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Abstract. The universal inhibitor Petri net was constructed that executes an 

arbitrary given inhibitor Petri net. The inhibitor Petri net graph, its marking and 

the transitions firing sequence were encoded as 10 scalar nonnegative integer 

numbers and represented by corresponding places of universal net. The 

algorithm of inhibitor net executing that uses scalar variables only was 

constructed on its state equation and encoded by universal inhibitor Petri net. 

Subnets which implement arithmetic, comparison and copying operations were 

employed.  
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1   Introduction 

It is known, that inhibitor, synchronous, priority and other extended Petri net classes 

constitute a universal algorithmic system [1,2]. For such universal algorithmic 

systems as Turing machines, there are known examples of universal Turing machine 

construction [3]. In this connection it is of a definite interest the construction of a 

universal Petri net which executes an arbitrary given Petri net that is the goal of the 

present paper. 

2   The Concept of a Universal Petri Net 

The universal net is constructed in the class of inhibitor Petri nets [1,2], the 

corresponding universal inhibitor Petri net is denoted as UIPN. Considering 

nondeterministic character of Petri net dynamics the most close analog is 

nondeterministic Turing machine [3]. 

As it is of interest the constructing of the universal Petri net with a fixed structure, 

the only way of input and output information representation is the marking of a fixed 

number of definite UIPN places. Therefore, it is necessary to give rules of a biunique 

encoding of Petri net graph and its marking by a fixed quantity of nonnegative integer 

numbers. Let there are given the corresponding encoding rules and sXIPN is the code 

of Petri net XIPN graph and sQXIPN is the code of the marking QXIPN. 



The concept of reachable marking in Petri net implies the existence of the 

corresponding enabled sequence of transitions firing [1,2]. But the usage of only 

marking QXIPN in the definition of UIPN does not guarantee the obtaining of all the 

enabled sequences of transitions firing of the net XIPN. Let definite rules of the 

transitions firing sequences encoding are given and sZQXIPN is a code of the enabled 

transitions firing sequence ZQXIPN which moves Petri net XIPN from marking 

Q0XIPN to marking QXIPN. Then the functioning of UIPN can be represented as the 

scheme shown in fig. 1. 

 

Fig. 1. The scheme of universal inhibitor Petri net UIPN functioning. 

Definition 1. Petri net UIPN is a universal inhibitor Petri net if and only if for an 

arbitrary given inhibitor Petri net XIPN and its initial marking Q0XIPN the net UIPN 

stops in the marking (sQXIPN,sZQXIPN), where marking QXIPN is reachable in 

XIPN with the transitions firing sequence ZQXIPN and any marking 

(sQXIPN,sZQXIPN) which UIPN stops in is a code of a marking QXIPN reachable in 

XIPN from initial marking Q0XIPN with the transition firing sequence ZQXIPN. 

The requirement of the UIPN stopping possibility even in case of a nondead 

marking QXIPN of the net XIPN is connected with the provisioning the checkpoint 

(observance) of any reachable marking (and transitions firing sequence) and 

abstracting from the implementation of UIPN; otherwise it is necessary to add some 

extra restrictions for the exclusion out of the observance the intermediate markings of 

UIPN.   

3   Formal Representation of Inhibitor Petri Net 

Graph of inhibitor Petri net [1,2] is a four-tuple  where 

 is a finite number of nodes named places,  is a finite 

number of nodes named transitions and the mappings  and 

 define the input and output arcs of transitions correspondingly together 

with their multiplicity,  is the set of nonnegative integer numbers; zero value of 

mappings  denote the absence of the arc, nonzero – the arc multiplicity, the 

special value  denotes the inhibitor arc. The mappings can be represented by the 

corresponding matrices:  и . 

The state of net is named a marking and represented by the mapping , 

that gives the number of dynamic elements – tokens within places of net. Inhibitor 

Petri net [1,2] is a couple  where  is the net graph and  – its initial 

marking. The marking can be represented by the corresponding vector: 

XIPN 

Q0XIPN 

UIPN 

QXIPN 

ZXIPN 



. Thus, the inhibitor Petri net is given by the pair of numbers, pair of 

matrices and a vector:  N=( . 

The dynamics of inhibitor net constitutes a step-by-step process of its marking 

transformation as a result of transitions firing [1,2] and can be formally represented 

by the following system: 

 

 

 (1) 

 

The first line of the system (1) describes the marking transformation at the transition 

 firing; the function  in the second line defines the transition  enabling 

condition at the current step , the third line defines nondeterministic choice of the 

firing transition  out of the set of enabled transitions, the fourth line gives the order 

of steps sequence; auxiliary mappings   and  serve for defining the marking 

decrement and inhibitor arc recognition respectively.  

