
Computation of enabled transition instances for

colored Petri nets

Fei Liu and Monika Heiner

Department of Computer Science, Brandenburg University of Technology
Postbox 10 13 44, 03013 Cottbus, Germany

{liu, monika.heiner}@informatik.tu-cottbus.de

Abstract. Computation of enabled transition instances is a key but dif-
ficult problem of animation of colored Petri nets. To address it in our
colored Petri net tool, we give an algorithm for computing enabled tran-
sition instances. This algorithm is based on pattern matching. So it first
tries to bind tokens to variables covered by patterns. If some variables
are not covered by any pattern, the algorithm will bind all the colors
in the corresponding color sets to the variables. This algorithm uses the
new principle of partial binding - partial test and adopts some optimiza-
tion techniques for preprocessing to improve efficiency. The principle of
partial binding - partial test allows us to test the expressions during the
partial binding process so as to prone invalid bindings as early as pos-
sible. The preprocessing with optimization techniques not only prunes a
lot of invalid potential bindings before the binding begins, but also finds
disabled transitions at an early phase.

1 Introduction

Animation is an important technique for getting an intuitive understanding of
a Petri net model as it demonstrates the dynamic behavior of the model in a
visual way. Nearly all the visual tools for modeling Petri nets provide the ani-
mation functionality [Pet10]. For low-level Petri nets, the core of the animation
is the scheduling algorithm of the transitions. However, for colored Petri nets,
we have to consider another key problem, the computation of enabled transi-
tion instances. When checking whether a transition is firable or not at a given
marking, we have to assign values to the variables (which are called bindings. A
binding of a transition corresponds to a transition instance.) that occur in the
arc expressions and the guard of the transition, and then evaluate if it respects
the firing rule.

The introduction of colors to Petri nets makes it difficult to compute their
firing rules [JKW07]. The efficiency of the animation for large-scale colored Petri
nets is mainly determined by the efficiency of the computation of the enabled
transition instances, which, however, is a NP-hard search problem because of
the expressiveness of colored Petri nets. One possible way is to make an exhaus-
tive search to check all the bindings and then prune the invalid ones, which is

2

inefficient at all especially if the transitions have many variables, but only a few
bindings can fire the transitions.

In this paper, we focus on the problem of the compuatation of enabled tran-
sition instances for colored Petri nets. We adopt the same idea given in [KC04],
that is, extracting patterns from input arc expressions and guards, then binding
the tokens residing on the input places to these patterns, and thus obtaining an
enabled binding set. The main contribution of this paper is that we give a more
efficient algorithm for our colored Petri net tool [RMH10], [LH10], in which we
use a new principle of partial binding - partial test and several heuristics tech-
niques to compute enabled transition instances.

This paper is organized as follows. Section 1 describes the patterns that are
used in the computation of enabled transition instances, and discusses how to
classify and find patterns. Section 2 discusses the computation process and recalls
some concepts. Section 3 gives the computation algorithm. Section 4 discusses
some heuristics to optimize the computation process. Section 5 summarizes and
compares the related work. Section 6 gives the conclusion.

2 Patterns

We use the same pattern match mechanism as CPN tools [KC04]. A pattern
is defined as an expression with variables which can be matched with other
expressions to assign the values of variables [KC04]. The difference is that CPN
tools are based on the SML, but we do not. We do not employ all the patterns
defined in SML [Ull98], but a subset, as we use less data types than CPN tools.
The patterns that we use have the following syntactical structure:

Pattern ::= ”V ariable”

|”Constant”

|TuplePattern

TuplePattern ::= (Pattern(, Pattern)∗)

Consider the example illustrated in Figure 1. According to the syntax of
the patterns, we can see that (x, y) is a tuple pattern. If we bind the token
(1, a) residing on the place P2 to the pattern (x, y), after matching, we get an
assignment x = 1 and y = a. This process is called the pattern match.

