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Abstract. Runtime models enable the implementation of highly adaptive 

applications but also require a rethinking in the way we approach models. 

Metamodels of runtime models must be supplemented with additional runtime 

concepts that have an impact on the way how runtime models are built and 

reflected in the underlying runtime architectures. The goal of this work is the 

generalization of common concepts found in different approaches utilizing 

runtime models and the provision of a basis for their meta-modeling. After 

analyzing recent works dealing with runtime models, we present a meta-

modeling process for runtime models. Based on a meta-metamodel it guides the 

creation of metamodels combining design time and runtime concepts.  

Keywords: Meta-modeling, Models@Runtime, runtime models, meta-

metamodel. 

1   Introduction 

(Self-)Adaptive applications are required to adapt dynamically at runtime, often to 

situations unforeseeable at design time. Application code generated from design time 

models fails to provide the required flexibility, as the design rationale held in the 

models is not available at runtime. To tackle this issue the use of runtime models (or 

models@run.time) has been proposed. Runtime models enable the reasoning about 

the decisions of developers when they are no longer available. Additionally, they 

provide appropriate abstractions from code-level details of the applications at runtime. 

Although the idea of utilizing models at runtime is not new, there is still a lack of 

common understanding and suitable methodologies for the definition of runtime 

models. Moving the models from design time to runtime raises questions about the 

connection of the models to the runtime architecture, about synchronization and valid 

modifications of the models at runtime or the identification of model parts specified at 

design time and those determined at runtime. 

The goal of this work is the generalization of common concepts found in different 

approaches utilizing runtime models and the provision of a basis for their meta-

modeling. The approach brings: 

 A common understanding of runtime models and their concepts 

 Means for comparing and discussing about different runtime models 

 Basis for achieving future interoperability 

 Basis for the definition of a meta-modeling process for runtime models 



The next section presents some exemplary works dealing with runtime models 

(2.1) and discusses their common properties (2.2). In section 3 our approach to meta-

modeling runtime models is described. Section 4 concludes this paper. 

2   Related Work 

Model-driven engineering is a promising approach to the development of complex 

systems and applications. Since its emergence, model-based development aims at 

expressing different aspects of application on different levels of abstraction within 

different models. Utilizing formal models takes the design process to a computer-

processable level, on which design decisions become understandable for automatic 

systems. The principles of model-driven architectures [9] have been successfully 

applied in different domains, e.g. the user interface engineering domain, where 

application code is generated from models. 

Modern context-sensitive applications are required to adapt dynamically to context 

of use situations unforeseeable at design time. This requirement leads to the recent 

extension of model utilization's scope from design time to runtime. 

2.1   Approaches Utilizing Models at Runtime 

Models are utilized at runtime in different domains and for different purposes. This 

section analyzes exemplary approaches from several fields, ranging from model-

based simulation and validation, adaptive and self-managing systems, to executable 

and reconfigurable models. Depending on the application domain the models fulfill 

different roles, but some shared similarities can be identified. 

[12] describes the Cumbia platform, as a runtime system for executable runtime 

models, aiming at the provisioning of reusable monitoring and control tools. 

Integrating the execution logic and semantics behind the evolution of the model over 

time as part of the model leads to self-contained executable models. Cumbia's models 

are based on the idea of open objects, consisting of an entity, a state machine 

describing the entity’s lifecycle and a set of actions triggered by the transitions of the 

state machine. Cumbia identifies four types of runtime model information: 

 Structure of models - the static information about the application 

 State of the elements in the models 

 Historical information - the trace of model elements’ state during the execution 

 Derived information - additional information not directly included in the 
model but derived from it, e.g. by means of calculations 

A slightly different approach to application monitoring is presented in [1]. The 

authors show how state machine logic can be embedded in object-oriented code. A 

runtime environment extracts the annotated state chart information at runtime and 

executes it. This way the runtime environment provides control of the application, 

enables the logging of its workflow and debugging of events. In the implementation, 

Java code is connected to the state charts by means of special classes, interfaces and 

annotations. Rather than being created and manipulated at design time, the state 

machine model is extracted from code at runtime. 



