
Propagation, Transformation and Refinement of
Safety Requirements

Dominik Sojer1, Christian Buckl2, and Alois Knoll1

1 Technische Universität München, Department of Informatics,
85748 Garching bei München, Germany,

{sojer,knoll}@in.tum.de
2 fortiss GmbH, Cyber-Physical Systems,

80805 München, Germany,
buckl@fortiss.org

Abstract. Safety requirements are an important artifact in the devel-
opment of safety critical systems. They are used by experts as a basis
for appropriate selection and implementation of fault detection mecha-
nisms. Various research groups have worked on their formal modeling
with the goal of determining if a system can meet these requirements.
In this paper, we propose the application of formal models of safety re-
quirements throughout all constructive development phases of a model-
driven development process to automatically generate appropriate fault
detection mechanisms. The main contribution of this paper is a rigor-
ous formal specification of safety requirements that allows the automatic
propagation, transformation and refinement of safety requirements and
the derivation of appropriate fault detection mechanisms. This is an im-
portant step to guarantee consistency and completeness in the critical
transition from requirements engineering to software design, where a lot
of errors can be introduced into a system by using conventional, non-
formal techniques.

1 Introduction

During software development, there is usually a logical gap between require-
ments specification and software design specification. This is typically the step
where informal, human-readable requirements have to be transformed into a for-
mal system design. In the development of safety critical systems, this gap in the
development chain also exists for safety requirements. Safety requirements are
requirements that are dealing with system safety. Safety of a system is defined
as the absence of catastrophic consequences on the users and the environment of
the system [3]. The gap in the development process between requirements spec-
ification and software design specification is one of the key points where system
safety can be violated by the introduction of faults. Therefore we propose a fully
automatic approach that uses formally modeled safety requirements to automat-
ically generate appropriate fault detection mechanisms in the system thus the
safety requirements can be fulfilled without human interaction.



2

The main contribution of this paper is a rigorous formal specification of safety
requirements that allows an automatic propagation, transformation and refine-
ment of safety requirements and the derivation of appropriate fault detection
mechanisms. Definitions for all of them will be given in Section 2. This is an im-
portant step to guarantee consistency and completeness in the transition from
requirements engineering to software design, where a lot of errors can be in-
troduced into a system by using conventional, non-formal techniques. The three
The approach aims at accompanying traditional safety enhancing techniques like
the selection and implementation of appropriate hardware and software archi-
tectures.
To show the validity of our work, we implemented the approach in FTOS [5], a
tool for model-based development of fault tolerant embedded systems that we
developed.
In Section 2.1, our approach will be described informally to give the reader a ba-
sic understanding of the technique. Section 2.2 presents how safety requirements
and fault detection mechanisms can be described and compared in a formal way.
Section 2.3 shows how our work can be integrated in a formal system model
and how the propagation, transformation and refinement of safety requirements
can be performed formally. Section 3 gives an evaluation of the specific imple-
mentation in FTOS and Section 4 will compare our approach to the related
work. Finally, Section 5 concludes this paper and presents some possible areas
for future work.

2 Approach

Our approach is based on a formal foundation, but for a better understand-
ing, Section 2.1 will explain it in an informal way. This Section will refer to
Figure 1, which presents a very small example system where the propagation,
transformation and refinement steps of safety requirements are visualized.

2.1 Informal Description of the Approach

Safety requirements usually deal with the behavior of the whole system and
therefore are specified in natural language. Examples are “an airbag has to ac-
tivate if there is an emergency” and “an airbag must not activate if there is no
emergency”. Due to safety requirements being very application specific, specifi-
cation techniques for them on system level are very powerful and therefore only
little information can be extracted automatically from them. Thus we propose
that requirements have to be refined manually to an abstraction layer where they
can be handled in an algorithmic way, for example the actor level of actor-based
models of computation [1], after they have been identified. Figure 1 shows an
exemplified system consisting of 5 actors (A to E), two safety requirements and
one safety assurance. Actor C consists of the two hardware components CPU
and RAM on a more specific layer of abstraction. This example will be used
throughout the paper.



