
QVTR2: a Rational and Performance-aware
Extension to the Relations Language?

Mauro Luigi Drago, Carlo Ghezzi, and Raffaela Mirandola

Politecnico di Milano
DeepSE Group - Dipartimento di Elettronica e Informazione

Piazza Leonardo Da Vinci, 32 - 20133 Milano, Italy
(drago|ghezzi|mirandola)@elet.polimi.it

WWW home page: http://deepse.dei.polimi.it

Abstract. Model transformations glue together models in an MDE pro-
cess and represent the rationale behind it. It is however likely that in a
design/development process different solutions (or alternatives) for the
same problem are available. When alternatives are encountered, engi-
neers need to make a choice by relying on past experience and on quality
metrics. Several languages exist to specify transformations, but all of
them bury deep inside source code rational information about perfor-
mance and alternatives, and none of them is capable of providing feed-
back to select between the different solutions. In this paper we present
QVT-Relations Rational (QVTR2), an extension to the Relations lan-
guage to help engineers in keeping information about the design rationale
in declarative transformations, and to guide them in the alternatives se-
lection process by using performance engineering techniques to evaluate
candidate solutions. We demonstrate the effectiveness of our approach by
using our QVTR2 prototype engine on a modified version of the common
UML-to-RDBMS example transformation, and by guiding the engineer
in the selection of the most reasonable and performing solution.

1 Introduction

Model Driven Engineering (MDE) envisions a shift in the software development
process by posing the attention on models instead of source code. Models become
first class citizens and the theory and practice of software development should be
ported to this new paradigm. The MDE paradigm should simplify the tasks of
the engineer; however, developing a complete application still remains complex.
Several models at different abstraction levels are required to describe all the
facets of a system, and consistency between them should be maintained.

The MDE paradigm and the availability of system abstractions, also in the
early stages of development, support different new kinds of software engineering
tasks. For example, models can be used to predict the non-functional attributes
of software artifacts and prevent performance issues which would otherwise be

? This research was partially founded by the European Commission, IDEAS-ERC
Project 227977-SMScom and EU FP7 Q-ImPrESS project.

2

discoverable only after the system has been implemented, when the application
is running. Balsamo et al. in [1] give an overview of the many approaches pro-
posed in literature to tackle performance analyses. More recent work can also
be found in the proceedings of WOSP [2]. Almost all the approaches translate
high-level models annotated with appropriate information about non-functional
aspects into performance related formalisms, like Queueing Networks (QNs) or
Markov Chains (MCs). Analyses are then performed on these low-level models
by using already existing tools. However, it is still entirely up to the engineer to
understand what numbers mean and what changes to apply. Existing approaches
provide poor or no support at all to interpret results, to relate them from low-
level abstraction layers to high-level layers, and to identify appropriate solu-
tions when requirements are not met. Methodologies for feedback provision to
engineers are already available in literature; example are the meta-heuristic ap-
proaches described in [3][4][5] or the rule based approaches described in [6][7][8].
Indeed, meta-heuristic approaches work only in particular contexts (e.g., compo-
nent based engineering) and provide solutions only for specific performance issues
(e.g., finding an optimal allocation for components). Rule-based approaches are
more generic and can be potentially applied to a wide variety of performance
engineering tasks; our research concentrates on them.

Rules to identify problems and propose alternatives are specific to each appli-
cation domain, and must still be manually written by domain experts. However,
in an MDE development setting, experts are also responsible for capturing the
engineering domain and embed into model transformations, as much as possible,
the rationale behind the development process. Several languages exist to specify
transformations [9], which may be classified along different dimensions. A first
distinction can be made by considering the specification style, i.e., imperative or
declarative. Imperative languages operationally specify how elements should be
transformed and are more familiar to end-users given their familiarity with the
paradigm of common programming languages. Examples of purely imperative
languages may be QVT-Operational [10] or Kermeta [11]. Declarative languages
instead specify how model elements relate to each other and what should be
transformed into what. Some languages exhibit a purely declarative style, such
as QVT-Relations [10], Triple Graph Grammars (TGG) [12] or Tefkat [13]. Oth-
ers instead adopt an hybrid style, such as ATLAS [14], which combines declar-
ative and imperative constructs. Another distinction can be made by consider-
ing bi-directional capabilities. Languages which provide imperative constructs
are usually uni-directional, i.e., a transformation specification may be executed
only to transform a model A into a model B but not in the opposite direc-
tion. Bi-directional transformations instead may be executed both forward and
backwards. We argue that bi-directional transformations are advantageous when
several models are used, consistency must be enforced, and performance indexes
must be related to high-level abstractions. Indeed, in this paper we concentrate
on them and, specifically, on the QVT-Relations language.