Another approach for model-based (rapid) development of software is discussed in 

[7]. The authors propose a layered debugging architecture for their model-based 

applications. In an example the authors extend the UML state diagram metamodel 

with elements holding dynamic runtime information. The metamodel is thus split into 

a static and a dynamic part. However the categorization of design and runtime 

information is not further generalized. 

The utilization of models at runtime is also common in approaches dealing with 

model-based design and adaptation of large, (self-) adaptive systems, like [14], [5] 

and [6]. The configuration of the systems and the possible adaptations are held in 

models at runtime. Adaptations are performed on the running system by transforming 

the models of the system. 

In the ALIVE approach [14] executable code is generated from application models 

by means of transformations. If an adaptation is necessary at runtime, the models are 

modified and the executable code is regenerated. A monitoring mechanism assures 

that the application is paused for the time of adaptation and restarted when the new 

executable code is loaded. 

In [5] an adaptation model holds information about possible variants of the system, 

constraints expressing valid configurations of the system and rules defining when 

adaptations should be performed. A context model represents the environment of the 

application and is the basis for the adaptation rules. Sensors deployed in the 

environment and in the system assure that the information in the models is up-to-date. 

In the Rainbow framework [6] the architecture monitors and adapts the system 

through abstract models. The system layer consists of probes and effectors. The 

former observe and measure system states. The latter carry out the adaptations 

performed on the model level in the system. On the architecture layer, adaptation 

operators and strategies are provided. Operators determine the reconfiguration action 

that can be performed on the system. Strategies describe how operators need to be 

applied to achieve certain system properties. 

The idea of utilizing models at runtime drives the design of executable models and 

languages. Kermeta, presented in [11], extends the Essential Meta Object Facility 

(EMOF) with action semantics. The composition of an existing meta language with an 

action metamodel results in an executable meta-language, enabling the definition of 

domain specific languages with precisely defined operational semantics. The Kermeta 

metamodel enhances the EMOF metamodel with typical action expressions (e.g. 

Conditional, Assignment, Loop). 

[10] present Kermeta at RunTime (K@RT), a framework for adaptive software 

systems reconfigurable at runtime. K@RT supervises component-based systems by 

maintaining a reference model at runtime. The model provides a high-level view of 

the system. Modifications performed on the model are propagated into the underlying 

running system by automatically generated reconfiguration scripts. The authors 

propose a generic and extensible Metamodel for Runtime Models that represents 

component-based systems at runtime and aims at abstracting a running system. 

Composed of three packages (type, instance and implementation) and compatible with 

the Service Component Architecture (SCA), the metamodel enables the description of 

component-based software structures. 

[8] propose FAME as a polyglot library capable of maintaining the connection of 

models and code at runtime. FAME enables the adaptation of software at runtime 



through modifications of the models and even the meta-models by means of a set of 

basic operations (Get, Set, Create, Delete). FAME is capable of maintaining the 

causal connection between models and several programming languages, e.g. 

Smalltalk, Ruby or Java (with some limitations). 

This presented some exemplary works utilizing runtime models. The next section 

discusses what the common properties of the different approaches are and what 

definitions can be used to generalize runtime models. 

2.2   Generalizing Runtime Models 

Although many approaches utilize models at runtime, none known to us does 

explicitly deal with the issues of creating metamodels of runtime models. Most works 

in the area of runtime models focus on defining special adaptation (e.g. as 

transformations executable at runtime) or system models (e.g. component networks), 

rather than looking at the common characteristics of runtime models. 

An analysis of model dynamics and executability has been performed in [3]. The 

therein proposed classification of model elements in executable models comes nearest 

to a meta-metamodel. The authors differentiate three parts of dynamic models: 

 Definition part – is the static part of a model, defined at design time 

 Situation part – includes all elements describing the dynamic state of a model 
during its execution, and finally the 

 Execution part – specifying the transitions of the model from one state to 
another, in other words its execution logic 

The proposed classification has been a good starting point for our work, but, 

because of its focus on executable models, it does not fully apply to runtime models. 

For example, not every runtime model must have a definition part defined at design 

time. There are surely runtime models built up completely at runtime. Thus we have 

searched for a different basis for classifying runtime models. 