3

On the actor level safety requirements consist of a link to an actor and a list
of failures whose occurrence has to be detected by this actor. To describe these
faults, McDermid [19] defined a comprehensive list of basic failure classes, which
we extended to describe the time and value domain of failures in more detail.
These extended failure classes are:

– Wrong value (with threshold for deviation)
– Wrong timing (with threshold for too early and too late)
– No result
– Wrong values in subsequent time steps
– Multiple wrong values at the same time

Safety requirements can be propagated along data flow paths in systems. Dur-
ing this propagation, the specification of a safety requirement may have to be
changed automatically. Therefore we introduce the concept of safety assurances.
Safety assurances are specified for actors and describe how safety requirements
are transformed when they pass the specified actor. On the one hand, a safety
assurance specifies the further propagation path of a safety requirement by map-
ping ports for “incoming safety requirements” to ports for “outgoing safety re-
quirements”. On the other hand, a safety assurance describes how the failures
that are specified by a safety requirement are transformed. Some safety assur-
ances can automatically be extracted from system models, but the majority of
them has to be specified manually, similar to safety requirements.
After the propagation, safety requirements can be refined from the actor level
to the hardware level on which appropriate fault detection mechanisms can be
automatically selected to fulfill the requirements.

A B

SafetyRequirement req

SafetyRequirement req*

A

SafetyRequirement req*

CPU RAM ROM I/O

Refinement

SafetyRequirement req*

SafetyRequirement req*

SafetyRequirement req*

SafetyRequirement req*

A B D

C E

SafetyRequirement req1

SafetyRequirement req2

propagation

SafetyAssurance assur1

A B D

C E

SafetyRequirement req1

SafetyRequirement req2

SafetyAssurance assur1

{req1, req2}

req1

CPU RAM

CPU RAM

req1

(a) before

A B

SafetyRequirement req

SafetyRequirement req*

A

SafetyRequirement req*

CPU RAM ROM I/O

Refinement

SafetyRequirement req*

SafetyRequirement req*

SafetyRequirement req*

SafetyRequirement req*

A B D

C E

SafetyRequirement req1

SafetyRequirement req2

propagation

SafetyAssurance assur1

A B D

C E

SafetyRequirement req1

SafetyRequirement req2

SafetyAssurance assur1

{req1, req2}

req1

CPU RAM

CPU RAM

req1

(b) after

Fig. 1. Example System before and after Application of the Workflow

Step 1: Propagation and Transformation Safety requirements and safety
assurances have to be specified manually. Afterwards, the safety requirements
can automatically be back propagated along the data flow paths. This is neces-
sary because a system’s output does not only depend on its output actor but on



4

all actors that form the data flow chain from the system’s inputs to the output.
Obviously, this back propagation is an iterative process because the safety re-
quirements have to be propagated not only once but until they reach the input
actors of the system.
In the example in Figure 1 the first iteration of the back propagation results in
copies of req1 and req2 being instantiated for actor B.
During propagation, safety requirements may reach an actor, which influences
them (e.g. the voting component of a triple-modular redundant system). We
introduce the concept of safety assurances to describe these influences. A safety
assurance may change the failures that a safety requirement prohibits. Moreover,
it may also alter the propagation paths, which is useful because it is not always
necessary that a safety requirement has to be propagated to all predecessors
of an actor. The interaction of safety requirements and safety assurances is de-
scribed more detailed in Section 2.2.
In the example, the safety assurance assur1 influences the next iteration of the
propagation in a way that req1 is propagated to actor C only and that req2 is
automatically fulfilled.

Step 2: Refinement After the safety requirements have been propagated along
the actor chains in the system, the safety requirements on each actor can be
processed further by refining them to the different hardware components on
which the actor is executed. This transforms every safety requirement for actors
to safety requirements for hardware components, e.g. CPUs, memories or buses.
In the example, this results in req1 being refined on actor C to its hardware
components CPU and RAM .

