model@run.time has been defined as a

causally connected self-representation of the associated system that emphasizes the

structure, behavior, or goals of the system from a problem space perspective. A

runtime model provides up-to-date information about the system under study (SUS)

and enables to perform adaptations of the system by means of model modifications.

In [13] and [4] the classification of descriptive and specification (also called

prescriptive) models is discussed. According to [13] a model is descriptive if all

statements made in the model are true for the SUS. On the other side a specification

model prescribes how the system should be: a specific SUS is considered valid

relative to this specification if no statement in the model is false for the SUS. Favre [4]

proposes to use the term or truth to distinct if the model or the system has the truth. In

case of runtime models, both the system and the runtime model have (parts of) the

truth. Due to their causal connection, runtime models describe systems with their

states and, at the same time, specify how the systems should behave.

The importance of the causal connection can be observed in the approaches

presented in section 2.1. Most of them posses means for connecting the runtime

models with the system under study, although the description/specification ratios

strongly differ. In works focusing on model executability, e.g. [11], the models have

an either strong or sole prescriptive role. In self-adaptive systems, like [5] and [6], the

utilized runtime models mostly have both, descriptive and specification, parts. On the

other end, when runtime models are used for debugging and monitoring of

applications (e.g. [1]), the descriptive character dominates.

Another common property of runtime models is that they evolve over time. The

modifications of the models can be performed in different ways, e.g. by means of

transformations, predefined operations or by special tools. Depending on whether the

prescriptive or descriptive part of the model is modified, the changes have different

consequences. Modifications of the prescriptive elements (e.g. performed by an

adaptation engine) lead to changes in the system. Modifications of the descriptive

parts of runtime models are mostly triggered by the system (e.g. probes in [6]) -

whenever the system changes, its representation in the model must also change.

The identified typical properties of runtime models lead to requirements posed on

their metamodels. Metamodels of runtime models must provide modeling constructs

enabling the definition of:

 prescriptive part of the model specifying how the system should be

 descriptive part of the model specifying how the system is, i.e. the state of the
SUS at runtime (similar to the situation part defined in [3])

 valid model modifications of the descriptive parts, executable at runtime

 valid model modifications of the prescriptive parts, executable at runtime

 causal connection in form of information flow between the model and its SUS

The following sections present a meta-modeling process addressing the above

requirements.

3 Meta-Modeling Runtime Models

This part presents a process guiding the meta-modeling of runtime models

(sections 3.1-3.4). Section 3.5 describes the meta-metamodel underlying this process.

For illustration purposes, the process is applied to a simplified finite state machine

(FSM) metamodel, depicted in Fig. 1. The metamodel defines a finite state machine

element FSM consisting of states, of which one State is the start state. States are

connected with each other via Transitions. The FSM provides conditions bound to

transitions. Additionally each State can be associated with entry actions (EntryAction

elements) executed upon the activation of the state.

Fig. 1. Metamodel of finite state machines consisting of States with Entry Actions and

Transitions bound to Conditions.

Transition

Entry Action

name

State

name

actions

transitions

type
Condition

name

type

FSM

conditions

states

start

type

type

condition
type

target

type

The presented metamodel describes typical design-time models, with no runtime

concepts included. It can be used to statically describe state machines but provides

limited utility at runtime. However, in our example scenario we wish to use the FSM

models both at design- and runtime. At design-time we wish to specify the behavior

of software components in form of FSMs. At runtime we want to execute, monitor

and inspect the state of the FSM models.

 In the following the metamodel is extended with runtime concepts so it enables the

definition of FSM runtime models. The meta-modeling process consists of four steps;

each of the following subsections is dedicated to one of the subsequent steps.

3.1 Identify the Prescriptive and Descriptive Parts

To use the FSM models at runtime we must first identify elements of the models,

which describe the runtime state of the system under study. At runtime, Conditions of

a FSM become fulfilled and lead to the execution of the associated Transitions, which

then activate target states. The example metamodel is therefore extended by adding

an active attribute to the State and an isFulfilled attribute to the Condition. These

descriptive attributes, marked orange in Fig. 2, hold the state of a FSM at runtime.