4   Encoding of Inhibitor Petri Net 

In the present section a representation of encoding of inhibitor Petri net, its current 

marking and corresponding transitions firing sequence is obtained in the form of the 

marking of 10 special places of universal net UIPN (fig. 2). The examples of nets 

encoding are shown in Appendix A. 

4.1   Encoding of a Vector 

Let  is a vector (line), containing  nonnegative integer elements; suppose that 

elements indexing is started from zero. Let also the following value is calculated 

 

The vector encoding function is defined as 

 

Statement 1. The vector encoding function is injective.  

The corresponding decoding function is represented as 

 



Inherently, the defined encoding is the form of numbers representation in the radix 

notation with the  radix . 

The encoding can be implemented recursively 

  (2) 

where the code of the vector  equals to . 

The decoding can be implemented recursively also  

  

. 
(3) 

4.2   Encoding of a Matrix 

Let  is a  matrix with nonnegative integer values of elements; suppose that 

elements indexing is started from zero. Let also the following value is calculated  

 

While encoding, let us represent the matrix as a vector with the expansion on lines. 

Then the matrix  is encoded as 

 

Statement 1. The matrix encoding function is injective. 

The corresponding decoding function is represented as 

 

The encoding can be implemented recursively 

  

 
(4) 

where the code of the matrix equals to . 

The decoding can be implemented recursively also 

 

 

. 

(5) 

 



4.3   Encoding of Inhibitor Petri Net Graph 

The graph is represented by the pair of matrices  and . Usually the zero value of 

the matrix element indicates the absence of the corresponding arc, nonzero – its 

multiplicity. The representation of inhibitor arcs of matrix  require supplementary 

agreements to avoid negative values. Let  is the multiplicity of arc, then for its 

representation the value  is used; the value of 1 is reserved for the inhibitor arc 

representation.  

It is reasonable the separate encoding according to (4) and storing in separate 

places the codes of matrices  and , as well as the corresponding values of . For 

the storing of the encoded Petri net graph, 6 corresponding places with names  , , 

, , ,   are used shown in fig. 2 which marking contains the values  , , 

, , ,   respectively. 

4.4   Encoding of Marking 

The marking of a Petri net containing  places is given by the vector  of size  

with the nonnegative integer components . For the storing of the marking 

encoded according to (2), 3 places with the names , ,  are used shown in fig. 2 

which marking contains values , ,  respectively.  

4.5   Encoding of the Transitions Firing Sequence 

The transitions firing sequence  of length  is represented by the vector  of size  

with nonnegative integer components , where  is the number of transition   

firing on the step . For the storing of the encoded according to (2) sequence, 3 places 

with the names , ,  are used shown in fig. 2 which marking contains values , 

,  respectively.  

 

 
Fig. 2. The representation of the Petri net and transitions firing sequence encoding. 

 

Note that places ,  are used as the parameters for the encoding (decoding) the Petri 

net graph, marking and transitions firing sequence.  

4.6   Encoding of the Enabled Transitions Set 

The enabled transitions set of Petri net is auxiliary information for the 

nondeterministic choice of the firing transition    on the current step. For 

the representation of the enabled transitions set, the vector  of size  is used which 

components are the enabling indicators  of the corresponding transitions 
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, calculated according to (1). Then for the encoding of , the rules of the 

vector encoding (2) are applied at  . 

5   Algorithm of Inhibitor Petri Net Executing 

On the system (1) according to the chosen way of the encoding of Petri net graph, 

marking and transitions firing sequence let us construct the algorithm AUIPN of 

inhibitor Petri net executing using C-like pseudo language:  

void AUIPN() 

{ 

 uint u, l; 

 

 inputXIPN(); 

 k=1; sZ=0; 

 while(NonDeterministic()) 

 { 

  CheckFire(&u); 

  if(u==0) goto out; 

  PickFire(u, &l); 

  Fire(l); 

  mul_add(&sZ,n,l-1); 

k++; 

 } 

out: outputXIPN(); 

} 

The following variables are used: u – the code of enabled transitions indicator, l – the 

number of the firing transition, k – the number of the current step; procedures: 

CheckFire – checking the transitions enabling conditions, PickFire – the firing 

transition choice, Fire – the firing of the transition; NonDeterministic – 

nondeterministic choice of a number belonging to the set . The algorithms of the 

auxiliary procedures mod_div, mul_add are the following: 

void mod_div(&m,&x,y) 

{ 

 (*m) = (*x) mod y; 

 (*x) = (*x) div y; 