Step 3: Mechanism Selection On the hardware component refinement level
of safety requirements, they can be fulfilled automatically by selecting fault
detection mechanisms. A fault detection mechanism is a software or hardware
function that can detect a defined set of faults of specific hardware components.
Moreover it is annotated with non-functional parameters, e.g. worst-case execu-
tion time (WCET), memory requirements and development costs. The mapping
between failures and faults can be derived from safety standards, e.g. IEC 61508
[15].
It is possible to create a library of fault detection mechanisms L, from where
they can be selected without further preparation. For each actor a, a subset
Sa ⊆ L can be chosen so that each mechanism m ∈ Sa fulfills at least one safety
requirement req ∈ Reqa. With Reqa being the set of all safety requirements on
actor a. In a second step, the power set P(Sa) has to be calculated because
P(Sa) = Sa+ ∪ Sa− where Sa+ is the set of all subsets of P(Sa) that fulfill all
safety requirements Reqa and Sa− is the set of all subsets of P(Sa) that do not
fulfill all safety requirements Reqa.
The approach based on the power set of S is necessary because some fault de-
tection mechanisms may be able to handle multiple faults in multiple hardware
components and therefore it is not sufficient to simply select one fault detec-



5

tion mechanism for each safety requirement. The final step of our approach is
the selection of an optimal subset of Sa+. This is obviously a non-trivial mul-
tidimensional optimization task because the importance of the non-functional
parameters of fault detection mechanisms may differ tremendously from appli-
cation to application. For example, in some applications, WCET may be the
single determining feature, whereas in others, it may be a combination of cost
and memory consumption. In our example in Figure 1, the safety requirements
on actor C may be fulfilled by a walking bit CPU test [13] and a Galpat RAM
test [13].
As multidimensional optimization is not the focus of our research, we propose a
very straight forward solution to this problem, which is a score based approach
that can be adjusted to the needs of the actual application. For each subset

Input: Power set P of fault detection mechanisms
Output: optimal subset of P
foreach Subset s ∈ P do1

WCETs =
∑
m∈s

wcetm ;
2

memorys =
∑
m∈s

memorym ;
3

costss =
∑
m∈s

costsm ;
4

scores = α ∗WCETs + β ∗memorys + γ ∗ costss ;5

end6

return s ∈ P : ∀s2 ∈ P \ {s} : scores ≤ scores2 ;7

Algorithm 1: Selection of Fault Detection Mechanisms

s ∈ P(S), a score is calculated. The highest scoring set is selected and the
according fault detection mechanisms can automatically be generated. Due to
the non-functional parameters being comparable numbers, their values WCETs,
memorys and costss can be interpreted as scores. The final score can be calcu-
lated via

scores = α ∗WCETs + β ∗memorys + γ ∗ costss

with α, β and γ being weights for customizing the algorithm for different appli-
cation areas. To make different applications comparable, the sum of α, β and
γ has to be normalized: α + β + γ = 1. The set s with the lowest final score
scores can automatically be determined and its fault detection mechanisms can
be generated. The respective algorithm is listed in algorithm 1. The runtime of
this algorithm is obviously not optimal. It is only used in this paper to illustrate,
which problem has to be solved. A summary of the whole proposed workflow is
shown in algorithm 2.



6

Manual identification of system level safety requirements ;1

Manual refinement of safety requirements to actor level ;2

Manual determination of safety assurances ;3

foreach SafetyRequirement req do4

Propagation of req along the chain of actors from output to input ;5

end6

foreach Actor a do7

foreach SafetyRequirement req on a do8

Refinement of req to the hardware level ;9

end10

Selection of appropriate fault detection mechanisms from library S ⊆ L ;11

Generation of the power set P(S) ;12

Evaluation of all subset s ∈ S according to algorithm 1 ;13

Source code generation for the result of algorithm 1 ;14

end15

Algorithm 2: Workflow Overview

Fig. 2. Safety requirements, component types and fault detection mechanisms

2.2 Comparability of Safety Requirements and Fault Detection
Mechanisms

Section 2.1 showed that it is essential for our approach that safety requirements
and fault detection mechanisms can be compared in a formal way. This com-
parison has to be performed on the attributes of safety requirements and fault
detection mechanisms. Safety requirements consist of a list of failure classes and
a link to a component. The relationship between failure classes, basic compo-
nent types and fault detection mechanisms is visualized exemplarily in Figure
2, where a green slot in the cube implies that the selected failure class on the
selected component type is detectable by the selected fault detection mechanism.
To achieve this relationship, fault detection mechanisms have to be defined by
the following attributes:

1. Detectable failure classes (DFC)



7

2. Basic component types (BCT )
3. Worst case execution time (WCET )
4. Memory
5. Development costs

The attributes DFC and BCT are required to determine the suitability of the
fault detection mechanism for a given safety requirement, whereas the features
WCET , memory and costs can be used to choose the optimal fault detection
mechanism. As the failure classes of safety requirements and DFC are both
subsets of the comprehensive set of failure classes, which was defined in this
Section, they are comparable. Moreover, the basic component types of safety
requirements and BCT are also subsets of the same super set.
Similar to the comparison of safety requirements and fault detection mechanisms,
the comparison of multiple fault detection mechanisms can also be performed
component-by-component. WCET , memory and costs can be represented as
integers and therefore be easily compared.