Our intuition is that the rationale behind rules to provide feedback to en-
gineers is already available in transformations. This has been already pointed

3

out by Hettel et al. in [15]: “transformations are also definitions of the engi-
neering process”. For example, let us consider the recurring problem of mapping
components onto the hardware resources. Each component may be mapped onto
multiple replicas deployed on different resources. The choice of replicating (or
not) and the number of replicas constitute different alternative solutions for the
same problem. The engineer, guided by past experience and by the performance
requirements, makes a choice and solves the variability. Transformations, if ex-
tended with suitable constructs to elicit that rationale, can be used both to
automate the development process and to close the feedback loop.

However, none of the currently available transformation languages provides i)
appropriate constructs to express (and keep track of) performance decisions, but
buries them deep inside the source code, and ii) mechanisms to assist engineers
in the evaluation/selection of the different alternatives. In this paper we present
QVT-Relations Rational (QVTR2), an extension of the QVT-Relations language
to tackle the afore-mentioned issues. The contribution of this paper is two-fold:

– We add new constructs to QVT-Relation, in the form of annotations similar
to the ones already available for the Java language, to elicit alternatives and
performance concepts inside transformation specifications.

– We provide a prototype engine to execute QVTR2 transformations which
partially automates — human intervention is still required by our engine
— the feedback loop. Whenever an alternative is identified, the engine eval-
uates (by using standard performance engineering techniques) the possible
solutions, and shows the gathered results to the end-user, who in turn can
be guided in the selection of the most reasonable candidate.

The rest of this paper is organized as follows. In Section 2 we introduce
some basic concepts and the running example we use in the rest of the paper.
In Section 3 we describe the extensions we made to the language. Section 4
shows how we aid the developer, while transforming, when a choice needs to be
made. In Section 5 we show QVTR2 in action, by running the reference example.
Sections 6 and 7 describe related work and new research ideas, respectively.

2 Preliminaries

In this section we describe some basic concepts needed in the rest of the paper
and we introduce the running example we use to describe QVTR2.

2.1 Background Terminology

We tackle the issue of providing feedback to engineer when multiple alternatives
are available for the same artifact but with different non-functional attributes.
Indeed, the concepts of alternative, when/where they occur, and of deciding
between them have been already addressed in literature about Software Product
Line (SPL) [16]. In this section we introduce the concepts we borrow from this
research area in order to provide a widely accepted formal terminology for the

4

rest of this paper. In terms of SPLs, what we call alternatives correspond to
variants, while the point at which they occur is encapsulated by variation points.
Many definitions have been given in the past for these terms. For variation points,
we stick to the definition given by Jacobson in [17]: “A variation point identifies
one or more locations at which the variation will occur”. Indeed, a variation
point defines what varies or the context in which the variability happens. A
variant instead represents how software artifacts vary; indeed, it specifies which
are the possible available alternatives. For example, let us consider the problem
of allocating a component onto one or more hardware resources. The allocation
problem is the what (or the variation point), the different possible allocations
are the how (or the variants).

2.2 QVT-Relations

QVT-Relations is a declarative transformation language with bidirectional ca-
pabilities. A transformation between two or more candidate models is a set of
relations which specify the constraints that must hold between model entities.
Each relation has two or more domains and may contain when and where
clauses. An example is shown in Listing. 1.1. Domains define the object patterns
used to match/create entities in the models. For example, the uml domain (line
10) matches entities of type Class while the rdbms domain (line 14) matches Par-
titions containing at least a Table with the same name of the Class. The when
clause defines the pre-conditions for the relation; the where clause instead spec-
ifies the predicates that must hold when this relation holds (post-conditions).
Predicates define constraints either on entities matched by the domain patterns
or on other relations. The latter case is used to define precedence between rela-
tions, if the predicate belongs to the when clause, or a simple call-out semantics
if the predicate belongs to the where clause. In the example, the AllClassAt-
tributesToSingleTable relation (line 33) is invoked in the where clause to force
the mapping of all the attributes of the matched class onto columns of the
matched table. Transformation can be executed in checkonly or enforce mode.
In checkonly mode, the input models are not modified but only consistency is
verified, by checking that all the top relations hold. In enforce mode, a direction
domain must be specified and the target model is modified in order to respect
the transformation relations. If an entity compliant with the enforce domain
pattern is not matched in the target model, a new one is created as defined by
the pattern specification. To avoid polluting models with duplicate objects, it
is possible to specify keys for model entities. In the example, we specified that
Tables are identified by their name, their partitionId and by the schema to which
they belong.