In our view, the key for classifying and generalizing elements of runtime models 

lies in their causal connection. In [2] a model@run.time has been defined as a 

causally connected self-representation of the associated system that emphasizes the 

structure, behavior, or goals of the system from a problem space perspective. A 

runtime model provides up-to-date information about the system under study (SUS) 

and enables to perform adaptations of the system by means of model modifications. 

In [13] and [4] the classification of descriptive and specification (also called 

prescriptive) models is discussed. According to [13] a model is descriptive if all 

statements made in the model are true for the SUS. On the other side a specification 

model prescribes how the system should be: a specific SUS is considered valid 

relative to this specification if no statement in the model is false for the SUS. Favre [4] 

proposes to use the term or truth to distinct if the model or the system has the truth. In 

case of runtime models, both the system and the runtime model have (parts of) the 

truth. Due to their causal connection, runtime models describe systems with their 

states and, at the same time, specify how the systems should behave. 

The importance of the causal connection can be observed in the approaches 

presented in section 2.1. Most of them posses means for connecting the runtime 

models with the system under study, although the description/specification ratios 



strongly differ. In works focusing on model executability, e.g. [11], the models have 

an either strong or sole prescriptive role. In self-adaptive systems, like [5] and [6], the 

utilized runtime models mostly have both, descriptive and specification, parts. On the 

other end, when runtime models are used for debugging and monitoring of 

applications (e.g. [1]), the descriptive character dominates. 

Another common property of runtime models is that they evolve over time. The 

modifications of the models can be performed in different ways, e.g. by means of 

transformations, predefined operations or by special tools. Depending on whether the 

prescriptive or descriptive part of the model is modified, the changes have different 

consequences. Modifications of the prescriptive elements (e.g. performed by an 

adaptation engine) lead to changes in the system. Modifications of the descriptive 

parts of runtime models are mostly triggered by the system (e.g. probes in [6]) - 

whenever the system changes, its representation in the model must also change. 

The identified typical properties of runtime models lead to requirements posed on 

their metamodels. Metamodels of runtime models must provide modeling constructs 

enabling the definition of: 

 prescriptive part of the model specifying how the system should be 

 descriptive part of the model specifying how the system is, i.e. the state of the 
SUS at runtime (similar to the situation part defined in [3]) 

 valid model modifications of the descriptive parts, executable at runtime 

 valid model modifications of the prescriptive parts, executable at runtime 

 causal connection in form of information flow between the model and its SUS 

The following sections present a meta-modeling process addressing the above 

requirements. 

3   Meta-Modeling Runtime Models 

This part presents a process guiding the meta-modeling of runtime models 

(sections 3.1-3.4). Section 3.5 describes the meta-metamodel underlying this process.  

For illustration purposes, the process is applied to a simplified finite state machine 

(FSM) metamodel, depicted in Fig. 1. The metamodel defines a finite state machine 

element FSM consisting of states, of which one State is the start state. States are 

connected with each other via Transitions. The FSM provides conditions bound to 

transitions. Additionally each State can be associated with entry actions (EntryAction 

elements) executed upon the activation of the state. 

Fig. 1. Metamodel of finite state machines consisting of States with Entry Actions and 

Transitions bound to Conditions. 
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The presented metamodel describes typical design-time models, with no runtime 

concepts included. It can be used to statically describe state machines but provides 

limited utility at runtime. However, in our example scenario we wish to use the FSM 

models both at design- and runtime. At design-time we wish to specify the behavior 

of software components in form of FSMs. At runtime we want to execute, monitor 

and inspect the state of the FSM models. 

 In the following the metamodel is extended with runtime concepts so it enables the 

definition of FSM runtime models. The meta-modeling process consists of four steps; 

each of the following subsections is dedicated to one of the subsequent steps. 

3.1   Identify the Prescriptive and Descriptive Parts 

To use the FSM models at runtime we must first identify elements of the models, 

which describe the runtime state of the system under study. At runtime, Conditions of 

a FSM become fulfilled and lead to the execution of the associated Transitions, which 

then activate target states. The example metamodel is therefore extended by adding 

an active attribute to the State and an isFulfilled attribute to the Condition. These 

descriptive attributes, marked orange in Fig. 2, hold the state of a FSM at runtime. 

