
Toward Megamodels at Runtime

Thomas Vogel, Andreas Seibel, and Holger Giese

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

prename.surname@hpi.uni-potsdam.de

Abstract. In model-driven software development a multitude of devel-
opment models that are related with each other are used to systemat-
ically realize a software system. This results in a complex development
process since these models and the relations between these models have
to be managed. Similar problems appear when following a model-driven
approach for managing software systems at runtime. A multitude of run-
time models that are related with each other are likely to be employed
simultaneously, and thus they have to be maintained at runtime. While
for the development case megamodels have emerged to address the prob-
lem of managing development models and relations, the problem is rather
neglected for the case of runtime models by applying ad-hoc solutions.
Therefore, we propose to utilize concepts of megamodels in the domain
of runtime system management. Based on existing work in the research
field of runtime models, we demonstrate that different kinds of runtime
models and relations are already employed simultaneously in several ap-
proaches. Then, we show how megamodels help in structuring and main-
taining runtime models and relations in a model-driven manner while
supporting a high level of automation. Finally, we present two case stud-
ies exemplifying the application and benefits of megamodels at runtime.

1 Introduction

According to France and Rumpe, there are two broad classes of models in Model-
Driven Engineering (MDE): development models and runtime models [1]. Devel-
opment models are employed during the model-driven development of software.
Starting from abstract models describing the requirements of a software, these
models are systematically transformed and refined to architectural, design, and
implementation models until the source code level is reached.

In contrast, a runtime model provides a view on a running software system
that is usually used for managing the system at runtime. Therefore, a runtime
model serves as a basis and interface for monitoring, analyzing, and adapting
a running system, which is realized by causally connecting the model and the
system [1, 2]. Most approaches, like [3–6], employ one causally connected runtime
model that reflects a running software system. While it is commonly accepted
that developing complex software systems using one development model is not
practicable, we argue that the whole complexity of managing a running software
system cannot be covered by one runtime model defined by one metamodel.
This is also recognized by Blair et. al who state “that in practice, it is likely that



multiple [runtime] models will coexist and that different styles of models may
be required to capture different system concerns” [2, p.25].

At the 2009 Workshop on Models@run.time we presented an approach for
using multiple runtime models at different levels of abstraction simultaneously
for monitoring and analyzing a running system [7]. Each runtime model defined
by a different metamodel abstracts from the system and focuses on a specific
concern, like architectural constraints or performance. At the workshop, our ap-
proach raised questions and led to a discussion about simultaneously coping
with these models since concerns that potentially interfere with each other are
separated in different models [8]. For example, any adaptation being triggered
due to the performance state of a running system, which is reflected by one run-
time model, might violate architectural constraints being reflected in a different
model. Thus, there exists relations, like trade-offs or overlaps, between different
concerns or models, which have to be considered for runtime management.

A similar issue appears during the model-driven development of software. A
multitude of development models and relations between those models have to be
managed. An example is the Model-Driven Architecture (MDA) approach that
considers, among others, transformations of platform-independent to platform-
specific models [9]. Thus, different development models are related with each
other, and if changes are made to any model, the related models have to be
updated by synchronizing these changes or by repeating the transformation. In
this context megamodels have emerged as one means to cope with the problem
of managing a multitude of development models and relations. The term mega-
model is known since Jean Bézivin et al. and Jean Marie Favre published their
ideas on modeling MDA and MDE, respectively [10, 11]. Both authors basically
agree that a megamodel is a model that contains models and relations between
those models or between elements of those models (cf. [10–13]).

In contrast, the problem of managing multiple models and relations is ne-
glected for the runtime case and to the best of our knowledge there is no approach
that explicitly considers this problem beyond ad-hoc and code-based solutions.
In this paper, we present categories of conceivable runtime models and possible
relations between those models. Based on that, we propose to apply existing
concepts of megamodels for managing runtime models and relations. Such an
approach provides a high level of automation for organizing and utilizing multi-
ple runtime models and their relations, which supports the domain of runtime
system management, e.g., by automated impact analyses across related models.

