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Abstract. Before a system is built in Service Oriented Computing from interact-
ing services, it is modeled and verified with regard to different behavioral cor-
rectness criteria, among others, deadlock freedom. For this purpose, open nets
as a special class of Petri nets are frequently used. In this paper, we present and
compare three formalizations of when two services interact deadlock freely. We
specifically highlight subtle details of existing formalizations and propose a new
formalization that matches the intuition in every case.

1 Introduction

In the context of Service Oriented Computing, a system is built from interacting ser-
vices ([4]). A service is a well defined, self-contained component that provides standard
business functionality which is accessible via a standardized interface. It interacts with
other services through communication, while being independent of their state or context
([1]). Best engineering practice suggests a system to be modeled before it is physically
built. Open nets ([3]) are a special class of Petri nets, which have been proven notably
helpful in modeling the behaviour of open systems, e.g., services.

There exist well-developed methods to analyze the behavior of a service modeled as
open net with regard to different correctness criteria ([6]), among others, deadlock free-
dom. Intuitively, a deadlock describes an unwanted situation in which further progress
in relevant (but not necessarily all) parts of a system is impossible. A system reaching a
deadlock is typically considered malfunctioning. This makes the absence of a reachable
deadlock, i.e., deadlock freedom, desirable behavior. We call two services deadlock free
partners if they interact deadlock freely. There exist various formalizations of deadlocks
and deadlock free partners in the model of open nets ([2], [6]). In this paper, we present
and analyze two existing notions and highlight deficits of these notions arising in subtle
situations. Based on these insights, we propose a new formalization of deadlock free
partners which overcomes these deficits. We finally compare all three notions.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce basic
concepts of Petri nets and our formal model for services, i.e., open nets. Then, in Sect. 3,
we present three different formalizations of deadlocks and deadlock free partners. Sec-
tion 4 is devoted to the comparison of the different notions. Finally, Sect. 5 concludes
the paper and gives directions for future work.

2 Preliminaries

In this section, we recall open nets as a Petri net model for services. We start from
marked net structures, i.e. place/transition nets, with the usual meaning of the con-



stituents and the standard firing rule. We assume the standard notions of markings, en-
abledness, firing, and reachability in Petri nets. Otherwise, see [5] for an introduction.

Definition 1 (open net structure, partner structures, composition). Let N =(P,T,F)
be a net structure and let I, O be two disjoint sets of places of N, such that •I = O• = /0,
and the environment •t ∪ t• of each transition t of N contains at most one node of
I∪O. Then N together with (I,O) is an open net structure. (I,O) is the interface of N,
IP(N) =def I ∪O is the set of interface places of N, and nodes in IP(N)∪ I• ∪ •O are
interface nodes of N, opposed to inner nodes of N.

For i = 1,2 let Ni = (Pi,Ti,Fi) together with the interface (Ii,Oi) be open net struc-
tures. Without loss of generality, we assume each node x shared by N1 and N2 be an
interface place: Otherwise, replace x by different instances in both open net structures.
N1 and N2 are partner structures iff I1 = O2 and I2 = O1. The composition of N1 with
N2 is the open net structure N1⊕N2 =def (P1 ∪P2,T1 ∪ T2,F1 ∪F2) together with the
interface (I \O,O\ I), where I = I1∪ I2 and O = O1∪O2.

Inner nodes model a service’s business functionality and interface nodes model a ser-
vice’s standardized interface. The concept of partners expresses two services’ capability
of proper communication. On the level of open nets, communication of two partners N1
and N2 is the firing of an interface transition of N1 or N2 in their composition N1⊕N2.
Additionally, we distinguish situations which N1 and N2 shall reach together, i.e., target
markings.

Definition 2 (open net, partners). Let N be an open net structure, let m be a marking
of N with no interface place marked, and let Ω be a set of markings of N with no
interface place marked. Then N together with m and Ω is an open net, with m the initial
marking of N, and Ω the set of target markings of N.

Let N1 and N2 be two open nets with initial markings m1, m2 and target markings
Ω1, Ω2, respectively. N1 and N2 are partners iff N1 and N2 are partner structures. The
initial marking m of N1⊕N2 is defined by m =def m1 +m2, the target markings Ω of
N1⊕N2 are Ω =def {m1 +m2 | m1 ∈Ω1,m2 ∈Ω2}.