The distinction between the prescriptive and descriptive elements is necessary to 

clearly separate parts of a model altered in order to change the behavior of the system 

from the parts storing the runtime state of the system. In the example FSM 

metamodel, a state and the conditions of its transitions belong to the specification 

part, but whether a state has been activated or a condition fulfilled belongs to the 

descriptive part and is determined at runtime. 

The differentiation between prescriptive and descriptive elements cannot be based 

on their type or class, but depends on the relationship of the element to other 

elements. Model elements of a specific type may in some cases be descriptive 

elements and in other cases prescriptive elements. It only counts whether the element 

is aggregated in a prescriptive- or descriptive field. 

In case of the example runtime FSM models, the state and transition hierarchy is 

defined by the model developer at design time. The states composing the FSM are 

thus prescriptive elements (e.g. elements held in FSM.states, FSM.start or 

Transition.target). However, an FSM may also store a history list of states activated 

in the past. The history is a result of runtime execution of the model and thus belongs 

Fig. 2 Finite state machine metamodel with the orange marked descriptive elements history, 

isFulfilled and active, holding the state of the FSM at runtime. 
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to its descriptive part. This way, model elements of type State are either prescriptive 

or descriptive depending on their relationship to other model elements. As shown in 

Fig. 2, States are descriptive elements, if they are part of FSM.history, or prescriptive 

elements, if they belong to the design-time state network specification (FSM.states). 

The latter are defined by the developer, the former are determined at runtime. 

3.2   Modifications of Descriptive Elements 

In the previous section the example metamodel has been enhanced with descriptive 

elements that enable to describe the state of a FSM model at runtime. In the next step 

of the meta-modeling process, available operations that can be performed on the 

descriptive part of the model must be identified. The example FSM metamodel is thus 

enhanced with operations, which describe the transitions of FSM models from one 

state to another (i.e. the FSM execution logic). We refer to these operations as 

DescriptionModificationElements. 

Fig. 3 pictures the FSM metamodel with DescriptionModificationElements altering 

the state of FSMs at runtime. The State type has been enhanced with the 

DescriptionModificationElements activate and deactivate, which alter the active 

attribute of States. Activation of a State leads to the execution of its entry actions, so 

the activate operation uses the execute operation of EntryAction. States become 

activated and deactivated by executed transitions. Transitions are triggered by the 

fulfillment of the associated conditions. 

The DescriptionModificationElements represent procedures or actions altering the 

elements of conforming runtime models. Through them a metamodel provides the 

ability to insert new information about the system into the models in a well-defined 

manner, even at runtime. For example, the DescriptionModificationElement 

setFulfilled makes it possible to inform an FSM model about a condition fulfilled in 

the system under study. 

At this point of the process the FSM metamodel enables the definition of runtime 

models with state information and execution logic as alteration of this information 

(DescriptionModificationElements). The next step deals with the identification of 

SpecificationModificationElements that enable the modification of the prescriptive 

Fig. 3. Finite state machine metamodel with DescriptionModificationElements setFulfilled, 

execute, activate and deactivate. 
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part of the conforming FSM models. We refer to the modifications of prescriptive 

elements as adaptations, because they change the behavior of the system under study. 

3.3   Modifications of Prescriptive Elements 

One of the main purposes of runtime model utilization is the adaptation of the 

modeled application to varying context situations by means of model modifications. 

However, arbitrary reconfiguration of application models very soon leads to 

inconsistencies and can destroy the integrity of the adapted models. 

The definition of possible model adaptations is an integral part of the meta-

modeling process. It is the task of the meta-modeler to define possible modifications 

of the conforming models and their impact on the models. Only so can the correctness 

of the adaptations and the consistency of the adapted models at runtime be assumed. 

The meta-modeling of model adaptations can again be exemplified using the FSM 

metamodel. A possible and often feasible adaptation of a FSM-based application is 

the adding of special states or entry actions. Such adaptations can, for example, be 

necessary if the context of the application changes and parts of the state network must 

be replaced with alternatives. 