The rest of the paper is structured as follows. Section 2 discusses the catego-
rization of runtime models and relations. Section 3 describes the application of
megamodels at runtime, which is exemplified by two case studies in Section 4.
Finally, the paper concludes and gives an outlook on future work in Section 5.

2 Runtime Models and Relations Between Them

In this section, we present categories of conceivable runtime models and relations
between them based on the current state of the research field, primarily the past
Models@run.time workshops [14] and our own work [7, 15–17]. However, we do



not claim that the presented categories are complete or that each category has
to exist in every approach. Nevertheless, they indicate that different kinds of
runtime models are likely to be employed simultaneously and that these models
themselves together with their relations have to be managed at runtime.

2.1 Categories of Runtime Models

Each of the already mentioned approaches [3–6] employs one runtime model
reflecting the running system. In contrast, our approach [7] provides multiple
runtime models simultaneously, each of which reflects the running system and
is specified by a distinct metamodel. Nevertheless, almost all of the other ap-
proaches also maintain additional model artifacts at runtime. These artifacts do
not reflect the running system, but they are used for runtime management.

In the case of Rainbow [6], such artifacts are invariants that are checked on
the runtime model, and adaptation strategies that are applied if invariants are
violated. Morin et al. [4] even have in addition to an architectural runtime model
reflecting the running system, a feature model describing the system’s variability,
a context model describing the system’s environment, and a so called reasoning
model that can take the form of event-condition-action (ECA) rules describing
which feature should be (de-)activated on the architectural model depending on
the context model. Thus, even if only one causally connected runtime model
is used for reflecting the running system, several other models are employed at
runtime. For the following categories as depicted in Figure 1, we consider any
conceivable Runtime Models regardless whether they reflect a running system
or not. The models are categorized according to their purposes and what they
represent. Runtime models of all categories are usually instances of Runtime
Metamodels conforming to Runtime Meta-Metamodels, which leverages typical
MDE techniques, like model transformation or validation, to the runtime.

Rules, Strategies, Constraints, Requirements and Goals

Configuration Space and Variability Models

Configuration and Architectural Models

Implementation Models

Context
and

Resource
Models

R
untim

e M
odels (M

1)
R

untim
e M

etam
odels (M

2)
R

untim
e M

eta-M
etam

odels (M
3)

Fig. 1. Categories of Runtime Models

Implementation Models are similar to models used in the field of reflection
to represent and modify a running system through a causal connection. Thus,
these models are dynamic as they evolve consistently with a running system.
Such models are based on the solution space of a system as they are coupled to
the system’s implementation and computation model [2]. Examples are models
used in reflective programming languages, which represent the building blocks of



the languages [18, 19], or models that are directly coupled to platforms or tech-
nologies like CORBA [20]. Therefore, these models are rather platform-specific
and at a low level of abstraction. Examples of such models are class or object di-
agrams and scenario-based sequence diagrams covering the interaction between
objects or generally traces of a system [18, 21, 22]. Moreover, behavioral models
in the form of statecharts, state machines, or generally automatons are used to
reflect the current state of objects or of a running system [23–25].

Configuration and Architectural Models are at a higher level of abstraction
than Implementation Models, but they usually also provide causally connected
representations of running systems. Such a model reflects the current configura-
tion of a system and it is the core model for monitoring and adapting the system.
Since software architectures are considered as an appropriate abstraction level
for performing adaptations, such models often provide architectural views on
a running system [3–7, 17]. Thus, these models are often similar to component
diagrams, which are often annotated or enhanced with elements or attributes to
address non-functional properties, like performance or reliability [6, 7]. There-
fore, these models are also the basis for analysis either by directly performing
the analysis on them or by transforming them to specific analysis models, like
queuing networks in the case of performance management. At a even higher level
of abstraction, process or workflow models are also feasible to describe a run-
ning system from a business-oriented view [26]. Moreover, model types of the
Implementation Models category, like statecharts or sequence diagrams, are also
conceivable in this category, but at a higher level of abstraction. For example, a
sequence diagram would consider the interactions between component instances
instead of the interactions between objects.