2.3 Formal Foundation

The theory is based on the formal system model of Buckl et al. [6]. Safety require-
ments, safety assurances and fault detection mechanisms are added. Propagation,
transformation and refinement of safety requirements are added and expressed
in the notation of [6].

Definition 1 A system S = (V,Π) can be defined by a finite set of variables
V = {v1, ..., vn} and a finite set of processes Π = {π1, ..., πn}. The domain Di is
finite for each variable vi. A state s of system S is the valuation (d1, ..., dn) with
di ∈ Di of the program variables V. A transition is a function tr : Vin → Vout
that transforms a state s into the result state s′ by changing the values of the
variables in the set Vout ⊆ V based on the values of the variables in the set
Vin ⊆ V .

Definition 2 The system is build up from a set of components C. A set of
variables Vc ⊆ V is associated with each component c ∈ C. Vc = Vc,internal ∪
Vc,interface ∪ Vc,environment is composed by three disjoint variable sets: the set
of internal variables Vc,internal, the set of interface variables Vc,interface and the
set of environment variables Vc,environment, which can only be accessed by exactly
one component.

Environment variables can only be accessed and altered by the set of processes
associated with C : Πc ⊆ Π. Interface variables are used for component inter-
action and can be accessed by all interacting processes. Environment variables
are variables that are shared between the component and the environment of
the system. This set can again be divided into the input variables Vc,input that
are read from the environment and the output variables that are written to the
environment Vc,output.



8

Definition 3 A subsystem T = (VT , ΠT ) of S is defined by a subset VT ⊆ V
of the variables of S and by a subset ΠT ⊂ Π of the processes of S. A subsystem
is a system itself, so it has to be self-contained apart from its interface variables
VT,interface and environment variables VT,environment, similar to definition 2.

Definition 4 Components can be structured in a hierarchical way. A component
c ∈ C may consist of several components c1, ..., cn ⊂ C. Moreover, c can be
a software component, a hardware component or a mixture of both: type(c) ∈
{software, hardware,mixed}. On the most concrete level, hardware components
are instances of the hardware component types:

HCT = {cpu, bus, rom, ram, sensor, actor, digital hardware, interrupt, clock,
communication,mass storage}

Definition 5 The functional behavior of a component c ∈ C is reflected by
the corresponding processes Πc. Let Vinterface = {v|v ∈ Vc′,interface ∧ c′ ∈ C} be
the set of all interface variables. Πc is specified as a finite set of operations of the
form guard → transition, where guard : Vguard → bool is a boolean expression
over a subset Vguard ⊆ Vc ∪ Vinterface ∪ Vc,input and transition : Vin → Vout
is the appendant transition with Vin ⊆ Vc ∪ Vinterface ∪ Vc,input and Vout ⊆
Vc ∪ Vinterface ∪ Vc,output.

Definition 6 A fault is a physical defect, an imperfection or a flaw that occurs
within some hardware or software component. An error is the manifestation of
a fault and a failure occurs, when the component’s behavior deviates from its
specified behavior [3].

Depending on the level of abstraction where a system is investigated, the occur-
rence of a malicious event may be classified as a fault, error or failure. Therefore
we define all malicious events that might occur on a component c as errors Ec.
Errors can alter the functional behavior of a component, which was defined in
definition 5, in the time or value domain:

Ec ⊆ {early, late, omission, commission, subtle incorrect, coarse incorrect}

This alteration can be expressed formally by the addition of new transitions
s→ serr to the functional behavior of the system.

Definition 7 A state predicate P is a boolean function over a set of vari-
ables Vp ⊂ V . The set of state predicates represents the specification of the sys-
tem and is therefore defined implementation independent. The set of variables
Vp ⊆

⋃
c∈C Vc,environment is a subset of all variables that can be observed by the

environment of the system.