} 

 

void mul_add(&x,y,z) 

{ 

 (*x) = (*x) * y + z; 

} 

The algorithm of the procedure CheckFire is the following: 

void CheckFire(uint *u) 

{ 

 uint i, j, qj, bij, ui, uij; 

 uint sB1, sQ1; 

 

 sB1=sB; &u=0; 

 for(i=n; i>0; i--) 

 { 



  sQ1=sQ; 

  ui=1; 

  for(j=m; j>0; j--) 

  { 

   mod_div(&qj,&sQ1,rQ); 

   mod_div(&bij,&sB1,rB); 

   uij=1; 

   if(bij==0) continue; 

   bij--; 

   if(bij==0) uij=(qj==0); 

   else uij=(qj>=bij); 

   ui=ui && uij; 

  } 

  mul_add(&u,2,ui); 

 } 

} 

Lemma 1. Algorithm CheckFire creates the set of transitions enabled in the current 

marking. 

Proof. The algorithm constitutes the sequential computation of the vector  

components according to the second line of the system (1) and their simultaneous 

encoding (2) into the variable u after the calculation of the current component in the 

variable ui. The loop on the variable i defines the exhaustion of all the transitions, the 

nested loop on the variable j defines the exhaustion of all the places for the chosen 

transition. The order of the sequential decoding of matrix  and vector  elements 

corresponds to the order of the loops indices modification according to (3) and (5).  

The algorithm of the procedure PickFire is the following: 

void PickFire(uint u, uint *l) 

{ 

 uint ui, i; 

 

 i=0; 

 while(u>0) 

 { 

  mod_div(&ui,&u,2); 

  i++; 

  if(ui==0) continue; 

  if(NonDeterministic()) goto out; 

 } 

out: *l=i; 

} 

Lemma 2. Algorithm PickFire executes the choice of an arbitrary firing transition 

from the set of enabled transitions. 

Proof. The condition of the firing transition choice corresponds to the third line of the 

system (1) as well as to the order of the vector  decoding according to (3). For the 

nondeterministic choice of the firing transition the function NonDeterministic is used 

for the exit out of the loop. The condition  provides the loop completion after 

the last enabled transition processing which is chosen as the firing at least.  

The algorithm of the procedure Fire is the following: 

void Fire(uint l) 



{ 

 uint rQ1, maxQ1, shift, qj, bij, dij, j; 

 uint sB1, sD1, sQ1; 

 

 sB1=sB; sD1=sD; sQ1=0; rQ1=rQ+rD-1; maxQ1=0; 

  

shift=(n-l)*m; 

 while(shift--) 

 { 

  mod_div(&b,&sB1,rB); 

  mod_div(&d,&sD1,rB); 

 } 

  

 for(j=m; j>0; j--) 

 { 

  mod_div(&qj,&sQ, rQ); 

  mod_div(&bij,&sB1, rB); 

  if(bij>0) bij--; 

  dij=mod_div(&sD1, rD); 

  qj=qj-bij+dij; 

  maxQ1=max(qj,maxQ1); 

  mul_add(&sQ1,rQ1,qj); 

 } 

 sQ=0; rQ=maxQ1+1; 

 

 for(j=m; j>0; j--) 

 { 

  mod_div(&qj,&sQ1,rQ1); 

  mul_add(&sQ,rQ,qj); 

 } 

} 

Lemma 3. Algorithm Fire implements the marking transformation as a result of the 

specified transition firing. 

Proof. The algorithm implements the recalculating of the marking according to the 

first line of the system (1) and the described way of the matrices  and the vector 

 decoding according to (5) and (3). The value of the variable shift corresponds to the 

number of the passing through elements for the positioning to the beginning of the 

firing transition line with the number l. Then into the first loop on the variable j the 

preliminary recalculating of the marking code (2) is executed into the variable sQ1; at 

that the value of rQ1 is used which provides the storing of the maximal possible value 

of the new marking element rQ+rD-2. For the avoiding the rQ growth, into the second 

loop on the variable j the final recalculating of the marking code (2) is executed into 

the variable sQ according to the actual value of the maximal element maxQ1.  

Theorem 1. Algorithm AUIPN implements the dynamics of an arbitrary given 

inhibitor Petri net.  

Proof. Let us show that the algorithm AUIPN recalculates the marking of inhibitor 

Petri net according to the system (1) and stores the employed transitions firing 

sequence. The algorithm of the step executing is represented by the loop while of 

AUIPN and completely corresponds to the system (1). At the beginning, the 

procedure CheckFire determines the enabled transitions set and forms the code (2) of 

the corresponding enabled transitions indicator u (Lemma 1). At the absence of the 



enabled transitions , the algorithm stops that corresponds to a dead marking. 