In general, models of this category are rather related to problem spaces and
they abstract from the implementation models and from underlying technologies
to provide platform-independent views. This corresponds to the view of Blair et
al. [2] on runtime models. With respect to a self-adaptive system, these models
enable the self-awareness of the system at an appropriate level of abstraction,
which is used as a basis for the feedback loop, i.e., for monitoring and analyzing
the system, and for planning and executing adaptations on the system.

Context and Resource Models describe the operational environment of a
running system. This comprises the context of a system, which is “any infor-
mation that can be used to characterise the situation of an entity”, while “an
entity is a person, place, or object that is considered relevant to the interaction
between a user and an application” [27, p.5] or in general to the operation of
the application. Especially for a context-aware system, which is a system that
adapts its behavior to changes in its context, the context has to be observed by
sensors and described by a model. A simple example for a context is the user’s
location, which can be used in mobile systems to find services, like restaurants, in
the vicinity of the user. To represent a context, a variety of models can be used:
semi-structured tags and attributes, object-oriented or logic-based models [28],
or some form of variables, like key value pairs [4, 28]. Even feature models have
been proposed for modeling context [29].



Moreover, the operational environment consists of resources a running sys-
tem requires for operation. These are logical resources, like any form of data, or
physical resources, like hardware. An example for a resource model reflects the
hardware infrastructure, like computing nodes and network links among nodes,
on which the system is running. Therefore, such a resource model provides in-
formation whether any adaptation of a system is feasible based on the currently
provided resources, like on which node a subsystem can be deployed.

Configuration Space and Variability Models specify potential variants of
a running system, while Configuration and Architectural Models reflect the cur-
rently running variant of the system. Therefore, models of this category describe
a system at the type level to span the system’s configuration space and variabil-
ity. Considering a component-based system, the configuration space is defined
by the available types of components that can be instantiated and deployed to
a running system. Thus, adaptation points in a running system and possible
adaptation alternatives can be identified using these models.

Examples for models in this category are component type diagrams [16, 17],
feature models originating from dynamic software product lines [4, 30, 31], or
aspect models describing variants of a system and instances of these aspects are
woven into configuration or architectural models for adapting the system [4, 32].

Rules, Strategies, Constraints, Requirements and Goals may refer to
any model from the other categories and, therefore, their levels of abstraction
are similar to the levels of the referred models. However, considering require-
ments or goals at runtime aims at higher levels of abstraction, even above the
level of software architectures [33]. Models in this category define, among oth-
ers, when and how a running system should be adapted. According to Fleurey
and Solberg [34] there are two general approaches to specify adaptations. First,
adaptation rules or reconfiguration strategies usually in some form of ECA rules
describe when (periodically or at the occurrences of context or system events)
and under which conditions, a system is adapted by performing reconfiguration
actions. The second approach is based on goals a running system should achieve,
and adaptation aims at optimizing the system with respect to these goals. This
optimization process is based on utility functions to find the best or at least
an appropriate target system configuration fulfilling the goals. Both approaches
use models reflecting the current system, context, and resources to search the
configuration space for a variant that is appropriate for the current state. For
example, a goal-based optimization model is used in [4, 31, 35], and adaptation
rules or reconfiguration strategies are used in [6, 29, 36].

Moreover, constraints on models of the other categories regarding functional
and non-functional properties are used for runtime validation and verification
purposes, and for guiding adaptations. If a constraint is violated, an adapta-
tion can be triggered, as it is done in [6], or constraints may exclude certain
kind of adaptations. Constraints can be expressed, among others, in the Ob-
ject Constraint Language (OCL), like in [7] to check architectural constraints, or
formally in some form of Linear Temporal Logic (LTL), like in [23] to verify adap-
tive systems at runtime. Though constraints can be seen as requirements that



are checked at runtime, recently the idea of requirements reflection has emerged,
which explicitly considers requirements as adaptive runtime entities [33]. Thus,
requirements models, like goal models, become runtime models that have to
be related to Configuration and Architectural Models since any changes at the
requirements level have to be reflected in the running system, and vice versa.