Definition 8 Fault detection mechanisms are based on the concept of de-
tectors [2]. A fault detection mechanism m = (E,C,O) is a state predicate used



9

to check if a specific error has occurred. Its attributes are a set of errors that it
is able to detect

E ⊆ {early, late, omission, commission, subtle incorrect, coarse incorrect}

a set of component types where it is applicable C ⊆ HCT ∪ {software} and a
set of optimization criteria that can be used to compare different fault detection
mechanisms O = {cost, runtime,memory}.

Lemma 1. Following definition 2, the data flow between components is unam-
biguously defined by the sets of interface variables of all components Vc,interface.

Lemma 2. Based on definitions 6, 7 and lemma 1, a Safety Requirement
src = (E) of a component c is a state predicate and its attributes are a set of
errors that are not allowed to occur at c.

E ⊆ {early, late, omission, commission, subtle incorrect, coarse incorrect}

A Safety Assurance sa = (EM,P ) of a component is also a state predicate and
it describes how a component can influence errors. Safety assurances’ attributes
are error mappings EM : Ec → E′c, where E′c = Ec ∪ {correct} for the errors
specified by safety requirements and mappings of the interface variables of the
component, which define the paths where the effects of errors propagate inside
the system: P : vin → wout with v, w ∈ Vc,interface., for a component c.

Lemma 3. A fault detection mechanism m fulfills a safety requirement sr (m∧
sr ⇒ >), if (srE ⊆ mE)∧ (c ∈ mC). That means that m has to be able to detect
at least all errors, which sr requires and that m is applicable to the component
where sr has been defined.

Definition 9 Back propagation: Safety requirements src of a component c ∈
C can be back propagated to the predecessors c1, ..., cn of c in the data flow:
src ⇒ src ∧ src1 ∧ ... ∧ srcn .

Back propagation of safety requirements is necessary, because isolated compo-
nents of a system cannot guarantee the safety of the complete system.

Lemma 4. Transformation: According to lemma 2, safety assurances change
the effects of errors that are propagated inside a system. A transformation is the
mapping of a safety requirement sr and a safety assurance sa to a new safety
requirement sr′: (sr, sa)⇒ sr′.

Safety assurances also influence safety requirements that are propagated inside
a system, which was described in definition 9: a safety assurance sac on a com-
ponent c may shrink the set of predecessors in the data flow that have to fulfill
the safety requirements src on c. Moreover, the set of errors that are not allowed
to occur as defined by src may also change for the predecessors of c. The in-
stantiation of a safety requirement src and a safety assurance sac results in an
altered safety requirement src ∧ sac ⇒ sr′c.



10

Lemma 5. Refinement: According to definition 4, a component c ∈ C may
consist of several subcomponents c1, ..., cn ⊂ C. Safety requirements can be re-
fined along this subcomponent relationship, which is orthogonal to the propagation
defined in definition 9: src ⇒ src1 ∧ ... ∧ srcn with sr ∈ SR (note that src does
not exist any more on the right side of the implication).

Refinement is necessary, because fault detection mechanisms are usually very
specific to certain component types where they can be applied. A Galpat test,
for example, can only detect errors in RAM. So safety requirements have to be
refined to an abstraction level where appropriate fault detection mechanisms are
available.

Definition 10 Mechanism Selection: When all safety requirements SR on
a system S have been back propagated and refined, fault detection mechanisms
can be selected that guarantee that all safety requirements are fulfilled. However,
it is very likely that there are multiple subsets of all available fault detection
mechanisms Mi ⊆ M,Mj ⊆ M , with i 6= j, that are able to fulfill

∧
SR: (Mi ∧∧

SR⇒ >)∨(Mj∧
∧
SR⇒ >). Therefore, the optimization criteria of the fault

detection mechanisms can be exploited to find an optimal solution.

As this is obviously a computationally complex multi-dimensional optimization
problem, techniques like branch-and-bound should be used, because the fulfill-
ment relation is transitive: Mi ⊂Mj ⊆M ∧(Mj ∧

∧
SR⇒ ⊥)⇒ (Mi∧

∧
SR⇒

⊥). Algorithm 1 is an exemplified solution for this problem.