2.3 The Running Example

We based our running example on the Simple UML Class model to RDBMS
model mapping described in the QVT specification [10], which we reduced and
tailored to our needs. Here we describe it briefly by concentrating on the modified

5

parts; for further information refer to the QVTR2 website1. The example tack-
les the Object Relational Mapping of a domain entity model to an underlying
database. The Simple UML Class meta-model has been taken as is; it allows for
the definition of entities, attributes of entities, and associations between them.
The RDBMS meta-model (whose relevant part is shown in Figure 1) has been
instead extended to allow the definition of data partitions and generation poli-
cies for record identifiers. Tables may either live on their own inside a schema,
or they can belong to a partition. If this is the case, each table is identified in
the transformation by its name and by the partitionId attribute. Table columns
are described by an extra generationPolicy attribute, which defines the strategy
to generate identifiers for new data entries.

Fig. 1: The RDBMS meta-model.

To add some performance-related alternatives in the example, we took inspi-
ration from performance anti-patterns [18]. Anti-patterns state what a designer
should not do in order to avoid potential problems. Performance anti-patterns
concentrate on performance issues, and have been widely studied in the litera-
ture. Smith et al. in [18] list the most common anti-patterns found in industrial
applications. For the example, let us focus on the One-Lane Bridge anti-pattern.
It occurs when “at a point in the execution only one, or a few, processes may
continue to execute concurrently”. For databases, this happens when multiple
clients concurrently access and insert/modify records in the same table. Different
solutions have been proposed. Changing the policy to generate record identifiers
may mitigate the problem. When default sequential algorithms are used, sequen-
tially inserted records share the same storage location (or memory page). When
inserting a new record, the database engine locks the entire page used to store
the new entry, and other clients must wait for such lock to be released. If iden-
tifiers are generated randomly, clients are diverted to different storage locations
and may proceed concurrently. Another, more general, possibility consists in
partitioning data onto multiple tables. Each client can be then redirected onto
a different table, and mutual exclusion occurs less frequently.

1 http://code.google.com/p/qvtr2/

6

We extended the example transformation by adding the mappings for these
possible solutions. In particular, we defined three kinds of variation points. One
implements the mapping of table keys onto sequential or randomly-generated
identifiers. The others tackle data partitioning. A variation point handles map-
ping of classes onto single tables or partitions. If partitioning is chosen, the last
variation point decides how many tables should belong to the partition.

3 The Language

The Relations language already provides constructs to implement alternatives in
transformations. However, current implementations lack runtime support (i.e.,
existing engines make a non-deterministic choice between viable solutions) and
features to include rational information. In this section we concentrate on the
latter issue. Runtime support is discussed subsequently. We propose to use Java-
like annotations for transformation predicates to include such information. Using
annotations instead of modifying the grammar with new constructs brings to an
important consequence: QVTR2 transformation are also valid QVT-Relations
specifications, hence we can use existing engines to interpret and execute trans-
formations.

When building a transformation in which multiple alternative output models
are viable, we express variants through relations, while we let variation points
correspond to boolean predicates, in the post-condition of a relation, over the
possible alternatives. To be sound, such definitions must satisfy some conceptual
and syntactic criteria. Alternatives are defined by relations, and each relation
is composed of several domains. When executing a transformation, one of the
domains is the target, i.e., it is used to create from scratch a new output model
or to check its consistency. The remaining domains are instead used to match
elements in input models, and they specify the subject of the variability. Concep-
tually, the subject of a variability must be unique; hence we require the patterns
defined for such domains to be equal. More formally, we require that given a vari-
ation point definition and a direction, the remaining domains of all its variant
relations must be equal (Rule 1).