The presented categories show that different kinds of runtime models are pos-
sible and even employed simultaneously. Which categories are used, and which
kind of and how many models for each of the used categories are employed is
specific to each approach. This depends, among others, on the purposes of an
approach (which functional and non-functional concerns are of interest, which
management activities, like monitoring, analysis or adaptation, are supported,
etc.) and on the domain of the managed system (embedded, mobile, or server-
side systems, or even IT infrastructures, etc.). Based on the model categories,
conceivable relations between runtime models are presented in the next section.

2.2 Relations Between Runtime Models or Model Elements

In the following, we outline exemplars of relations between runtime models to
motivate the need for runtime management of relations together with the models.

As already mentioned, models of the category Rules, Strategies, Constraints,
Requirements and Goals may refer to models of the other categories. For example,
goal modeling approaches refine a top-level goal to subgoals recursively until each
subgoal can be satisfied by an agent being a human or a software component [37].
Having a goal model at runtime, it is of interest which component of a running
system actually satisfies or fails in satisfying a certain goal. Therefore, goals being
reflected in a goal model refer to corresponding components of Configuration
and Architectural Models such that a goal model and an architectural model
are related at runtime. Moreover, goal satisfaction can be influenced by the
current context of a system, such that goals and elements of a context model
and, therefore, the goal model and Context Model are related with each other.

Another exemplar describes an instance-of relation between Configuration
Models and Configuration Space Models. For example, a configuration space is
defined by the types of available components and an actually running system
consists of instances of these types. At runtime, this relation is useful for navi-
gating from configuration model elements to corresponding configuration space
model elements to find potential variability points for adaptations. Regarding
the same dimension of abstraction, Implementation Models can be seen as refine-
ments of Configuration and Architectural Models as they describe how a config-
uration and architecture is actually realized using concrete technologies. Thus,
refinement relations are conceivable between models of these two categories.

Another relation can reflect the deployment or resource utilization of a system
by means of relating Architectural Model elements and Resource Model elements,
or in other words, which components of a running systems are deployed on which
nodes and are consuming which resources. Context and Resource Models can also
refer to Configuration Space and Variability Models since the configuration space



and variability of a system can be influenced by the current context or resource
conditions. For example, a certain variant is disabled due to limited resources.

Besides relations between models of different categories, there can also exist
relations between models of the same category. For example, in [7] several Archi-
tectural Models are employed reflecting the same system, but providing different
views. However, these views overlap with each other, which can be considered as
a kind of relation between these models. Furthermore, each model focuses on a
certain non-functional concern, like performance, and any adaptation optimizing
one concern might interfere with another concern. Thus, overlaps, trade-offs or
conflicts between concerns respectively between the models are conceivable.

Finally, considering the levels of models, metamodels, and meta-metamodels,
there exists conformance and instance-of relations between models of those levels.

The presented exemplars show that runtime models are usually not indepen-
dent from each other, but they rather compose a network of models. Therefore,
besides the runtime models also the relations between those models have to be
managed at runtime. The concrete relations emerging in an approach depend,
among others, on the purposes of the approach, the domain of the system and
especially on the models that are employed.

3 Megamodels at Runtime

As it turned out in the previous sections, for runtime management different
kinds of models and relations between models emerge. In such scenarios, it is
important that these relations are maintained at runtime because this makes the
relations explicit and, therefore, amenable for reasoning or analysis purposes. For
example, an impact analysis is leveraged when knowing which models are related
with each other. Then, the impact of any model change to related models can
be analyzed by following transitively the relations and propagating the change.
Moreover, relations can be classified, for example in critical and non-critical ones,
and for certain costly analyses only the critical relations may be considered.

Nevertheless, relations to other models are usually not covered originally by
all models because they were not foreseen when designing the corresponding
modeling languages. Thus, a language for explicitly specifying all kinds of re-
lations between various models is required for supporting the management of
runtime models. Rather than applying ad-hoc and code-based solutions to re-
late models with each other, megamodels provide a language that supports the
modeling of arbitrary models and relations between those models. Therefore,
the management of models and relations itself is done in a model-driven manner
enabling the use of existing MDE techniques for it. In general, megamodels for
the model-driven development serve organizational and utilization purposes that
should also be leveraged at runtime. Organizational purposes are primarily about
managing the complexity of a multitude of models. Therefore, megamodels help
in organizing a huge set of different models together with their relations by stor-
ing and categorizing them. According to Bézivin et al., megamodels act as some
kind of registry for models [12] or even as a global map for the information assets
of a company [10]. Likewise, megamodels can serve as a means to organize and



maintain runtime models and their relations in the domain of runtime system
management since several models and relations can be simultaneously employed
at runtime (cf. Sections 2.1 and 2.2).

