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Foreword

The development of embedded systems with real-time and other critical constraints raises
distinctive problems. In particular, development teams have to make very specific
architectural choices and handle key non-functional constraints related to, for example, real-
time deadlines and to platform parameters like energy consumption or memory footprint.
The last few years have seen an increased interest in using model-based engineering (MBE)
techniques to capture dedicated architectural and non-functional information in precise (and
even formal) domain-specific models in a layered construction of systems. MBE techniques
are interesting and promising for the following reasons: They allow to capture dedicated
architectural and non-functional information in precise (and even formal) domain-specific
models, and they support a layered construction of systems, in which the (platform
independent) functional aspects are kept separate from architectural and non-functional
(platform specific) aspects, where the final system is obtained by combining these aspects
later using model transformations.

The objective of this workshop is to bring together researchers and practitioners interested
in model-based engineering to explore the frontiers of architecting and construction of
embedded systems. We are seeking contributions relating to this subject at different levels,
from modelling languages and semantics to concrete application experiments, from model
analysis techniques to model-based implementation and deployment. Given the criticality of
the application domain, we particularly focus on model-based approaches yielding efficient
and provably correct designs. Concerning models and languages, we welcome contributions
presenting novel modelling approaches as well as contributions evaluating existing ones. The
workshop targets in particular:

e Architecture description languages (ADLs). Architecture models are crucial elements
in system and software development, as they capture the earliest decisions which
have a huge impact on the realization of the (non-functional) requirements, the
remaining development of the system or software, and its deployment. We are
particularly interested in examining:

0 Position of ADLs in an MDE approach;

O Relations between architecture models and other types of models used
during requirement engineering (e.g., SysML, EAST-ADL, AADL), design (e.g.,
UML), etc.;

0 Techniques for deriving architecture models from requirements, and deriving
high-level design models from architecture models;

0 Verification and early validation using architecture models.

Oslo, Norway, October 4, 2010 5
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e Domain specific design and implementation languages. To achieve the high
confidence levels required for critical embedded systems through analytical
methods, in practice languages with particularly well-behaved semantics are often
used, such as synchronous languages and models (Lustre/SCADE, Signal/Polychrony,
Esterel), super-synchronous models (TTA, Giotto), scheduling-friendly models (HRT-
UML, Ada Ravenscar), or the like. We are interested in examining the model-oriented
counterparts of such languages, together with the related analysis and development
methods.

e Languages for capturing non-functional constraints (MARTE, AADL, OMEGA, etc.)

e Component languages and system description languages (SysML, MARTE, EAST-ADL,
AADL, BIP, FRACTAL, Ptolemy, etc.).

We accepted 11 papers for the workshop from 10 different countries: 6 full papers and 5
position papers. We hope that the contributions for the workshop and the discussions
during the workshop will help to contribute and provide interesting new insights in Model
Based Architecting and Construction of Embedded Systems.

The ACES™® 2010 organising committee,

Stefan Van Baelen,
lleana Ober,
Huascar Espinoza,
Thomas Weigert,
lulian Ober,
Sébastien Gérard.

The ACESM® 2010 steering committee,

Mamoun Filali,
Susanne Graf.

September 2010.
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Invited Talk

Using Metaheuristic Search for the Analysis and
Verification of UML Models

Lionel C. Briand

Simula & University of Oslo, Oslo, Norway

Abstract. There is a growing research activity around the use of meta-
heuristic search techniques (e.g., genetic algorithms) in software engi-
neering, for example to support test case generation. This is often re-
ferred to as search-based software engineering and is the subject of an
international conference every year. This presentation will reflect on sev-
eral years of research, involving several collaborators, that has focused
on using metaheuristic search to support the analysis and verification of
UML models and its extensions such as MARTE and OCL. Examples
include the analysis of real-time deadlines (schedulability analysis), con-
currency problems, and constraint solving, for example for supporting
model-based test case generation. Results suggest that applying meta-
heuristic approaches to these problems lead to practical and scalable
solutions that rely solely on UML and extensions, and does not require
translations into other languages and formalisms. This latter property is
of high practical importance in industrial practice.

Oslo, Norway, October 4, 2010






MoDELS 2010 ACES-MB Workshop Proceedings

Mapping the MARTE UML profile to AADL

Skander Turki, Eric Senn and Dominique Blouin.

Labsticc Université de Bretagne-Sud Centre de recherche, BP 92116
56321 Lorient cedex, France
skanderturki@gmail.com, {eric.senn, dominique.blouin}@univ-ubs.fr

Abstract. CAT, the Consumption Analysis Toolbox, used with an AADL editor like OSATE allows for system-level power and
energy consumption estimation. For MARTE users, such a tool is very valuable. This is why building a bridge from MARTE to
AADL was essential. Transforming models is the solution that was adopted. This is why a MARTE to AADL mapping was
needed. In this paper, we will present our mapping that is slightly different from that described by M. Faugere for crucial
reasons.

Keyword. AADL, MARTE, Mapping, Metamodeling, Model transformation.

1 Introduction

AADL (Architecture and Analysis Design Language) is commonly used as a modeling language for real-time embedded systems
[1, 2]. AADL models can be used by third-party tools to achieve an early analysis of the specification, the verification of
functional and non functional properties of the system, and even code generation for the targeted hardware platform [3,4,5]. One
of these third-party tools is CAT, the Consumption Analysis Toolbox, integrated with OSATE [7], an AADL editor.

In the other side, the MARTE (Modelling and Analysis of Real-Time Embedded Systems) profile [8] is commonly used for
modelling and analysis of real-time embedded systems. As shown on the higher part of figure 1, it can permit, among other
things, to depict the deployment of an application on a real-time operating system platform to build a Platform Independent
Model (PIM) (independent of the hardware platform), and again, to depict the deployment of this PIM on a hardware platform
building a Platform Specific Model (PSM). From there, the AADL tools environment might be used if an AADL PSM can be
obtained from the MARTE PSM above. Two methods can be used, the first one is to create a UML AADL profile and to use it to
annotate a MARTE PSM (see figure 1) then transform this UML/AADL PSM to an AADL model, the second method is to define
a mapping of the elements of MARTE to those of AADL and to directly transform the MARTE PSM to an AADL PSM. This
AADL PSM is then refined with platform specific information, for example a processor will be further refined by a technology
specific reference (ARM7TDMI, PPC405, etc.).

G L RTOS platform model MARTE hardware
application model platform model

oRe— T -

- -
~—— -
-
e
MARTE Py
deployment model P
.
-
.

~ .

MARTE PSM

Legend
1
MARTE PSM with AADL | Model
Profile annotations + | elements

N, : allocation

Model
annotation

i Model

.............................. AADL PSM

AADL PSM with technology
annotations

\y transformation

I Feedback
Power Consumption model

Fig. 1. Model-driven design: from MARTE to AADL.

Oslo, Norway, October 4, 2010 11



MoDELS 2010 ACES-MB Workshop Proceedings

In this paper, we describe the mapping of MARTE model elements to those of AADL focusing on the issues related to
“modelling architectures”; issues related to the mapping of MARTE properties to AADL property sets are not treated. A
conclusion will summarize the essential points of the paper and give some perspectives.

2 The MarteToAadl Model Transformation

We established a mapping between UML MARTE and the AADL language constructs that are slightly different from those
described in the MARTE specification [8] (see Annex A: Guidance example of use of MARTE). The mapping we propose here is
different for several reasons; the most important one is that we wanted our mapping to be an abstraction, which means that our
transformation will abstract the MARTE model to an AADL model. The mapping presented by M. Faugere in [8] doesn't cover
all the MARTE stereotypes. Then, it can only be used by MARTE users that already know that they are modelling for AADL as if
they were using their UML tool as AADL editors where the MARTE profile is used partially and is used as an AADL profile. In
our case, we target MARTE users that are modelling with MARTE without even knowing that AADL analysis tools could be
used further. This is why we have to take into account all the MARTE profile, at least, when possible. The first case, where
MARTE is used as an AADL editor is not useful as a specific AADL UML profile would be more appropriated.

The model transformation process we defined consists of an OCL-constraints-checking step [9] and a model transformation
step which is the core transformation "MarteToAad!". The first step will verify that the input MARTE model respects some
design rules to obtain a valid AADL model. Then the MarteToAadl model transformation is executed and the AADL model is
produced.

3 The MARTE to AADL Mappings

A. The packages hierarchy issue

An AADL model has a flat hierarchy (figure 2). This means that it has only one root element that represents the AADL
specification in which there can be leaf packages (Packages do not contain other packages). In UML, a root model contains
packages that contain other packages; it is a tree-like hierarchy. In AADL packages hierarchy can be simulated through file
system directories. An AADL model has this hierarchy:

aadlSpecification

memoryType M1
—memoryImpl M1

aadlPackage i
: :

Fig. 2. AADL Model i—IierarchyA

In UML, the hierarchy is also a design information that has its meaning to the designer understanding of the system. This is
why, when we transform the MARTE model to AADL we need to keep track of this information. We use namespaces for this: "
XUPWithMJPEG::PK_Application::Package IPC "

This gives us the following ATL transformation rule for packages:

rule Packages {
from s : UML2!Package (not s.oclIsTypeOf (UML2!Model))
to p: AAXL!AadlPackage
(name <- s.qualifiedName, )b

Here, qualifiedName of the UML packages returns the name with the namespace.

Oslo, Norway, October 4, 2010 12
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B. Mapping UML Class diagram hierarchy to AADL Category Types and implementations hierarchy

In a first approach we used the isdbstract Boolean field of UML classes to differentiate between an AADL type and an
AADL implementation; this was a solution to avoid using additional stereotypes. But we finally decided to create an AADL type
and an AADL implementation for each UML class because the first approach was like using MARTE as an AADL editor. With
the first approach we had to add many OCL constraints to verify we did not have semantically illegal AADL configurations. For
example, an abstract class that inherits from a non-abstract one would lead to an AADL type extending an AADL implementation
which is illegal in AADL. We also had to choose which UML relationships would be mapped to the AADL implementation
relationship and which one would be mapped to the AADL extension relationship. We distinguished three cases of UML
configurations (figure 3) that can be seen as an AADL equivalent to:

AADL Class_0 Class_2 cntertaces
ot I | | Interface 0 |
eds 'Y \e @

npe implementation A.B
end A.B;

: H
Class_1 Class_3 Class_1

Fig. 3. Possible AADL type implementations with UML (Name with Italics = isAbstract)

We noticed that we couldn't use an interface to depict an AADL Type because a UML interface is not an
encapsulatedClassifier (cannot have ports). In fact, we can only use classes to define ports, which is an important aspect in
architecture modelling.

