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Abstract. Recently hybrid modelling and simulation of biochemical
systems have attracted increasing interest. This is motivated by the need
of simulating systems which integrate different sub-cellular models, and
the fact that bio networks themselves are inherently stochastic, however
stochastic simulation is time expensive. Compared to other methods of
biological modelling, Petri nets are characterized by their intuitive vi-
sual representation and executability of biological models. In this paper,
we present a hybrid Petri net class that incorporates both continuous
and stochastic capabilities. The presented class is intended to model and
simulate hybrid biological systems such that they contain some parts
which are simulated deterministically while other parts are simulated
stochastically.

Keywords: Hybrid Petri Net, Hybrid Biochemical Simulation, Systems
Biology.

1 Introduction

Computer simulation is an essential tool for studying biochemical systems. The
deterministic approach (continuous simulation) is the traditional way of sim-
ulating biochemical pathways. In this approach, reactions and their influence
on the concentrations of the involved species are represented by a set of ordi-
nary differential equations (ODEs). The changes in reactants and products are
obtained through solving the resulting ODEs using numerical integration algo-
rithms. While this approach has the advantage of a well established mathematical
basis and strong documentation, it lacks to capture the phenomena which occur
due to the underlying discreteness and random fluctuation in molecular numbers
[Pah09],[LCP+08], especially in situations where the number of molecules is few.

Stochastic simulation [Gil76] provides a very natural way of simulating bio-
chemical pathways, since it can successfully capture the fluctuations of the un-
derlaying model. Furthermore it deals correctly with the problem of extremely
low number of molecules [ACT05]. In stochastic simulation, species are no longer
represented as continuous concentrations which change continuously with time,
instead they are represented as discrete entities such that their dynamics can be
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simulated using the machinery of Markov process theory. In [SYS+02] an exam-
ple is given comparing deterministic versus stochastic modeling using a simple
model of the intracellular kinetics of a generic virus.

A major drawback of the stochastic simulation is that it is computationally
expensive, when it comes to simulate larger biological models [Pah09],[LCP+08],
[ACT05], especially when there are a large number of molecules of some chemical
species. The reason behind this problem comes from the fact that we have to
simulate every reaction event when we use stochastic simulation to simulate
biological systems [LCP+08]. This drawback motivates scientists to search for
other methods to enhance the capability of the stochastic approach. Hybrid
simulation is one of these methods.

Hybrid simulation [ACT05],[Kie+04],[Rue+07] of biochemical system using
both deterministic and stochastic approaches has been recently introduced to
take the advantage of capturing the randomness and fluctuation of the discrete
stochastic model and allows at the same time a reasonable computation time.
This goal is achieved by simulating fast reactions deterministically, while simu-
lating slow reaction stochastically. While this method provides a promising ap-
proach for simulating biochemical models, there are some open questions which
need to be solved [Pah09].

Petri nets provide a very useful way of modelling biochemical pathways
[RML93],[BGH+08],[HGD08],[Mat+03] since they provide an intuitive approach
of transforming the biological model into a graphical representation which coin-
cides with the qualitative description of this model. Furthermore, they can be
easily transformed later for quantitative simulation.

Continuous Petri nets are used in biological modelling to introduce an easy
way of modelling complex biological pathways and simultaneously hide the math-
ematical complexities of the underlying ODE. Contrary, in stochastic Petri nets
and their simulation, transitions fire with exponentially distributed random wait-
ing time.

Hybrid Petri nets [AD98] incorporate both continuous and discrete capabil-
ities and can be used to model systems which contain both discrete and contin-
uous elements. Many various of hybrid Petri nets have been introduced during
the last two decades, with different modeling goals. Some examples can be found
in [Mat+03],[TK93] and [PB09]. An overview of continuous, discrete and hybrid
Petri nets can be found in [DA10] .