Utilization purposes of megamodels are primarily about navigation and au-
tomation. Megamodels can be the basis for navigating through models by using
relations between models. Thus, starting from a model, all related models can be
reached in a model-driven manner instead of using mechanisms at a lower level
of abstraction like programming interfaces. Having the conceivable relations be-
tween runtime models in mind (cf. Section 2.2), navigating between models at
runtime is essential for a comprehensive system management approach.

Automation aims at increasing the efficiency by treating relations between
models as executable units that take models as input and produce models as
output. Thus, a megamodel can be considered as an executable process, and
additional automations for executing a megamodel can be defined on top of a
megamodel. For example, a megamodel can be used to automatically analyze the
impact of model changes to other related models. Therefore, relations can be used
to synchronize model changes to related models and these synchronized models
are then analyzed to investigate the impact of the initial changes. This can be
used at runtime to validate a planned adaptation on different models before the
system is actually adapted. Finally, automation also considers the maintenance
of models and relations, which should be automated as far as possible since
models and relations are often both dynamic and they change over time.

Having outlined the application of megamodels at runtime, the following
section presents two case studies exemplifying megamodels at runtime.

4 Case Studies

In this section, we outline two case studies from our previous works and how
these case studies benefit from the application of megamodels at runtime.

4.1 IT Service Management

In [16] we presented a model-driven configuration management system (CMS)
for advanced IT service management (ITSM) by applying several MDE tech-
niques. The core of a model-driven CMS is a configuration management database
(CMDB) that stores an as-is and a to-be Configuration Model of a managed sys-
tem. Configuration models consist of configuration items and relations between
items, while items are manageable units of a managed system, like servers or
applications. On top of a model-driven CMS, we realized three simplified ITIL
processes by using MDE techniques, namely, change management, release & de-
ployment management, and service asset & configuration management.

The service asset & configuration management process is responsible for pro-
viding an up-to-date as-is Configuration Model in a CMDB. Furthermore, key
performance indicators (KPIs) are implemented to provide more control on this
process. An example KPI is the degree of discrepancy between the to-be and the
as-is configuration models, which is the number of covered configuration items
in both models divided by the number of items in the to-be configuration model.



As-Is
Configuration

Model

To-Be
Configuration

Model

Deviation
Report

Compare2
DVReport

CompareCompare
Model

Change
Operations

Compare2
Change

Operations

Causal
Connection

Managed System

Operator

Controler

KPI
Model

KPI
Report

KPI
Analysis

RelationModel

m
eg

am
od

el

Fig. 2. A simplified megamodel example for ITSM

The change management process provides capabilities to define changes to
a managed system based on models. Thus, an operator models changes directly
on the as-is configuration model and then stores it as a to-be configuration
model, which is further used by the release & deployment process to perform
the modeled changes. Therefore, a set of change operations are automatically
derived by comparing the defined to-be with the as-is configuration model.

Such a CMS can be appropriately captured by a megamodel, which is shown
as a simplified example for ITSM in Figure 2. Additional actors are integrated
for indicating manual interventions. The megamodel shows the models used in
this system and the relations between these models. The As-Is and the To-Be
Configuration Models belong to the category of Configuration and Architectural
Models, and they are both used for the KPI Analysis. This analysis evaluates the
KPIs specified as rules in the KPI Model, which therefore belongs to the model
category of Rules, and the analysis results are described in a KPI Report.

Furthermore, model relations can be mapped to operations that are automat-
ically executed, e.g., the Compare relation is implemented by an EMF Compare1

operation or the Compare2Change Operations is a model transformation. Thus,
whenever changes occur, i.e., the To-Be Configuration Model is modified, Change
Operations are automatically derived and performed on the system, while the
KPI Analysis observes the progress of performing the changes to the system.