The procedure PickFire implements nondeterministic choice of the firing transition 

from the set of the enabled transitions; the variable l returns the firing transition 

number (Lemma 2). The procedure Fire implements the current marking 

transformation as a result of the transition with the number l firing and its 

simultaneous encoding (2) (Lemma 3). Then into the code (2) of the transitions firing 

sequence sZ is added the number l and the value of the current step k is incremented 

by unit. Nondeterministic exit out of the loop corresponds to the Definition 1.  

 

Algorithm AUIPN was also encoded in C language using the library MPI for the 

representation of lengthy integers and tested on a series of Petri nets.  

Theorem 2. Algorithm AUIPN can be represented by an inhibitor Petri net.  

The Theorem 2 proof is the immediate consequence of the facts that inhibitor Petri 

net is a universal algorithmic system [1] and the algorithm AUIPN uses nonnegative 

integer scalar variables only which values can be represented by the marking of the 

corresponding Petri net places.  

For the constructive proof of Theorem 2, the corresponding net is constructed on 

the algorithm AUIPN in the following sections of the work.  

6   Principles of Algorithms Encoding by Inhibitor Petri Net 

There are known various approaches to the algorithm encoding by a Petri net based 

on the principles of combining data flows and control flows [2,4,5]. Let us employ the 

direct encoding of the basic C language operators for the representing of single 

control flow. Each of variables is represented by the corresponding place of Petri net; 

all the variables are static global (fig. 3). The control flow is modeled by the trace of a 

single token passage from initial place start to the final place finish. 

 

Fig. 3. Overall organization of the net UIPN. 

For the unified organization of work with variables let us represent the operators of 

the programming language in the form shown in fig. 4. 

 

start 

Variables 

Control flow 
finish 



 

Fig. 4. Representation of the programming language operator. 

To provide the reentering the control flow through the operators (procedures) let us 

adopt the following agreements: all the internal places have zero marking; before the 

beginning of the work the input variables are copied into the input places of the 

operator; the work of the operator is launched by a token put into the place start (s); 

the operator finishes its work at the hitting the place finish (f) by the token; at the 

completion of work all the places of the operator are empty excepting the output 

places which contain the result. Dashed arcs denote the following extra rules of the 

forming the values of the operator input and output variables: at the launch the 

content of the variable is copied into local input place of the operator; after the 

completion the variable is cleaned and the value from the local output place of the 

operator is moved into it (fig. 5). 

 

Fig. 5. The forming of input and output variables. 

In case of a few variables the chains of copy are created for the sequential copying 

of input variables and the chains of clean, move for the moving of the output variables 

values. The sequence of clean, move is denoted as assign. The represented scheme 

provides the correct work with variables in general case. In some cases the work with 

variables can be optimized, when they are temporary or input and output at the same 

time. For the expressions calculating the approach of data flows [2] can be 

implemented: the executing of operations is ordered according to their priorities; input 

places of operations are fused with output places of the next operation.  

Let us consider the basic control constructions of the programming language: 

sequence, conditional (unconditional) branch, loop. Let us abstract from the used 

variables.  
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Lemma 4. Algorithmic control constructions of the programming language can be 

encoded by inhibitor Petri net in the following way (fig. 6):  

Name Form Net 

Sequence  operator1; 

operator2; 

a) 

Branch if(condition()) then operator1; else 

operator2; 

b) 

Loop while while(condition()) operator; c) 

Loop for for(i=n;i>0;i--) operator; d) 

 

 

 
a) sequence c) loop “while” 

 
 

b) branch d) loop “for” 

Fig. 6. Encoding of the programming language control constructions.  

For each control construction the correctness of its representation can be proven by 

the way of classifying all the enabled transitions firing sequences and their 

comparison with the order of operators execution into the constructions of the 

programming language [2]. Note that according to fig. 6a) the operators superposition 

at the program encoding is implemented by the merging (fusion) of the output place f 

of the first operator with the input place s of the second operator. 

There are known the representations of basic algebraic and logic operations by 

Petri nets [2,6]. In some cases it is convenient the direct representation of the most 

used actions such as, for example, mod_div and mul_add for the decoding and 

encoding of Petri nets. In Appendix B the nets implementing the operations used in 

the algorithm AUIPN are listed. For the graphical representation of inhibitor arc the 

hollow circle at the end of arc is used. Arc with the filled circle at its end denotes the 

couple of arcs with the opposite direction and equal multiplicity; they are used for the 

checking of a place marking. 