We also distinguish between mutually exclusive, optional and recursive vari-
ation points. According to this classification, the predicates defining a variation
point must comply with the following conditions. Before proceeding, we need
to recall that boolean operators in the Relations language are short-circuited,
and our definitions work under this assumption. Mutually exclusive variation
points are expressed through predicates xor-ing the possible alternatives, in the
other case the or operator must be used (Rule 2). Optional variation points are
non-mutually exclusive variation points, or-ing a unique variant with the true
boolean value (Rule 3). Recursive variation points are optional variation points,
and the alternative must be the same relation in which the variation point resides
(Rule 4). Recursive variation points are useful in situations when an entity may
be mapped several times onto the same type of objects. An example is shown
in Listing 1.1 (lines 43-44): a class may be mapped onto multiple tables of the
same data partition, each one with a different partition identifier.

7

Listing 1.1: The NumberOfTables variation point.

1 @variant {
2 name := ”AnotherTable ” ,
3 d e s c r i p t i o n := ”Adds another t ab l e to p a r t i t i o n ” ,
4 exc ludes := { IdGenStrategy (RandomPolicy)}
5 }
6 relation ClassToAnotherTableInPart i t ion {
7 className , pkeyName : S t r ing ;
8 i n t I d : I n t e g e r ;
9

10 checkonly domain uml c : Class {
11 name = className
12 } ;
13

14 enforce domain rdbms p : P a r t i t i o n {
15 t ab l e = t : Table {
16 name = className ,
17 schema = p . schema ,
18 p a r t i t i o n I d = int Id ,
19 hasKey=k : Key {
20 name = pkeyName
21 }
22 }
23 } d e f a u l t v a l u e s {
24 pkeyName = className + ’ pk ’ ;
25 } ;
26

27 primitive domain curId : I n t e g e r ;
28

29 when { i n t I d = curId ; }
30

31 where {
32 IdAttr ibutesToPkeyCols (c , k) ;
33 Al lC la s sAtt r ibute sToS ing l eTab l e (c , t) ;
34

35 ClassToTable InPart i t ion (c , t) ;
36 t . p a r t i t i o n−>s i z e () = 1 ;
37

38 @varpoint {
39 name := ”NumberOfTables ” ,
40 d e s c r i p t i o n := ” Decides the number o f t a b l e s ” ,
41 ana lyze r (f u l l) := QnAnalyzer ($vp , $choice , ” usage . xmi ”)
42 }
43 ClassToAnotherTableInPart i t ion (c , t . p a r t i t i o n , curId + 1)
44 or true ;
45 }
46 }

8

3.1 The Annotations

QVTR2 provides two types of annotations for variabilities. The varpoint anno-
tation can be used for relational predicates implementing variation points, and
supports the following properties:

Name and Description properties serve as documentation aids. Name speci-
fies the unique identifier of the variation point. It is used for cross-references
both in annotations and in design documents. Description provides a quick
synoptic of the variability, and helps engineers in understanding what trans-
formations do.

Analyzer specifies how to evaluate the candidate variants, i.e., how to com-
pute information to guide engineers while selecting alternatives. Analyzers
are domain dependent: each application domain and design process may
use specific meta-models, transformations, and analysis techniques to ex-
tract feedback information. We support their definition and implementation
through Java classes, whose fully qualified name constitutes the value of this
property. Parameters can be passed to the analyzer. Both user-specific pa-
rameters and special parameters can be specified with the standard method
invocation notation. Examples of special parameters are $vp and $choice,
respectively pointing to objects containing information about the variation
point and about the variant being evaluated. A mode (i.e., full or lazy) can
also be specified to regulate how the analysis is carried out and to speed-up
execution when computations may take long. The full mode instructs ana-
lyzers to ignore timing issues and to consider the whole candidate output
model. Lazy execution mode instead forces consideration only of the locally-
changed elements, elements created or modified by the candidate alternative.
Lazy execution is usually faster, but may provide only partial and imprecise
information.

The variant annotation can be instead used to annotate relations, and supports
the following properties:

Name and Description properties absolve to documentation needs.
Excluding and Including specify dependency relations between alternatives.

It is a list of variation points and variants, and serves the purpose of express-
ing cross-reference constraints on variabilities. In detail, excluding specifies
which solutions for other variation points should be a priori excluded when
the annotated alternative is selected. Exclusion dependencies between vari-
ants are symmetric by definition, so engineers need to define them only on
one of the endpoints. Including defines which solutions must be picked up
when the annotated alternative is selected, and is not symmetric.