In this paper, we introduce the definition of a hybrid continuous-stochastic
Petri net, HPN, and integrate it into Snoopy [HRR+08],[RMH10], a tool to
design and animate or simulate hierarchical graphs, among them the qualita-
tive, stochastic and continuous Petri nets, which incorporate the modeling ca-
pabilities of the previously introduced stochastic and continuous classes [GH06],
[GHL07],[HLG+09], The new net class HPN, is intended to model biological
pathways that require hybrid simulation, such that the resulting Petri net can
be simulated deterministically and stochastically based on the model specifica-
tion.
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This paper is organized as follow: Firstly we briefly review the motivations
of using continuous and stochastic Petri nets to model biochemical reactions.
Then we introduce our hybrid stochastic-continuous Petri net class, by firstly
presenting a formal definition as well as the connectivity rules between its ele-
ments. The illustration of the modeling capabilities of HPN to model biological
systems is then demonstrated using two examples. At the end we conclude by a
summary and autlook of future work.

2 Petri Net and Biological Systems

The tight analogy between Petri net and biochemical reactions makes it a natural
choice to model these reactions [RML93],[HGD08]. Being bipartite, concurrency,
and stochasticity are common properties shared by Petri nets and biochemical
interactions. Qualitative Petri net [HGD08] can be used to analyze the biochem-
ical systems qualitatively, while stochastic and continuous Petri nets are used to
simulate them quantitatively. Before we discuss the various aspects of the hybrid
stochastic-continuous Petri net, we provide a short overview of continuous and
stochastic Petri nets as well as how they can be used to model biological systems.
Detailed discussion can be found in [BGH+08] and [HGD08], and for a general
introduction to Petri net see [DA10] and [Mur89].

Continuous Petri nets provide a way for modeling systems in which states
change continuously with time. In this class of Petri nets, places contain nonneg-
ative real values and transitions fire continuously with time. In systems biology,
continuous Petri nets provide a very useful way of representing ODEs. Preplaces
of the transitions represent reactants species and the marking of these places rep-
resents species’ concentrations. Each transition is associated with a rate function
which defines the kinetic rate. The corresponding ODE which represents the re-
action which is modeled by this transition can be generated using (1) [GH06].

dp

dt
=

∑
t∈•p

f(t, p)v(t)−
∑
t∈p•

f(p, t)v(t) (1)

where v(t): is the rate function and f(t, p): is the weight connecting transition t
with place p and •p, p• are the pre- and post-transitions of place p, respectively.
Note that place names are read as real variables.

The resulting system of ordinary differential equations of all places describes
the changes with respects to time in all biochemical species. Our HPN supports
the same functionality as the aforementioned continuous Petri net.

In contrast to continuous Petri nets, stochastic Petri nets preserve the dis-
crete state description. The biochemical models are simulated stochastically by
associating a probability-distributed firing rate (waiting time) with each tran-
sition. This means that there is a time which has to elapse before an enabled
transition t ∈ T fires [HLG+09], where T is the set of all stochastic transi-
tions. The probability density function of the exponentially distributed random
variable, xt, which represents the waiting time, is given by (2)
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fxt
(τ) = λt(m).e−λt(m)τ , t ≥ 0 (2)

where λt(m) is a marking dependent kinetic rate which is associated with each
stochastic transition. λt(m) is equivalent to the propensity of the reaction t,
a(xi), of the stochastic simulation algorithms which are presented in [Gil76].

Because of the deterministic nature of continuous Petri nets, the concentra-
tion of particular species will have the same values at each time point for repeated
experiments, which is the main difference between simulation of stochastic and
continuous biological models, and hence for Petri nets as well. In a typical exe-
cution of stochastic Petri nets, each transition gets its own local timer. When a
particular transition becomes enabled, the local timer is set to an initial value
which is computed by means of the corresponding probability distribution. The
local timer is then decremented at a constant speed and the transition will fire
when the time reaches zero. A race will take place in the case of conflict between
more than one enabled transition.

To extend the modeling capabilities of stochastic Petri nets (SPN) in biolog-
ical system, two extensions, general stochastic petri nets (GSPNbio) and deter-
ministic stochastic petri nets (DSPNbio), of SPN are introduced in [HLG+09].
These extensions add inhibitor and read arcs and deterministically time-delayed
transitions to stochastic Petri nets.

In the following section, we present the merging of stochastic Petri nets (us-
ing the extended version) and continuous one, to produce a hybrid continuous-
stochastic Petri nets which are capable of modeling and simulating hybrid bio-
chemical reactions.