4.2 Self-Adaptive Software

In the field of self-adaptive software, we presented an approach that employs
several runtime models simultaneously for monitoring [7] and adapting [17] a
system. This is outlined in Figure 3. A running Managed System is reflected by
an Implementation Model and both are causally connected. However, the imple-
mentation model is platform-specific, complex, at a low level of abstraction, and
related to the solution space of the system. Therefore, abstract runtime models
1 Eclipse Modeling Framework Compare, http://wiki.eclipse.org/EMF_Compare



Implementation 
Model

Causal 
Connection

Managed System

Failure
Manager

RelationModel

m
eg

am
od

el

Model
Synchronization

Architecture
Model

Performance
Model

Failure
Model

Change
Propagation

Change
Propagation

Adaptation
Analysis

Adaptation
Report

Constraint
Model

Architecture
Manager

Performance
Manager

Fig. 3. A megamodel example for self-adaptive software

are derived from the implementation model using incremental and bidirectional
Model Synchronization techniques. These abstract models can be causally con-
nected to the system via the implementation model, and they belong to the cat-
egory of Configuration and Architectural Models. Each of these abstract models
focuses on a specific concern of interest, which leverages models related to prob-
lem spaces. An Architecture Model, a Performance Model, and a Failure Model
are derived focusing on architectural constraints, performance, and failures of the
system, respectively. Thus, specific self-management capabilities are supported
by distinct models, like self-healing by the failure model or self-optimization by
the performance model. Consequently, specialized autonomic managers, like a
Performance Manager working on the performance model, can be employed.

However, adaptations performed by a certain manager due to a certain con-
cern might interfere with other concerns covered by other managers. For example,
adaptations based on the performance model, like deploying an additional com-
ponent to balance the load, might violate architectural constraints covered by
the Architecture Model, like the affected component can only be deployed once.

Since each concern is covered by a different model, megamodels can be used
to describe relations, like interferences or trade-offs, between different models or
concerns. Moreover, the coordination between different managers can be mod-
eled with megamodels, which can be enacted at runtime to balance competing
concerns, as outlined by the following scenario. Before any adaptation proposed
by the performance or failure manager who change the performance or failure
model, respectively, is executed on the system by triggering the Model Synchro-
nization, the changes are automatically propagated to the architecture model
(cf. Change Propagation relations in Figure 3). Then, the architecture manager
takes the updated architecture model and the Constraint Model to analyze and
validate the proposed adaptations (Adaptation Analysis). The resulting Adap-



tation Report is sent to the manager proposing the adaptation and it instructs
either the execution of the proposed adaptation on the system or the rollback of
the corresponding model changes depending on the analysis results.

Both presented case studies exemplified potential use cases for megamodels
at runtime and benefits of megamodels for advanced system management ap-
proaches using multiple runtime models simultaneously.

5 Conclusion and Future Work

In this paper we have shown that the issue of complexity in the domain of model-
driven development, caused by the amount of models and their relations, is also
a problem in the domain of runtime system management and runtime models.
Since for the latter domain this problem is rather neglected, we addressed it
by presenting a categorization of runtime models and potential relations that
can exist between models of the same or different categories. Based on that, we
showed that megamodels are an appropriate formalism to manage runtime mod-
els and their relations. This has been exemplified by two case studies outlining
the benefits in the domain of runtime system management by providing a high
level of automation for organizing and utilizing runtime models and relations.

As future work, we plan to elaborate our categorization to incorporate other
preliminary classifications comparing development and runtime models [1, 38]
and describing dimensions of runtime models [2]. This includes possible catego-
rizations of relations between runtime models. Finally, to evaluate this proposal,
we will investigate the application of our megamodel approach designed for the
development and deployment time [39] to the domain of runtime management.

References
1. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research Roadmap.