Listing 1.1 shows how annotations can be used to define alternatives. In de-
tail, we show the recursive variation point to decide the number of replicas inside
data partitions. Candidate variants will be evaluated by a full mode analyzer,
which requires an extra parameter (i.e., ”usage.xmi”) to specify the location of

9

a usage profile model. The candidate database model in conjunction with infor-
mation about the workload to sustain is used to generate a Queueing Network,
useful to predict the performance of the solution. More details about generation
of QNs will be given in Section 5. An exclusion dependency is also specified in
the variant annotation. Data contained in tables is usually partitioned according
to row identifiers, which are automatically managed by the underlying database
engine. Specifying a random generation policy for identifiers would then conflict
with partitioning, hence we mutually excluded the two solutions.

4 Runtime Support

Although a QVTR2 transformation is also a syntactically valid QVT-Relations
transformation, it cannot be executed as-is. Alternatives introduce non-determi-
nism — for the same input multiple outputs are possible — and this leads to
conceptual and practical problematic consequences. QVT-Relations does not
tackle properly non-determinism. Its specification clearly states that, when mul-
tiple choices are available, then they should be equivalent, which is not true from
a non-functional point of view. The practical consequence is that any viable al-
ternative can be taken while transforming. Actually, existing engines make a
deterministic selection of the first possibility, as boolean operators are short-
circuited. The QVTR2 prototype we built allows the transformation engine to
discriminate among variants by evaluating them automatically and providing
feedback to software engineers at runtime. The prototype modifies the trans-
formation cycle and leverages standard language constructs to intercept when
variation points occur. The advantage of this solution is that we can use exist-
ing transformation engines without modifying them. The Relations language is
relatively new and few (partial) implementations are available. To the best of
our knowledge, only two working transformation engines are available: Medini-
QVT [19] and ModelMorf [20]. We tried both and we selected ModelMorf for
its reliability and number of language features implemented. In the following we
give further details about how QVTR2 transformations may be executed. First
the execution cycle is presented, then we deepen inside the most critical steps.

4.1 The QVTR2 Cycle

The abstract execution cycle of a QVTR2 transformation is depicted in Figure 2.
Dashed boxes represent steps in the cycle, solid arrows stand for control flows and
dashed lines connect steps with produced artifacts. Annotated transformations
undergo two analysis stages before real execution. The Alternatives Analysis
parses relations, builds an abstract representation of them and searches for an-
notations. The outcome is a model including information about found variation
points, their properties, and the predicates used in the source code to express
them. Information to uniquely identify elements in source models (which we
need in the following steps) is instead extracted by the homonymous analysis,
by searching for key definitions in the transformation source in conjunction with

10

input models. Once these pieces of information are extracted, real execution can
proceed by intercepting occurrence of variation points.

Build Intercepting TransformationChoices

Alternatives Analysis

QVTR2 Engine

Variation Point Detected

Q
V

T-R
elations

E
ngine

QVTR2

ALTs IDs

Identifiers Analysis

I.T.

Output

Explore Alternatives

F.T.F.T. F.T.

OutputOutput Output

Evaluate Alternatives

Fix Choice

Input

Input

Fig. 2: The QVTR2 Execution Cycle.

Intercepting Variation Points. Given a variation point definition and the
predicate used to express it, we say that it occurs when we reach the predicate
during the execution of the transformation, and the engineer has not previously
selected one of the viable alternatives. To intercept these events we create inter-
mediate transformations — which we call Intercepting Transformation (IT) —
leveraging the possibility to provide black-box implementations for relations. The
original QVTR2 transformation is modified by adding, for each variation point,
a new black-box relation compatible with the domains of the variant relations.
Let’s consider the example shown in Listing 1.1. The only viable alternative ac-
cepts three domains for the class, the partition and the current identifier. The
new relation we create is shown in Listing 1.2. The original predicates used to
express variation points are also modified, in order to point to the new relation.

