A graphical user interface for service adaptation

Christian Gierds! and Niels Lohmann?

! Humboldt-Universitét zu Berlin, Institut fiir Informatik,
Unter den Linden 6, 10099 Berlin, Germany
gierds@informatik.hu-berlin.de
2 Universitat Rostock, Institut fiir Informatik, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. Service-oriented computing aims at composing independent
services to achieve a common goal. Although very flexible, this indepen-
dence may result in incompatibilities. A pragmatic approach to overcome
such incompatibilities offer adapters. An adapter is again a service which
reorganizes the message exchange in a service composition to avoid in-
compatibilities.

Given a set of domain-specific message transformation rules, adapters can
be generated fully automatically. This paper presents a graphical user
interface to support the systematic design of these transformation rules.

1 Introduction

Service-oriented computing [10] aims at replacing large monolithic systems by a
composition of services. By abstracting from underlying technologies and imple-
mentations, it is possible to focus on the functionality of a service and to reuse
it in other compositions. Consequently, services can be designed independently
from the compositions they are used in, which in turn allows for faster production
cycles at lower costs. A downside of this flexibility is the possible incompatibil-
ity of independently designed services. To avoid the redesign of incompatible
services, an adapter (sometimes called mediator) can resolve incompatibilities
by manipulating the communication protocol between the incompatible ser-
vices. State-of-the-art techniques [TI2I3I5/9M4UTTI6] allow to generate adapters
automatically given a set of domain-specific message transformation rules.

So far, the design of such transformation rules was out of scope of most
existing adapter generation approaches, and of course transformation rules can
be formulated independently of a concrete service composition. However, it is
likely that the design of such rules can be accelerated if the services to be adapted
is taken into account. This paper follows this idea and presents an approach to
iteratively create proposals for the designer of semantic message transformation
rules. These proposals are derived by diagnosing behavioral incompatibilities.
The approach is complete; that is, if services can be adapted using some rule set,
then this set can be constructed.

The rest of this paper is organized as follows. The next section briefly sketches
the automatic generation of adapters and introduces a running example. It further

mailto:gierds@informatik.hu-berlin.de
mailto:niels.lohmann@uni-rostock.de

discusses how transformation rule proposals can be derived from diagnosed
incompatibilities. Section [3] presents the main contribution of this paper, a Web-
based graphical user interface for the iterative construction of transformation
rules. Finally, Sect. [4] discusses possible future extensions and concludes the

paper.

2 Adapter generation

We shall briefly outline the basic concepts of an adapter generation algorithm
and its meaning for finding transformation rules in this section.

2.1 Synthesis using message transformation rules rules

For adapting two services A and B several approaches agree on using message
which handle semantical incompatibilities.

We concentrate on the approach of Gierds et al. [6], consisting of two: They
model transformation rules as an artifact called engine E. Then they try to
synthesize a controller C, such that the composition of A, B, E, and C behaves
according to a certain correctness criterion (e. g., deadlock freedom). The compo-
sition of ' and C' thus yields an adapter for A and B and ensures semantical
and behavioral correctness of the two services.

Controller C

Service A < > —— < > Service B
Engine E

Adapter

Fig. 1. Two services A and B and an adapter (engine E and controller C') in the middle

Figure [1] depicts a schema of this approach. The two services A and B
communicate via the adapter in the middle. As it is indicated, an adapter
comprises two parts: The engine F implements the message transformation
rules and thus ensures semantically correctness. The controller C' ensures correct
behavior; that is, the correct order of applying rules and sending messages to the
services.