Pattern matching provides an easy and efficient way to compute enabled
transition instances; therefore, to improve the efficiency of the computation, we
have to find the patterns and use them to bind the tokens on the places as
much as possible. To do so, we have to search all the input arc expressions of a
transition to find available patterns, which we call a pattern set concerning arc
expressions, denoted by AS(t) for a transition t. Besides, we also can search the
guard of the transition t to find the patterns in the guard, denoted by GS(t).
These two sets constitute the overall pattern set, PS(t) = AS(t)∪GS(t), which
are used to bind tokens to variables. In the following, we in detail discuss how
to find the patterns.

3

P1
6

2‘1++

2‘3++

1‘4++

1‘5

A

P2
3

1‘(1,a)++

1‘(2,b)++

1‘(3,a)

AB

P3
5

4‘1++

1‘4A

P4C

t[x<3&y=a]

x++

(x+2)

(x,y)
2‘1++

2‘x

z

Declarations:

Colorset A = int with 1−5;

Colorset B = enum with a,b,c;

Colorset C = enum with c1,c2;

Colorset AB = product with A,B;

Variable x: A;

Variable y: B;

Variable z: C;

Figure 1. An example to demonstrate the patterns

2.1 Patterns in arcs

The patterns in arcs are the basic patterns that are used for the computation
of enabled transition instances. To get them, we have to search though all the
input arc expressions in the following two ways.

(1) If an input arc expression is exactly a pattern illustrated above, then we
put it in the PS(t). For example, in Figure 1, we can get such kind of pattern:
(x, y).

(2) If an input arc expression is a multiset expression, having the form
c1‘expr1 + +... + +cn‘exprn, where ci is the multiplicity, and expri has the
type of its corresponding input place. If expri is a pattern, then we add expri

to the PS(t). For example, for the expression 2‘1++2‘x in Figure 1, we get two
such kinds of patterns: the constant pattern, ’1’ and the variable pattern, x, but
for the expression x + +(x + 2), we only get one variable pattern, x, as x + 2 is
not a pattern. At the same time, we record the multiplicity of the corresponding
pattern so as to use them to test bindings once the pattern is used. For example,
for the variable pattern x, once we bind a token to it, for instance ’4’ on the
place P3, we immediately test if there are enough tokens with color ’4’ on the
place P3. To do so, the invalid bindings can be discarded earlier.

2.2 Patterns in guards

As the guard of a transition imposes often a rather strong constraint on efficient
bindings, it is better to consider it early when computing the bindings. For this,
we adopt the similar appoach to that in [KC04], but we extend the forms of the
guard that are used for binding, moreover we use some forms of guards for test
during the binding process.

Like [KC04], we consider the guard in the conjunctive form, G(t) ≡ ∧n
i=1

gi(t).
For one of these conjuncts gi(t), we consider the following forms: gil(t) = gir(t),
where gil(t) and gir(t) are expressions with constant or variable patterns, but one
of them must be a constant. We put these special expressions into the pattern set
GS(t). The advantage of using the patterns in the guards for binding is obvious.
For example, consider the pattern, y = a, it directly makes the bindings relating
to tokens without the color, ”a”, invalid.

4

2.3 Binding color sets to variables

If there are variables that are not covered by PS(t), we have to let them bind to
their corresponding color sets, otherwise they can not be bound. For example,
for the variables that only appear in the output arcs, we have to bind them to
their color sets. In Figure 1, we can see that the variable z is of this case, which
has to be bound to the corresponding color set C.

2.4 Optimized pattern set

We herein give a formal representation of each pattern in PS(t), which is a
five-tuple S = 〈P,E,X,M,m〉 ∈ PS(t), where

– P , the type of the pattern: variable, constant, tuple, or guard,
– E, the expression that the pattern belongs to,
– X, the set of the variables in the pattern,
– M , the initial/current marking of the place that connects the arc whose

expression the pattern belongs to, and
– m, the multiplicity of the pattern.