The distinction between the prescriptive and descriptive elements is necessary to

clearly separate parts of a model altered in order to change the behavior of the system

from the parts storing the runtime state of the system. In the example FSM

metamodel, a state and the conditions of its transitions belong to the specification

part, but whether a state has been activated or a condition fulfilled belongs to the

descriptive part and is determined at runtime.

The differentiation between prescriptive and descriptive elements cannot be based

on their type or class, but depends on the relationship of the element to other

elements. Model elements of a specific type may in some cases be descriptive

elements and in other cases prescriptive elements. It only counts whether the element

is aggregated in a prescriptive- or descriptive field.

In case of the example runtime FSM models, the state and transition hierarchy is

defined by the model developer at design time. The states composing the FSM are

thus prescriptive elements (e.g. elements held in FSM.states, FSM.start or

Transition.target). However, an FSM may also store a history list of states activated

in the past. The history is a result of runtime execution of the model and thus belongs

Fig. 2 Finite state machine metamodel with the orange marked descriptive elements history,

isFulfilled and active, holding the state of the FSM at runtime.

Transition Entry Action

name

State

name

actions

transitions

active
type

Condition

name

isFulfilled

type

FSM

conditions

states

start

type

type

condition
type

target

type

history
type

to its descriptive part. This way, model elements of type State are either prescriptive

or descriptive depending on their relationship to other model elements. As shown in

Fig. 2, States are descriptive elements, if they are part of FSM.history, or prescriptive

elements, if they belong to the design-time state network specification (FSM.states).

The latter are defined by the developer, the former are determined at runtime.

3.2 Modifications of Descriptive Elements

In the previous section the example metamodel has been enhanced with descriptive

elements that enable to describe the state of a FSM model at runtime. In the next step

of the meta-modeling process, available operations that can be performed on the

descriptive part of the model must be identified. The example FSM metamodel is thus

enhanced with operations, which describe the transitions of FSM models from one

state to another (i.e. the FSM execution logic). We refer to these operations as

DescriptionModificationElements.

Fig. 3 pictures the FSM metamodel with DescriptionModificationElements altering

the state of FSMs at runtime. The State type has been enhanced with the

DescriptionModificationElements activate and deactivate, which alter the active

attribute of States. Activation of a State leads to the execution of its entry actions, so

the activate operation uses the execute operation of EntryAction. States become

activated and deactivated by executed transitions. Transitions are triggered by the

fulfillment of the associated conditions.

The DescriptionModificationElements represent procedures or actions altering the

elements of conforming runtime models. Through them a metamodel provides the

ability to insert new information about the system into the models in a well-defined

manner, even at runtime. For example, the DescriptionModificationElement

setFulfilled makes it possible to inform an FSM model about a condition fulfilled in

the system under study.

At this point of the process the FSM metamodel enables the definition of runtime

models with state information and execution logic as alteration of this information

(DescriptionModificationElements). The next step deals with the identification of

SpecificationModificationElements that enable the modification of the prescriptive

Fig. 3. Finite state machine metamodel with DescriptionModificationElements setFulfilled,

execute, activate and deactivate.

Entry Action

name

executable

Elements

execute

State

name

executable

Elements

deactivate

activate

actions

transitions

active

alters

Transition

condition

executable

Elements

execute

type

uses

Condition

executable

Elements

setFulfilled

name

isFulfilled

alters

type

uses

uses

type

FSM

conditions

states

start

type

type

target

type

part of the conforming FSM models. We refer to the modifications of prescriptive

elements as adaptations, because they change the behavior of the system under study.

3.3 Modifications of Prescriptive Elements

One of the main purposes of runtime model utilization is the adaptation of the

modeled application to varying context situations by means of model modifications.

However, arbitrary reconfiguration of application models very soon leads to

inconsistencies and can destroy the integrity of the adapted models.