Listing 1.2: The black-box interceptor for the AnotherReplica variation point.

relation NumberOfTables interceptor {
checkonly domain uml c : umlMM: : Class {} ;
enforce domain rdbms p : rdbmsMM : : P a r t i t i o n {}

implementedby bbox NumberOfTables (c , curId , p) ;
primitive domain curId : I n t e g e r ;

}

Note that we must only intercept the occurrence of variation points for which
an alternative has not been selected. To discern between the two cases, we use
nested if constructs invoking selected alternatives for fixed variabilities, or point-
ing to interceptors. Let’s consider our reference variability and let’s suppose that
the engineer has already decided to map MyClass onto at least three tables.
Listing 1.3 shows the substitutio predicate. We intercept the variability only if
conditions on line 1 and 2 evaluate to false. PartitionIds start from 0 and two

11

tables are created by default when the partitioning strategy is selected; hence,
the conditions evaluate to false only when we are trying to create the fourth
table in the partition.

Listing 1.3: The substitution predicate.

1 i f (curId + 1 = 2 and c . namespace . name = ’MyNamespace ’
2 and c . name = ’ MyClass ’) then
3 ClassToAnotherTableInPart i t ion (c , t . p a r t i t i o n , curId + 1)
4 else
5 NumberOfTables interceptor (c , t . p a r t i t i o n , curId + 1)
6 endif

How black-box implementations are handled is still a matter specific to each
transformation engine. ModelMorf handles them by using user-supplied Java im-
plementations, which we automatically generate. When an Intercepting Transfor-
mation is executed two things may happen. Either no variation point occurred,
the transformation ends regularly, and the model produced corresponds to the
final output; or a variation point occurs and we start exploring the available
alternatives.

Exploring, Evaluating and Choosing. When a variation point occurs, we ex-
plore it by generating the models corresponding to each possible variant. First we
compute an intermediate transformation for each variant — which we call Fixing
Transformation (FT) —, then we execute them to generate candidate models.
Fixing transformations are modified versions of the original QVTR2 transforma-
tion. As we did for ITs, variation point expressions are substituted with pred-
icates similar to the one shown in Listing 1.3. When alternatives have been
already selected, we fix them in the predicate. If this is not the case, the variant
picked up in the else branch (line 5) depends on whether we are substituting
the predicate for the variation point being explored or not. If this is the case,
the FT fixes the associated variant; otherwise we automatically select one of the
possible solutions. Alternatives are consistently selected across FTs for non-fixed
variation points: for each variation point, the same alternative is fixed in all FTs.
Hence, generated models differ only for the variation point being explored and
evaluation results are consistent. This corresponds to a local search strategy,
which may not be practical in every case, but has the advantage of giving re-
sults fast — complete exploration of the state space is not required —. Once
models are generated, we evaluate them by invoking the analyzers as specified
in annotations. The output of the analyses may be of any kind. For example, it
may be textual information, a chart, or a spreadsheet. We do not interpret it
automatically; this task is still left to the engineer. When the most appropriate
solution has been selected by the designer, we keep track of the choice by saving
it into the Choices model for future use. The Choices model is used during the
next iteration over the QVTR2 cycle, to incrementally build the new fixing and
intercepting transformations, and is useful to keep track of decisions, and change
them, between multiple executions.

12

5 Enacting the Example

In this section we demonstrate QVTR2 in action by using our reference exam-
ple2. For space and comprehension reasons, we use a naive Simple UML Class in-
stance model as input for the transformation. The input Class model we consider
blueprints a simple cart application: Persons are associated to Carts, and Carts
may contain Items. To evaluate alternatives (i.e., candidate RDBMS models)
we use a full mode analyzer that automatically generates from database mod-
els a Queueing Network, which we then solve by using the JMT tool [21]. The
analyzer also requires usage profile information for the QN, shown in Table 1.
For each class of the input model we define two QN customer classes (and their
relative parameters), one for read operations and one for insert/update opera-
tions. Database tables are represented by service centers; if a class is mapped
onto multiple tables then multiple service centers will exists in the QN serving
the same type of requests. Service times for jobs are fixed to 0.05s for read op-
erations and to 0.1s for write operations. If a table uses the random generation
policy for identifiers, the analyzer discounts the write service time by a 0.2 fac-
tor. Required response times — to discern between candidate solutions — are
also shown in the table, although they are not required to generate the QN. The
analyzer computes global response times for each customer class, and reports
back the estimations to the designer. We are aware that this methodology to
estimate the performance of databases is simple and does not take into account
important facets (e.g. query involving multiple tables). Indeed, more precise and
complex estimation techniques [1] may be adopted instead, and we recall that,
in this paper, our target is not the prediction techniques per se, but showing
how model transformations and prediction techniques can be mixed to improve
engineering tasks.