We depict the interface of an open net N by drawing its interface places on a dashed
rectangle which contains all inner nodes and interface transitions of N. If N has exactly
one target marking m, we indicate a place p of N with ω if and only if p is marked
in m. See Fig. 1 for some examples. For an open net N, its inner structure inner(N) is
defined by removing the interface places of N, and restrict its initial marking and target
markings accordingly.

3 Deadlocks

In the rest of this paper we assume freely chosen partners N and P. We shall com-
pare several deadlock notions for open nets by means of N and P being deadlock free
partners. Intuitively, deadlock free interaction is the avoidance of unwanted situations
in which further progress in relevant parts of a system is impossible. In the model of
open nets, we formulate this as follows: Whenever one relevant part, i.e., N or P, of the
system N⊕P stops, than there is a wanted situation, i.e., a target marking, reachable



in N ⊕P, or N and P will eventually communicate again. Massuthe [2] uses the no-
tion of a dead marking to define a deadlock of two interacting services. This definition
discriminates between target and non-target dead markings, the latter ones must not be
reachable.
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Fig. 1. The open nets N, P and Q. N and P are DFPM-partners, N and Q are not.

Definition 3 (dead marking, deadlockPM , DFPM-partners). A marking m of N is
dead in N iff no transition of N is enabled in m. A dead non-target marking of N is
a deadlockPM of N. P is DFPM-interacting with N (synonymous to N and P are DFPM-
partners) iff no reachable marking of N⊕P is a deadlockPM of N⊕P. We write DFPM(N)
for the set of all open nets DFPM-interacting with N, and DFPM for the set of all DFPM-
partners.

For example, the open net N (Fig. 1(a)) models a service which is able to receive a
query (input place q), and then either replies to the query (output place r) or denies
access (output place d). Afterwards, the service can terminate in the target marking
[p3]. Typically, the decision between reply or denial is made depending on data inside
the received query. As we abstract from data in open nets, we model the decision’s
outcome using non-determinism (interface transitions t2 and t3). The open net P (Fig.
1(b)) is DFPM-interacting with N: Whether N sends a reply or denial, P is able to receive
it. Thus, the only marking of N ⊕P with no transition enabled is the target marking
[p3,q3] of N⊕P, i.e., [p3,q3] is no deadlockPM . In contrast, the open net Q (Fig. 1(c))
is not DFPM-interacting with N: There are two deadlocksPM , [p3,r,q2] and [p3,d,q2],
reachable in N⊕Q.

Massuthe’s definition provides a good first impression on how to formalize dead-
locks in open nets. However, it is not precise enough. As an example, consider the open
net R (Fig. 2(a)), which originates from Q by adding an inner loop (transition t5). R
is as malfunctioning as Q: Two markings, [p3,r,q2] and [p3,d,q2], are reachable in
N⊕R, such that neither N nor R is in a target marking, and they will never commu-
nicate again. Intuitively, N and R should not be deadlock free partners. Nevertheless,



R is DFPM-interacting with N, i.e., N and R are DFPM-partners. This example shows
a general drawback of Definition 3: Every open net N has at least one open net M
which is DFPM-interacting with N. M consists of an interface that is compatible with
N’s interface, and an inner loop without communication. Wolf [6] refines Massuthe’s
notion and introduces responsiveness of open nets to overcome endless loops without
communication 1.

Definition 4 (responsiveness, DFKW -partners). An open net N is responsive iff, from
each reachable marking in inner(N), a marking is reachable in inner(N) which is a
target marking or which enables an interface transition of N. P is DFKW -interacting
with N iff P is responsive and no reachable marking of N⊕P is a deadlockPM of N⊕P.
N and P are DFKW -partners iff N is DFKW -interacting with P and P is DFKW -interacting
with N. We write DFKW (N) for the set of all open nets DFKW -interacting with N, and
DFKW for the set of all DFKW -partners.
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Fig. 2. Another three open nets R, S and T .

Responsiveness rules out some intuitively unwanted interacting open nets with end-
less loops without communication (like R in Fig. 2(a), which is not DFKW -interacting
with N), but unfortunately not all. Figure 2 depicts an example. The open net S (Fig.
2(b)) is responsive and DFKW -interacting with N. However, we would intuitively clas-
sify the reachable marking [p3,d,q2] of N⊕ S as a deadlock: Neither N nor S is in a
target marking, and they will never communicate again. Additionally, responsiveness is
a rather strong restriction on partners. Intuitively, N and the open net T (Fig. 2(c)) are
deadlock free partners: N⊕ T has no reachable marking which enables transition t7.
Nevertheless, T is not responsive and not DFKW -interacting with N according to Def. 4.