For the pattern of AS(t) ⊆ PS(t), all the components above would be used,
but for the pattern of GS(t) ⊆ PS(t), only the first three components P , E, and
X would be used. For a constant pattern, X will be always {φ}.

For example, the patterns PS(t) in Figure 1 can be formally written as
follows:

S1 = 〈V ariable, x, {x}, {2‘1, 2‘3, 1‘4, 1‘5}, 1〉

S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

S3 = 〈Constant, 1, {φ}, {4‘1, 1‘4}, 2〉

S4 = 〈V ariable, x, {x}, {4‘1, 1‘4}, 2〉

S5 = 〈Guard, y = a, {y}〉

In order to improve the efficiency of computation, we define an optimized
pattern set. Let t be a transition, PS(t) = AS(t) ∪GS(t) is the pattern set. An
optimized pattern set OPS = {Si|1 ≤ i ≤ N} for transition t is a set satisfying
the following conditions:

1. V (OPS(t)) = V (PS(t)), where V (PS(t)) represents the set of all the vari-
ables in PS(t),

2. OPS(t) ⊆ PS(t),
3. ∀Si ∈ GS(t), Si ∈ OPS(t).

The first item ensures that the optimized pattern should cover all the vari-
ables that are covered by PS(t). Please note that there may be some variables
of transition t that are not covered by PS(t), and these variables will be bound
by their color sets. The second item ensures that all the elements in the OPS(t)

5

come from PS(t). The third item states that all the guard patterns must be in-
cluded in the OPS(t). In the preprocessing section below, we will give the steps
to obtain an optimized pattern set, OPS(t) for a transition t from its pattern set,
PS(t), where we will see more conditions that an optimized pattern set should
satisfy.

Besides, we collect other expressions that are not in the optimized pattern set
to a set NS(t), whose elements are non-multiset expressions. If an expression is a
multiset expression, then we divide it first into a set of non-multiset expressions.
Each expression in NS(t) is denoted by a tuple S = 〈E,X,M〉, where

– E, the expression,
– X, the set of the variables in the expression,
– M , the initial marking of the place that connects the arc the expression

belongs to.

For these expressions in NS(t), we do not leave them until finishing all bind-
ings and then test them. We will use the partial binding - partial test principle
to test an expression that is not a pattern once we find that all the variables of
it have been bound during the partial binding process. This could prone invalid
bindings as early as possible.

For example, in Figure 1, if the variable x in P1 is bound by the value
1, 3, 4, 5, we can immediately evaluate and test the expression x+2. As a result,
at this moment we can exclude the partial bindings x = 3,x = 4, and x = 5, as
the place P1 has no enough tokens for these bindings.

3 Binding process

In this section, we recall the binding process and some definitions, which are
adapted from [KC04].

In order to evaluate the arc expressions and the guard of a transition t, the
variables relating to the transition (denoted by V (t)) must be bound by values
(tokens). A binding of a transition is written in the form: 〈v1 = c1, ...vn = cn〉,
where vi ∈ V (t), ci is the color value belonging to a corresponding color set,
i = 1, 2, ..., n.

Matching a token of an input place to a pattern would usually only bind to
a subset of the variables of the transition t. For example, consider the transition
t in Fig. 2, matching the token (1,a) to the pattern (x, y) will bind the variable
x to 1, and y to a, but it will not bind any value to the variable z. So the
concept of the partial binding is present, which means that a partial binding of
a transition is a binding in which not all variables of the transition are bound by
values. In the following, we use the PartialBinding(p, c) to denote the partial
binding by matching a pattern p with a token value c. If they are not matched,
PartialBinding(p, c) = ⊥.