Table 1: The usage profile.
Class Operation Wkld. Type Arrival Service Required

Rate [s] Time [s] Response Time [s]

Person
Read Open 1 0.05 0.2
Write Open 10 0.1 0.2

Cart
Read Open 0.5 0.05 0.1
Write Open 1 0.1 0.1

Item
Read Open 0.1 0.05 0.15
Write Open 0.1 0.1 0.15

Running the transformation on the simple cart model results in many passes
through the QVTR2 cycle. An overview of what happens at runtime is shown
in Figure 3a. Solid boxes correspond to the occurrence of a variation point, and
lead to generation/evaluation/selection of candidate models (the round boxes).
The performance indices computed during model evaluation are shown in Fig-
ure 3c. These values, in conjunction with requirements, are used to select one
of the viable alternatives. For example, the solid diamond C corresponds to the

2 Further details, models and source code are available on the QVTR2 web site.

13

occurrence of the identifiers generation policy variation point for class Cart, and
leads to the generation of the candidate models 5 and 6.

The corresponding lines in the table show the estimated response times for
the Cart table, for the two solutions respectively. The sequential solution is not
compatible with the requirements; hence we select the random generation policy.
Note that models 7 and 8 are not included in the table. The random generation
policy selected for the Cart entity conflicts with the partitioning solution. Only
one alternative (model 7) is viable, hence, no evaluation is required. The final
solution we obtain is model 16: a random policy has been selected to generate
identifiers for Cart entities, and 3 tables are used for the Item partition. Identi-
fying this solution — which respects requirements and is minimal — would have
required, without the provided automation, manual exploration and evaluation.

Root

Random Sequential1 2

Single Partition3 4

Sequential Random5 6

Single Partition7 8

Random Sequential9 10

Partition Single11 12

No Another Table13 14

NoAnother Table 15 16

End

P
er

so
n

C
ar

t
It

em

A

B

C

D

E

F

G

H

(a) Decision Tree

Decision
Exploration

Model

Policy V.P.

Partition V.P.

Table V.P.

(b) Decision Tree Legend

Entity Model Response Time [s]
{read,write}

Person
1 {0.054, 0.086}

2,3 {0.053, 0.101}
4 {0.048, 0.102}

Cart
5 {0.067, 0.118}
6 {0.061, 0.095}

Item

9 {∞, ∞}
10,12 {∞, ∞}
11,13 {0.152, 0.202}
14,16 {0.064, 0.109}

15 {0.053, 0.1065}

(c) Evaluation Information

Fig. 3: Running the transformation.

6 Related Work

Concerning rule-based approaches, Xu describes in [8] a feedback provision sys-
tem for the PUMA framework, in which rules are derived from performance
anti-patterns [18] and implemented with the Jess language. However, solutions
are proposed only for trivial performance issues and, if this is the case, changes
apply to the lowest abstraction layer without propagation along the modeling
stack. Parsons in [7] describes a similar approach tailored to enterprise Java
application. More recent work is also available in [6], where a methodology is

14

proposed to rank performance anti-patterns and identify the most reasonable
cause of a performance problem after a design of the system has been created.
We instead anticipate this task during system design and, given our generative
approach, all performance problems have an implicit associated solution.

In the context of SPLs for performance engineering, it is worth citing the ap-
proach described by Tawhid et al. in [22]. They use UML and the MARTE profile
to design SPLs with parametric performance information. The SPL specification
is transformed into a model of the final product enriched with performance anno-
tations. Layered-QNs are generated and analyzed; performance indices are then
derived to guide engineers. Their approach is tailored to UML+MARTE mod-
els and to performance analysis with Layered-QN. We are instead more generic
by giving to engineers the freedom of choosing the preferred analysis approach.
Indeed, we have to admit that we lack such an holistic support for parametric
performance properties. In the area of transformation languages, Petter et al.
in [23] propose to extend QVT-Relations with constructs to express constraint
satisfaction problems, which may be used to model some types of variabilities. In-
deed, not all variabilities can be expressed, and they lack appropriate constructs
to embed rational information. In [24] and in [25], high-order transformations
are used to support variability. Also our approach uses high-order transforma-
tions to generate intercepting and fixing transformation; however, [24] and [25]
lack support for performance engineering, and rely completely on the engineer’s
expertise to select and evaluate alternatives, which we instead support.