3 Hybrid Continuous-Stochastic Petri Nets

In this section we describe the hybrid continuous stochastic Petri nets capable
of modeling systems which consist of discrete and continuous parts. The discrete
parts may be considered as a set of reactions which involves species with low
number of molecules such that it is adequate to simulate them in a discrete
way. On the other hand, continuous elements of this class can represent a set
of reactions which involves species with large number of molecules, which are
computationally too expensive to be simulated stochastically. Continuous and
stochastic Petri nets complement each other. We get modelling power of fluc-
tuation and discreteness, when using the stochastic simulation and at the same
time we can simulate the computationally expensive parts deterministically us-
ing ODEs solvers.

Generally speaking, biochemical systems can involve reactions from more
than one type of biological networks, for example regulatory, metabolic or trans-
duction pathways. Incorporation of reactions which belong to distinct (biologi-
cal) networks, tend to result in stiff systems. This follows from the fact that regu-
latory network’s species may contain a few number of molecules, while metabolic
networks’ species may contain a large number of molecules [Kie+04]. In our hy-
brid Petri nets, reactions which involves species with a small number of molecules
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are represented by discrete entities, so that they can be simulated stochastically,
while reactions which include a large number of molecules are represented by
continuous entities, so that they can be simulated deterministically. The connec-
tion between the discrete and continuous parts takes place using either special
arcs (read, inhibitor, or equal arcs) or in some cases using the standard arcs
based on the defined connection rules.

In the rest of this section, we will discuss in more detail the newly introduced
hybrid continuous-stochastic Petri nets in terms of the graphical representation
of its elements as well as the firing rules and connectivity between the continuous
and stochastic parts.

3.1 Graphical Representation

As expected, HCSPN contains two types of places: discrete and continuous.
Discrete places (single line circle) contain integer numbers which represent for
example the number of molecules in a given species. On the other hand, contin-
uous places - which are represented by shaded line circle - contain real numbers
which represent the concentration of a given species. This means that we can
combine the power of the previously discussed continuous and stochastic Petri
nets together in one class. HCSPN contains a variety of transition types: contin-
uous, stochastic, deterministic, immediate, and scheduled transitions [HLG+09].
Continuous transitions - shaded line square - fire continuously in the same way
like in continuous Petri nets. Their semantics are governed by ordinary differ-
ential equations. Their ODEs define the changes in the transitions’ pre- and
post-places.

Stochastic transitions which are drawn in Snoopy as a square, fire randomly
with an exponential random distribution delay. The user can specify a set of firing
rate functions, which determine the random firing delay. Deterministic (time
delay) transitions - black square - fire after a specified time delay, immediate
transitions - black bar - fire with zero delay, and they have higher priority in
the case of a conflicts with other transitions. They may carry weights which
specify the relative firing frequency in the case of conflicts between more than
one immediate transition. Scheduled transitions - grey square - fire at a user-
specified time point or time interval.

The connection between those two types of nodes (places and transitions),
takes place using a set of different arcs. HCSPN contains five types of edges:
standard, inhibitor, read, equal and reset arcs. Standard edges connect transi-
tions with places or vice versa . They can be continuous, i.e carry real value
weights (or in the biochemical context stoichiometry), or discrete i.e carry non-
negative integer value weights. Special arcs like inhibitor, read, equal and reset
arcs provide only connection from places to transitions, but not vice versa. The
connection rules and their underlying semantics are given below. Fig. 1 provides
a graphical illustration of those elements. While this graphical notation is the
default one, they can be easily customized using our Petri nets editing tool,
Snoopy.
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Transitions

Edges

Discrete Continuous

ContinuousStochastic Immediate

Discrete or Continuous Inhibitory Read Equal

Deterministic

<?>

Scheduled

_SimStart,?,_SimEnd

Reset

Fig. 1. Graphical representation of the HCSPN’s elements

3.2 Formal Definition

HCSPN is a 5-Tuple,HCSPN = {P, T,A, V,m0} where: P, T are finite, nonempty
and disjoint sets. P is the set of places and T is the set of transitions with:

– P = {Pcont ∪ Pdisc} whereby Pcont is the set of continuous places to which
nonnegative real values can be assigned and Pdisc is the set of discrete places
to which nonnegative integer values can be assigned.