We could use the realization to depict an AADL type but in the composite diagram, in an implementation element we would
not be able to inherit the ports declared in the corresponding class, we could only do that with the inheritance, in addition to this,
we thought we would reserve this notation to the bus/data access AADL construct. This is why only the second case (figure 3)
was possible.

We also had to prevent someone from using a generalization between two classes that do not correspond to the same
category (processor, bus, thread...). This was the role of the pre-transformation verification step which induced more OCL
constraints.

We also mapped the use of a generalization between two abstract classes from the same component category or between two
non-abstract classes from the same component category to the extension mechanism in AADL.

o o ot ie

Impl2 type2 |

Fig. 4. Four combinations of generalizations could be found in UML.

Four possibilities can be drawn using generalizations in UML (figure 4). Each possibility corresponded to a different AADL
construct:
e The first one mapped to the AADL implementation
e The second becomes meaningless in AADL.
o The third and fourth situations mapped to the AADL extension construct.

This first choice led us to a complicated mapping that, as we already said, was using MARTE as an AADL editor. It also
generated too much OCL constraints that impacted dramatically the designing activity as the designer had to know all these
imposed rules in addition to the design language. We finally chose a different mapping that is much easier for the designer, who
doesn't need to know more design rules than those of UML and MARTE. This mapping consists on splitting each class into a type
and its implementation and to map the UML generalization to the "extends" mechanism of AADL as shown in the following table
1 (here the "extends" AADL mechanism is depicted with the black-headed arrow with discontinuous arc, the blue-headed arrow
in AADL depicts the "implements" AADL mechanism).

The following example (figure 5) illustrates how this mapping can translate any UML/MARTE configuration to AADL with
only one assumption on the initial MARTE model.

Oslo, Norway, October 4, 2010 13
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TABLE 1

MAPPING UML CLASSES AND GENERALIZATIONS TO AADL

UML configuration

Equivalent AADL configuration

Description

Num
@ Class

Each non-abstract UML class is
transformed in AADL to a Type
that defines its interface and an
implementation that defines its
composition.

®

Class

Each abstract UML Class is
transformed to a type with no
implementation.

@

ClassA
A

In this case : ClassB and ClassA
are non-abstract classes, so each
one is transformaed to a Type and
its implementation. The
generalisation relationship will be
transformed to an extension
between TypeB to TypeA.

@ ClassA

ClassB

Same thing as situation 3, but
TypeB has no implementation
because ClassB is abstract.

ClassA

I>I Ibl

ClassB

Opposite situation as in 4.

UML Class diagram

A

a

F Y

| ClassC \ \ ClassD \

AADL translation

SR - - IR

’
’

=) )

\ ClassE \ \ ClassF \

~
~
~
~

4 ~

A

/ N
\ TypeE \ \ TypeF \
[ ImpE | | ImplF |

Fig. 5. UML class diagram translation. (ClassB and ClassD are abstract)

With this mapping we will never have extensions between implementations, which is not a problem as long as both
representations are equivalent. This mapping also guarantees that each UML generalization's hierarchy can be transformed to an

equivalent extension's hierarchy in AADL.

C. Mapping MARTE constructs to AADL component categories

MARTE offers more detailed design possibilities than AADL. In fact, all AADL constructs have their mapping inside
MARTE but the other way is not true. For example, in MARTE we have a HwProcessor and a HwComputingResource. Both of
them can be translated in an AADL processor but the design detail in AADL will be of coarser granularity. Another example is
the HwBridge in MARTE that has no equivalent in AADL. It must therefore be abstracted in AADL to a general device that

corresponds in MARTE to HwDevice.

As we already said, we tried to make this mapping an abstraction of MARTE to AADL. This is why we mapped each AADL

component category to a set of MARTE model elements.

Oslo, Norway, October 4, 2010
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TABLE 2
MAPPINGS ESTABLISHED IN THIS SECTION
MARTE Construct AADL Construct
"HwProcessor', " HWASIC', '"HWPLD', "HwComputingResource', processor
'ComputingResource', 'ProcessingResource’
'DeviceResource',"HwActuator', '"HwArbiter', '"HwBridge', '"HwDevice', HWDMA", device
'"HwCLock', '"HwCoolingSupply', 'HwComponent', ' HwI O', '"HwISA', '"HwMedia’,
"HwMMU', ‘HwPowerSupply', '"HwResource', '"HwSensor’, '"HwStorageManager’,
"HwSupport', '"HwTimer', '"HwTimingResource', "HwWatchDog'
'"HwBus' bus
No stereotype, SysML::Block svstem
'StorageResource’, '"HwMemory',"HwCache',  HWRAM','HWROM', "HwDrive' memorv
'MemoryPartition', 'RtUnit', 'DeviceBroker', '"MemoryBroker', process
'SynchronizationResource', "MutualExclusionResource',
"'SwMutualExclusionResource', 'SwTimerResource’
'SwSchedulableResource', 'SchedulableResource', 'ConcurrencyResource’ thread
none threadGroup
"Type', '"PpUnit’, 'Alarm’, 'InterruptResource’, '"MessageComResource’, data
'SwCommunicationResource’, "NotificationResource’', ‘SharedDataComResource’,
UML2!DataType or UML2!Signal
An operation (class method) in a thread or a subProgram subProgram

severity, we generate a warning to the user to let him know of the issue.

* Because this aspect of the design is not supported at all by AADL. For example, the ‘HwEndPoint” or the ‘HwPort’, these
aspects are not depicted in AADL. In such cases, we simply don’t consider the information but OCL warning constraints will

inform the designer about these issues (see table 3 row number 3)

TABLE3

OCL WARNING CONSTRAINTS FOR NON ABSTRACTED MARTE ELEMENTS

Defined ocl method

MARTE Construct

tooAbstDefMappedToDevice()

‘TimingResource', TimerResource', 'HwCommunicationResource’,
'Resource’, 'ClockResource’

tooAbstDefMappedToBus()

'CommunicationMedia’

unsupportedMarteStereotype()

'HwPort', 'HwEndPoint’, 'ResourceUsage’,
'Scheduler’, 'Clock’, 'ClockType’

Oslo, Norway, October 4, 2010

Ideally, the AADL system component category should be described by a stereotype like the SysML::Block but we did not want
to impose a dependency on another UML profile for only one stereotype. This is why we also map a class that do not have a
stereotype to the general concept of system.
Some stereotypes in MARTE cannot be abstracted to an AADL construct:
Because it is too abstract: for example ‘TimingResource’ can either be a hardware or software component. For such cases we
chose a default mapping (see table 3 rows 1 and 2) so that to have a complete mapping. But, using an OCL constraint of low
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TABLE 4

COMPOSITION POSSIBILITIES BETWEEN AADL COMPONENT CATEGORIES
AADL Construct Possible Sub-Components
processor memory
device none
bus none
system System, data, process, processor, memory, bus, device
memory memory
process Thread, data, threadGroup
thread data
threadGroup data, thread, threadGroup (iot mapped to MARTE)
data data
SubPl'OgIalll None (nor mapped to a classifier in MARTE, comnposition is irrelevant)

In AADL the SubProgram category is a “sequentially executable source text”. This corresponds in UML to an Operation in a
Class. In AADL a SubProgram Type can have different implementations. In UML an operation has methods that can be an
OpaqueBehavior (natural language, programming language...), a state machine or an activity. We can then use OpaqueBehaviors
as methods of an Operation to depict different AADL implemententions of an AADL SubProgram Type. This is the more natural
mapping we could find with UML. The difference is that a UML::OpaqueBehavior is contained in the class where it is defined
while in AADL a SubProgram is defined independently and instantiated inside another component. But as we are transforming a
more constrained language (in this aspect) to a more general language, this will not lead to different semantics.

D. Mapping UML Class properties to AADL constructs

UML Class properties that are typed by a class that is mapped to an AADL component category are transformed to
subcomponents typed by the corresponding AADL implementation components.
UML properties that do not correspond to an AADL component category are transformed to AADL properties and a new
AADL property definition is created for each one.
UML properties of abstract classes must be propagated to all specializing classes. This is simply done by using the UML
API getAllAttributes() method of a UML:: Classifier instead of the more common Classifier.attribute property:

memorySubcomponent <- s.getAllAttributes()
->select(z | z.attlsCompCateg (s.memoryMapping()))
->collect(e | thisModule.myMemorySubComponent(e)).flatten()

Composition in AADL is restricted by some contraints (see table 4). These constraints are applied in our mapping using the
select OCL filter. In the example above, the memorySubComponent AADL component attribute will only contain elements that
are memories using the select statement:

->select(z | z.attlsCompCateg (s.memoryMapping()))

A result of this is that illegal properties typing in UML/MARTE will be ignored. For example if a UML class stereotyped
"MemoryPartition" (mapped to AADL process) had a property typed by another Class stereotyped "HwBus" (mapped to AADL
bus), no error will be raised as the select statement will just ignore the illegal properties. This is why OCL warning constraints are
added to the OCL verification step. The following OCL code shows an example of a warning constraint whose result will be used
to tell the designer that a Class property will be ignored:

—-— 0 —— Process Impl sub-components can only be threads or data
context Class def : processContainstnlyThreadOrData|) : EBoolean
= [self.isProcess()) implies [self.attribute

—xselectip | p.type.oclIsTypeOf (Class))
—zgelect (s | s.type.iskCategoryType(])
—-»forillia | a.type.isThread() or a.type.isDatai)) 1

Oslo, Norway, October 4, 2010 16
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E. Mapping UML interfaces usage and realisation
The UML/MARTE designer defines types for ports. Two types of ports must be defined:
1. Types for ports that will connect to components.
2. Types for ports that will be provided by a component to allow other components to be connected to it.
Then, the designer sets these types (that are also classes) for the ports of the classes. Finally, he connects the corresponding

ports. This configuration is mapped to the "requires bus access" AADL construct (same for data, see figure 6).

sirterfaces «interfaces
| VideoDataAccess (Architecture:: PK_Memo...
BusAccess
PR % N
2 \ ,’ \\
' \‘ ’ v
4 suser / v alses
i v
‘ \ . %
. A
) atypes «types I «hwEndPoints <«hwEndPoint»
VideoSupplyPort _VideoDataPort | BusGenericPort DataAccessPort
1 4

MARTE Constrth : Intgpfe{e usage and realisation

at is realised by a classifier that types a port of

AADL Construct
Requires bus access | Port typed with class that uses an intgrfac
an AADL bus class, example:

xupCACHE: CACHE [1]

busConnector: DataAccessPort 1 ] g
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Fig. 6. UML interface usage and realisation mapping to AADL constructs.
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Fig. 7. Design examples mapped to the "requires bus access" configuration.