The definition of possible model adaptations is an integral part of the meta-

modeling process. It is the task of the meta-modeler to define possible modifications

of the conforming models and their impact on the models. Only so can the correctness

of the adaptations and the consistency of the adapted models at runtime be assumed.

The meta-modeling of model adaptations can again be exemplified using the FSM

metamodel. A possible and often feasible adaptation of a FSM-based application is

the adding of special states or entry actions. Such adaptations can, for example, be

necessary if the context of the application changes and parts of the state network must

be replaced with alternatives.

To enable the adding and removing of states in a finite state machine at runtime,

the example metamodel is extended with SpecificationModificationElements addState

and respectively delState. Fig. 4 shows the FSM metamodel with the new elements.

Both alter the states of the adapted FSM. To retain the readability of the figure, we

did not draw the SpecificationModificationElements addTransition and delTransition

needed for reconfiguration of the transition network.

The difference between the Description- and SpecificationModificationElements is

essential. While the former only change the model, so it reflects the state of the SUS

at runtime (e.g. activate or deactivate in the example FSM metamodel), the latter have

the power to modify the structure and behavior of the SUS (e.g. FSM.addState or

FSM.delState). The SpecificationModificationElements have thus a much stronger

impact on the models and their adaptation capabilities.

After identifying the runtime elements of a runtime model, defining the valid

modification of both its descriptive and prescriptive parts, the meta-modeler has to

Fig. 4. FSM metamodel with SpecificationModificationElements addState, delState, addAction.

FSM

states

executable

Elements

conditions

start

addState

delState

Entry Action

name

executable

Elements

execute

State

name

executable

Elements

deactivate

activate

actions

transitions

active

alters

Transition

condition

executable

Elements

execute

type

uses

Condition

executable

Elements

setFulfilled

name

isFulfilled

alters

type

uses

uses

type

type

type

type

addAction

alters
alters

target

deal with one final runtime concept. The next section describes the last step of the

meta-modeling process, which is the identification of the causal connection between

the runtime model and its system under study.

3.4 Identify the Causal Connection

The connection between a runtime model and its system under study is referred to

as the causal connection. The concept expresses the interrelation or causal loop

between the model that represents a system and a system that must act according to

the model. During the meta-modeling process the causal connections between the

conforming runtime models and their systems under study must be identified.

Meta-modeling the causal connection comprises the definition of both directions of

communication between the runtime models and their SUS. The influence of the

model on the system and the synchronization of the model, based on the occurrences

in the system, must be specified. It is thus essential to identify, how descriptive and

prescriptive elements of the models communicate with the SUS.

The approaches described in section 2.1 present different ways of handling the

causal connection. In Rainbow [6] the effectors are responsible of adapting to system

to the current structure of the model. Probes, or sensors in [5], assure the information

flow in the opposite direction – from the system and its environment into the model.

We generalize such elements by the term of proxy elements.

A proxy element fulfills the role of an interface between the runtime model and its

system under study. To enable the explicit definition of proxies within metamodels

we use the proxy type. It enables the classification of model elements connected to

entities outside of the model.

The information flow between the proxy elements and the outside world can be

bidirectional. On the one side proxies synchronize the descriptive elements of the

model with the state of the SUS, and on the other side they adapt the system

according to the prescriptive part of the model. To achieve the first the proxies are

provided with DescriptionModificationElements. For the model-SUS synchronization

the proxies forward calls of SpecificationModificationElements to the SUS.

Fig. 5. FSM metamodel with Condition and EntryAction proxies handling the causal

connection.

FSM

states

executable

Elements

conditions

start

addState

delState

Entry Action

name

executable

Elements

execute

State

name

executable

Elements

deactivate

activate

actions

transitions

active

alters

Transition

condition

executable

Elements

execute

type

uses

Condition

executable

Elements

setFulfilled

name

isFulfilled

alters

type

uses

uses

type

type

type

type

addAction

alters
alters

target

<External Process>

EntryAction

<External Process>

Condition

callback

external

Execution

In the example FSM metamodel two proxy types have been identified: Condition

and EntryAction. An FSM model must become aware of condition fulfillment

occurring in the SUS. Therefore, as shown in Fig. 5, the Condition proxies expose the

setFulfilled operation to external condition processes. This way, whenever a condition

is fulfilled, external components inform the FSM model using the setFulfilled

element. The EntryAction proxies do not expose any operations to the external

processes, but trigger action execution in external processes outside of the model.