– T = Tcont ∪ Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled with:

1. Tcont, the set of continuous transitions, which fire continuously over time.
2. Tstoch, the set of stochastic transitions, which fire stochastically with

exponentially distributed waiting time.
3. Ttimed, the set of deterministic transitions, which fire with a deterministic

time delay.
4. Tscheduled, the set of scheduled transitions, which fire at predefined firing

time points.
5. Tim, the set of immediate transitions, which fire with waiting time zero

and it has higher priority compared to other transitions.

– A = {Acont∪Adisc∪Ainhibit∪Aread∪Aequal,∪Areset}, is the set of directed
edges, whereby:
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1. Acont : ((Pcont× T )∪ (T ×Pcont))→ IR0 : defines the set of continuous,
directed arcs, weighted by nonnegative real values.

2. Adisc : ((P × T ) ∪ (T × P ))→ IN0 : defines the set of discrete, directed
arcs, weighted by nonnegative integer values.

3. Aread : (P×T )→ IR+ifP ∈ Pcont or Aread : (P×T )→ IN+ifP ∈ Pdisc,
defines the set of read arcs.

4. Aequal : (P × T ) → IR+
0 ifP ∈ Pcont or Aequal : (P × T ) → IN+

0 ifP ∈
Pdisc, defines the set of equal arcs.

5. Ainhibit : (P × T ) → IR+ ∪ {0+}ifP ∈ Pcont or Ainhibit : (P × T ) →
IN+ifP ∈ Pdisc, defines the set of inhibits arcs, where 0+ means very
small positive real number but not zero.

6. Areset : (P × Tdiscrete) defines the set of reset arcs, where Tdiscrete =
Tstoch ∪ Tim ∪ Ttimed ∪ Tscheduled is the set of discrete transitions.

– V is a set of functions {f,g,d,w} where :

1. f : Tcont → Hc is a function which assigns a rate function hc to each

continuous transition t ∈ Tcont, such that : {hct |hct : IR|
•t|
0 → IR+, t ∈

Tcont} is the set of all rates functions and f(t) = hct ,∀t ∈ Tcont.
2. g : Tstoch → Hs is a function which assigns a stochastic hazard function

hst to each transition t ∈ Tstoch, whereby {hst |hst : IN|
•t|
0 → IR+, t ∈

Tstoch} is the set of all stochastic hazard functions and g(t) = hst∀t ∈
Tstoch .

3. d : Ttimed → IR+, is a function which assigns a constant time to each
deterministic transitions representing the waiting time.

4. w : Tim → Hw is a function which assigns a weight function hw to each

immediate transition t ∈ Tim, such that : {hwt |hwt : IN|
•t|
0 → IR+, t ∈

Tim} is the set of all weight functions and w(t) = hwt ,∀t ∈ Tim
– m0 = {mcont ∪mdisc} : is the set of initial marking for both the continuous

(Pcont) and discrete places (Pdisc), whereby mcont ∈ IR+|Pcont|
0 , mdisc ∈

IN+|Pdisc|
0 .

A critical question arises when considering the mixing between discrete and
continuous elements: how are these two different parts connected with each
other? Fig. 2, provides a graphical illustration of how the connection between
different elements of the introduced HCSPN takes place. Note that other discrete
transitions (immediate, deterministic and scheduled transitions) follow the same
connection rules as stochastic transitions.

Firstly, we will consider the connection between continuous transitions and
the other elements of the HCSPN. Continuous transitions can be connected
with continuous places in both directions using continuous arcs (i.e arc with real
value weight). This means that continuous places can be pre- and post-places of
continuous transitions. These connections represent deterministic, biological in-
teraction. According to the previous formal definition, each continuous transition
takes a rate function. This rate function represents the kinetics of the determin-
istic reaction. Like in continuous Petri net, the firing of this transition can be
represented as an ODE. The continuous transition can be connected also with
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a discrete or continuous places, but only by one of the special arcs (inhibitor,
read, equal). Read arcs allow to specify positive side conditions, while inhibitor
arcs allow to specify negative side conditions. It is worth being mention, that
the markings of the transition preplaces connected by these special arcs do not
change when the transition fires. This type of connection allows a connection
between the discrete and continuous parts of the biochemical model.

