Optimised Calculation of Symmetries for State
Space Reduction

Harro Wimmel

Universitdat Rostock, Institut fiir Informatik

Abstract. Since the state space explosion is a common problem when
analysing Petri nets several ways to deal with this problem leading to a
smaller — reduced — state space have been invented. One of them is finding
symmetries, an equivalence relation on places and transitions of a Petri
net, and only evaluating one object from each equivalence class. All other
objects in the same class are then known to yield the same information.
Finding symmetries by brute force is known to be expensive, it is even
unclear if it can be done in polynomial time due to the inclusion of the
graph isomorphism problem. While a first few symmetries need to be
found by brute force, later ones might also be generated. We show how
to generate new symmetries from known ones efficiently, how to tell if
the brute force algorithm enters a branch not containing symmetries, and
how to reduce the symmetries themselves to move towards orthogonality.

Keywords: Petri Net, State Space, Symmetry.

1 Introduction

Tools for state space exploration like LoLA [Woll0] use many techniques to
reduce the state space before exploring it to answer a question. This is due to
the well-known problem of state space explosion, where the size of the state space
can grow exponentially or worse with the size of the system to be analysed. If a
system contains components that are indistinguishable from each other (by the
structure of the system and the question asked about the system) it is obviously
sufficient to analyse one such component only. The result can just be mapped
to an equivalent component then. A mapping maintaining the relation between
components is called a symmetry.

With Petri nets as systems, components are just the places and the tran-
sitions. A symmetry therefore maps each place to some place (possibly itself)
and likewise for transitions, keeping the edges, i.e. a mapped pair of place and
transition has an edge between them if and only if the original pair has that
edge. A symmetry is thus not more than a structure-preserving permutation on
the places and transitions of a net.

Unluckily, the number of symmetries (the size of the automorphism group)
of a Petri net (or any system) can be much larger than the system itself. It is
necessary to find a small set of symmetries (called generator set) from which all

other symmetries may be derived. If the components are ordered and numbered
(say from 1 to n), a generator set consists of n levels and each level ¢ contains one
symmetry for each possible image j of the component i with j > i. Components
with a number less than i are mapped to themselves. Take the Petri net from
Fig. 1 as an example.

ey Ay

t1 t2 t3 t4 t5 t6

Fig. 1. An example Petri net N

If a place p; is mapped to p; then the transition ¢; is mapped to ¢; due
to the structure of the net (each place has only one successor transition). If
we thus use just the number of a place/transition instead of its name, we may
obtain the following generators: the identity for level 1, (2 3) and the identity
for level 2, (4 5 6), (4 6 5) and the identity for level 3. Only components mapped
to different components are shown explicitly in this notation, and each one is
mapped to the next inside the parentheses (the last to the first). For level 2 there
are two replacement candidates for (2 3): (2 3)(4 5 6) and (2 3)(4 6 5). Any one
of these three is sufficient. It can be shown (see e.g. [Sch02]) that any symmetry
o can be written as the composition of some generators g;, one from each level
i,by o =g10g20...00.

While LoLA seems to implement an algorithm (called Refine*/Define in
[Sch02]) that runs in polynomial time in practical cases, this cannot be guaran-
teed due to the inclusion of the graph isomorphism problem for which member-
ship in P is unknown. Therefore, it is important to rely on such an algorithm
(that builds generators from scratch) as seldom as possible and use already
known generators instead to derive new ones when possible. To a certain extent,
LoLA already does this by composing generators with themselves, building pow-
ers, and checking whether these powers can fill the gaps where generators are
still missing. In the following, we show how this can be improved.

2 Basic Definitions

We assume Petri nets, formally a tuple (P, T, F) with F: (PxT)U(T x P) = N,
to be known to the reader. We also expect some knowledge about linear algebra,
especially the definition of a group, and start now by defining symmetries.

Definition 1 (Symmetry). Given a net (P,T,F), a symmetry o is a map o:
PUT = PUT with o(P) =P, o(T) =T, and F(o(z),0(y)) = F(x,y) for all
x,ye PUT.

We might also be interested in a (initial or final) marking m, in which case
m(o(p)) = m(p) must hold additionally for all p € P. A symmetry o is written
in the style (a11...a1j,)...(an1 ... anj,) Where 0(aim) = @i (m mod ji)+1-

In the following we assume a fixed Petri net N = (P, T, F'), a fixed bijection
b: PUT — {i e N|1 < i < |PUT|} and identify the places and transitions of
N with their images under b.

Definition 2 (Generator, level, orbit). A symmetry g for level lev(g) = i
(1 <i<|PUT)|)is a symmetry with g(k) =k for all k < i. The number g(i) is
called the orbit of g. Each level i also has orbits, numbered from i to |[PUT|. An
orbit k of level i is consistent if there is a symmetry g for level lev(g) = i with
an orbit g(1) = k, otherwise the orbit is called inconsistent or empty. Define G;
to be the group of all symmetries for level ¢ (with G; O Giy1). On the other
hand, a generator set G consists of one symmetry, called generator, g;; for each
level i and each consistent orbit j on that level.