The identification of proxy elements enables an explicit and clear definition of the

boundaries of runtime models. The communication between the model and the system

via Description- and SpecificationModificationElements ensures that the

synchronization occurs in a metamodel conformant way and does not interfere with

the execution logic of the model. In the FSM example, the proxy elements causally

connect the models with running systems through well-defined interfaces. The

Condition proxies ensure that the FSM model reflects the state of the SUS at runtime.

The EntryAction proxies enable the model to influence the SUS upon state changes.

We have presented a meta-modeling process, which identifies and makes explicit

the runtime concepts necessary for the utilization of models at runtime. The next

section sums up the ideas behind this process in form of a meta-metamodel.

3.5 Meta-Metamodel

Defining metamodels of runtime models requires a meta-modeling language that

provides means for the expression of the described runtime concepts within the

metamodels. Meta-modeling languages are defined in form of special metamodels, so

called meta-metamodels. We thus present a meta-metamodel, which provides

necessary constructs for formalizing metamodels of runtime models.

The meta-metamodel, shown in Fig. 6, prescribes that each conforming metamodel

defines Types composed of Fields and ExecutableElements. Fields represent

relationships between types (often referred to as attributes, associations, references,

etc.) and are classified as either Prescriptive- or DescriptiveFields. Intuitively, model

elements held in prescriptive fields are prescriptive elements and those held in

descriptive fields are descriptive elements. The differentiation of fields enables the

identification of descriptive and prescriptive parts of conforming models during the

meta-modeling process.

Fig. 6. Meta-metamodel of runtime models.

Type

Description Modification

Element

Descriptive

Field

Metamodel

Specification Modification

Element

Prescriptive

Field

types

Executable

Element
Field

executableElementsfields

uses
alters

uses

alters

type

Proxy Type

externalExecution

callbacks

The ExecutableElements represent operations enabling the modification of model

elements. Depending on whether the modifications influence the descriptive or the

prescriptive part of the model, ExecutableElements are refined as either

DescriptionModificationElements (DME) or SpecificationModificationElements

(SME). As explained in previous sections, the DMEs encapsulate the state

synchronization of the models conforming to the metamodel, whereas the SMEs

represent possible model and system adaptations.

The descriptive elements of the model are held in the DescriptiveFields. Therefore

each DME defines, which DescriptiveFields it modifies, using the alters association.

Associating a DME with other DMEs by means of the uses association the meta-

modeler expresses that the execution of the DME is composed of or includes the

execution of the associated DMEs (as the State.activate DME using

EntryAction.execute in case of the FSM metamodel example).

Performing an adaptation of the model may not only influence its prescriptive part.

In most cases it impacts its state as well. For this reason the SMEs can define alters

and uses associations to both types of Fields and ExecutionElements.

Finally, the special Proxy type enables the formalization of the causal connection

of runtime models. It classifies model elements connecting the model with its SUS. At

runtime a proxy element mediates with an external element through a clearly defined

communication interface. The interface is specified in form of ExecutableElements,

either called during the model adaptation to influence the SUS (externalExecution) or

available to the proxies to push information about the SUS into the model (callbacks).

4 Conclusions and Outlook

On the basis of our experiences with runtime models, we have presented a meta-

modeling process. The process identifies core runtime concepts reoccurring in

runtime models and helps supplementing traditional, design time models with them.

The process and the constructs of the meta-metamodel are sufficient to distinguish the

descriptive and prescriptive (specification) parts of runtime models as well as to

identify operations for their modification (ExecutableElements). Furthermore the

causal connection of the runtime model and its system under study can be described

using the Proxy type. This way the meta-metamodel covers all aspects of meta-

modeling runtime models identified in section 2.2.