This configuration (figure 7) is mapped to the "requires bus access" features for a system, memory, processor, bus and
device categories: In this example, each element that has a port typed with the DataAccessPort class will have a « required bus
access » element to any bus that has a port that realizes the BusAccess interface. See in this example (figure 7) the connections 1
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and 2 where both busConnector ports are typed by DataAccessPort which uses the BusAccess interface that is realized by the
BusGenericPort class that types the data port in the BusOPB class.

In UML, one can connect two ports even if the interface used and realized is not the same. See in this example the
connection 3 where the busConnector port is connected to a port that is typed by a class that realizes another interface than
BusAccess. This situation should cause at least a warning. It is a result of the informality of UML. In fact, in UML, only
"compatible" ports can be connected [10]. This means that we have to define what « compatibility » between ports means. This is
a UML « semantic variation point ». Computer science doesn't like semantic variation points; this is why we had to define this
"compatibility". We define it this way: Connectable elements attached to a connector are compatible if they are typed by a class
that either uses or realizes the same interface. At least one must use the interface and one must realize it.

F. Ports connected to their owning Class properties in UML/MARTE
A class property exposed through data or bus typed port can be translated to « Provides data/bus access ». Two situations

can be found:
o Situation 1: The property is directly connected to the boundary port.
o Situation 2: The property is connected to the boundary port through one of its own ports.

Both situations are supported by our mapping and the data/bus provided classifier will be the one that is directly connected to
the boundary port.

Two examples are shown here in figure 8:

SystemXUP |

xupMEM: MEM [1]

alypex»
VideoData

Pl | gata: videosupphyPor (1]
externOPB: BusDataP O)———— }

videoDataAccess N e S
‘ \\ | videoData: VideoDATA [1]!
o4

busConnector: DataAccessPort [1]

| data: BusGenericPort [1] data_ext: BusDataPort 1)

[

Fig. 8. Examples of the two situations of the port connected to its own Class properties.

TABLE 5
PORTS CONNECTED TO THEIR OWN CLASS PROPERTIES MAPPINGS.

AADL Construct MARTE Construct : Interface usage and realisation

Provides bus access | A class that has an AADL bus typed property connected to a boundary port, either through a
port (left figure) or directly (right figure), is tranlated in AADL as providing bus access.

Provides data access Same thing, « AADL data typed property » in stead of « AADL bus typed property ».

G. Mapping UML/MARTE ports to AADL constructs

M. Faugere [8] has defined a mapping of UML/MARTE ports to AADL. Our mappings are mappings of MARTE to AADL
so it has to cover more possibilities to abstract more situations to AADL. In fact, M. Faugere's mapping is a mapping of AADL to
MARTE, i.e, it answers the question: "how an AADL design can be specified using MARTE?". We, are answering a different
question: "How can we translate a MARTE specification to AADL?".

The AADL data port corresponds in UML to a standard UML::port, as “Ports represent interaction points between a classifier
and its environment” [10]. The MARTE flowPort adds, among other things, the direction. In fact, in MARTE, “FlowPorts have
been introduced to enable flow-oriented communication paradigm between components” [8]. An AADL event/(event data) port
corresponds to a message port or a ClientServerPort. In [8], “Message ports support a request/reply communication paradigm”.
Finally, the difference between an event port and an event data port in AADL is that an event data port is typed (has a
dataClassifier property in the meta-model).
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TABLE 6
UML/MARTE MAPPINGS
MARTE AADL Direction
flowPort data port In:in / Out:out / nOut:in out
1 — messagePort or clientServerPort (not typed event port ! - out : messagePort direction = requured
ot typed by a UML signal that do not have data (in AADL it in : messagePort direction = provided
attributes) Or doesn’t have a | 2 - nout : default

2 - UML standard port (not typed or typed by a classifier)
UML =ignal that do not have data attributes)

1 — messagePort or clientServerPort typed by event data poit | ! - required : messagePort direction = required
data (except signals that do not have data (In AADL it provided ; messagePort direction = provided
attributes) has a data 2 - required : none
2 - UML standardPort data typed (except signals | classifier) provided : none

that do not have data attributes)

4  Conclusions and Perspectives

The mappings described in this paper are general and can be used without letting the designer know about the details of our
mappings, except for the description of the ports and their typing and for the semantics that are imposed by the AADL language.

The syntactic differences between the source and the target language are well handled by the transformation rules as the ATL
tool we used make it possible to call Java code through which we can do everything a computer can do. Other languages that are
only based on declarative rules may provide an incomplete transformation. It is therefore important to have both declarative rules
and imperative programming. The declarative rules simplify the definition of the rules when the mapping is simple enough. But in
some cases the use of the imperative programming is indispensable.

The central question that is raised by model transformations is the semantics gap issue. The question “how can we solve
semantics gap?” needs to be answered. Reading the definitions of a modelling aspects in both source and target specifications and
then comparing them can become really heavy work. Some mappings designed for M2M transformations are built without going
into that level of detail and that inevitably gives an apparently acceptable translation but the underlying semantics of source and
target models would have different meanings.

Resolving a M2M transformation is a recurrent problem that needs to be undertaken with more systematic approaches to
become more efficient. This systematisation question can be answered by describing "M2M resolution patterns". Some patterns
have already been adopted but not precisely described like the decomposition of the transformation unto a chain of n
transformations where each one is a simple transformation between two semantically close meta-models. Describing these
patterns will take model transformations from the state of a handwork process to that of an engineering one. This paper is not an
M2M resolution patterns paper, but we present here some other evident patterns we have encountered:

e The abstraction pattern: A source model element can be mapped to a target model element that is more general, that has
less detail like abstracting a HwSensor to a general Device.

e The projection pattern: The target domain is less expressive than the source one, then a projection is done to reduce the
"dimensions" of information into the target domain. Like transforming a model element from a language with static and
dynamic descriptions to a pure architectural language.

o The design-banning pattern: The source domain is less rigorous is term of modelling possibilities; some cases are non-
sense if transformed to the target domain as is. Banning these cases using a constraints verification phase is a solution to this
problem.
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Abstract. The problem addressed by this paper is that real-time embedded soft-
ware today is commonly built using programming abstractions with little or no
temporal semantics. The paper discusses the use of an extension to the Ptolemy
II framework as a coordination language for the design of distributed real-time
embedded systems. Specifically, the paper shows how to use modal models in the
context of the PTIDES extension of Ptolemy II to provide a firm basis for the
design of an important class of problems. We show the use of this environment in
the design of interesting practical real-time systems.

1 Introduction

In cyber-physical systems (CPS) the passage of time becomes a central feature — in
fact, it is this key constraint that distinguishes these systems from distributed comput-
ing in general. Time is central to predicting, measuring, and controlling properties of
the physical world: given a physical model, the initial state, the inputs, and the amount
of time elapsed, one can compute the current state of the plant. This principle pro-
vides the foundations of control theory. However, for current mainstream programming
paradigms, given the source code, the program’s initial state, and the amount of time
elapsed, we cannot reliably predict future program state. When that program is inte-
grated into a system with physical dynamics, this makes principled design of the entire
system difficult. Moreover, the disparity between the dynamics of the physical plant and
the program potentially leads to errors, some of which can be catastrophic.

The challenge of integrating computing and physical processes has been recognized
for some time, motivating the emergence of hybrid systems theories. Progress in that
area, however, remains limited to relatively simple systems combining ordinary differ-
ential equations with automata. These models inherit from control theory a uniform no-
tion of time, an oracle called ¢ available simultaneously in all parts of the system. Even
adaptations of traditional computer science concepts to distributed control problems
make the assumption of the oracle t. For example, in [21] consensus problems from
computer science are translated into control systems formulations. These formulations,
however, break down without the uniform notion of time that governs the dynamics. In
networked software implementations, such a uniform notion of time cannot be precisely
realized. Time triggered networks [12] can be used to approximate a uniform model of
time, but the analysis of the dynamics has to include the imperfections.

Although real-time software is not a new problem there exist trends with a potential
to change the landscape. Model-based design [11], for example, has caught on in in-
dustrial practice, through the use of tools such as Simulink, TargetLink, and LabVIEW.
Domain-specific modeling languages are increasingly being used because they tend to
have formal semantics that experts can use to describe their domain constraints. This
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enables safety or quality of service verification, and thus helps with integration and
scalability of designed systems. For CPS, models with temporal semantics are particu-
larly natural to system designers. An example of such a language is Timing-Augmented
Description Language [10], a domain-specific language recently developed within the
automotive initiative AUTOSAR. However, the multiplication of modeling languages
raises the question of mutual consistency and interoperability. This is mainly why the
OMG consortium extended UML with a profile called MARTE (Modeling and Anal-
ysis of Real-Time and Embedded Systems) [23]. Another trend is the acceptance of
synchronous-reactive languages, particularly SCADE [1], in safety critical applications.
The model-based design approach we propose in this paper borrows sound fixed-point
semantics from the synchronous languages, but is more flexible and concurrent. Also
related to our work are component frameworks based on formal verification methods,
like the BIP framework [2], but they mostly focus on compositional verification of prop-
erties such as deadlock freedom. BIP relies on priorities to model scheduling policies
and, as far as we know, has not been used to address modeling and design problems for
components with explicit timing requirements.

