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Abstract. We sketch an undecidability result concerning the decentralized con-
trollability problem of open nets and discuss some consequences.

1 Introduction

During the last years, we have used open nets (Petri nets with distinguished interface
places) as a formal model for the behavior (protocol) of services [Wol09b]. Open nets
can also be used as a tool in divide-and-conquer approaches to Petri net verification
[Zai06,OWW10]. For this class of nets, it is interesting to study the interaction with
their environment [Wol09a]. To this end, various notions of controllability [RW87] are
in the main focus. So far, we concentrated on centralized controllability which asks
whether there is a (monolithic) environment that can be composed in such a way to the
given open net that the overall system is deadlock free or deadlock free and livelock
free. In both cases, we were able to come up with decision procedures [LW10a] in the
case where the given net has finitely many states while we showed undecidability for
the case that the given open net is unconstrained [MSSW08].

Decentralized controllability is applied to an open net that has a partitioned inter-
face. The question is: is there a tuple of environments, each communicating with one
part of the interface and not directly communication with each other, such that the
overall system is deadlock free or deadlock and livelock free? In [Wol09a], we gave a
procedure only for the case that N does not run into cycles, i.e. never visits states twice.
Decentralized controllability is a very useful notion as several practically relevant prob-
lems can be reduced to it:

– Adaptibility [GMW10]: Given a service S and a specification of elementary activi-
ties that specify the general space of actions of any adapter, is there another service
R such that S and R can be made compatible by a mediating adapter? In this setting,
the service R and the control unit of the adapter form a decentralized controller of a
system consisting of S and the implementation of the possible elementary activities
of the adapter.

– Realizability [LW10b]: Given a choreography (i.e. a language of event sequences
to happen on the wires), are there services that interact in such a way that the
observed communication fits to that language? In this case, the choreography can be
transformed into an open net which has the tuple of realizing services as controller.

The notion of decentralized controllability must not be mixed up with the one of
autonomous controllability. In the latter notion, the question is whether a decentralized



controller can be found in such a way that the different parts are not even coordinated
at build time.

In this paper, we consider decentralized controllability for the setting where we want
to enforce deadlock freedom and livelock freedom on the overall system. We further
rule out cotrollers where, at any stage of communication, more than a given number
k of tokens is pending on a message channel and we rule out unbounded open nets as
these would be covered by the undecidability result of [MSSW08]. These restrictions
ensure that the overall system is finite state and the undecidability result of [MSSW08]
does not cover the setting.

To our best knowledge, undecidability of the mentioned problem has not been
shown before while similar problem have been studied. Tripakis shows [Tri04] undecid-
ability of decentralized controllabilty in a different setting. For his problem, the actual
correctness property to be enforced by the synthesized controller is a parameter that is
part of the input (in the shape of a regular language of events) while we consider the
fixed setting of deadlock and livelock freedom. His undecidability result relies on cod-
ing Post’s Correspondance Problem (PCP) into the mentioned language. Bontemps and
Shoppens show [BS07] undecidability of the distributed realizability of a Life Sequence
Chart (LSC) specification. Peculiarly, their setting permits communication between the
distributed agents to be synthesized. In our situation, permission of direct communi-
cation between the distributed parts of the environment would immediately permit the
conclusion that an open net is decentralized controllable if and only if it is centralied
controllable. As we know that centralized controllability is decidable in our case, we
conclude thet the setting of [BS07] includes some, maybe implicite, assumptions that
are not compatible to our setting. In their argument, however, they as well use a reduc-
tion of PCP as their main argument.

Consequently, it is not surprising that our proof relies on a reduction from PCP
as well. However, the particular execution of the reduction differs significantly. While
Tripakis codes the PCP instance into the language used as a correctness criterion, Bon-
temps and Schoppens present the distibuted agents with a challenge generated from
a nondeterministically selected PCP instance that is not solvable iff the PCP instance
has a solution. We generate a controlling distributed strategy from a solution of a PCP
instance and use the given open net as a verifier of that instance.

2 Open nets

In this section, we introduce the notion of open nets. The notion syntactically deviates
a bit from earlier presentations. It is, however, semantically equivalent.