In: Proc. of the ICSE Workshop on Future of Software Engineering (FOSE), IEEE (2007) 37–54
2. Blair, G., Bencomo, N., France, R.B.: Models@run.time: Guest Editors’ Introduction. Computer

42(10) (2009) 22–27
3. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H.: Generating Synchronization

Engines between Running Systems and Their Model-Based Views. In: Models in Software En-
gineering, Workshops and Symposia at MODELS 2009. Volume 6002 of LNCS. Springer (2010)
140–154

4. Morin, B., Barais, O., Jézéquel, J.M., Fleurey, F., Solberg, A.: Models@Run.time to Support
Dynamic Adaptation. Computer 42(10) (2009) 44–51

5. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evolution. In:
Proc. of the 20th Intl. Conference on Software Engineering (ICSE), IEEE (1998) 177–186

6. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure. Computer 37(10) (2004) 46–54

7. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental Model Synchroniza-
tion for Efficient Run-Time Monitoring. In: Models in Software Engineering, Workshops and
Symposia at MODELS 2009. Volume 6002 of LNCS. Springer (2010) 124–139

8. Bencomo, N., Blair, G., France, R., Munoz, F., Jeanneret, C.: 4th International Workshop on
Models@run.time. In: Models in Software Engineering, Workshops and Symposia at MODELS
2009. Volume 6002 of LNCS. Springer (2010) 119–123

9. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-Driven Archi-
tecture. Addison-Wesley, Boston (2004)

10. Bézivin, J., Gérard, S., Muller, P.A., Rioux, L.: MDA components: Challenges and Opportuni-
ties. In: 1st Intl. Workshop on Metamodelling for MDA. (2003) 23–41

11. Favre, J.M.: Foundations of Model (Driven) (Reverse) Engineering : Models – Episode I: Stories
of The Fidus Papyrus and of The Solarus. In: Language Engineering for Model-Driven Software
Development. Number 04101 in Dagstuhl Seminar Proceedings, IBFI, Schloss Dagstuhl (2005)

12. Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In: Proc. of the OOP-
SLA/GPCE Workshop on Best Practices for Model-Driven Software Development. (2004)



13. Barbero, M., Fabro, M.D.D., Bézivin, J.: Traceability and Provenance Issues in Global Model
Management. In: ECMDA-TW’07: Proc. of 3rd Workshop on Traceability. (2007) 47–55

14. Workshop on Models@run.time, http://www.comp.lancs.ac.uk/~bencomo/MRT/ (2006-2009)
15. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Model-Driven Architectural

Monitoring and Adaptation for Autonomic Systems. In: Proc. of the 6th Intl. Conference on
Autonomic Computing and Communications (ICAC), ACM (2009) 67–68

16. Giese, H., Seibel, A., Vogel, T.: A Model-Driven Configuration Management System for Ad-
vanced IT Service Management. In: Proc. of the 4th Intl. Workshop on Models@run.time.
Volume 509 of CEUR-WS.org. (2009) 61–70

17. Vogel, T., Giese, H.: Adaptation and Abstract Runtime Models. In: Proc. of the 5th ICSE
Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), ACM
(2010) 39–48

18. Jouault, F., Bézivin, J., Chevrel, R., Gray, J.: Experiments in Run-Time Model Extraction. In:
Proc. of 1st Intl. Workshop on Models@run.time. (2006)

19. Kuhn, A., Verwaest, T.: FAME - A Polyglot Library for Metamodeling at Runtime. In: Proc.
of the 3rd Intl. Workshop on Models@run.time, Technical Report COMP-005-2008, Lancaster
University (2008) 57–66

20. Costa, F., Provensi, L., Vaz, F.: Towards a More Effective Coupling of Reflection and Runtime
Metamodels for Middleware. In: Proc. of 1st Intl. Workshop on Models@run.time. (2006)

21. Gjerlufsen, T., Ingstrup, M., Wolff, J., Olsen, O.: Mirrors of Meaning: Supporting Inspectable
Runtime Models. Computer 42(10) (2009) 61–68

22. Maoz, S.: Using Model-Based Traces as Runtime Models. Computer 42(10) (2009) 28–36
23. Goldsby, H.J., Cheng, B.H., Zhang, J.: AMOEBA-RT: Run-Time Verification of Adaptive Soft-

ware. In: Models in Software Engineering: Workshops and Symposia at MoDELS 2007. Volume
5002 of LNCS. Springer (2008) 212–224