To ensure proper real-time interaction between the dynamics of the controller and
the dynamics of the controlled physical system, programmers of embedded systems
typically use platform-specific system timers. However, design of the system should be
independent of implementation details, in order to allow for portability of the design.
In [26] we presented a programming model called PTIDES (programming temporally-
integrated distributed embedded systems) that addresses this problem by relying on a
suitable abstraction of time. With PTIDES, application programmers specify the inter-
action between the control program and the physical dynamics in the system model,
without the knowledge of details such as timers. Paper [28] studies the semantic prop-
erties of an execution model that permits out of order processing of events without
sacrificing determinacy and without requiring backtracking.

The goal of this work is to demonstrate the usefulness of PTIDES for time-critical
CPS applications. We first explain how design with PTIDES results in deterministic
processing of events. Then we illustrate how to specify timed reactions to events in
PTIDES models. This results in traces from model simulation and execution of auto-
matically generated code being identical. In order to account for different modes of
operation, modal models have been widely used in embedded system design [8]. Here,
we show the use of modal models within the context of a timed environment, i.e., we
illustrate timed mode transitions and operations in modes at certain time instants.

This paper is organized as follows. First, section 2 discusses the PTIDES design
environment, which enables a programmer to first model and simulate the design, and
then implement it through a target-specific code generator. At the top level, this envi-
ronment uses the PTIDES [26] extension to the Ptolemy II simulation framework [7] as
a coordination language for the design of distributed real-time embedded systems. Sec-
tion 3 then explains temporal semantics of PTIDES, and shows how the use of modal
models in the context of PTIDES provides a firm basis for the design of an important
class of CPS. This is followed by a detailed example in section 4, which shows the use
of this environment and particularly the ability to explicitly address timing in the design
of interesting practical real-time systems. We conclude in section 5.
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2 Design Environment

2.1 PTIDES Workflow

PTIDES
Simulator

Code
Generation

Schedulability
Analysis

Program
Analysis

PtidyOS
Runtime

PtidyOS

MoDELS 2010 ACES-MB Workshop Proceedings

Fig. 1 shows our envisioned
workflow, from modeling to
code generation to implemen-
tation. The proposed PTIDES
design environment is an ex-
tension of the Ptolemy II

framework which supports mod-

eling, simulation, and design
of systems using mixed mod-
els of computation. PTIDES
models define the functional
and temporal interaction of
distributed software compo-
nents, the networks that bind

them together, sensors, actu-
ators, and physical dynamics.
Simulation can be done on
such models, such that func-
tionality and timing can be tested. In particular, each actor can be annotated with exe-
cution time, and with several implemented scheduling schemes simulation can be per-
formed to confirm whether real-time constraints can be met for a given set of inputs.

The PTIDES design environment leverages the Ptolemy II code generation frame-
work, and allows a programmer to generate target-specific implementations from the
PTIDES model once she is satisfied with the design. The generated executable includes
a lightweight real-time operating system (RTOS) which we call PtidyOS. Its real-time
scheduler implements PTIDES semantics and therefore preserves the timing specifi-
cations present in the top level PTIDES design. Like TinyOS [17], PtidyOS is a set
of C libraries that glues together application code, which then runs on bare-iron. Cur-
rently, our code generation framework supports a Luminary Micro board as our target
platform. Once implemented in PtidyOS, platform specific worst-case-execution times
need to be extracted through program analysis, and schedulability analysis is needed to
ensure the real-time requirements are met. It is important to point out, at this point of
our PTIDES project, program and schedulability analysis are still under development.
Though we have carried out modeling, simulation, and implementation of a number of
small examples using the PTIDES simulator and PtidyOS, in this paper we only focus
on the modeling and simulation of several applications to illustrate how explicit timing
constraints can be used, but not on their PtidyOS implementations.

Fig. 1. PTIDES Code Generation Workflow

2.2 Model Time and Physical Time

PTIDES is based on discrete-event (DE) systems [3] [25], which provide a model of
time and concurrency. We specify DE systems using the actor-oriented approach. Ac-
tors are concurrent components that exchange time-stamped events via input and output
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ports. The time in time stamps is a part of the model, playing a formal role in the com-
putation. We refer to this time as model time. It may or may not bear any relationship
to time in the physical world, which in this paper we will call physical time. In basic
DE semantics, each actor processes input events in time-stamp order. There are no con-
straints on the physical time at which events are processed. We assume a variant of DE
that has been shown to integrate well with models of continuous dynamics [16]. The
purpose of this paper is not to study its rigorous and determinate semantics. For that an
interested reader is referred to [18] and [13].

PTIDES extends DE by establishing a relationship between model time and physi-
cal time at sensors, actuators, and network interfaces. Whereas DE models have tradi-
tionally been used to construct simulations, PTIDES provides a programmer’s model
for the specification of both functional and temporal properties of deployable cyber-
physical systems. There are three key constraints that define the relationship between
model time and physical time: 1) sensors produce events with timetamp 7 at physical
time ¢ > 7, 2) actuators receives events with timestamp 7 at physical time ¢ < 7, and 3)
network interfaces receive events with timestamp 7 at physical time ¢ < 7. We explain
these constraints in detail below.

The basic PTIDES

[— model is explained

- by referring to Fig-
x —l_ Platform 3 e T ure 2, which shows
| Y Compumions f—fgaeras™ three computational

Platform 2 J platforms (typlcally
JE— - embedded computers)

Yitaras J'— pr— connected by a net-

phisical & Cocst phygcal work and having lo-

fabric | jSoures i cal sensors and actu-

(% Compeiatont ators. On Platform 3,

a component labeled

Local Event Source

produces a sequence

Fig. 2. Prototypical CPS of events that drive

an actuator through

two other components. The component labeled Computation4 processes each event and

produces an output event with the same time stamp as the input event that triggers the

computation. Those events are merged in time stamp order by a component Merge and
delivered to a component labeled Actuatorl.

Physical
plant

In PTIDES, an actuator component interprets its input events as commands to per-
form some physical action at a physical time equal to the time stamp of the event. The
physical time of this event is measured based on clocks commensurate with UTC or a
local system-wide real-time clock. This interpretation imposes our first real-time con-
straint on all the software components upstream of the actuator. Each event must be
delivered to the actuator at a physical time earlier than the event’s time stamp to avoid
causality violations. Either PtidyOS or the design of the actuator itself ensures that the
actuation affects the physical world at a time equal to the event time stamp. Therefore
the deployed system exhibits the exact temporal behavior specified in the design to
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within the limits of the accuracy of clock synchronization between platforms and the
temporal resolution of the actuators and clocks.

In Figure 2, Platform 3 contains an actuator that is affected both by some local
control and by messages received over the network. The local control commands are
generated by the actor Local Event Source, and modified by the component Computa-
tion4. The Merge component can inject commands to the actuator that originate from
either the local event source or from the network. The commands are merged in order of
their time stamps. Notice that the top input to the Merge component comes from com-
ponents that get inputs from sensors on the remote platforms. The sensor components
produce on their output ports time-stamped events. Here, the PTIDES model imposes a
second relationship between model time stamps and physical time. Specifically, when a
sensor component produces a time-stamped output event, that time stamp must be less
than or equal to physical time, however physical time is measured. The sensor can only
tell the system about the past, not about the future.

The third and final relationship refers to network interfaces. In this work we assume
that the act of sending an event via a network is similar to delivering an event to an
actuator; i.e., the event must be delivered to the network interface by a deadline equal
to the time stamp of the event. Consider Platform 1 in Figure 2 as an example. When
an event of time stamp 7 is to be sent into the network fabric, the transmission of this
event needs to happen no later than physical time 7. In general, we could set the dead-
line to something other than the time stamp, but for our purposes here, it is sufficient
that there be a deadline, and that the deadline be a known function of the time stamp.
Our assumption that it equals the time stamp makes the analysis in next subsections
particularly simple, so for the purposes of this paper we proceed with that.

2.3 Event Processing in PTIDES

Under benign conditions [13], DE models are determinate in that given the time-stamped
inputs to the model, all events are fully defined. Thus, any correct execution of the
model must deliver the same time-stamped events to actuators, given the same time-
stamped events from the sensors (this assumes that each software component is itself
determinate). An execution of a PTIDES model is required to follow DE semantics,
and hence deliver this determinacy. It is this property that makes executions of PTIDES
models repeatable. A test of any “correct” execution of a PTIDES model will match
the behavior of any other correct execution.

The key question is how to deliver a “correct” execution. For example, consider the
Merge component in Figure 2. This component must merge events in time-stamp order
for delivery to the actuator. Given an event from the local Computation4 component,
when can it safely pass that event to the actuator? Here lies a key feature of PTIDES.
The decision to pass the event to the actuator is made locally at run time by comparing
the time stamp of the event against a local clock that is tracking physical time. This
strategy results in decentralized control, removing the risks introduced by a single point
of failure, and making systems much more modular and composable.

There are two key assumptions made in PTIDES. First, distributed platforms have
real-time clocks synchronized with bounded error. The PTIDES model of computation
works with any bound on the error, but the smaller the bound, the tighter the real-time
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constraints can be. Time synchronization techniques such as IEEE 1588 [9] can deliver
real-time clock precision on the nanosecond order.

Second, PTIDES requires that there be a bound on the communication delay be-
tween any two hardware components. Specifically, sensors and actuators must deliver
time-stamped events to the run-time system within a bounded delay, and a network
must transport a time-stamped event with a bounded delay. Bounding network delay
is potentially more problematic when using generic networking technologies such as
Ethernet, but bounded network delay is already required today in the applications of in-
terest here. This has in fact historically forced deployments of these applications to use
specialized networking techniques (such as time-triggered architectures [12], FlexRay
[19], and CAN buses [24]). One of the goals of our research is to use PTIDES on less
constraining networking architectures, e.g. to allow more flexibility in processing aperi-
odic events. In the time-triggered architectures, all actions are initiated by the computer
system at known time instants. In our approach, events coming from the environment
are allowed and are treated deterministically. Here it is sufficient to observe that these
boundedness assumptions are achievable in practice. Since PTIDES allows detection of
run-time timing errors, it is possible to model responses to failures of these assumptions.