In order to get a complete binding, we have to gradually merge the partial
bindings. For example, matching the pattern x and the tokens of P1 yields the

6

following four partial bindings:

〈x = 1, y = ⊥, z = ⊥〉

〈x = 3, y = ⊥, z = ⊥〉

〈x = 4, y = ⊥, z = ⊥〉

〈x = 5, y = ⊥, z = ⊥〉

Matching the pattern (x, y) and the tokens of P2 yields the following three
partial bindings:

〈x = 1, y = a, z = ⊥〉

〈x = 2, y = b, z = ⊥〉

〈x = 3, y = a, z = ⊥〉

If we merge them, we obtain the following two partial bindings:

〈x = 1, y = a, z = ⊥〉

〈x = 3, y = a, z = ⊥〉

The merging of two partial bindings relates to the concept of the compatible
bindings. Two binding b1 and b2 are compatible (written as Compatible(b1, b2)),
if and only if

∀v ∈ V (t) : b1(v) 6= ⊥ ∧ b2(v) 6= ⊥ ⇒ b1(v) = b2(v)

For two compatible partial bindings b1 and b2, the combined partial binding
(written as Combine(b1, b2)) satisfies:

b(v) =

b1(v) if b1(v) 6= ⊥
b2(v) if b2(v) 6= ⊥
⊥ otherwise

Based on those defintions above, the merging of two partial binding sets B1

and B2 (written as Merge(B1, B2)) is defined as:

Merge(B1, B2) = {Combine(b1, b2)|∃(b1, b2) ∈ B1 × B2 : Compatible(b1, b2)}

4 An algorithm for computing enabled transition

instances

In this secition,we first give a top-level algorithm for computing enabled tran-
sition instances, which is illustrated in Algorithm 1. The algorithm inputs the
pattern set PS(t), and the non-pattern expression set of the transition, NS(t),
and outputs a complete binding set C.

The algorithm works as follows. First the algorithm performs a preprocess-
ing (line 1) on PS(t), and obtains an optimized pattern set, OPS(t) by con-
sidering some optimization techniques. Afterwards, the algorithm executes the

7

BindbyPatterns process (line 2) to bind tokens residing on the places to the
patterns. After that, the algorithm executes the BindbyColorSets process (line
3) to bind color sets to the variables that are not contained in the pattern set,
V (NS(t))\V (OPS(t)). During this process, the algorithm checks whether the
guard is satisfied and whether the input places have sufficient tokens. So, finally
we get all valid complete bindings. In the next sections, we will continue to
discuss the three processes of the algorithm in more details.

Algorithm 1: An algorithm for computing enabled transition instances.

Input: PS(t), NS(t)
Output: C

OPS(t) = Preprocess(PS(t));1

C = BindbyPatterns(OPS(t), NS(t));2

C = BindbyColorSets(C, NS(t), V (NS(t)) \ V (OPS(t)));3

4.1 Preprocessing of the pattern set

The preprocessing of the pattern set is very important as it may prune a lot
of invalid partial bindings in advance and find if the transition can be enabled
as early as possible, thus improving the efficiency of computation of enabled
transition instances. In this section, we give the steps to preprocess the pattern
set and as a result obtain an optimized ordered pattern set.

(1)Testing multiplicity.
We begin the preprocessing of the pattern set with multiplicity testing. Dur-

ing this step, we can discard the tokens in the current marking that do not
contribute to the valid bindings. This is performed by checking whether the
number of tokens with the same color is greater than or equal to the muliplicity
of the pattern. For a constant pattern, if this is evaluated to false, we immedi-
ately stop the preprocessing process, and directly disable this transition. If true,
we can now remove the constant patterns from the binding pattern set, as we
will not use it any longer for succedent processes. For a variable or tuple pattern,
if this is evaluated to false, we will remove these tokens from the current mark-
ing set. If the current marking set becomes empty, we stop the preprocessing
process, and directly disable this transition.