Lemma 5. Nets listed in Appendix B implement the specified operations.  

For each of the represented nets it is possible to bring the proof of the correct 

implementation of the specified operation on the base of all the enabled transitions 

firing sequences classification [2,6]. 

 

 



 

 
a) UIPN 

 
b) PickFire 

 
c) CheckFire 

 
d) Fire 

Fig. 7. Universal inhibitor Petri net UIPN. 
 

 



7   Composing Universal Inhibitor Petri Net UIPN 

Let us encode the algorithm AUIPN of universal inhibitor Petri net work by inhibitor 

Petri net according to the rules described in Section 6. Note that Lemma 4 and 

Lemma 5 lists all the control constructions and all the operations employed in the 

algorithm AUIPN. The net UIPN represented in fig. 7 is obtained. For the 

representing of the algorithm variables, fused places are used: all the places with the 

same name are logically the same place; fused places simplifies the graphical 

representation of the net. Let us suppose that before the net UIPN launch, the code of 

target (executing) net XIPN is loaded into places shown in fig. 2 and after the 

stopping of the net UIPN, the code of the marking and the transitions firing sequence 

of the net XIPN is read from the corresponding places. 

Dashed arcs denotes considered in Section 6 agreements on the input and output 

variables copying. Bidirectional arcs are used for the work with variables which are 

the both input and output; in this case the copying can be optimized applying twice 

move without cleaning. In some cases for the copying of an input variable together 

with its cleaning it is reasonable the usage of move instead of copy; as the 

corresponding notation the dotted arc is used. The substitution of a transition implies 

the copying of the corresponding subnet with the merging (fusion) of contact places. 

In general case the transition substitution requires the indication of input and output 

places mapping; in the listed nets the places mapping is defined implicitly by the 

context of the used operations and is not indicated.  

Theorem 3. Net UIPN is the universal inhibitor Petri net.  

The Theorem 3 proof directly follows from Theorem 1 and the correctness of used 

rules of sequential algorithm encoding by inhibitor Petri net (Lemma 4) and the 

correctness of nets implementing the used operations (Lemma 5). 

Note that net UIPN is represented in a component-wise way according to the used 

procedures, operations and the rules of work with variables. There is of a definite 

interest the binding of UIPN in the form of united inhibitor Petri net and its execution 

in the environment of a simulating system that simulates the firing of transitions.  

8   Conclusions 

In the present work the universal inhibitor Petri net was constructed that executes an 

arbitrary given inhibitor Petri net. 

It is possible the constructing of universal nets in other classes of Petri nets which 

are the universal algorithmic system [2]: priority, synchronous, timed. Moreover, it is 

possible the combined constructing, for example, of inhibitor net that executes an 

arbitrary synchronous net. 

There are known examples of universal Turing machines constructing with the 

minimal number of used symbols/states [7,8]. In this connection there is of a definite 

interest the constructing of universal Petri net with the minimal number of places 

(transitions), the minimal value of the marking. 
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Appendix A: Examples of Nets Encoding 

1) Petri net graph 

Net m n sB rB sD rD 

add 6 4 21180169496 3 282946 2 

max 8 8 254813592433189871074065241

412 

3 293862152152879368 2 

mul 10 9 646549072061101455668889034

663481743952654 

3 1935225908529245455

5975681 

2 

2) Marking 

Net Marking  sQ rQ 

add addQ0 (2,3,1,0,0,0) 2880 4 

add addQ (0,0,0,5,1,0) 186 6 

max maxQ0 (2,3,1,0,0,0,0,0) 46080 4 

max maxQ (0,0,0,3,1,0,0,0) 832 4 

mul mulQ0 (2,3,1,0,0,0,0,0,0,0) 737280 4 

mul mulQ (0,0,0,6,1,0,0,0,0,0) 722701 7 

3) Transitions firing sequence 

Net Q0 Q Z sZ k 

add addQ0 addQ t1,t3,t2,t2,t3,t3,t4 2411 7 

max maxQ0 maxQ t1,t2,t2,t6,t7,t8 4983 6 

mul mulQ0 mulQ t1,t2,t4,t4,t5,t6,t6,t7,t2, 

t4,t4,t5,t6,t6,t7,t2,t4,t4, 

t5,t6,t6,t7,t3,t9,t9,t8 

109815712212339723705298 26 



Appendix B: Implementation of Used Operations 

 
 

CLEAN (  MUL (  

 

 
COPY  GTE ( ) 

 

 
MOVE (  MAX ( ) 

 

 
ADD  (  MUL_ADD (Add to the code) 

 
 

SUB (  MOD_DIV (Extract from the code) 
 