Once these two assumptions (bounded time synchronization error and communica-
tion delays) are accepted, together with deadlines for network interfaces and actuators,
local decisions can be made to deliver events in Figure 2 without compromising DE
semantics. Specifically, in Figure 2, notice that the top input to the Merge comes from
Sensorl and Sensor2 through a chain of software components and a network link. Static
analysis of these chains reveals the operations performed on time stamps. In particular,
in this figure, assume that the only components that manipulate time stamps are the
components labeled model time delay d;. These components accept an input event and
produce an output event with the same data but with a time stamp incremented by d;.

Assume we have an event e with time stamp 7 at the bottom input of Merge, and that
there is no other event on Platform 3 with an earlier time stamp. This event can be passed
to the output only when we are sure that no event will later appear at the top input of
Merge with a time stamp less than or equal to 7. This will preserve DE semantics. When
can we be sure that e is safe to process in this way? We assume that events destined to
the top input of Merge must be produced by a reaction in Computation3 to events that
arrive over the network. Moreover, the outputs of Computation3 are further processed
to increment their time stamps by do. Thus, we are sure e is safe to process when no
events from the network will arrive at Platform 3 with time stamps less than or equal to
T — do. When can we be sure of this? Let us assume a network delay bound of n and
a clock synchronization error bound of s between platforms. By the network interface
assumption discussed above, we know that all events sent by Platform 1 or Platform 2
with time stamps less than 7 — dy will be sent over the network by the physical time
T — dsy. Consequently, all events with time stamp less than or equal to 7 — dy will be
received on Platform3 by the physical time 7 — d2 + n + s, where the s term accounts
for the possible disagreement in the measurement of physical time. Thus when physical
time on Platform 3 exceeds 7 —d2+n+s, event e will be safe to process. In other words,
to ensure that the processing of an event obeys DE semantics, at run time, the only test
that is needed is to compare time stamps to physical time with an offset (in the previous
example, the offset is —ds+n+s). Notice, if we assume the model is static (components
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are not added during runtime and connections are not changed); minimum bounds on
model time delays (d;’s) for components are known statically; and the upper bounds
for sensor processing times, network delays, and network synchronization errors are
known, then the offsets can be calculated statically using a graph traversal algorithm.

Note that the distributed execution control of PTIDES introduces another valuable
form of robustness in the system. For example, in Figure 2, if, say, Platform 1 ceases
functioning altogether, and stops sending events on the network, that fact alone cannot
prevent Platform 3 from continuing to drive its actuator with locally generated control
signals. This would not be true if we preserved DE semantics by conservative tech-
niques based on the work by Chandy and Misra [4]. It is also easy to see that PTIDES
models can include components that monitor system integrity. For example, Platform
3 could raise an alarm and change operating modes if it fails to get messages from
Platform 1. It could also raise an alarm if it later receives a message with an unexpect-
edly small time stamp. Time synchronization with bounded error helps to give such
mechanisms a rigorous semantics.

As long as events are delivered on time and in time-stamp order to actuators, the
execution will look exactly the same to the environment. This makes PTIDES models
much more robust than typical real-time software, because small changes in the (phys-
ical) execution timing of internal events are not visible to the environment (as long as
real-time constraints are met at sensors, actuators and network interfaces). Moreover,
since execution of a PTIDES model carries time stamps at run time, run time violations
of deadlines at actuators can be detected. PTIDES models can be easily made adaptive,
changing modes of operation, for example, when such real-time violations occur. In
general, therefore, PTIDES models provide adequate runtime information for detecting
and reacting to a rich variety of timing faults.

3 Temporal Semantics in PTIDES

PTIDES semantics is fully described in [26] and [28], and is based on a tagged-signal
model [15]. For this discussion the important point is that actors define a functional
relationship between a set of tagged signals on the input ports and a set of tagged signals
on the output ports of the actor, F, : ST — S©. Here, I is a set of input ports, O is a
set of output ports, and S a set of signals. The signals s € S are sets of (time stamp,
value) pairs of the form (7,v) € T' x V where the time set T represents time and V' is a
set of values (the data payloads) of events. For simulation, the most common use of DE
modeling, time stamps typically have no connection with real time, and can advance
slower or faster than real time [25].
otdes Basic Director Actors are permitted
to modify the time stamp
@(zs seconds, 15 volts) [, ] (35 seconds, 15 volts) [ (35 seconds, 30 volts @ and most commonly will
actor R 7 modify the model time
(a) member, i.e. the time

(25 seconds, 15 volts) (25 seconds, 30 volts) (35 seconds, 30 volts) : :
Zi?&"’% NP .JW dlay of ]L %:;{;:w stamp, to indicate the

® passage of model time.
For example, a delay ac-
Fig. 3. Linear combination of actors tor has one input port and
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one output port and its behavior is given by Fj(s) : S — S where for each s € S we
have F5(s) = {(¢t+ 0,v) | (t,v) € s}. That is, the output events are identical to input
events except that the model time is increased by d, a parameter of the actor.

Consider the simple sensor, actor, actuator system of Figure 3. In this example we
assume Fy(s) = {(t,2*v) | (t,v) € s};i.e., the output is the same as the input but with
its value scaled by a factor of 2. Both variants (a) and (b) of this figure show a serial
combination of a sensor, delay, scaling, and actuator actors. The sensor actors produce
an event (25 seconds, 15 volts) where the time stamp 25 seconds is the physical time
at the time of sensing. The delay actor increments the model time by 10 and the scale
actor doubles the value from 15 volts to 30 volts. In both cases the actuator receives
an event (35 seconds, 30 volts), which it interprets as a command to the actuator to
instantiate the value 30 volts at a physical time of 35 seconds. As long as deadlines
at the actuators are met, all observable effects with models (a) and (b) are identical,
regardless of computation times and scheduling decisions.

Modal Models. _ Modalvodel

The use of modal models
is well established both in the S
literature, for example Stat- ny setncions
echarts [8], UML [22], and 2 -
in commercial products such > Mvrrer
as Simulink/Stateflow from Sethktions. |

MathWorks [20]. Note that
Director Director

we use the term modal to I:I I:l

describe models that extend

finite-state machines by al- | m in1
lowing states to have Ptolemy _fg »>- out
II models as refinements [14]. i;_ in2

The time-centric modal mod-

els discussed here are particu-

larly useful for the specifica-
tion of modes of operation in Fig. 4. General pattern of a modal model with two modes,

a CPS as we explain in section ~¢ach with its own refinement

4. Our style for modal models

follows the pattern shown in Figure 4. A modal model is an actor, shown in the figure
with two input ports and one output port. Inside the actor is a finite state machine (FSM),
shown in the figure with two states, labeled model and mode2. The transitions between
states have guards and actions, and each state has a refinement that is a submodel. The
meaning of such a modal model is that the input-output behavior of the ModalModel
actor is given by the input-output behavior of the refinement of the current state.

Modal models introduce additional temporal considerations into a design. This is
especially true for modal models that modify the time stamp of a signal. While the
Ptolemy II environment provides several modal model execution options such as a pre-
emptive evaluation of guards prior to execution of a state refinement, the principal fea-
tures critical to the discussion of the examples in this paper are as follows. A modal
model executes internal operations in the following order:
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When the modal model reacts to a set of input events with time stamp 7, it first
presents those input events to the refinement of the current state <. That refinement
may, in reaction, produce output events with time stamp 7.

— If any of input events have an effect within the refinement at a later time stamp
7/ > 7, that effect is postponed. The modal model is invoked again at time stamp
7/, and only if the current state is still  will the effect be instantiated.

— The guards of all transitions originating from the current state are evaluated based
on the current inputs, state variables, and outputs of the current state refinement
with the same time stamp 7 as the current inputs.

— If one of the guards evaluates to true, the transition and any associated actions

are executed, and the new current state i/ becomes that at the destination of the

transition.

Thus all phases "
of the execution of o) &
a modal model occur
in strict time stamp
order in accordance
with DE semantics.

While straightforward, """ T

lout

Lraa  Toeel

these rules can yield .. - S
surprises particularly scale ' scale

the refinements mod-
ify the model time of o Tmedbelay

a Signal. sensor signalOut
‘ ’ >> ’ -7.0 -
For example con-

sider the simple modal
model of Figure 5.
The two inputs to
this state machine are mode and sensor. The two outputs are signalOut and flag. For
this example, it is assumed that the guards are never both true. Suppose a sensor event
(t,v) = (10,30) is received while the FSM is in state gain 2. The refinement of this
state generates an output (17, 60). If no state transition occurs before time ¢ = 17 then
at that time the postponed signalOut event (17, 60) will be produced. However suppose
that at time ¢ = 12 a mode event (12, true) occurs. This will cause a transition to state
gain 3 at time ¢t = 12. In this case the postponed signalOut event (17,60) is not pro-
duced. While in state gain 3 a sensor event, say (15, 3), will result in a signalOut event
(15,9). The event is not postponed since the refinement does not contain a delay actor.
Similarly, suppose sensor events (5,1) and (9,2) are received with the FSM in
state gain 2. The refinement of this state generates output events (12,2) and (16,4)
which must be postponed until times ¢ = 12 and ¢ = 16 respectively. Following the
rules above, at time ¢ = 12, a signalOut event (12,2) occurs. At t = 16 the FSM
again executes to handle the postponed event (16, 4). The first thing that happens is the
instantiation of the signalOut event (16, 4). Next, the guards on the FSM are evaluated
and a transition occurs at ¢ = 16 to the state gain 5. A subsequent sensor signal (17, 1)
then results in a signalOut event (17, 5). These examples illustrate that careful attention

sensor sigqaibul “sensor signalOut
when one or more of »—-D—h #—-D—-

Fig. 5. Simple time-sensitive modal model
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must be paid to the temporal semantics of the modal models to ensure that the desired
application behavior results.