Discrete places are not allowed to be connected with continuous transitions
using standard arcs, because the firings of continuous transitions are governed
by an ODE which requires real values in the pre- and post-places. Discrete tran-
sitions (stochastic, deterministic, immediate and scheduled) can be connected
with discrete or continuous places in both directions using standard arcs. How-
ever, the arc’s weight should be considered, i.e the connection between discrete
transitions and discrete places takes place using arcs with nonnegative integer
numbers, while the connection between continuous place and discrete transi-
tions is weighted by nonnegative real numbers. The general rule to determine
the weight type of the arcs is the type of the transition’s pre/post places.

The connection between continuous places and discrete transitions will result
in a model like discussed in [TK93], in which the changes in the continuous places
are governed by firing of stochastic transitions. Discrete transitions can also have
discrete or continuous places as the transition pre-places using the special arcs.

3.3 Simulation of HCSPN

Due to the use of both stochastic and continuous parts in HCSPN, we have
now two different clocks: one for the continuous parts and the other for the
stochastic ones. The ODEs solver which represents the semantics of the contin-
uous Petri net evolves deterministically with approximate time steps, while the
stochastic transitions fire stochastically with exact time steps. Because we intend
to use HCSPN to simulate biochemical reactions, we provide a synchronization
mechanism between the stochastic and continuous Petri nets, since some species
(places) may belong simultaneously to both continuous and stochastic Petri nets
due to the partition of the reactions. In this part of the paper we propose a Petri
net interpreted synchronization algorithm based on the algorithm presented in
[ACT+04].

Many synchronization algorithms are used in the literature to synchronize be-
tween the deterministic regime and the stochastic one in hybrid simulation of bio-
chemical reactions; some of them can be found in [Pah09,ACT05,Kie+04,Rue+07].
We opted to use the algorithm in [ACT+04], since it has a rigid mathematical
basis for the synchronization of the two different clocks.

The algorithm which is presented here is based on the direct method [Gil76],
see [ACT05,ACT+04] for other variations based on the first and second reaction
method. The algorithm is based on the function f(τ |t). f(τ |t) will decide when
we can switch from the continuous world to the stochastic one. We firstly draw
an exponentially distributed random variable ξ and initialize f(τ |t) = 0, then we
start to simulate the continuous transitions using the ODE solvers. During the
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Fig. 2. Possible connections between HCSPN’s elements
Continuous and stochastic transitions’ connectivity with discrete and continuous

places. Note that discrete places contain nonnegative integer values, while continuous
places contain nonnegative real values.

continuous simulation, f(τ |t) will be increased according to the time evolution
of the ODE presented in (3)

d

dt
f(τ |t) =

∑
j∈Tstoch

gj(m(τ), τ) (3)

where gj(m(τ), τ) is the rate function, which is associated with each stochas-
tic transition and was defined in the aforementioned formal definition of the
HCSPN, and m(τ) is the current marking of the transition’s pre-places. We
repeat the continuous simulation until time τ = s such that f(τ |t) = ξ. The
mathematical derivation which is presented in [ACT+04] proves that a stochas-
tic event will occur at time τ = s, which means that we can execute the stochastic
simulation at that time. Then we update the current marking according to the
fired transitions using the arcs’ weights which connect this fired transition with
their pre-places and then we advance the simulation time. The previous steps
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are then repeated until we reach the end of simulation time. In the following we
present the algorithm in a more formal way.

1. Start by the initial marking m0 and the initial time t = t0;
2. Generate an exponentially distributed random variable ξ.
3. Set g(τ |t) = 0 and simulate the continuous transitions using the ODE solver

starting at time τ = t and progress g(τ |t) according to equation (3)
Until time τ = s such that g(τ |t) = ξ.

4. Perform the stochastic simulation using the discrete transitions.
5. Update the current marking m(t) according to the fired transitions.
6. Repeat steps 2-5 until we reach the end of simulation time .

