
Simulative CSL model checking of

Stochastic Petri nets in IDD-MC

Christian Rohr

Magdeburg Centre for Systems Biology (MaCS), Otto von Guericke University
and Max Planck Institute for Dyn. of Complex Tech. Syst. Magdeburg, Germany

rohr@mpi-magdeburg.mpg.de

Abstract. IDD-MC is a symbolic analysis tool for bounded Stochastic
Petri nets. The restriction regarding the boundedness can be circum-
vented by a simulative approach. Besides that, the simulation is going
to be capable of handling extended Stochastic Petri nets. In this paper
we report on the integration of a multi-scaling stochastic simulation en-
gine into IDD-MC. We present some experimental results which show
the efficiency of our implementation.

1 Introduction

Stochastic models are becoming more and more popular in Systems Biology and
their size increases while the understanding of the modelled networks grows.
Often, the analysis of these systems with exact numerical algorithms is not
feasible anymore. Apart from that, stochastic models with an unbounded state
space can not be analyzed with such techniques at all. Both restrictions can be
circumvented by stochastic simulation.

For modelling biological systems we are using stochastic Petri nets (SPN ). So
we can optimize the quantitative analysis using structural information [HGD08].
The semantics of a stochastic Petri net is defined by a Continuous Time Markov
Chain (CTMC).

Generalised stochastic Petri nets (GSPN ) extend SPN by introducing im-
mediate transitions. These transitions have a higher priority then stochastic
transitions. This means, if an immediate and a stochastic transition are enabled
at the same time, the immediate transition has to fire. One can model very
fast reactions or switch like behavior with such transitions. The semantics of
generalised stochastic Petri nets can be reduced to CTMC.

The class of extended stochastic Petri nets (XSPN ) is based on GSPN , but
introduces deterministic and scheduled transitions [HLGM09]. Both transition
types have the same priority, which is higher than the priority of the stochastic
transitions but lower than the priority of immediate transitions. These transi-
tions are used, e.g, to model external influences, taking place at certain time
points. The use of deterministically timed transitions in extended stochastic
Petri nets destroys the Markovian property [Ger01]. The stochastic simulation
can be adapted in a way that it can handle XSPN .



2 Stochastic Simulation

We implemented the stochastic simulation algorithm (SSA) introduced by Gille-
spie in [Gil77]. The algorithm creates a single finite path through the possibly
infinite CTMC. The computation of such a simulation run (trajectory, path)
needs only to store the current state. The basic idea is as follows.

Given the system is at time point τ in state s. The probability that a tran-
sition tj ∈ T will occur in the infinitesimal time interval [τ, τ + ∆τ) is given
by:

P (τ + ∆τ, tj | s) = hj(s) · e−E(s)·∆τ (1)

For each transition tj , the rate is given by the propensity function hj , where
hj(s) is the conditional probability that transition tj occurs in the infinitesimal
time interval [τ, τ + ∆τ), given state s at time τ . So, the enabled transitions in
the net compete in a race condition. The fastest one determines the next state
and the simulation time elapsed. In the new state, the race condition starts anew.

Algorithm 1 Stochastic simulation algorithm.
Require: SPN with initial state s0, time interval [τ0, τmax]
Ensure: state s at timepoint τmax

1: initRand(seed)
2: time τ := τ0

3: state s := s0

4: while τ < τmax do
5: draw random numbers r1, r2, uniformly distributed on [0, 1)
6: r1 := getURand()
7: r2 := getURand()
8: ∆τ = − ln (r1) /E (s)
9: e := 0

10: for all transitions tj ∈ T enabled at s do
11: e := e + hj(s)
12: if e > r2 · E (s) then
13: s := s + ∆tj

14: break
15: end if
16: end for
17: τ := τ + ∆τ
18: end while

The SSA simulates every transition firing (basically by using Eq. (1)) one at
a time, and keeps track of the current system state. To determine the time incre-
ment ∆τ and to select the next Petri net transition to fire requires to generate
two random numbers (r1, r2) uniformly distributed on (0, 1). Different trajecto-
ries of the CTMC are obtained by different initializations of the random number
generator (line 1). Reliable conclusions about the system behaviour require many
simulations due to the stochastic variance.



The simulative processing of immediate, deterministic and scheduled transi-
tions is rather straightforward, see [Ger01]. In short, the Algorithm 1 needs to
be extended in two ways.