The algorithm is illustrated in Algorithm 2, which works as follows. The
algorithm executes a loop for each pattern in the pattern set PS(t). If a pattern
is a constant pattern, the multiplicity of the constant pattern is checked with the
tokens of the constant color. Here Si.Mi〈c〉 represents the number of the tokens
with the color ”c”. If this is evaluated to false, the transition is determined not
to be enabled (lines 2-6). If a pattern is a variable or tuple pattern, for each color
in the initial marking, the multiplicity is tested. The tokens will be removed if
the testing is false. If the current marking set of the pattern becomes empty, the
transition is determined not to be enabled (lines 8-17).

8

After the multiplicity testing for the example in Figure 1, we get the following
pattern set, where pattern S3 is removed.

S1 = 〈V ariable, x, {x}, {2‘1, 2‘3, 1‘4, 1‘5}, 1〉

S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

S4 = 〈V ariable, x, {x}, {4‘1}, 2〉

S5 = 〈Guard, y = a, {y}〉

Algorithm 2: Multiplicity testing.

Input: PS(t)
Output: OPS(t)
for each pattern Si ∈ PS(t) do1

if Si is a constant pattern then2

c← Si.Ei;3

if Si.Mi〈c〉 < Si.mi then4

transition t is not enabled;5

endif6

endif7

if Si is an variable or tuple pattern then8

for each color c ∈ Si.Mi do9

if Si.Mi〈c〉 < Si.mi then10

Si.Mi ← Si.Mi\{Si.Mi〈c〉};11

endif12

endfor13

if Si.Mi is empty then14

transition t is not enabled;15

endif16

endif17

endfor18

(2)Merging identical patterns.
Usually, there exist several identical patterns (identical expressions) for a

transition. Merging them can remove invalid partial bindings as much as possible
before the binding begins. The algorithm is illustrated in Algorithm 3. To merge
two identical patterns, for example, Si and Sj , i 6= j, we need to get their colors
that have tokens, denoted by Ci and Cj (lines 1-2), respectively. We calculate
the merged colors by Ck = Ci ∩ Cj (line 3). If Ck is not empty, we build a new
pattern Sk, where Mk stores the merged color with the multiplicity being 1 and
mk is set to 1 (lines 4-10). At the same time, we remove the old patterns Si and
Sj and add a new pattern Sk to the pattern set. If the set Ck is empty, we can
directly set the transition disabled.

For example, Figure 1 has two identical patterns: S1 and S4. The colors with
current tokens are {1, 3, 4, 5} and {1}, respectively, and the merged color is {1}.

9

Algorithm 3: Merging identical patterns.

Input: Si, Sj

Output: Sk

Ci ← Si.Mi;1

Cj ← Sj .Mj ;2

Ck ← Ci ∩ Cj ;3

if Ck is not empty then4

Sk.Pk ← Si.Pi;5

Sk.Ek ← Si.Ei;6

Sk.Xk ← Si.Xi;7

Sk.Mk ← Ck;8

Sk.mk ← 1;9

endif10

if Ck is empty then11

transition t is not enabled ;12

endif13

So we remove the patterns, S1 and S4 and add a new pattern, S14. Now the
patterns for Figure 1 become:

S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

S14 = 〈V ariable, x, {x}, {1‘1}, 1〉

S5 = 〈Guard, y = a, {y}〉

(3)Sorting patterns in terms of the less different tokens first policy
[Cae96].

After that, we can sort the patterns in terms of the less different tokens
first policy that will be discussed in detail later. For example, after sorting, the
binding patterns in Figure 1 become:

S5 = 〈Guard, y = a, {y}〉

S14 = 〈V ariable, x, {x}, {1‘1}, 1〉

S2 = 〈Tuple, (x, y), {x, y}, {1‘(1, a), 1‘(2, b), 1‘(3, a)}, 1〉

After finishing the preprocessing, we finally get an optimized pattern set
OPS(t), which will be used as the input of the following algorithm.

4.2 Binding by matching tokens and patterns

In this section, we describe a key component of the algorithm for the computation
of enabled transition instances (illustrated in Algorithm 4), binding by matching
tokens residing on the places and patterns in the set, OPS(t), which is based on
the algorithm in [KC04].