To enable the adding and removing of states in a finite state machine at runtime, 

the example metamodel is extended with SpecificationModificationElements addState 

and respectively delState. Fig. 4 shows the FSM metamodel with the new elements. 

Both alter the states of the adapted FSM. To retain the readability of the figure, we 

did not draw the SpecificationModificationElements addTransition and delTransition 

needed for reconfiguration of the transition network. 

The difference between the Description- and SpecificationModificationElements is 

essential. While the former only change the model, so it reflects the state of the SUS 

at runtime (e.g. activate or deactivate in the example FSM metamodel), the latter have 

the power to modify the structure and behavior of the SUS (e.g. FSM.addState or 

FSM.delState). The SpecificationModificationElements have thus a much stronger 

impact on the models and their adaptation capabilities. 

After identifying the runtime elements of a runtime model, defining the valid 

modification of both its descriptive and prescriptive parts, the meta-modeler has to 

Fig. 4. FSM metamodel with SpecificationModificationElements addState, delState, addAction. 
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deal with one final runtime concept. The next section describes the last step of the 

meta-modeling process, which is the identification of the causal connection between 

the runtime model and its system under study. 

3.4   Identify the Causal Connection 

The connection between a runtime model and its system under study is referred to 

as the causal connection. The concept expresses the interrelation or causal loop 

between the model that represents a system and a system that must act according to 

the model. During the meta-modeling process the causal connections between the 

conforming runtime models and their systems under study must be identified. 

Meta-modeling the causal connection comprises the definition of both directions of 

communication between the runtime models and their SUS. The influence of the 

model on the system and the synchronization of the model, based on the occurrences 

in the system, must be specified. It is thus essential to identify, how descriptive and 

prescriptive elements of the models communicate with the SUS. 

The approaches described in section 2.1 present different ways of handling the 

causal connection. In Rainbow [6] the effectors are responsible of adapting to system 

to the current structure of the model. Probes, or sensors in [5], assure the information 

flow in the opposite direction – from the system and its environment into the model. 

We generalize such elements by the term of proxy elements. 

A proxy element fulfills the role of an interface between the runtime model and its 

system under study. To enable the explicit definition of proxies within metamodels 

we use the proxy type. It enables the classification of model elements connected to 

entities outside of the model. 

The information flow between the proxy elements and the outside world can be 

bidirectional. On the one side proxies synchronize the descriptive elements of the 

model with the state of the SUS, and on the other side they adapt the system 

according to the prescriptive part of the model. To achieve the first the proxies are 

provided with DescriptionModificationElements. For the model-SUS synchronization 

the proxies forward calls of SpecificationModificationElements to the SUS. 

Fig. 5. FSM metamodel with Condition and EntryAction proxies handling the causal 

connection. 
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In the example FSM metamodel two proxy types have been identified: Condition 

and EntryAction. An FSM model must become aware of condition fulfillment 

occurring in the SUS. Therefore, as shown in Fig. 5, the Condition proxies expose the 

setFulfilled operation to external condition processes. This way, whenever a condition 

is fulfilled, external components inform the FSM model using the setFulfilled 

element. The EntryAction proxies do not expose any operations to the external 

processes, but trigger action execution in external processes outside of the model. 

The identification of proxy elements enables an explicit and clear definition of the 

boundaries of runtime models. The communication between the model and the system 

via Description- and SpecificationModificationElements ensures that the 

synchronization occurs in a metamodel conformant way and does not interfere with 

the execution logic of the model. In the FSM example, the proxy elements causally 

connect the models with running systems through well-defined interfaces. The 

Condition proxies ensure that the FSM model reflects the state of the SUS at runtime. 

The EntryAction proxies enable the model to influence the SUS upon state changes.  

We have presented a meta-modeling process, which identifies and makes explicit 

the runtime concepts necessary for the utilization of models at runtime. The next 

section sums up the ideas behind this process in form of a meta-metamodel. 