– After every firing of a Petri net transition (line 13), it needs to be checked
whether immediate transitions got enabled. If so, these have to be processed
until no more immediate transitions are enabled. This possibly leads to a
time deadlock, if there exists a cyclic path of immediate transitions.

– Having calculated the next time step (line 8), it needs to be checked whether
a deterministic or scheduled transition gets enabled in the time interval [τ, τ+
∆τ ]. If yes, the one closest to τ is processed and the simulation time will be
set to the value of this transition.

2.1 Model checking.

We use the Continuous Stochastic Logic (CSL) introduced by [ASSB00]. In prin-
ciple the stochastic simulation algorithm allows to check any unnested, time-
bounded CSL formula without the steady state operator [YS02]. The ratio of
the number of fulfilling and total number of runs leads to an approximation of
the desired probability.

To achieve an appropriate accuracy of the results, one has to determine the
required amount of simulation runs. The method of our choice is the confidence
interval as described in [SM08]. The confidence interval contains the property of
interest with some predefined probability, called confidence level. This confidence
level has usually values of 90%, 95%, or 99%. Assuming 95% and an accuracy of
the results of 10−5 leads to ≈ 38, 000, 000 runs.

2.2 Parallelization.

Such a high amount of independent simulation runs requires parallelization.
Because of the independence of the individual simulations runs, parallelization
is straightforward. It basically requires a master, which distributes the work load
on n identical slaves and collects the results.

This scenario can be realized in two different ways:
Multithreading is the method of choice, if the program is meant to run on

a symmetric multiprocessing (SMP) computer, where all processors have access
to the main memory. The master thread creates n worker threads and sets the
required work load for each of them. In the end each worker sends the results
back to the master thread.

Multitasking plays its strength in a distributed memory environment like
computer clusters, where not all memory is available to all processors. In our im-
plementation we use the Message Passing Interface (MPI). That provides special
communication patterns. In the beginning, n processes are created and the mas-
ter uses the “broadcast” operation to distribute the work load on the processes.
When the simulation is finished, the results are collected from the processes. For
that purpose the “gather” operation is used.



3 Case Study

We use the abstract circadian clock model of Barkei and Leiber, introduced in
[BL00]. It shows circadian rhythms which are widely used in organisms to keep
a sense of daily time. More background information can be found in [VKBL02].

a

c

dada_a

drdr_a

ma

mr

r

bind_a

bind_r

deactive

deg_a

deg_c

deg_ma

deg_mr

deg_r

rel_a

rel_r

transc_da

transc_da_a

transc_dr

transc_dr_a

transl_a

transl_r

Fig. 1. SPN of the abstract circadian clock model

We modeled it as a stochastic Petri net (Fig. 1) containing 9 places and
16 transitions. All transitions use mass-action kinetics and the parameters were
taken from [VKBL02]. The Petri net is unbounded, because once a transition
with prefix “trans” got enabled (there are 6 of them) it could create an endless
amount of token on its post place.

The second case study is a gene-regulation network. The Lactose-Operon
model [Wil06] models the transport and metabolism of lactose in bacteria. This
XSPN (Fig. 2) taken from [HLGM09] contains the scheduled transition “Inter-
vention”, which increases the amount of “Lactose” by 10,000 each 50,000 time
units. The Petri net contains 11 places and 17 transitions and is unbounded too.
All stochastic transitions use mass-action kinetics with parameters from [Wil06].

Both case studies are modeled with the generic graph editor Snoopy
[RMH10]. In order to show the scalability of our implementation we decided
to generate averaged traces until time point τ = 100 for the circadian clock
model and τ = 130, 000 for the lac-operon model.



Intervention

[50000,50000,_SimEnd]

Idna
Irna

I
50

Op
Rnap100

Rna

Z

Lactose

20

ILactose

IOp

RnapOp

InhibitorTranscription InhibitorTranslation

Transcription

Translation

Conversion

InhibitorRnaDegradation InhibitorDegradation

LactoseInhibitorDegradation RnaDegradation

ZDegradation

InhibitorBinding_Dissociation

RnapBinding_Dissociation

LactoseInhibitorBinding_Dissociation

10000

Fig. 2. XSPN of the lac operon model

Table 1. Comparison of the runtime for n different workers for the multi-threaded
(MT) and the MPI version. The speedup is given in braces behind the time value. We
created 10,000 simulation runs until τ = 100 for the circadian clock model (index 1)
and 1,000 simulation runs until τ = 130, 000 for the lac operon model (index 2).