4 Application Study

PTIDES can be used to integrate models of software, networks, and physical plants.
This is achieved by adopting the fixed-point semantics that makes it possible to mix
continuous and discrete-event models [16]. A practical consequence is to enable CPS
co-design and co-simulation. It also facilitates hardware in the loop (HIL) simulation,
where deployable software can be tested (at greatly reduced cost and risk) against sim-
ulations of the physical plant. The DE semantics of the model ensures that simulations
will match implementations, even if the simulation of the plant cannot execute in real
time. Conversely, prototypes of the software on generic execution platforms can be
tested against the actual physical plant. The model can be tested even if the software
controllers are not fully implemented. This (extremely valuable) property cannot be
achieved today because the temporal properties of the software emerge from an im-
plementation, and therefore complete tests of the dynamics often cannot be performed
until the final stages of system integration, with the actual physical plant, using the final
platform.

The inclusion of a network into an embedded system introduces three principal
complications in the design of embedded systems:

— To preserve DE semantics and the resulting determinism system wide, it is neces-
sary to provide a common sense of time to all platforms. As noted in section 2 this
is often based on a time-slotted network protocol but can also be based on a clock
synchronization protocol such as IEEE 1588 [9].

— The design of model delays must now account not only for execution time within an
actuation platform, e.g. the platform containing an actuator causally dependent on
signals from other platforms, but must include network delay as well as execution
time in platforms providing signals via the network to the actuation platform.

— To ensure bounded network delay it is usually necessary to enforce some sort of
admission control explicitly controlling the time that traffic is introduced onto the
network.

The introduction of timed reactions further complicates the design and analysis of
system temporal semantics, particularly when these reactions must be synchronized
across a multi-platform system. PTIDES is well suited in managing these multi-platform
design issues. The remainder of this section illustrates the following features of the
PTIDES design environment:

— The use of time-based detection of missing signals to drive mode changes in the
operation of power plants.

— The use of time-based models of the plant in testing controller implementations of
power plants.

— The use of a modal model to specify the temporal behavior of the operational modes
of a device.
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— The use of synchronized clocks in a multi-platform system to allow FSMs and other
actors in each platform to enforce system-wide temporal behavior.

— The enforcement of correspondence between model and physical time at sensors
and actuators to ensure that such timing specifications are realized

— The enforcement at platform network outputs of sending deadlines to ensure that
multi-platform feasible solutions are computable.

Power Plant Control.

The design of the con-
trol systems for large electric
power stations is interesting in
that the physical extent of the
plant requires a networked so-
lution. The two critical design
issues of interest here are the
precision of the turbine speed
control loop and the system
reaction time to failures. The
loop time is relatively long but
for serious failures the fuel
supply to the turbine must typ-
ically be reduced within a few
milliseconds. A typical power
plant can involve sampling
of up to 3000 nodes com-
prising monitoring equipment
separated by several hundred
meters. Since the purpose of
these data is to make decisions
about the state of the physi-
cal plant, it is critical that the
time at which each measure-
ment is made be known to
an accuracy and precision ap-
propriate to the physics being
measured. The PTIDES de-
sign system allows these mea-
surement times to be precisely
specified and time-stamped
with respect to the synchro-
nized real-time clocks in the
separate platforms.

Figure 6 illustrates a model

DE Director

estartupTime: 1
o clockPeriod: 1.5
eerrorThreshold: 0.25

Supervisory Control L
 targetOutput taretOutput
tartup -~

Local Con
-
B Loy ;

Generator/Turbine Model

AA4
i

Ptides Basic Director

measuredOutput

Plotter1

targetOutput

startup

&

Plant Control

operajingTafget

fuel

sensorinput

LocalClock

emergent
( — jocalClodid ‘.‘. Plotter2

@

,-~Heartbeat Detector

N warning
CalClock. E:] 00 L emergency

‘\warning

emergency

guard: measuredOutput
< errorThreshold
output: plantState = -1

guard: startup == true
output: fuel = 0;

plantState = -2
set: ControlLaw.gain = -0.3

guard: abs(error) < errorThreshold
&& error I= 0
output: plantState = -3
set: ControlLaw.initialTargetOutput = 5.0

guard: emergency_isPresent
output: plantSiate = -4
set:
Controllaw.initialTargetOutput = 0.0;
ControlLaw.gain = -0.5

guard: emergency_isPresent

output: plantState = -4

set: ControlLaw.initialTargetOutput = 0.0;
ControlLaw.gain = -0.5

Fig. 6. Model of a small power plant

of a power plant that is hopefully readable without much additional explanation. The
model includes a Generator/Turbine Model, which models continuous dynamics, a
model of a communication network, and a model the supervisory controller. The de-
tails of these three components are not shown. Indeed, each of these three components
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can be quite sophisticated models, although for our purposes here will use rather sim-
ple versions. The model in Figure 6 also includes a local controller, which is expanded
showing two main components, a Heartbeat Detector and Plant Control block. A power
plant, like many CPS, can be characterized by several modes of operation each of which
can have different time semantics. This is reflected in the design of the Plant Control
block that is implemented with a four state modal model based on the discussion of
section 3 . The Down state represents the off state of the power plant. Upon receipt of a
(time-stamped) startup event from the supervisory controller, this modal model transi-
tions to the Startup state. When the measured discrepancy between electric power output
and the target output gets below a threshold given by errorThreshold, the modal model
transitions to the Normal state. If it receives a (time-stamped) emergency event from
the Heartbeat Detector, then it will transition to the Shutdown state, and after achieving
shutdown, to the Down state. Each of these states has a refinement (not shown) that uses
input sensor data to specify the amount of fuel to supply to the generator/turbine. The
fuel amount is sent over the network to the actuators on the generator/turbine. Because
both the controller sensor input data and the resulting fuel control signal sent to the
actuators are time stamped, the designer is able to use PTIDES construct to precisely
specify the delay between sensors and actuators. Furthermore as described earlier exe-
cutable code generated from the PTIDES models shown here, forces these time stamps
to correspond to physical time at both sensors and actuators thus ensuring determin-
istic and temporally correct execution meeting the designed specifications even across
multiple platforms linked by a network.

Plant Input (fuel), Output, and Operating Target
T T T T T T T

To further aid the designer
these models are executable.
For example, the plots gen-
erated by the two Plotter ac-
tors in Figure 6 are shown
in Figure 7 for one sim-

] electricOutput

o= N ® & o
— T T T

'
20 25

Heartbeat and Plant State Display
T T

ulation. In this simulation,  °f  — Waming—, < Emergency | o3

the supervisory controller is- Lo ;F . . 0 % oo o |emeeny i

sues apstartupr);equest at time o 'T%HTH AL AL Tﬁ%ﬁ ﬁr 'ﬁ e
. . -1 own 7

1, which results in the fuel 2| Ilstartup Down

supply being increased and [ ‘ ‘ ‘ Norma" Shutdown_

the power plant entering its °o s 015200230 3 40

Startup mode. Near time 7.5, a

warning event occurs and the Fig. 7. Power plant output and events

supervisory controller reduces

the target output level of the power plant. It then reinstates the higher target level around
time 13. The power plant reaches normal operation shortly before time 20, and around
time 26, a warning and emergency occur in quick succession. The power plant enters
its Shutdown state, and around time 33 its Down state. Only a startup signal from the
supervisory controller can restart the plant.

The time stamps not only give a determinate semantics to the interleaving of events,
but they can also be explicitly used in the control algorithms. This power plant control
example illustrates this point in the way it uses to send warning and emergency events.
As shown in Figures 6 and 7, the Generator/Turbine Model sends (time-stamped) sen-
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sor readings over the network to the Local Control component. These sensor events
are shown with “x” symbols in Figure 7. Notice that just prior to each warning event,
there is a gap in these sensor events. Indeed, this Local Control component declares a
warning if between any two local clock ticks it fails to receive a sensor reading from the
Generator/Turbine Model. If a second consecutive interval between clock ticks elapses
without a sensor message arriving, it declares an emergency and initiates shutdown.
The mechanism for de- g ieartheat Detector

tecting the missing sensor - m.c.we

reading messages is shown in
Figure 8 and illustrates an- monitoredsignal warning
other use of the modal model N isSn=tectoy
temporal semantics of section @ -

in
localClock =... emergency

3. In that figure, the mon-
guard: clock_isPresent

itoredSignal input provides e

time-stamped sensor reading ’ kgm[w:ﬁig:z
| o

messages. The localClock in- last

warning

guard: missed
output: emergency = 3

sensor

guard:

put provides time-stamped events
from the local clock. The | & e
MissDetector component is

guard: sensor_isPresent
output: ok = true

emergency

a finite state machine with
two states. It keeps track

guard: clock_isPresent

of whether the most recently s TR e
received event was a sen-
sor message or a local clock Fig. 8. Heartbeat detector that raises alarms

event. This is possible because

PTIDES guarantees that this message will be delivered to this component in time-stamp
order, even when the messages and their time stamps originate on a remote platform
elsewhere in the network. This MissDetector component issues a missed event if two
successive local clock events arrive without an intervening sensor event. The missed
event will have the same time stamp as the local clock event that triggered it.

The second component, labeled StatusClassifier, determines how to react to missed
events. In this design, upon receiving one missed event, it issues a warning event. Upon
receiving a second missed event, it issues an emergency event. Note that this design
can be easily elaborated, for example to require some number of missed events before
declaring a warning. Also note that it is considerably easier in this framework to evalu-
ate the consequences of design choices like the local clock interval. Our point is not to
defend this particular design, but to show how explicit the design is.

If the generated code correctly performs a comparison between timestamp and phys-
ical time, as explained in section 2.3, it is guaranteed that the implementation will be-
have exactly like the simulation, given the same time-stamped inputs. Moreover, it is
easy to integrate a simulation model of the plant, thus evaluating total system design
choices well before system integration.

A detailed discussion of the design issues illustrated in this example for an actual
commercial power plant control system is found in [5]. In an accompanying technical
report [6] we discuss other PTIDES applications such as power supply shutdown se-
quencing. In many distributed systems such as high speed printing presses, when an
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emergency shutdown signal is received, one cannot simply turn off power throughout
the system. Instead, a carefully orchestrated shutdown sequence needs to be performed.
During this sequence, different parts of the system will have different timing relation-
ships with the primary shutdown signal. As presented in [6], this relationship is easily
captured in the timed semantics of PTIDES.