The algorithm executes a loop to handle each member of the pattern set
OPS(t). Lines 4-9 consider the case of the guard patterns, in which the right

10

hand side of the guard is matched against the left hand side of it. Lines 10-18
consider the case of matching the tokens in the current marking and the arc
expression patterns. Lines 19-31 test if each partial binding is valid using the
non-pattern set NS(t). For an expression of NS(t) whose variables are fully
bound, if it is a guard and is evaluated to be false for a partial binding, then the
partial binding is invalid. If the expression is an arc expression and can not get
enough tokens by evaluating it with a partial binding, then the partial binding
is also invalid.

Compared to the algorithm in [KC04], our algorithm has the following dis-
tinguished features:

– The biggest difference is that our algorithm employs the partial binding -
partial test principle, that is, during a partial binding process, if the variables
in a non-pattern expression have been detected to be fully bound, then we
evaluate and test it immediately. As a result, this would not produce any
invalid complete binding when the binding process ends.

– The overall algorithm considers the case of the variable binding to the color
set, as this case may be encountered in our colored Petri nets, which will be
discussed in the next section.

We still use the example in Figure 1 to demonstrate how the algorithm above
works. For the first loop, the guard pattern y = a is processed, and let ’a’ bind
to y. Then the pattern S14 is processed, and let x be bound by ’1’. After that,
the non-pattern expression x < 3 begins to work as it finds that the variable x

has been bound and keeps the binding ’1’ to x. We continue to bind (1, a) to the
pattern (x, y) and merge them with existing bindings. After these steps, we get
the following partial bindings.

〈x = 1, y = a, z = ⊥〉

4.3 Binding colors of color sets to variables

When the variables are not contained by all the patterns, they have to be bound
to colors of their color sets. The algorithm is illustrated in Algorithm 5. The
algorithm works as follows. The algorithm executes a loop for each variable
v ∈ V (NS(t))\V (OPS(t)), which stores all the variables that have to be bound
by the color sets. Lines 3-9 bind the colors to the variables. Here c(v) represents
the color set of variable v. Lines 10-22 test if the expressions in NS(t) satisfy
the guard or have sufficient tokens in the corresponding places.

We continue to apply this algorithm to the example in Figure 1. Here, we
bind the color set C with colors, c1 and c2, to the variable z. Then we get the
following complete bindings.

〈x = 1, y = a, z = c1〉

〈x = 1, y = a, z = c2〉

11

Algorithm 4: An algorithm for matching tokens and patterns.

Input: OPS(t) = {Si|1 ≤ i ≤ N}, V (t)
Output: C

C ← φ;1

for each pattern Si ∈ OPS(t) do2

C
′

← φ;3

// binding

if Si ≡ gil = girthen4

b
′

← PartialBinding(gil, gir);5

if b
′

6= ⊥ then6

C ← C ∪ {b
′

};7

endif8

endif9

if Si ∈ AS(t) then10

for each colored token c ∈ Si.Mi do11

b
′

← PartialBinding(Si.Ei, c);12

if b
′

6= ⊥ then13

C
′

← C
′

∪ {b
′

};14

endif15

endfor16

C ←Merge(C, C
′

);17

endif18

// testing

for each expression Sk ∈ NS(t) do19

if V (Sk) ⊆ V (C) then20

for each binding b ∈ C do21

if Sk.Ek is a guard expression and Sk.Ek〈b〉 is false then22

C = C\{b};23

endif24

if Sk.Ek is an arc expression and Sk.Ek〈b〉 > Sk.Mk〈c〉 then25

C = C\{b};26

endif27

endfor28

NS(t)← NS(t)\{Sk};29

endif30

endfor31

endfor32

12

Algorithm 5: An algorithm for binding colors of color sets to variables.