24. Maoz, S.: Model-Based Traces. In: Proc. of the 3rd Intl. Workshop on Models@run.time,
Technical Report COMP-005-2008, Lancaster University (2008) 16–25

25. Höfig, E., Deussen, P.H., Coskun, H.: Statechart Interpretation on Resource Constrained Plat-
forms: a Performance Analysis. In: Proc. of the 4th Intl. Workshop on Models@run.time. Volume
509 of CEUR-WS.org. (2009) 99–108

26. Sanchez, M., Barrero, I., Villalobos, J., Deridder, D.: An Execution Platform for Extensible
Runtime Models. In: Proc. of the 3rd Intl. Workshop on Models@run.time, Technical Report
COMP-005-2008, Lancaster University (2008) 107–116

27. Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Comput. 5(1) (2001) 4–7
28. Schneider, D., Becker, M.: Runtime Models for Self-Adaptation in the Ambient Assisted Living

Domain. In: Proc. of the 3rd Intl. Workshop on Models@run.time, Technical Report COMP-
005-2008, Lancaster University (2008) 47–56

29. Acher, M., Collet, P., Fleurey, F., Lahire, P., Moisan, S., Rigault, J.P.: Modeling Context
and Dynamic Adaptations with Feature Models. In: Proc. of the 4th Intl. Workshop on Mod-
els@run.time. Volume 509 of CEUR-WS.org. (2009) 89–98

30. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic Computing through Reuse of Vari-
ability Models at Runtime: The Case of Smart Homes. Computer 42(10) (2009) 37–43

31. Elkhodary, A., Malek, S., Esfahani, N.: On the Role of Features in Analyzing the Architecture
of Self-Adaptive Software Systems. In: Proc. of the 4th Intl. Workshop on Models@run.time.
Volume 509 of CEUR-WS.org. (2009) 41–50

32. Ferry, N., Hourdin, V., Lavirotte, S., Rey, G., Tigli, J.Y., Riveill, M.: Models at Runtime:
Service for Device Composition and Adaptation. In: Proc. of the 4th Intl. Workshop on Mod-
els@run.time. Volume 509 of CEUR-WS.org. (2009) 51–60

33. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.: Requirements reflection: re-
quirements as runtime entities. In: Proc. of the 32nd ACM/IEEE Intl. Conference on Software
Engineering (ICSE), ACM (2010) 199–202

34. Fleurey, F., Solberg, A.: A Domain Specific Modeling Language Supporting Specification, Sim-
ulation and Execution of Dynamic Adaptive Systems. In: Proc. of the 12th Intl. Conference on
Model Driven Engineering Languages and Systems (MODELS). Volume 5795 of LNCS., Springer
(2009) 606–621

35. Ramirez, A.J., Cheng, B.H.: Evolving Models at Run Time to Address Functional and Non-
Functional Adaptation Requirements. In: Proc. of the 4th Intl. Workshop on Models@run.time.
Volume 509 of CEUR-WS.org. (2009) 31–40

36. Dubus, J., Merle, P.: Applying OMG D&C Specification and ECA Rules for Autonomous
Distributed Component-based Systems. In: Proc. of 1st Intl. Workshop on Models@run.time.
(2006)

37. Cheng, B.H., Sawyer, P., Bencomo, N., Whittle, J.: A Goal-Based Modeling Approach to Develop
Requirements of an Adaptive System with Environmental Uncertainty. In: Proc. of the 12th Intl.
Conference on Model Driven Engineering Languages and Systems (MODELS). Volume 5795 of
LNCS., Springer (2009) 468–483

38. Bencomo, N.: On the Use of Software Models during Software Execution. In: Proc. of the ICSE
Workshop on Modeling in Software Engineering (MISE), IEEE (2009) 62–67

39. Seibel, A., Neumann, S., Giese, H.: Dynamic Hierarchical Mega Models: Comprehensive Trace-
ability and its Efficient Maintenance. Software and Systems Modeling 9 (2009) 493–528