An open net extends a usual place/transition net [P,T, F,m0] with the following
ingredients:

– A set M of message shapes,
– An interface I which is a set of pins partioned into ports Πi (I = Π1 ∪ . . . ∪ Πn,
Π1 ∩ Π j = ∅ for i , j); a pin is a pair [m, d] where m ∈ M and d ∈ {i, o},

– A set Ω of final markings.
– A partial labeling that assigns a message shape to some of the transitions.



i and o represents incoming and outgoing messages, respectively. For a pin [m, d],
define the notion of a dual pin [m, d] by [m, i] = [m, o] and [m, o] = [m, i]. For the
interface of an open net, we require that, for all pins [m, x], [m, x] ∈ I implies [m, x] < I.
For a port Πi, let the dual port Πi = {[[m, x] | [m, x] ∈ Πi}.

A set of open nets N1, . . . ,Nk is composable iff, for all m and x, [m, x] ∈ Ii and
[m, x] ∈ I j implies i = j (each connection is purely bilateral), and, for each pair of pins
in the same port, their dual pins belong to the interface of the same net, or none of the
dual pins belongs to any interface (ports signal communication with the same partner).

For composable open nets, the composition is built by

– building the disjoint partition of the places, transitions, and arcs of the involved net
(if necessary by renaming);

– introducing additional places for all those pins where both pin and dual pin occur
in some interface;

– inserting an arc from a transition t labeled m to the place inserted for m if [m, o]
occurs in the interface of the net containing t,

– inserting an arc from the place labeled m to a transition t labeled with m if [m, i]
occurs in the interface of the net containing t,

– removing the labels of all such connected transitions,
– letting the new ports be exactly those ports whose pins are not matched with dual

pins in other nets,
– letting the initial marking be the disjoint partition m0 = m01⊕ . . .⊕m0k, i.e. m0(p) =

m0i(p) for the unique i with p ∈ Πi,
– letting Ω = {m1 ⊕ . . . ⊕ mk | mi ∈ Ωi}.

We study the following decentralized controllability problem: Given some number
k, open net N with ports Π1, . . . , Πn, do there exist open nets N1, . . . ,Nn where each Ni

has Πi as its only port such that N ⊕ N1 ⊕ . . . ⊕ Nn is a k-bounded Petri net which is
weakly terminating, i.e. from each reachable marking, a final marking is reachable?

3 Undecidability of Decentralized Controllability

In this section, we present a reduction of PCP to our setting of decentralized controlla-
bility. In PCP, we are given a set d1 = [u1, v1], . . . , da = [ua, va] of pairs of words over
some fixed alphabet Σ. The problem is to decide whether there exists a finite word w
over {d1, . . . , da} such that w[d1←u1,...,da←ua] = w[d1←v1,...,da←va]. It is well known that PCP
is undecidable.

We prove:

Theorem 1. If our decentralized controllability problem is decidable then PCP is de-
cidable.

We argue by translating an instance of PCP to an open net such that the PCP instance
has a solution if and only if the open net is decentralized controllable. The idea is to
design the open net such that the environment must be built from a candidate solution
and leads to termination of the overall system if and only if the candidate solution is
indeed a solution. Our open net is designed to have two ports, U and V . From port



U, we expect a sequence di1 ui1 di2 ui2 . . . followed by a concluding # while from V we
expect a sequence di1 vi1 di2vi2 . . . followed by a concluding #.Together, the sequences
should form a candidate solution for the PCP. Thus, U has input pins corresponding
to Σ ∪ {d1, . . . , da} ∪ {#}. Correspondingly, V has input ports corresponding to Σ ∪
{d1, . . . , da} ∪ {#} as well which need to be renamed bijectively in order to meet the
syntactical constraints on pins. For each port there is a single output pin representing
the acknowledgment of a received message.

The constructed open net behaves as follows: Whenever it sees more than one mes-
sage in any of the two ports, it immediately moves into some deadlock or trap mark-
ing. This way, the partners are forced to send their content consecutively. Second, after
having processed a message, it sends an acknowledgment to the sender. This way, the
partners know when to savely send the next element of their candidate string. In the core
part, the constructed net verifies the presented candidate strings. Verification includes

(1) Checking whether the candidate strings indeed correspond to a sequence of pairs
of the given PCP instance;

(2) Checking whether the concatenation of the ui is equal to the concatenation of the
vi.