5 Conclusion

This paper reviewed Ptolemy II enhancements for several important aspects of CPS
design and deployment, namely PTIDES for distributed real-time systems, and modal
models for multi-mode system behavior. The timed semantics of PTIDES allows us to
specify the interaction between the control program and the physical dynamics in the
system model, independent of underlying hardware details. Because of this indepen-
dence, PTIDES models are more robust than typical real-time software, because small
changes in the physical execution timing of internal events are not visible to the en-
vironment, as long as real-time constraints are met at sensors, actuators and network
interfaces. By combining PTIDES with modal models, we illustrated timed mode tran-
sitions which enable time-based detection of missing signals to drive mode changes in
the operation of common industrial applications.

Our future activities include work on several components of the PTIDES frame-
work. PTIDES relies on software components providing information about model delay
they introduce. This information is captured by causality interfaces [27], and causality
analysis is used to ensure that DE semantics is preserved in an execution. The precise
causality analysis when modal models are allowed is undecidable in general, but we
expect that common use cases will yield to effective analysis. Another challenge is to
provide feasibility analysis for the PTIDES programming model, which would allow
for a static analysis of the deployability of a given application on a set of resources.

A major component of our work will be refinement to the design of a distributed
execution platform for PTIDES. The code generator integrated within the Ptolemy II
environment will generate C code from PTIDES models and glue them together with
the preexisting software components to produce executable programs for each of the
platforms in the network. The code will be executed in the context of PtidyOS that can
be considered as a lightweight operating system with PTIDES semantics.
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Abstract. In this paper, we use UML Interaction Overview Diagrams
as the basis for a user-friendly, intuitive, modeling notation that is well-
suited for the design of complex, heterogeneous, embedded systems de-
veloped by domain experts with little background on modeling software-
based systems. To allow designers to precisely analyze models written
with this notation, we provide (part of) it with a formal semantics based
on temporal logic, upon which a fully automated, tool supported, ver-
ification technique is built. The modeling and verification technique is
presented and discussed through the aid of an example system.
Keywords: Metric temporal logic, bounded model checking, Unified
Modeling Language.

1 Introduction

Complex embedded systems such as those found in the Aerospace and Defense
domains are typically built of several, heterogeneous, components that are often
designed by teams of engineers with different backgrounds (e.g., telecommuni-
cation, control systems, software engineering, etc.). Careful modeling starting
from the early stages of system development can greatly help increase the qual-
ity of the designed system when it is accompanied and followed by verification
and code generation activities. Modeling-verification-code generation are three
pillars in the model driven development of complex embedded systems; they are
most effective when (i) modeling is based on user-friendly, intuitive, yet precise
notations that can be used with ease by experts of domains other than computer
science; (ii) rigorous, possibly formal, verification can be carried out on the afore-
mentioned models, though in a way that is hidden from the system developer as
much as possible; (iii) executable code can be seamlessly produced from verified
models, to generate implementations that are correct by construction.

This work, which is part of a larger research effort carried out in the MADES
European project! [1], focuses on aspects (i) and (ii) mentioned above. In partic-
ular, it is the first step towards a complete proposal for modeling and validating
embedded systems. The plan is to exploit both “conventional” UML diagrams

! http://www.mades-project.org
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[15] and a subset of the MARTE (Modeling and Analysis of Real-Time and Em-
bedded systems) UML profile [14]. We want to use Class Diagrams to define the
key components of the system. State Diagrams to model their internal behaviors,
and Sequence and Interaction Overview Diagrams to model the interactions and
cooperations among the different elements. These diagrams will be augmented
with clocks and resources taken from MARTE. The result is a multi-faceted
model of the system, automatically translated into temporal logic to verify it.
Temporal Logic helps glue the different views, create a single, consistent rep-
resentation of the system, discover inconsistencies among the different aspects,
and formally verify some global properties.

This paper starts from Interaction Overview Diagrams (IODs) since they are
often neglected, but they provide an interesting means to integrate Sequence
Diagrams (SDs) and define coherent and complex evolutions of the system of
interest. IODs are ascribed a formal semantics, based on temporal logic, upon
which a fully automated, tool supported, verification technique is built.

The choice of IODs as the starting point for a modeling notation that is
accessible to experts of different domains, especially those other than software
engineering, is borne from the observation that, in the industrial practice, SDs
are often the preferred notation of system engineers to describe components’
behaviors [3]. However, SDs taken in isolation are not enough to provide a com-
plete picture of the interactions among the various components of a complex
system; hence, system designers must be given mechanisms to combine different
SDs into richer descriptions, which is precisely what IODs offer.

IODs cannot be used to perform the kind of rigorous analysis that is cru-
cial throughout the development of critical systems such as those typical of the
Aerospace and Defense domains unless they are given a precise semantics. To
this end, in this article we provide a preliminary formal semantics of IODs based
on metric temporal logic. While this semantics is not yet complete, as it does not
cover all possible mechanisms through which SDs can be combined into IODs,
it is nonetheless a significant first step in this direction. The provided semantics
has been implemented into the Zot bounded satisfiability /model checker [16]2,
and has been used to prove some properties of an example system.

This paper is structured as follows. Section 2 briefly presents IODs; Section 3
gives an overview of the metric temporal logic used to define the formal semantics
of IODs, and of the Zot tool supporting it; Section 4 introduces the formal
semantics of IODs through an example system, and discusses how it has been
used to prove properties of the latter; Section 5 discusses some relevant related
works; finally, Section 6 draws some conclusions and outlines future works.

2 Interaction Overview Diagrams

Most UML behavioral diagrams have undergone a significant revision from ver-
sion 1.x to version 2.x To model interactions, UML2 offers four kinds of diagrams:

2 Zot is available at http://home.dei.polimi.it/pradella.
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communication diagrams, sequence diagrams, timing diagrams and interaction
overview diagrams. In this work we focus on Sequence Diagrams (SDs) and In-
teraction Overview Diagrams (IODs).

SDs have been considerably revised and extended in UML2 to improve their
expressiveness and their structure. IODs are new in UML2. They allow a de-
signer to provide a high-level view of the possible interactions in a system. IODs
constitute a high-level structuring mechanism that is used to compose scenarios
through mechanisms such as sequence, iteration, concurrency or choice. I0Ds
are a special and restricted kind of UML Activity Diagrams (ADs) where nodes
are interactions or interaction uses, and edges indicate the flow or order in which
these interactions occur. Semantically, however, IODs are more complex com-
pared to ADs and may have different interpretations. In the following the funda-
mental operators of IODs are presented. Figure 2 shows an example of IOD for
the application analyzed in Section 4, which will be used throughout this Sec-
tion to provide graphical examples of IOD constructs. IODs include also other
operators whose study is left to future works.

2.1 Initial Node/Final Node/Flow Final Node

In IODs these operators have exactly the same meaning of the corresponding
operators found in ADs.

An initial node is a type of control node which initiates flow in a IOD. It has
no incoming flows and one or more outgoing flows. The outgoing flows may be
guarded with conditions that determine if they will accept tokens. When a 10D
starts, tokens are offered to all outgoing flows of the initial node.

A final node is a node that stops a IOD. When a token arrives at a final node
all flows in the enclosing activity are stopped and the IOD is terminated. The
token arriving at the final node is destroyed.

Finally, a flow final node is a type of final node that consumes the incoming
token. When a token arrives at a flow final node the token is consumed and
nothing else in the 10D is affected.

The IOD of Figure 2 has an initial node at the top, but no final or flow final
nodes.

2.2 Control Flow

A control flow is a directed connection (flow) between two SDs (e.g., between
diagrams delegateSMS and downloadSMS in Figure 2). As soon as the SD at
the source of the flow is finished, it presents a token to the SD at the end of the
flow.

2.3 Fork/Join

A fork node is a control node that has a single incoming flow and two or more
outgoing flows. Incoming tokens are offered to all outgoing flows (edges). The
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outgoing flows can be guarded, which gives them a mechanism to accept or reject
a token. If one of the outgoing flows accepts the token, the token is duplicated
for that flow. In this work we do not deal with guards, but this is a rather
straightforward extension that we will consider in the future. In the IOD of
Figure 2, there is one fork node at the top of the diagram (between the initial
node and SDs waitingCall and checkingSMS) modeling two concurrent execution
of the system.

The dual operator is the join node, which synchronizes a number of incoming
flows into a single outgoing flow. Each (and every) incoming control flow must
present a control token to the join node before the node can offer a single token
to the outgoing flow.

2.4 Decision/Merge

A decision node is a control node that has one incoming flow and two or more
outgoing flows. When a token arrives at a decision node it is offered to all the
outgoing flows, one (and only one) of which accepts the token. In the IOD of
Figure 2 there are four decision operators (e.g., the one between SDs waitingCall
and delegateCall) with their corresponding boolean conditions.

Conversely, the merge node is a type of control node that has two or more
incoming flows and a single outgoing flow. It is used to reunite alternative flows
that originate from one or more decision nodes. The merge node accepts a token
on any one (and only one) of the incoming flows and passes it to the single
outgoing flow.

3 TRIO and Zot

TRIO [7] is a general-purpose formal specification language suitable for describ-
ing complex real-time systems, including distributed ones. TRIO is a first-order
linear temporal logic that supports a metric on time. TRIO formulae are built
out of the usual first-order connectives, operators, and quantifiers, as well as a
single basic modal operator, called Dist, that relates the current time, which
is left implicit in the formula, to another time instant: given a time-dependent
formula F' (i.e., a term representing a mapping from the time domain to truth
values) and a (arithmetic) term ¢ indicating a time distance (either positive or
negative), the formula Dist(F,t) specifies that F' holds at a time instant whose
distance is exactly ¢ time units from the current instant. Dist(F, ¢) is in turn also
a time-dependent formula, as its truth value can be evaluated for any current
time instant, so that temporal formulae can be nested as usual. While TRIO
can exploit both discrete and dense sets as time domains, in this paper we as-
sume the standard model of the nonnegative integers IN as discrete time domain.
For convenience in the writing of specification formulae, TRIO defines a number
of derived temporal operators from the basic Dist, through propositional com-
position and first-order logic quantification. Table 1 defines some of the most
significant ones, including those used in this paper.
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OPERATOR DEFINITION
Past(F, 1) t > 0 A Dist(F, —t)
Futr(F,t) t > 0 A Dist(F,t)
Alw(F) Vd : Dist(F, d)
AlwP(F) Vd > 0 : Past(F, d)
AlwF (F) Vd > 0 : Futr(F,d)
SomF(F’) 3d > 0 : Futr(F, d)
SomP (F) 3d > 0 : Past(F,d)
Lasted(F,t) vd € (0,1] : Past(F,d)
Lasts(F,t) vd € (0,t] : Futr(F,d)
WithinP (F, t) 3d € (0,¢] : Past(F,d)
WithinF (F), t) 3d € (0,¢] : Futr(F,d)
Since(F,G) |3d > 0 : Lasted(F, d) A Past(G, d)
Until(F, @) | 3d > 0 : Lasts(F, d) A Futr(G, d)

Table 1. TRIO derived temporal operators

The TRIO specification of a system consists of a set of basic items, which
are primitive elements, such as predicates, time-dependent values, and functions,
representing the elementary phenomena of the system. The behavior of a system
over time is formally described by a set of TRIO formulae, which state how the
items are constrained and how they vary, in a purely descriptive (or declarative)
fashion.