Corollary 1 ([Sch02]). Let G be a generator set. Each symmetry g for level
i can be expressed as a consecutive composition of one generator g; € G from
each level j > 1.

Corollary 2 ([Sch02]). There is an algorithm Refine*/Define taking a level i
and an orbit k as input and producing a symmetry g for level i with g(i) = k
if such a symmetry exists. Otherwise, the algorithm terminates with the result
“inconsistent”.

3 Inheriting Inconsistency

Inconsistencies are obviously the worst result that can be obtained from the Re-
fine*/Define algorithm. They waste time and do not even produce a generator.
Once we know of an inconsistent orbit for some level, we may use this informa-
tion to find other inconsistent orbits without the Refine*/Define algorithm. An
equivalence relation for places/transitions can be helpful here.

Definition 3 (Equivalence of components). Let G be a generator set and
i some level. For x,y € PUT we define an equivalence relation v =; y <=
dg € G;: g(x) = y.

Note that =; being an equivalence relation follows from the fact that G; is a
group with identity, an inverse, and composition as group operation.

Lemma 1 (Inheritance). For level i, let k be an inconsistent orbit and n be
a consistent orbit. Then, n #; k.

Proof. Assume n =; k, then there is g € G; with g(n) = k. Let ¢’ € G be the
generator for level ¢ with ¢'(i) = n. Then, g(¢'(i)) = k and ¢’ o g € G; has the
orbit k. A contradiction, as no symmetry g” for level ¢ with ¢”(i) = k exists.

Looking from the other side, this means every orbit m with m =; k£ must be
inconsistent. It is therefore unnecessary to call the Refine*/Define algorithm for
orbits equivalent to k. In our example from the introduction, all orbits k& > 1
on the first level are inconsistent, since p; can only be mapped to itself by any
symmetry. If we know that the orbits 2 and 4 are inconsistent, we conclude
from the generators (2 3) and (4 5 6) (from levels 2 and 3) that 2 =; 3 and
4 =1 5 =1 6. We save three calls to Refine*/Define.

4 Building Products

LoLA so far takes a newly acquired generator g for level i and calculates the
powers g2 = go g, g%, ¢g*, and so on, until g"(i) = i holds. If one of the powers
has an orbit for which no symmetry has been found so far, the power is saved
as the new gnerator for that orbit. Further powers do not yield anything new as
g™ has the same orbit as g! = g.

Instead, we propose building compositions of any new generator with any
generator found so far until no new generators are derived anymore. This looks
like a losing approach at first as there are by a linear factor more such products
than powers. But note that in the powers approach O(n) (with n = |P UT))
powers must be calculated until g™ (¢) = 4 holds and each composition done also
needs O(n) (the size of the map). The powers approach therefore looks quadratic.

Lemma 2 (Complexity of product testing). Let g € G; and ¢’ € G; with
j > 1. A test if the composition g o g’ leads to an orbit for which no generator
has been found so far can be done in O(1).

Proof. We check if there is a generator for level ¢ with orbit ¢’(¢g(¢)). This takes
O(1) time. If there is none, g o ¢’ will be the new generator for level ¢ and orbit

9'(9(2))-

Note that this simple test is useless for the powers. We would test and then
calculate the composition anyway, independently of the test’s result, when we
need the next, higher power.

What is important here is that a newly found generator for level i is composed
only with generators of a higher level. To guarantee this, the levels have to be
filled with generators from highest to lowest. This is the way it is done in LoLA
anyway: LoLA uses a recursion from easier to harder problems, and higher levels
represent the easier problems (as more elements are mapped to themselves).

If we try to calculate a complexity for our approach and (falsely) assume that
the size of a generator set G is roughly equal to |P U T| we obtain O(n?) tests
(for pairs of generators in G) with complexity O(1) each and O(n) compositions
with complexity O(n) each. This would suggest a quadratic complexity just like
for the powers’ calculation. There are examples where the size of the generator
set is much higher as well as those where it is much lower than |P U T, so the
real complexity comparison is much more difficult.

In general, the product approach will produce more new generators in a
single call than the powers approach, but this depends on the structure of the
automorphism group. If the order of generators (the lowest power yielding the
identity) is lower than the number of orbits on some level, it is impossible to fill
all orbits in a single call of the powers approach. Since products are iterated, from
them the whole subgroup spanned by all known generators could be computed.
This can mean an exponential gain compared to the powers, e.g. in groups with
p"™ elements (p prime) where gP is the identity for all symmetries g. By powers
at most p — 1 new generators can be built from each call to Refine*/Define,
while with products the group spanned from the known generators increases by
a factor of p for each call.