A finite state system cannot check both items concurrently. The reason is that, in
intermeadiate steps, a substring u1 . . . ub may have a different length than a correspond-
ing substring v1 . . . vb. The length difference may exceed any finite bound even if the
substrings can be complemented to a solution of PCP. In the most popular proof of
undecidability of PCP, the difference between u1 . . . ub and v1 . . . vb is used to code a
comple Turing machine configuration including the state of the tape.

For this reason, the idea is to start with an internal nondeterministic decision and
then to check only one of the above items. As the internal decision is not communi-
cated to the environment, the partners can only control the open net by meeting both
requirements.

If the internal decision is in favour of checking (1), the first input message on both
ports is the identifier of some pair. If these identifiers are different or some other mes-
sage is sent, we let the open net proceed into a deadlock. Otherwise, there is a branch
depending on the pair identifier di and the open net matches the input on U with the
sequence ui and the input on V with vi. This is clearly doable in a finite state fashion. If
after that check there is # on both ports, the open net proceeds to a final state, otherwise
it returns to the state where it expects the next path identifier.

If the decision is in favour of the second item, the open net checks whether the
same letters are present in both ports. Thereby, all seen pair identifiers are ignored
(i.e. acknowledged for stepping to the next input). If, at some stage, there appear # on
both ports, we proceed to a final state. If a # appears on only one port, we proceed to a
deadlock state. Otherwise, we continue forever.

At no time, any of the distributed partners is able to make educated guesses about
the outcome of the internal decision between (1) and (2). In both cases, the individ-
ual communication is a straight alternation between inputting a letter of the candidate
string and an acknowledgment. Any deviation from this procedure comes at the risk of
deadlock if the open net is in the opposite mode.



4 Discussion

There is a few interesting questions that appear immediately.

First, what is the difference if we present the constructed net to a centralized en-
vironment? In the previous section, one crucial argument was that the partners cannot
“sense” the outcome of the internal decision of the constructed open net. It turns out that
a centralized partner is in fact able to sense that outcome in sufficiently many cases. This
ability relies on the already mentioned difference between the lengths of substrings of
the ui and the vi. If the open net is in mode (1), it processes its input such that it syn-
chronises along the pair identifiers. That is, assuming that the length of the sequence
of the ui is longer than the one on the vi, it proceeds farther into U than into V . Tech-
nically, “proceeding farther” corresponds to acknowledgements sent to U earlier than
acknowledgnments to V . If the open net is in mode (2), it synchronises along letters
of the alphabet, i.e., it would send acknowledgments for subsequent pairs on V before
finishing acknowwledgements on U. This way, the outcome of the internal decision be-
tween (1) and (2) becomes visible to the partner at least on those PCP instances where
all solutions go through intermediate steps with greatly diverging lengths between the
ui and vi sequences. Once having recognised the mode of the open net, the partner can
now react with nonstandard strategies. In mode (1) the partner can finish after having
sent a complete pair even if the two sequences do not match. In mode (2), the partner
canm send some matching letters on U and V even if there is no corresponding PCP
pair. Hence, the constructed open net would not establish a valid PCP reduction.

Second, what about using only deadlock freedom as a correctnes criterion? Again,
the used constructive ides does not work. If deadlock freedom is the only criterion, the
distributed partner may choose an infinite sequence of pairs where, for all finite prefixes,
the sequence of the ui matched the corresponding initial segment of the vi. There exist
PCP instances with that property which do not have solutions. They can be built from
nonterminating Turing machines using the translation used in the well known reduction
of the halting problem to PCP. Although the PCP has no solution, the partners provide
input forever without failing in the (1) or (2) checks. It is evident, that it is impossible
to add another finite state check that identifies the nontermination of the input as this
would require reasoning about the halting problem of Turing machines. We conclude
that decidability of decentralized controllabillity w.r.t. deadlock freedom is still open.

Third, what about the autonomous setting? It is easy to see that the two partners are
build-time coordinated. If they want to control the constructed open net, they have to
agree on some PCP solution (although they do not communicate with each other while
feeding it into the open net). In the autonomus setting, there is no reason to believe that
there is any canonical choice for the individual partners that composes to a strategy.

Gven the importance of decentralized controllability for interesting problems like
adaptability of realizability, the floor is now open for proposing approximations or solu-
tions for subclasses of open nets. As one of the core aspects in our proof was the initial
hidden choice between (1) and (2), a closer look into the disclosure of internal choices
to the partners may be an interesting starting point.
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