We have utilized our approach to create a large set of metamodels, ranging from

the FSM metamodel presented in this paper to metamodels from the user interface

engineering domain (task, UI, layout or context metamodels). Our implementation is

based on the popular Eclipse Modeling Framework (EMF). To assure a possibly high

compatibility of our models with EMF we define our metamodels as plain EMF

metamodels enhanced with some special annotations (e.g. annotating that an attribute

expressed in Ecore is a DescriptiveField). The use of annotations makes our

metamodels readable and usable for EMF tools (which simply ignore our custom

annotations) and at the same time enables to extract the additional information about

the runtime concepts of the conforming models.

We have defined the meta-metamodel in form of an Ecore metamodel and created

transformations between annotated metamodels and the meta-metamodel. This

approach enables to define metamodels of runtime models with full advantages of

EMF tools and work with the meta-metamodel as with a plain EMF metamodel.

In the future we will explore the possibilities of using the meta-metamodel to

achieve interoperability between different runtime model approaches (across

technological spaces). We are working on additional metamodel transformations that

will enable us to transform metamodels from technological spaces other than Ecore

into the format of the meta-metamodel. We are also working on a reconfiguration

metamodel, defined on the basis of the meta-metamodel. Combined with the

transformations it will enable us to reconfigure and adapt runtime models from

different technological spaces in one reconfiguration model.

References

[1] Moritz Balz, Michael Striewe, and Michael Goedicke. Embedding State Machine Models in

Object-Oriented Source Code. In: 3rd Int. Workshop on Models@run.time, 2008.

[2] Gordon Blair, Nelly Bencomo, and Robert B. France. Models@run.time. In Computer,

42(10), 2009.

[3] Erwan Breton and Jean Bézivin. Towards an understanding of model executability. In Proc.

of the International Conference on Formal Ontology in Information Systems, 2001.

[4] J. Favre. Foundations of Model (Driven) (Reverse) Engineering -- Episode I: Story of The

Fidus Papyrus and the Solarus, In Post-Proc. of Dagstuhl Seminar on Model Driven Reverse

Engineering, 2004.

[5] Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, and Jean-Marc Jézéquel.

Modeling and validating dynamic adaptation. In 3rd Int. Workshop on Models@run.time,

2008.

[6] S.-W.; Huang A.-C.; Schmerl B.; Steenkiste P. Garlan, D.; Cheng. Rainbow: Architecture-

based self-adaptation with reusable infrastructure. In Computer, 37(10), 2004.

[7] Philipp Graf and Klaus D. Müller-Glaser. Gaining insight into executable models during

runtime: Architecture and mappings. In IEEE Distributed Systems Online, 8(3), 2007.

[8] Adrian Kuhn and Toon Verwaest. Fame, a polyglot library for metamodeling at runtime. In

3rd Int. Workshop on Models@run.time, 2008.

[9] Joaqin Miller and Jishnu Mukerji. Model Driven Architecture (MDA). Object Management

Group, omg document ormsc/2001-07-01 edition, 2001.

[10]Brice Morin, Olivier Barais, and Jean-Marc Jézéquel. K@rt: An aspect-oriented and

model-oriented framework for dynamic software product lines. In 3rd Int. Workshop on

Models@run.time, 2008.

[11]Pierre A. Muller, Franck Fleurey, and Jean M. Jézéquel. Weaving executability into object-

oriented meta-languages. In Proc. of the 8th International Conference on Model Driven

Engineering Languages and Systems, 2005.

[12]Mario Sanchez, Ivan Barrero, Jorge Villalobos, and Dirk Deridder. An execution platform

for extensible runtime models. In 3rd Int. Workshop on Models@run.time, 2008.

[13]Ed Seidewitz. What models mean. IEEE Software, 20(5), 2003.

[14]Athanasios Staikopoulos, Sébastien Saudrais, Siobhán Clarke, Julian Padget, Owen Cliffe,

and Marina De Vos. Mutual dynamic adaptation of models and service enactment in alive*.

In 3rd Int. Workshop on Models@run.time, 2008.