5 Minimizing the Carrier

Our last optimisation does not deal with the finding of generators but with
the size of their representation. While a smaller size might reduce execution
times there may be other benefits. Let two generators g,g’ be orthogonal if
9(i) # i = ¢'(i) = i, then g and ¢’ can be composed without effort. The set
{i]g(i) # i} is called the carrier of g. Conclusions drawn about the carrier of g
cannot be influenced by ¢’ and are thus valid for g o ¢’. While orthogonality is
unreachable in general, we may still try to minimize the carrier of any generator
g. Candidates that may have a smaller carrier are easy to find:

Corollary 3. If g is a generator for level i and orbit k andn > 0 is the smallest
integer with g" (i) = i, then, from all powers of g, exactly the g’"*! (for j € N)
are generators for level i and orbit k.

Take e.g. the cycle representation of one of the generators for the Petri net
from Fig. 1: ¢ = (2 3)(4 5 6). If we take g as generator for level 2 and orbit 3
then (2 3) is the orbit cycle of g (it contains level and orbit). Its length is n = 2,
i.e. g2(2) = 2. Thus, reduction candidates are g>*! = (2 3), g**! = (2 3)(4 6 5),
g%t = ¢! and so on. Since 2 4 1 = 3 is divisible by the length 3 of the second
cycle (4 5 6), this cycle is eliminated in g3 (¢3(i) = i for i = 4,5, 6 and identities
are not shown in cycle representation). In general, the following holds.

Lemma 3. Let g be a generator with an orbit cycle o = (o9 ...0;—1) and an-
other cycle ¢ = (co,...,em—1). Let k be the greatest divisor of m such that i and
k have a greatest common divisor (gcd) of one. Then, in git4™ (for ¢ € N) the
cycle ¢ is replaced by k cycles of length m/k and there is no power of g having
the same orbit cycle and shorter replacement cycles for c.

Proof. Just note that gk(c(n_”k) mod m) = C(n+(¢+1)k) mod m and for £ = 72 —1 for
the first time gk (C(n+ék) mod m) = gk (C(n+m—k) mod m) = Cntm mod m = Cpn holds.
If we choose k a greater divisor of m, there can be no j such that & divides ji+1,
since the ged of k and i also divides ji (and not ji + 1). Since a divisor of k also
divides k + gm, k + gm = ji + 1 is impossible, i.e. if ged(i, k) > 1, gFTe™ will
not preserve the orbit cycle.

Thus, for k + gm = ji + 1 the cycle c is reduced as far as possible and at
the same time the orbit cycle stays intact. It is unnecessary though to solve
this equation as the proof of lemma 3 already tells us how the cycle ¢ will be
modified.

6 Experimental Results

The approach of building powers of generators can already be optimal, as it hap-
pens e.g. with the dining philosophers and reader/writer systems. Experiments
for these examples show a worst case slow down of 1 — 2% in execution times
from the powers approach to our new optimisations. This supports our earlier
assumption that building products is not (much) slower than building powers.

A good example to show the difference between old and new approach is the
hypercube ECHO [Rei98], a grid-like network with d dimensions and n com-
municating agents per dimension. The value of detecting inconsistencies can be
shown with the nets N;, where N3 = N from Fig. 1, and each higher index adds
a new ring with 4 places and transitions each. Execution times for computing
the symmetries are shown in Table 1.

ECHO|#symm|#gen| Old| New N;|#gen| Old| New
3/3 48 10/ 0.2s|<0.1s Nio 45(<0.1s|<0.1s
3/5 48| 10]4.6s| 2.9s Nis| 105 0.4s| 0.2s
3/7 48 10| 29s| 16s Nao| 190| 2.4s| 1.3s
4/3 384| 21|3.5s] 1.6s Nos| 300 8.2s| 4.4s
4/5 384 21|244s| 96s Nso| 435 25s| 13s
5/3 3840 41| 82s| 23s Nss| 595 66s| 34s

Table 1. Results for ECHO d/n with numbers of symmetries and computed generators
as well as execution times for old and new approach and nets N; consisting of ¢ cycles
of lengths from 1 to ¢

7 Conclusion

Theoretical observations and experimental results have shown that finding and
using symmetries can be optimised beyond the current state of affairs represented
by LoLA. Using products and an equivalence to detect inconsistencies leads to
a clear speed up in not already optimal cases.

References

[Sch02] K. Schmidt: Ezplicit State Space Verification, Habilitation Thesis, Hum-
boldt Universitat zu Berlin, 2002.

[Wol10] K. Wolf: LoLA — A low level analyzer, http://www.informatik.uni-

rostock.de/ ~ nl/wiki/tools/lola, 2010.
[Rei9g] W. Reisig: Elements of Distributed Algorithms, Springer Verlag, 1998.