1 Additionally, Wolf restricts Def. 4 to bounded open nets and bounded communicating partners
for decidability reasons [3]. As we just compare the notion of deadlocks and deadlock free
partners (whether decidable or not), we do not employ this restriction.



In order to overcome those drawbacks, we propose a new, third definition of dead-
locks and deadlock free partners. Our definition is based on the observation that a dead-
lock of two interacting services N and P is intuitively described from the view of one
of the involved services, e.g., N, by three facts: (1) N is in an unwanted situation, (2)
further progress in N⊕P by N alone is impossible, i.e., there is a need for interaction
of P with N, and (3) P will never interact with N anymore. Therefore, we propose to
describe deadlocks in open nets locally, i.e., from the view of one service, rather than
from a global point of view on both partners. We do so by using the target markings of
only one of the involved open nets, and by considering silent markings, which capture
the absence of further communication between the partners.

Definition 5 (silent marking, deadlockRM , DFRM-partners). A marking m of N⊕P is
silent in N⊕P iff for all markings m′ of N⊕P reachable from m holds: At most inner
transitions of P are enabled in m′. A silent marking m of N⊕P such that m|N is no target
marking of N, is a deadlockRM of N⊕P. P is DFRM-interacting with N iff no reachable
marking of N⊕P is a deadlockRM of N⊕P. N and P are DFRM-partners iff N is DFRM-
interacting with P and P is DFRM-interacting with N. We write DFRM(N) for the set of
all open nets DFRM-interacting with N, and DFRM for the set of all DFRM-partners.

Notice the discrimination between wanted and unwanted situations by means of N’s
target markings instead of N⊕P’s target markings like in Def. 3 and 4. Definition 5
matches our intuition in every previously mentioned example: N and P as well as N and
T are DFRM-partners, whereas all other partners are not.

4 Comparison

In this section, we shall compare Definitions 3, 4, and 5 in terms of the characterized
deadlock free partners, and the complexity of the notions. Given an open net N, the set
of open nets deadlock freely interacting with N generally differ, depending on which
definition of deadlock free interaction is employed. Every open net DFKW -interacting
with N is DFPM-interacting with N as well, the opposite is not true (see R and S in Fig.
2 for an example). An open net DFRM-interacting with N can be DFPM-interacting with
N, DFKW -interacting with N, or neither. Consider Fig. 3(a) for an illustration of above
coherences as Venn diagram.

An open net DFRM-interacting with N, which is not DFPM-interacting with N, may
seem counter-intuitive for a notion of deadlock free partners. However, Def. 5 says
DFRM-partners have to be mutually DFRM-interacting with each other, therefore every
two DFRM-partners are DFPM-partners as well. Again, this matches our intuition. Every
two DFKW -partners are DFPM-partners. The sets of all DFKW -partners and all DFRM-
partners lie diagonally: There exist DFKW -partners, which are no DFRM-partners (e.g.
the open nets N and S in Fig. 1(a) and 2(b)), and vice versa (e.g. the open nets N and T
in Fig. 1(a) and 2(c)). Figure 3(b) depicts above coherences.

All three presented formalizations differ in how complex it is to check whether two
given open nets N and P are deadlock free partners or not. Checking according to Def.
4 is more complex than according to Def. 3, as responsiveness of N and P has to be
checked additionally. Checking according to Def. 5 is more complex than according
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Fig. 3. The sets of open nets deadlock freely interacting with N (Fig. 1(a)), and the sets of dead-
lock free partners.

to Def. 4, because it is more complex to check if a marking m of N⊕P is silent than
to check if m is dead. To sum up, there is a trade-off between matching our intuitive
deadlock notion and the complexity of a formalization.

5 Conclusion

We have presented two existing formalizations of when two services interact deadlock
freely, and gave an idea of their deficits in subtle situations. Our approach for overcom-
ing these deficits is a third formalization, describing deadlocks from a local point of
view rather than globally. To the best of our knowledge, this is new. Finally, we com-
pared all three formalizations, and highlighted their differences in complexity as well
as matching our intuition. Though more complex, the new formalization matches our
intuition in every case.

There exists strong theory for characterizing all deadlock free partners, based on the
two existing formalizations ([2], [6]). It is part of further work to determine if those
theory can be applied with the new formalization as well.
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