3 Evaluation

We implemented our approach to prove its feasibility in the model-driven de-
velopment tool FTOS [5], which we developed. FTOS is a tool for model-driven
development of fault-tolerant embedded systems. It focuses on the generation
of code for non-functional system aspects, e.g. fault tolerance mechanisms and
communication schemes. FTOS provides four different metamodels that can be
used for hardware modeling, software modeling, fault modeling and modeling
of fault tolerance mechanisms. The fault tolerance metamodel is used to model
mechanisms to handle faults in the system, e.g. redundancy schemes or test func-
tions. The interdependencies between these models are visualized in Figure 3.
The generative workflow of FTOS starts with a model-to-model transformation
that combines and extends all application models. Afterwards, a template-based
code generation is invoked.
We implemented safety requirements and safety assurances as new classes in the
fault metamodel and the combined metamodel. The fault detection mechanisms
were implemented only in the combined metamodel, because they are handled
automatically. Moreover, we extended the test functions, which are provided
by FTOS, to match our concept of fault detection mechanisms by enriching
them with information about detectable failure classes, basic component types
where they are applicable and the non-functional parameters safety integrity



11

Pro-active Operations, Error Detection, Online Error Treatment, Offline Error 
Recovery

Hardware, Network Topology

Software Components, Interaction Schedule

Expected Faults, Effects on Hardware / Software Components

Fig. 3. Model Interdependencies of FTOS

level (SIL), WCET, memory consumption and costs. We created a library of
11 additional fault detection mechanisms to the already existing test functions,
which we derived from the safety standard IEC 61508 [15]. For the description
of failure classes, we mapped our extension of McDermid’s failure classes to an
already existing class Failure in the fault metamodel.
The workflow that was described in Section 2.3 was implemented in the model-
to-model transformation right after the combination of the four input models.
The rationale for this decision was that the generation of safety-related functions
has to deal with all parts of the modeled system (hardware, software, faults and
fault tolerance). The propagation, transformation and refinement steps of the
workflow were implemented as described in Section 2.1. The selection of appro-
priate fault detection mechanisms was also implemented similar to the descrip-
tion in Section 2.1, but for performance reasons we used branch-and-bound for
the power set calculation.
After the implementation, we successfully introduced safety requirements into
existing sample applications to assure that the fault detection mechanisms are
derived properly from the safety requirements and that the appropriate fault
detection mechanisms are generated.

4 Related Work

To the best of our knowledge, our approach is original work and there exists
no related work that is dealing with the idea of propagation, transformation
and refinement of safety requirements. But obviously at lot of work has been
performed in various areas around safety requirements (origin and formalization)
and propagation. An overview of important ideas in these areas is presented in
this Section.



12

4.1 Origin of Safety Requirements

Safety requirements are a part of the system specification. Hanmer [11] states
that “a system without a specification cannot fail”. According to Leveson [18],
safety requirements are imposed on a system from its environment in a socio-
technical process. On a more technical layer safety requirements can be derived
from system states that are dangerous for the system’s environment. These dan-
gerous system states can be identified via safety analysis techniques like hazard
and operability studies (HAZOP) [14], failure mode and effect analysis (FMEA)3

and functional hazard analysis (FHA) [24].

4.2 Formalization of Safety Requirements

A lot of work has been performed to formalize safety requirements and to de-
rive benefits from it. Pap et al. [22] identified 47 general safety criteria for the
specification of software systems with state charts. Due to this huge variety they
decided to use different formal techniques to describe and check them. These
techniques are the Object Constraint Language (OCL) of UML [21], graph trans-
formations, reachability analysis and special programs. Many other approaches
for the modeling of safety requirements use only one description language of
Pap’s portfolio. The two most popular ones are on the one hand the description
by UML constraints, like in [4] and on the other hand the description by (tempo-
ral) logics, like in [7]. The modeling of safety requirements via (temporal) logics
is very widely used for formal verification of systems. Well-known representa-
tives are the computational tree logic (CTL) [7] and the linear time temporal
logic (LTL) [7]. (Temporal) logics are a very powerful way of describing safety
requirements but they differ widely from the typical modeling techniques that
are used for system modeling, which makes them difficult to use.
Some research groups work on the development of domain specific languages
for the description of safety requirements, like the Requirements State Machine
Language (RSML*) [26]. The research groups that deal with formal modeling of
safety requirements are mostly aiming for formal verification by trying to prove
that a modeled system complies to the modeled safety requirements. This ap-
proach is taken for example by [26], [22] and [16].
Schneider and Trapp [25] use a similar technique as our mapping of safety re-
quirements and fault detection mechanisms in their ConSert approach to assure
safety in dynamically reconfigurable systems by matching “inport” and “out-
port” safety requirements of plug and play services at runtime.
Other approaches formalize safety requirements in graphs to develop and present
safety arguments, e.g. Goal Structuring Notation [17] and Assurance Based De-
velopment [10].