3.5   Meta-Metamodel 

Defining metamodels of runtime models requires a meta-modeling language that 

provides means for the expression of the described runtime concepts within the 

metamodels. Meta-modeling languages are defined in form of special metamodels, so 

called meta-metamodels. We thus present a meta-metamodel, which provides 

necessary constructs for formalizing metamodels of runtime models. 

The meta-metamodel, shown in Fig. 6, prescribes that each conforming metamodel 

defines Types composed of Fields and ExecutableElements. Fields represent 

relationships between types (often referred to as attributes, associations, references, 

etc.) and are classified as either Prescriptive- or DescriptiveFields. Intuitively, model 

elements held in prescriptive fields are prescriptive elements and those held in 

descriptive fields are descriptive elements. The differentiation of fields enables the 

identification of descriptive and prescriptive parts of conforming models during the 

meta-modeling process. 

Fig. 6. Meta-metamodel of runtime models. 
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The ExecutableElements represent operations enabling the modification of model 

elements. Depending on whether the modifications influence the descriptive or the 

prescriptive part of the model, ExecutableElements are refined as either 

DescriptionModificationElements (DME) or SpecificationModificationElements 

(SME). As explained in previous sections, the DMEs encapsulate the state 

synchronization of the models conforming to the metamodel, whereas the SMEs 

represent possible model and system adaptations.  

The descriptive elements of the model are held in the DescriptiveFields. Therefore 

each DME defines, which DescriptiveFields it modifies, using the alters association.  

Associating a DME with other DMEs by means of the uses association the meta-

modeler expresses that the execution of the DME is composed of or includes the 

execution of the associated DMEs (as the State.activate DME using 

EntryAction.execute in case of the FSM metamodel example). 

Performing an adaptation of the model may not only influence its prescriptive part. 

In most cases it impacts its state as well. For this reason the SMEs can define alters 

and uses associations to both types of Fields and ExecutionElements. 

Finally, the special Proxy type enables the formalization of the causal connection 

of runtime models. It classifies model elements connecting the model with its SUS. At 

runtime a proxy element mediates with an external element through a clearly defined 

communication interface. The interface is specified in form of ExecutableElements, 

either called during the model adaptation to influence the SUS (externalExecution) or 

available to the proxies to push information about the SUS into the model (callbacks). 

4   Conclusions and Outlook 

On the basis of our experiences with runtime models, we have presented a meta-

modeling process. The process identifies core runtime concepts reoccurring in 

runtime models and helps supplementing traditional, design time models with them. 

The process and the constructs of the meta-metamodel are sufficient to distinguish the 

descriptive and prescriptive (specification) parts of runtime models as well as to 

identify operations for their modification (ExecutableElements). Furthermore the 

causal connection of the runtime model and its system under study can be described 

using the Proxy type. This way the meta-metamodel covers all aspects of meta-

modeling runtime models identified in section 2.2. 

We have utilized our approach to create a large set of metamodels, ranging from 

the FSM metamodel presented in this paper to metamodels from the user interface 

engineering domain (task, UI, layout or context metamodels). Our implementation is 

based on the popular Eclipse Modeling Framework (EMF). To assure a possibly high 

compatibility of our models with EMF we define our metamodels as plain EMF 

metamodels enhanced with some special annotations (e.g. annotating that an attribute 

expressed in Ecore is a DescriptiveField). The use of annotations makes our 

metamodels readable and usable for EMF tools (which simply ignore our custom 

annotations) and at the same time enables to extract the additional information about 

the runtime concepts of the conforming models. 



We have defined the meta-metamodel in form of an Ecore metamodel and created 

transformations between annotated metamodels and the meta-metamodel. This 

approach enables to define metamodels of runtime models with full advantages of 

EMF tools and work with the meta-metamodel as with a plain EMF metamodel. 

In the future we will explore the possibilities of using the meta-metamodel to 

achieve interoperability between different runtime model approaches (across 

technological spaces). We are working on additional metamodel transformations that 

will enable us to transform metamodels from technological spaces other than Ecore 

into the format of the meta-metamodel. We are also working on a reconfiguration 

metamodel, defined on the basis of the meta-metamodel. Combined with the 

transformations it will enable us to reconfigure and adapt runtime models from 

different technological spaces in one reconfiguration model. 
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