Figure [2| shows a small example based on open nets [7], an extension of
classical Petri nets. Interface places are positioned on the dashed border of a net.
As running example, the model of a beverage vending machine is depicted on the
left (cf. Fig. 2(a)]). After receiving a Euro (MEuro), either the tea (MTeaButton)
or the coffee button (MCoffeeButton) must be pressed. Afterward the appropriate
beverage is delivered (MServedTea and MServedCoffee, resp.). On the right (2(c)),
a coffee drinker provides a Euro (DEuro), then forgets to press a button, and

vEwo @g@

MTeaButton O) bE (
uro
MCoffeeButton Q<<D<—®

MServedTea
Q) DServedCoffee (
MServedCoffee

(a) Beverage vending ma- (b) Adapter (¢) Coffee drinker
chine

w

Fig. 2. The two services to be adapted with an adapter

waits for its coffee (DServedCoffee). Obviously, this service is not compatible to
the vending machine. To overcome this incompatibility, the adapter in Fig.
simply transforms a DEuro message to an MEuro message and MServedCoffee to
DServedCoffee, which seems obvious concerning the names. Further it creates
a MCoffeeButton message. Due to structural reduction, we may identify the
controller part only by the initially marked places, allowing each rule to be
applied exactly once.

To synthesize such an adapter automatically, the before-mentioned three rules
must be provided as input to the synthesis algorithm.

2.2 Finding additional rules

As mentioned, one of the essential parts of the adapter approach is the set of
message transformation rules. Although correct in isolation (in the example, there
exist compatible drinker and vending machine services, resp.), two services may
only be adaptable if a certain set of rules is provided. So whenever the synthesis
algorithm fails to create an adapter, this is caused by missing rules.

Previous approaches almost totally rely on Semantic Web technologies for
providing rules. We will briefly sketch an idea on how to extend the set of trans-
formation rules by behavioral diagnosis. During controller synthesis deadlocks
will be reached if no deadlock free controller exists. These deadlocks provide
valuable information, how an additional rule might look like. The setting does
not allow to change one of the services, but we are free to add as many new rules
as we like. Let m be a deadlock marking, then we can analyze which messages
remain in the engine, thus are pending and could be transformed. Further we
check whether one of the services could continue if we provided a certain message,
so we check which messages are required. A new rule then may transform pending
into required messages. Consequently, m will no longer be a deadlock marking,
because we can apply the newly added transformation rule now (which behaves

like a transition added to a net, which is enabled by the pending messages). This
step can be repeated until we find a controller and therefore an adapter, or until
we are no longer able to add meaningful transformation rules.

For our example in Fig. [2] starting with an empty set of transformation
rules, our proposed algorithm will state that DEuro is pending (in Fig. the
appropriate transition is activated and thus fired), MEuro is required, and thus
we may add the rule transforming MEuro to DEuro. In the next step (as shown
in Fig. [3) we will see, that MTeaButton and MCoffeeButton are required. After
providing a corresponding rule, we will see, that MServedCoffee is pending, and
DServedCoffee is required. Finally the rule set is sufficient and we gain an adapter
for our example.

In the given example the single steps are straightforward. For more complex
examples, the number of deadlocks as well as the number of details for each
deadlock grows significantly. Thus we need a good representation for this kind of
information.

3 Using the Web as graphical user interface

Interactive approaches highly benefit from a concise way of presenting information.
A user must be able to quickly access all relevant information. Graphical solutions
with means to highlight or hide information based on a user’s demands clearly
excel console applications in this point. Marlene as single purpose tool has
already been integrated into service-technology.org/live [§], which is our platform
to demonstrate the functionality of our tools and allow a user to perform more
complex tasks involving several of our tools by simply using a Web browser. The
previously described interactive approach has also been integrated there and can
be tested at the URL http://service-technology.org/live/marlene.

In an interactive approach, we do not only need to present the input and
output artifacts, but also intermediate information which shall enable the user to
make a next step. In our case, we have to list all possible suggestions for adding
new transformation rules without showing all details at once and thus confusing
the user.

Figure [3] shows the essential part for our approach: an editing field for
transformation rules and below a table with information on all deadlocks, which
may help in providing additional rules. Additionally, but not depicted here, the
services are visualized. We divide the table in the following columns:

— type might either be deadlock or a livelock (in case we want an adapter
ensuring also livelock freedom);

— the pending messages, which can be used in a rule on the left side;

— the required messages, of which at least one must be provided for resolving a
deadlock in one of the services

— the triangle button, for showing additional information on a deadlock or
livelock

http://service-technology.org/live
http://service-technology.org/live/marlene

M Marlene - Interactive Retr...