Input: C, TS(t), NS(t), V (NS(t))\V (OPS(t))
Output: C

// binding

for each variable v ∈ V (NS(t))\V (OPS(t)) do1

C
′

← φ;2

for each color c ∈ c(v) do3

b
′

← PartialBinding(v, c);4

if b
′

6= ⊥ then5

C
′

← C
′

∪ {b
′

};6

endif7

endfor8

C ←Merge(C, C
′

);9

// testing

for each expression Sk ∈ NS(t) do10

if V (Sk) ⊆ V (C) then11

for each binding b ∈ C do12

if Sk.Ek is a guard and Sk.Ek〈b〉 is false then13

C = C\{b};14

endif15

if Sk.Ek is an arc expression and Sk.Ek〈b〉 > Sk.Mk〈c〉 then16

C = C\{b};17

endif18

endfor19

NS(t)← NS(t)\{Sk};20

endif21

endfor22

endfor23

13

5 Optimization Techniques

In this section, we briefly summarize some of the optimization techniques that we
use to improve the efficiency of the computation of enabled transition instances.

(1)Partial binding - partial test.
As described above, we collect all the arc or guard expressions that are not

covered by the pattern set. We do not leave them until finishing all complete
bindings and then test them. Rather, we will test them once we find that all
the variables of them have been bound during the partial binding process. For
example, in Figure 2, the optimized pattern set is x, y and z. If we do not use
this policy, we would first get 20 × 30 × 40 complete bindings, then test these
bindings by evaluating x+1 and y+1 and then get 480 valid bindings. However,
if we use this policy, x is first bound and 20 partial bindings are gotten. After
that the expression x + 1 is tested, and the valid bindings for x are now 3. Then
y is bound, and the partial bindings for x and y become 90. When the expression
y + 1 is tested, the partial bindings become 12. Finally, the variable z is bound,
and the final complete bindings are gotten, whose number is 480. Obviously,
using this policy usually reduces the amount of computation greatly.

P2 3

1‘1++

1‘5++

1‘10
A P330

1‘all()B

P4 4

1‘1++

1‘4++

1‘5++

1‘16

B

P5
40

1‘all()C
P1 20

1‘all()

A

x+1

y

y+1

x

z

Declarations:

Colorset A = int with 1−20;

Colorset B = enum with 1−30;

Colorset C = enum with 1−40;

Variable x : A;

Variable y : B;

Variable z : C;

Figure 2. An example to demonstrate the policy of partial binding - partial test.

(2) Less different tokens first policy [Cae96].
As can be easily noticed and analyzed, the information of the tokens residing

on different places can affect the efficiency of computation of enabled transition
instances. For example, in Figure 1, for transition t, if we bind first x to the
tokens of P1, we have 4 bindings, but if we bind the tokens in P2 to x first, we
get 2 bindings. That is to say, the binding order of variables is quite different in
efficiency; therfore, we can optimize the binding order of the patterns. We use
the less different tokens first policy, which has been given by [Cae96].

(3) Multiplicity test.
When finding patterns, we also record the multiplicities of the patterns. We

use them to test if the places contain enough tokens for enabling before the
binding begins, which already is reflected in the Algorithm 2.

(4) Merging identical patterns.
Merging the same patterns before binding is more efficient than binding a pat-

tern and then testing another pattern during binding. In the algorithm presented

14

above, we consider the merging of identical patterns during the preprocessing
phase. This heuristics is very useful when there are many identical patterns for
a transition and the tokens for each pattern are notably different.

All the heuristics have been used in our algorithm, which can be seen in
different parts in Algorithm 1-5.

6 Related work

In this section, we describe and compare some related work concerning the com-
putation of enabled transition instances.

Mäkelä [Mak01] used a unification technique to calculate enabled transition
instances for the algebraic system nets that are in fact another kind of high-level
Petri nets, which gave a different idea on finding enabled bindings.

Sanders [San00] considered the calculation of enabled binding as a constraint
satisfaction problem. He imposed strong constraints on the form of arc expres-
sions, only considering the form n‘exp, which is impossible for nearly all the
colored Petri nets.