4 Examples

In this section, we demonstrate by examples how the HCSPN is used to model
biological systems. The two examples which are presented here are: the genes
operons model and the modeling of the role of LL-6R in regulation of early
haematopoiesis.

4.1 Two Genes Operons

In this example, we model two genes operons using the HCSPN class. The origi-
nal model can be found in [MDN+00]. The HCSPN in Fig. 3 describes the tran-
scription of an operon containing two genes. The two genes are represented by
two discrete places, Gene1, Gene2, respectively. The transcription of Gene one is
represented by the transition transcriptionG1, which is a stochastic transition.
This transition is associated with a firing rate function, which determines when
this transition fires. After the transcription took place, an amount of concentra-
tion which represents the mRNA of Gene one is added to the continuous place
mRNA1. This concentration value is equal to the rate function of the continuous
transition, transcriptionG1, multiplied by the weight of the arc connecting tran-
sition transcriptionG1 with place mRNA1. The concentration of the mRNA of
Gene1 can be degradated continuously, when transition deg1 fires, if the value
of the place mRNA1 is greater than zero. A process called translation can take
place depending on the concentration of mRNA. However this process does not
change the concentration’s value of the mRNA1 value. So we choose to connect
them using a read arc.

After the translation process took place, the protein of Gene one which is
represented by the continuous place Protein1 can be degraded, when the tran-
sition labeled Degprotein1 fires. A similar story can happens to Gene two after
the polymerase of the RNA of Gene one into Gene two. The firing rate functions
of the stochastic transitions and the rates of the continuous transitions can be
specified by the user by selecting between a set of kinetic rate functions among
them is the mass action kinetics. This example demonstrate by a simple way the
modeling power of the HCSPN in system biology.
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Fig. 3. Two Genes operon model

4.2 The Role of LL-6R in Regulation of Early Haematopoiesis

After we presented a simple example to illustrate the different elements of the
HCSPN class, in this section we present a more realistic biological example,
modeling the role of a specific cytokine, interleukin-6, in the regulation of early
hoematopoiesis [TTC+06]. Fig.4 shows the modeling of this pathway using the
HCSPN Petri net. Haematopoiesis is a complex phenomena beadings to the
continuous production of all types of mature blood cells. The use of hybrid Petri
nets to model the regulation of early haematopoiesis is motivated by the need
of discrete elements for modeling the cellular evaluation, as well as continuous
elements to model molecular interactions [TTC+06].

Consequently, the model of the IL-6R regulation of the early haematopoiesis
consists of two submodels: the cellular submodel and the molecular one. In the
former the three different cells types, equiescent, permissive, and committed cells
are modeled by three discrete places, Pq, Pp, and C, respectively. Deterministic
transitions are used to model the biological processes which take place between
these cells types. In the later submodel, continuous places model the molecules
involved in the regulation of the haematopoiesis by IL-6, while biological pro-
cesses are modeled using continuous transition. The bright gray arcs represent
the positive feedback loop involving the sLL-6R. Note that in the cellular sub-
model, arcs weight equal to one are not displayed.

The resulting hybrid Petri net model can be simulated ( continuously and
stochastically). Because there are no stochastic transitions in this model, the
stochastic simulation is simplified to simulate the firing of the discrete Petri net
submodel.

5 Conclusions and Future work

In this paper we have presented our research in progress of defining and im-
plementing a hybrid continuous stochastic Petri net class which includes both
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Fig. 4. HCSPN Model of role of LL-6R in regulation of early haematopoiesis

discrete and continuous modeling capabilities of biochemical interactions. The
presented class is intended to model systems which are stiff, i.e contain some
species with high number of molecules as well as species with low number.

Snoopy supports the export of drawn models to many other tools. For the
hybrid class it can be exported to Modelica’s hybrid Petri net library [PB09] for
further simulation.

Our hybrid model is based on fixed partitioning of the biochemical system,
i.e. the reactions are initially divided into discrete and continuous parts. Further
extension of this work aims to permit the dynamic partitioning of the reactions
during the simulation based on some criterias like the number of molecules in
each species or the reaction propensity.
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