Circadian clock Lac operon

n MT1 MPI1 MT2 MPI2

1 15m43s (1×) 20m27s (1×) 5m34s (1×) 7m12s (1×)
2 7m52s (2×) 9m55s (2.1×) 2m49s (2×) 3m33s (2×)
4 4m05s (3.8×) 5m08s (4×) 1m32s (3.6×) 1m50s (3.9×)
8 2m50s (5.5×) 2m33s (8×) 59s (5.7×) 56s (7.7×)

12 2m05s (7.5×) 1m42s (12×) 45s (7.4×) 37s (11.7×)
16 1m42s (9.2×) 1m18s (15.7×) 40s (8.4×) 31s (13.9×)

The experiments considering the multi-threaded version of the simulation
engine were done on a 2.26 GHz Apple Mac Pro with 32 GB RAM and eight
physical (with hyper-threading 16 logical) cores. IDD-MC was build on Mac OS
X 10.5.8 as 64-bit application. The experiments with the MPI version were done
on a cluster with 96 cores distributed on 24 nodes. It was build on CentOS 5.5
as 64-bit application.

Table 1 shows the result of our experiments. The runtime decreases well with
an increasing number of workers. The scaling of the multi-threaded version is
correlating with the number of workers up to n = 4, after that it goes down a
bit. This is due to the 2 processors, each with 4 cores and 8 threads. The MPI
version scales linearly over all settings.



4 Conclusion

We extended the analysis capabilities of IDD-MC [SH09] by implementing a
stochastic simulation engine. We verified the scalability of the parallelized ver-
sions, using multithreading; and multitasking.

For the time being the stochastic simulation only provides transient analysis
and generation of averaged traces. In the future we intend to support unnested
time-bounded CSL formulas without steady state operator. We plan to closer
investigate the possibilities of computing the steady state using stochastic sim-
ulation.

IDD-MC is available for non-commercial use [IDD10]; it includes the MT
version. The MPI version is available on request.

References

[ASSB00] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous-
time Markov chains. ACM Trans. on Computational Logic, 1(1), 2000.

[BL00] N. Barkai and S. Leibler. Biological rhythms: Circadian clocks limited by
noise. Nature, 403:267–268, 2000.

[Ger01] R. German. Performance analysis of communication systems with non-
Markovian stochastic Petri nets. Wiley, 2001.

[Gil77] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
J. Phys. Chem., 81(25):2340 – 2361, December 1977.

[HGD08] M. Heiner, D. Gilbert, and R. Donaldson. Petri nets in systems and syn-
thetic biology. In SFM, pages 215–264. LNCS 5016, Springer, 2008.

[HLGM09] M. Heiner, S. Lehrack, D. Gilbert, and W. Marwan. Extended Stochastic
Petri Nets for Model-Based Design of Wetlab Experiments. pages 138–163.
LNCS/LNBI 5750, Springer, 2009.

[IDD10] IDD-MC Website. A model checker for the Continuous Stochastic
Logic (CSL) of stochastic Petri nets. BTU Cottbus, http://www-
dssz.informatik.tu-cottbus.de/software/iddcsl/latest/iddcsl.html, 2010.

[RMH10] C. Rohr, W. Marwan, and M. Heiner. Snoopy–a unifying Petri net frame-
work to investigate biomolecular networks. Bioinformatics, 26(7):974–975,
2010.

[SH09] M. Schwarick and M. Heiner. CSL model checking of biochemical networks
with interval decision diagrams. In Proc. CMSB 2009, pages 296–312. LNC-
S/LNBI 5688, Springer, 2009.

[SM08] W. Sandmann and C. Maier. On the statistical accuracy of stochastic
simulation algorithms implemented in Dizzy. In Proc. WCSB 2008, pages
153–156, 2008.

[VKBL02] J. Vilar, H.-Y. Kueh, N. Barkai, and S. Leibler. Mechanisms of noise-
resistance in genetic oscillators. Proc. National Academy of Sciences of the
United States of America, 99(9):5988–5992, 2002.

[Wil06] D.J. Wilkinson. Stochastic Modelling for System Biology. CRC Press, New
York, 1st Edition, 2006.

[YS02] H. Younes and R. Simmons. Probabilistic verification of descrete event
systems using acceptance sampling. In Computer Aided Verification, volume
2404 of Lecture Notes in Computer Science, pages 223–235. LNCS 2404,
Springer, 2002.