&« & A& | ©/live/marlene_interactive.php#rules ExdiE N

Rules

DEuroc -» MEuro;

m

Hint: Rules must have the form:
message;, messagez, ... —> mMessages;, MesSsagey, ... ;

(One side of the arrow may even be empty.)

[Save Rules][Undo Changes]

type pending messages required messages
deadlock MTeaButton,MCoffeeButton,DServedCoffee v

Additional information
Previously applied rules

DEuro -> MEuro

Input Service Models

Fig. 3. Screenshot of interactive site

The additional information might state, that one of the services is already in
a final state thus needing no further attention, and which rules have been applied
prior to reaching a certain deadlock.

We have decided to initially show only the first line for each deadlock (the
line starting with deadlock, thus hiding all additional information at first). As
we can see in Fig. [3] providing all available information on a deadlock in a clear
way requires a lot of space. Presenting a larger number of deadlock then would
almost immediately require the user to scroll the page. This would clearly hamper
deciding which deadlock to resolve, because a direct comparison of deadlocks
would always depend on scrolling.

In our understanding, pending and required messages are the most important
information for a certain deadlock. Thus showing only this piece of information
should be sufficient in most case. By clicking the triangle at the end of a line the
user gets additional information as described above.

The user is frfee to add and change the rules arbitrarily in the text field. By
clicking Save Rules the page is updated and information based on the new rule
set are provided. Finally, if a sufficient set of rules was added, the generated
adapter is presented.

4 Conclusion and outlook

We have presented a first idea for the interactive retrieval of transformation rules
in the setting of service adaptation. We have also focused on an appropriate
visualization of information. First tests indicate that interaction as described
here with the proposed degree of initial information offers easy access to the
approach. This of course is only a first step.

First, the algorithm for finding new transformation rules has to be described
in detail and we have to proof its feasibility in adapter generation (i.e., that
when an adapter exists, the algorithm leads to a corresponding set of rules).
Second, we have to evaluate acceptance of the Web site. Only feedback of real
users playing through real-word examples will give us valuable hints on how to
improve presentation of our tool.

Especially the order of different deadlocks might facilitate decision, which
one to resolve—the higher the position of a deadlock, the more likely it will
be considered. Here we have to find heuristics based on user behavior and its
reason to prefer certain deadlocks. Also highlighting certain situations (e. g., both
services are already in a final state, but superfluous messages must be removed)
might help a user to pick more goal leading deadlocks.

Although not having finished the approach, yet, using a Web front-end for our
prototype allows us to test our approach from the very beginning and distribute
it easily, thus gaining valuable feedback from prospective users.

References

1. Benatallah, B., Casati, F., Grigori, D., Motahari Nezhad, H.R., Toumani, F.:
Developing adapters for web services integration. In: CAiSE. pp. 415-429 (2005)

2. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
Journal of Systems and Software 74(1), 45-54 (Jan 2005)

3. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing web service chore-
ographies. In: WS-FM’04. ENTCS, vol. 105, pp. 73-94 (2004)

4. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: ICSOC. pp.
27-39 (2006)

5. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation for
service interface adaptation. In: Business Process Management. pp. 65-80 (2006)

6. Gierds, C., Mooij, A.J., Wolf, K.: Reducing adapter synthesis to controller synthesis.
Transactions on Services Computing (accepted for publication) (2010)

7. Kindler, E.: A compositional partial order semantics for Petri net components. In:
ATPN’97. LNCS, vol. 1248, pp. 235-252 (1997)

8. Lohmann, N.: service-technology.org/live - replaying tool experiments in a Web
browser. In: BPM 2010 Demonstration Track. CEUR Workshop Proceedings, vol.
615, pp. 64-68. CEUR-WS.org (2010)

9. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.:
Semi-automated adaptation of service interactions. In: WWW. pp. 993-1002 (2007)

10. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice
Hall, Essex (Jul 2007)

11. Wang, K., Dumas, M., Ouyang, C., Vayssiére, J.: The service adaptation machine.
In: ECOWS. pp. 145-154 (2008)