7 Conclusions

In this paper we presented an extension to the QVT-Relations language to
represent rational information about alternative designs, and to provide per-
formance feedback to engineers while transforming. Non-obtrusive annotations
have been used to embed directly into transformations information about vari-
ation points, variants, dependencies between solutions, and how to gather non-
functional information about them. We also described our prototype implemen-
tation of QVTR2, based on an existing QVT-Relations transformation engine.
A sample transformation mapping UML Class models to RDBMS has been run,
and we showed how the possible solutions may be evaluated using performance
engineering techniques, and how the engineer is involved in the selection of the
most reasonable solution. For future work, we plan to extend our annotations
in order to represent explicitly performance indices and parametric performance
properties. We also plan to add automatic exploration of the decision space and
concurrent evaluation of multiple dependent variants, in order to find global
optima instead of local ones. As a conclusion, we also plan to use QVTR2 at
runtime to tackle evolution when performance estimation requires runtime data.

References

1. Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: A survey. IEEE TSE 30(5) (2004) 295–310

15

2. International Workshop on Software and Performance (WOSP) proceedings, ACM
3. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve soft-

ware architecture models for performance, reliability, and cost using evolutionary
algorithms. In: WOSP/SIPEW. (2010)

4. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware
service composition based on genetic algorithms. In: GECCO, ACM (2005)

5. Grunske, L.: Identifying ”good” architectural design alternatives with multi-
objective optimization strategies. In: ICSE, ACM (2006)

6. Cortellessa, V., Martens, A., Reussner, R., Trubiani, C.: A process to effectively
identify ”guilty” performance antipatterns. In: FASE. (2010)

7. Parsons, T.: A framework for detecting performance design and deployment an-
tipatterns in component based enterprise systems. In: DSM, ACM (2005)

8. Xu, J.: Rule-based automatic software performance diagnosis and improvement.
In: WOSP, ACM (2008)

9. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3) (2006) 621–646

10. Object Management Group (OMG): MOF QVT Specification. (April 2008)
11. Muller, P., Fleurey, F., Drey, Z., Pollet, D., Fondement, F.: On executable meta-

languages applied to model transformations. In: Model Transformations in Practice
Workshop at MoDELS 2005. (2005)

12. Schürr, A.: Specification of graph translators with triple graph grammars. In:
20th International Workshop on Graph-Theoretic Concepts in Computer Science
(WG). Volume 903 of LNCS., Springer (June 1994) 151–163

13. Lawley, M., Steel, J.: Practical declarative model transformation with tefkat. In:
Model Transformations in Practice Workshop at MoDELS 2005. Volume 3844 of
LNCS., Springer (2005) 139–150

14. Jouault, F., Kurtev, I.: Transforming models with atl. In: Model Transformations
in Practice Workshop at MoDELS 2005. Number 3844 in LNCS, Springer (2005)

15. Hettel, T., Lawley, M., Raymond, K.: Model synchronisation: Definitions for round-
trip engineering. In: ICMT. Volume 5063 of LNCS. (2008) 31–45

16. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer (2005)

17. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and
Organization for Business Success. ACM Press (1997)

18. Smith, C.U., Williams, L.G.: More new software antipatterns: Even more ways to
shoot yourself in the foot. In: Int. CMG Conference. (2003) 717–725

19. IKV++ technologies ag: Medini-qvt. http://projects.ikv.de/qvt
20. Tata Research: Modelmorf. http://121.241.184.234:8000/index.php
21. Bertoli, M., Casale, G., Serazzi, G.: Jmt: performance engineering tools for system

modeling. SIGMETRICS Perform. Eval. Rev. 36(4) (2009) 10–15
22. Tawhid, R., Petriu, D.C.: Integrating performance analysis in the model driven

development of software product lines. In: MoDELS. Volume 5301 of LNCS.,
Springer (2008) 490–504

23. Petter, A., Behring, A., Mühlhäuser, M.: Solving constraints in model transforma-
tions. In: ICMT. Volume 5563 of LNCS., Springer (2009) 132–147

24. Avila-Garćıa, O., Estévez, A., Rebull, E.V.S.: Using software product lines to
manage model families in model-driven engineering. In: SAC, ACM (2007)

25. Oldevik, J., Haugen, Ø.: Higher-order transformations for product lines. In: SPLC,
IEEE (2007) 243–254