4.3 Propagation

The propagation of safety requirements in our approach shows similarities to the
research area of failure propagation. The relationship between safety requirement

3 http://www.quality-one.com/services/fmea.php



13

propagation and failure propagation is very similar to the relationship between
FMEA and fault tree analyses (FTA) [8]: FTA is a top-down analysis technique
(safety requirement propagation) and FMEA is a bottom-up analysis technique
(failure propagation). The main difference between the FTA/FMEA and safety
requirement propagation/failure propagation is the “dimension” in which they
operate: the first ones operate along a chain of (hazard-) refinements and the
later ones operate along the data flow in a system.
Various research groups work on different aspects of failure propagation, like
[9] and [20]. The general goal is to analyze the propagation paths of failures in
systems to get an understanding of the overall emergent failure behavior. A very
important insight is that failures may change their “appearance” while being
propagated, which was under investigation in [12] and [27]. We adopted this
idea in our approach with the concept of safety assurances.
Apart from failures, the concept of propagation can also used for the automatic
allocation of safety integrity levels [23].

5 Conclusion and Future Work

During the development of safety critical systems, bridging the gap between re-
quirements specification and software design specification is a very important
step in assuring that safety requirements are fulfilled in the final system. This
paper presented our approach of automatically deriving fault detection mecha-
nisms and generating their source code directly from safety requirements. The
main contribution of this paper is a rigorous formal specification of safety re-
quirements that allows an automatic propagation, transformation and refinement
of safety requirements and the derivation of appropriate fault detection mech-
anisms. This is an important step to guarantee consistency and completeness
during the transition from requirements engineering to software design, where a
lot of errors can be introduced into a system by using conventional, non-formal
techniques.
We implemented our approach in the model-driven development tool FTOS,
which we developed, and tested it successfully on various sample applications. A
more extensive evaluation will be performed in the future with the help of two
demonstrators, which are currently being developed.
One area of possible future work in our approach is the missing link to the func-
tional behavior of components. Currently, we only consider the data flow between
components and the user is required to model the connections between functional
behavior and safety requirements by hand via safety assurances. However, if the
functional and temporal behavior of a component are also modeled, e.g. by a
more conventional model-driven development approach like Matlab Simulink4,
then it might be possible to automatically derive safety assurances from these
descriptions. This step would help to guarantee consistency and completeness of
safety assurances, as our approach does for safety requirements.
A second important point for future work is the handling of the generated fault

4 http://www.mathworks.com/products/simulink/



14

detection mechanisms at runtime. With the help of our approach, it is possible
to generate the source code of appropriate fault detection mechanisms. However,
the main purpose of a safety critical system are still its functional tasks. So a safe
runtime platform is required that takes care of the scheduling of the functional
tasks, the fault detection mechanisms and the proof tests, which check in large
intervals the operability of the fault detection mechanisms.
Finally, future work could also try to analyze the results of fault detection mech-
anisms. Usually, there is a gap in the chain of reasoning between the real world
and the fault detection mechanism: if, for example, a mechanisms reports that
a network connection to another component of a distributed system has been
lost, then there can be various reasons for this, like message loss or hardware
failures at both ends of the communication channel. A probabilistic evaluation
of the occurrence of certain errors would allow to reason about events in the
real world at runtime, which could help to initiate more granular fault handling
techniques.

Acknowledgments

This work was partially funded by the German Federal Ministry of Education
and Research (BMBF), grant “SPES2020, 01IS08045T”.