Gaeta [Cae96] studied the enabled test problem of Well-Formed Nets, and
gave some heuristics for determining the binding elements, i.e., less different
tokens first policy, which are very useful for the efficiency of calculation of enabled
transition instances.

Mortensen [Mor01] described data structure and algorithms used in the CPN
tools. He used the locality principle to dicover enabled transitions rather than
calculating all the transition each time. He also discussed how to optimize the
binding sequences.

Kristensen et al. [KC04] gave a pattern reference algorithm for enabled bind-
ing calculation of CPN tools. We also adopt that idea to design our binding
algorithm, but compared their algorithm, our algorithm considers more opti-
mization techniques.

In our work, we take into account the main idea of [KC04] and also some ideas
of [Mak01] and [Cae96], but comapared with all the previous work, we adopt a
new principle, partial binding - partial test, and consider more optimization
techniques to improve the efficiency of computing enabled transition instances
for colored Petri nets.

7 Conclusions

In this paper, we present an algorithm for computation of enabled transition
instances for colored Petri nets. This algorithm uses the principle of partial
binding - partial test and adopts some optimization techniques for preprocessing.
The principle of partial binding - partial test allows us to test the expressions
during the partial binding process so as to prone invalid bindings as early as
possible. The use of optimization techniques prunes invalid potential bindings
before the binding begins, and also finds the disable transitions at an early

15

phase. Among them, the less different tokens first policy allows variables to
have less bindings, the multiplicity test excludes insufficient tokens before the
binding begins and the merging of identical patterns avoids repeated bindings
for identical patterns. All these techniques contribute to the improvements of
efficiency.

This algorithm can realize an efficient computation of enabled transition
instances for large-scale colored Petri nets. At the same time, we are adapting
this algorithm to unfold colored Petri nets, which will improve the efficiency of
unfolding of colored Petri nets and thus simulation of colored stochastic Petri
nets. In the future, we will investigate more optimization techniques to further
improve the efficiency.

Acknowledgments

This work has been supported by the Modeling of Pain Switch (MOPS) program
of Federal Ministry of Education and Research (Funding Number: 0315449H).

References

[Cae96] R. Gaeta: Efficient Discrete-Event Simulation of Colored Petri Nets. IEEE
Transactions on Software Engineering. 22(9), 629-639 (1996)

[JKW07] K. Jensen, L. M. Kristensen, L. Wells: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software
Tools for Technology Transfer. 9, 213-254 (2007)

[KC04] L. M. Kristensen, S. Christensen: Implementing Coloured Petri Nets Using a
Functional Programming Language. Higher-Order and Symbolic Computation. 17(3),
207-243 (2004)

[LH10] F. Liu, M. Heiner: Colored Petri nets to model and simulate biological systems.
International Workshop on Biological Processes and Petri Nets (BioPPN). (2010)

[Mak01] M. Mäkelä: Optimising Enabling Tests and Unfoldings of Algebraic System
Nets. International Conference on Application and Theory of Petri Nets, LNCS, 2075,
283-302 (2001)

[Mor01] K. H. Mortensen: Efficient Data-Structures and Algorithms for a Coloured
Petri Nets Simulator. 3rd Workshop and Tutorial on Practical Use of Coloured Petri
Nets and the CPN Tools (CPN’01), 57-74 (2001)

[Pet10] Petri Nets World. http://www.informatik.uni-hamburg.de/TGI/PetriNets.
(2010)

[San00] M. J. Sanders: Effecient Computation of Enabled Transition Bindings in High-
Level Petri Nets. IEEE International Conference on Systems, Man and Cybernetics.
3153-3158 (2000)

[RMH10] C. Rohr, W. Marwan, M. Heiner: Snoopy - a unifying Petri net framework
to investigate biomolecular networks. Bioinformatics. 26(7): 974-975 (2010)

[Ull98] J. D. Ullman: Elements of ML Programming. Prentice-Hall. (1998)