References

1. Gul Agha. Actors: A model of concurrent computation in distributed systems.
MIT Press, 1986.

2. Anish Arora and Sandeep S. Kulkarni. Detectors and correctors: A theory of
fault-tolerance components. Proceedings of the 18th International Conference on
Distributed Computing Systems, 1998.

3. Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 2004.

4. J.F. Briones, M. de Miguel, J.P. Silva, and A. Alonso. Integration of safety analysis
and software development methods. Proceedings of the 1st International Confer-
ence on System Safety Engineering, 2006.

5. C. Buckl. Model-Based Development of Fault-Tolerant Real-Time Systems. PhD
thesis, TU München, 2008.

6. Christian Buckl, Alois Knoll, Ina Schieferdecker, and Justyna Zander. Model-Based
Engineering of Embedded Real-Time Systems, chapter Model-Based Analysis and
Development of Dependable Systems. Springer-Verlag, 2010.

7. Edmund M. Clarke, Edmund M. Jr. Clarke, and Orna Grumberg. Model Checking.
MIT Press, 2000.

8. Clifton A. Ericson. Fault tree analysis: A history. Proceedings of the 17th Interna-
tional System Safety Conference, 1999.

9. Xiaocheng Ge, Richard F. Paige, and John A. McDermid. Probabilistic failure
propagation and transformation analysis. SAFECOMP, 2009.

10. Patrick J. Graydon, John C. Knight, and Elisabeth A. Strunk. Assurance based
development of critical systems. Proceedings of the 37th Annual IEEE International
Conference on Dependable Systems and Networks, 2007.



15

11. Robert S. Hanmer. Patterns for Fault Tolerant Software. John Wiley & Sons,
2007.

12. Constance L. Heitmeyer. Software cost reduction. Encyclopedia of Software Engi-
neering, 2002.

13. H. Hölscher and J. Rader. Microcomputers in Safety Technique. TÜV Rheinland,
1984.

14. International Electrotechnical Commission. IEC 61882, hazard and operability
studies (HAZOP studies) - application guide.

15. International Electrotechnical Commission. IEC 61508, functional safety of elec-
trical/electronic/programmable electronic safety-related systems, April 2010.

16. Anjali Joshi, Steven P. Miller, Michael Whalen, and Mats P.E. Heimdahl. A pro-
posal for model-based safety analysis. Proceedings of the 24th Digital Avionics
Systems Conference, 2005.

17. Tim Kelly and Rob Weaver. The goal structuring notation a safety argument
notation. Proceedings of the Dependable Systems and Networks 2004 Workshop on
Assurance Cases, 2004.

18. Nancy Leveson. Engineering a Safer World. 2009.
19. J. A. McDermid and D. J. Pumfrey. A development of hazard analysis to aid soft-

ware design. Proceedings of the Ninth Annual Conference on Computer Assurance,
pages 17–25, 1994.

20. Atef Mohamed and Mohammad Zulkernine. On failure propagation in component-
based software systems. Proceedings of the Eighth International Conference on
Quality Software, 2008.

21. Object Management Group. Object constraint language.
22. Zsigmond Pap, Istvan Majzik, and Andras Pataricza. Checking general safety

criteria on uml statecharts. Lecture Notes in Computer Science, 2001.
23. Y. Papadopoulos, M. Walker, M.-O. Reiser, M. Weber, D. Chen, M. Törngren,

David Servat, A. Abele, F. Stappert, H. Lonn, L. Berntsson, Rolf Johansson,
F. Tagliabo, S. Torchiaro, and Anders Sandberg. Automatic allocation of safety in-
tegrity levels. Proceedings of the 1st Workshop on Critical Automotive applications:
Robustness & Safety, 2010.

24. SAE International. ARP 4754, certification considerations for highly-integrated or
complex aircraft systems, November 1996.

25. Daniel Schneider and Mario Trapp. Conditional safety certificates in open systems.
Proceedings of the 1st Workshop on Critical Automotive applications: Robustness
& Safety, 2010.

26. A.C. Tribble and S.P. Miller. Software intensive systems safety analysis. IEEE
Aerospace and Electronic Systems Magazine, 19, 2004.

27. Malcolm Wallace. Modular architectural representation and analysis of fault prop-
agation and transformation. Proceedings of the Workshop on Formal Foundations
of Embedded Systems and Component-based Software Architecture, 2005.