The goal of the verification phase is to ensure that the system S satisfies
some desired property R, that is, that S = R. In the TRIO approach S and R
are both expressed as logic formulae X' and p, respectively; then, showing that
S E R amounts to proving that X' = p is valid.

TRIO is supported by a variety of verification techniques implemented in
prototype tools. In this paper we use Zot [16], a bounded satisfiability checker
which supports verification of discrete-time TRIO models. Zot encodes satisfia-
bility (and validity) problems for discrete-time TRIO formulae as propositional
satisfiability (SAT) problems, which are then checked with off-the-shelf SAT
solvers. More recently, we developed a more efficient encoding that exploits the
features of Satisfiability Modulo Theories (SMT) solvers [2]. Through Zot one
can verify whether stated properties hold for the system being analyzed (or parts
thereof) or not; if a property does not hold, Zot produces a counterexample that
violates it.

4 Formal Semantics of Interaction Overview Diagrams

This section introduces the formal semantics of IODs defined in terms of the
TRIO temporal logic. The semantics is presented by way of an example system,

Oslo, Norway, October 4, 2010

41



MoDELS 2010 ACES-MB Workshop Proceedings

whose behavior modeled through a IOD is described in Section 4.1. Then, Sec-
tion 4.2 discusses the TRIO formalization of different constructs of I0Ds, and
illustrates how this is used to create a formal model for the example system.
Finally, Section 4.3 briefly discusses some properties that were checked for the
modeled system by feeding its TRIO representation to the Zot verification tool.

4.1 Example telephone system

The example system used throughout this section is a telephone system com-
posed of three units, a TransmissionUnit, a ConnectionUnit and a Server, de-
picted in the class diagram of Figure 1. The ConnectionUnit is in charge of

TransmissionUnit ConnectionUnit Server

clnit : ConnectionUnit tunit - TransmissionlUnit tunit [*] : TransmisslonUnit

server

incomingCall{ ) nextsMSToken( )
SToken() checkSMS()
i)

veCallDatal)

z

Fig. 1. Class diagram for the telephone system.

checking for the arrival of new SMSs on the Server (operation checkSMS of class
Server) and to handle new calls coming from the Server (operation IncomingCall
of class ConnectionUnit). The TransmissionUnit is used by the ConnectionUnit
to download the SMSs (operation downloadSMS) and to handle the call’s data
(operation beginCall). The TransmissionUnit receives the data concerning SMSs
and calls from the Server (operations receiveSMSToken and receiveCallData).

The behavior of the telephone system is modeled by the IOD of Figure 2.
The fork operator specifies that the two main paths executed by the system are
in parallel; for example the checkingSMS and receiveCall sequence diagrams run
in parallel. Branch conditions are used in order to distinguish between different
possible executions; for example after checking for a new SMS on the Server the
system will continue with downloading the SMSs if one is present, otherwise it
will loop back to the same diagram. It can be assumed that the Server allocates
a dedicated thread to each connected telephone, this is why the sequence dia-
grams of Figure 2 report the interaction between only one ConnectionUnit, one
TransmissionUnit and one Server.

4.2 TRIO Formalization

The formalization presented here was derived from the diagram of Figure 2 by
hand. The availability of a tool, which we are building, will allow us to analyze
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waitingCall

{& [no sms]

[accept]

delegateSMS

downloadSMS

[more data]

[close call]

[no more data]

Fig. 2. Interaction Overview diagram for the telephone system.
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more complex models and assess the actual scalability of the proposed technique.
The formalization is organized into sets of formulae, each of them corresponding
to one of the SDs appearing in the IOD. Every set can be further decomposed
into three subsets modeling different aspects of the SDs:

— diagram-related formulae, which concern the beginning and the end of
the execution of each SD, and the transition between a SD and the next
one(s);

— message-related formulae, which concern the ordering of the events within
a single SD;

— component-related formulae, which describe constraints on the execu-
tion of operations within single components.

These subsets are presented in the rest of this section.

Diagram-related Formulae In this first version of the semantics of IODs we
impose that, within each SD of an IOD, messages are totally ordered. This is to
clearly identify a begin message and an ending message. This assumption can
be removed using the fork/join operators to split diagrams into totally ordered
ones. Then, for each SD D,, it is possible to identify two messages, ms and me,
which correspond to the beginning and to the end of the diagram. For each SD
D, we introduce predicates D, START and D, EN D that are true, respectively,
at the beginning and the end of the diagram. We also introduce, for each message
m appearing in diagram D,, a predicate m that holds in all instants in which
the message occurs in the system (this entails that components synchronize on
messages: send and receive of a message occur at the same time). Then, the
correspondence between D, START (resp. D,END) and the starting (resp.
ending) message m; (resp. m.) is formalized by formulae (1-2)3. In addition,
we introduce a predicate D, that holds in all instants in which diagram D,
is executing; hence, predicate D, holds between D, START and D,END, as
stated by formula (3).

D,START < m, (1)
D,END < m, (2)
D, < D,START V Since(~D,END, D, START) (3)

For example, the instances of formulae (1-3) for diagram delegateSMS corre-
spond to formulae (4-6).

delegateSM SSTART <« downloadSM S (4)
delegateSMSEND < reply3 (5)
delegateSM S < delegateSMSSTART V (6)

Since(—delegateSMSEN D, delegateSM SSTART)

3 Note that TRIO formulae are implicitly temporally closed with the Alw operator;
hence, D START < m; is actually an abbreviation for Alw(DySTART < ms) .
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Notice that if the IOD contains k different occurrences of the same message
m, k different predicates m0...mk are introduced. For this reason in formula (5)
reply3 appears instead of reply.

A diagram D, is followed by a diagram D, for either of two reasons: (1) D,
is directly connected to Dy, in this case the end of D, is the necessary condition
to start Dy; (2) D, is connected to D, through some decision operator, in this
case the necessary condition to start D, is given by the end of D,, provided
the condition on the decision operator is met. If a diagram D, is preceded by
p sequence diagrams, we introduce p predicates D, ACTC; (i € {1...p}), where
D, ACTC; holds if the i-th necessary condition to start diagram D, holds. We
also introduce predicate D, ACT, which holds the instant after any of the p
necessary conditions holds, as defined by formula (7). This is done to avoid that
D,START and D,END are true at the same time instant, with D,, € {1...p}.In
fact a condition D, ACTC; holds when the ending predicate of the i-th diagram
that precedes D, hold. After the necessary condition to start a diagram is met,
the diagram will start at some point in the future (not necessarily immediately),
as stated by formula (8). Finally, after a diagram starts, it cannot start again
until the necessary condition to start it is met anew, as defined by formula (9).

D,ACT < Past(D,ACTCy V ...V Dy ACTC)y, 1) (7)
D,ACT = SomF(D,START) v D,START (8)
D,START = —SomF(D,START) V Until(~D,START, D,ACT)  (9)

In the case of SD downloadSMS of Figure 2, the instances of formulae (7-9)
are given by (12-14). In addition, formulae (10-11) define the necessary conditions
to start diagram downloadSMS: either diagram delegateSMS ends, or diagram
downloadSMS ends and condition moredata holds. Currently, we can only deal
with atomic boolean conditions. The representation of more complex data, and
conditions upon them, is already in our research agenda.

downloadSM SACTC, < delegateSMSEND (10)
downloadSMSACTCy < downloadSMSEN D A moredata (11)

douwnloadSMSACTC, >

douwnloadSMSACT < Past <\/ downloadSMSACTC

downloadSMSACT =
SomF,(downloadSMSSTART) V downloadSMSSTART (13)
downloadSMSSTART =
—SomF(downloadSMSSTART) Vv
Until(—downloadSMSSTART, downloadSM SACT) (14)
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Message-related Formulae Suppose that, in a SD, a message m; is followed
by another message m;. Then the occurrence of m; entails that m; will also
occur in the future; conversely, the occurrence of m; entails that m; must have
occurred in the past. This is formally defined by formulae (15-16). In addition,
after an instance of m;, there can be a new instance of the same message only
after a new occurrence of m;; this is stated by formula (17), which defines that,
after m;, there will not be a new occurrence of m; until there is an occurrence
of my;.

m; = SomF(m;) A —m; (15)
mj = SomP(m;) A —-m; (16)
m; = —SomF(m;) V Until(-m;, m;) (17)

If, for example, formulae (15-17) are instantiated for SD checkingSMS of
Figure 2, one obtains formulae (18-20).

checkSMS = SomF (replyl) A —replyl (18)
replyl = SomP (checkSMS) A —checkSMS (19)
checkSMS = —SomF(checkSMS) V Until(—checkSMS, replyl)  (20)

Component-related Formulae This set of formulae describes the conditions
under which the entities of the system are busy, hence cannot perform further
operations until they become free again. For example, in the telephone system
of Figure 2, when the execution is inside the checkingSMS diagram, the Connec-
tionUnit cannot perform any other operations during the time interval between
the invocation of operation ckechSMS and its corresponding reply message, since
the invocation is synchronous (as highlighted by the full arrow).

In general, a synchronous invocation between objects A and B that starts
with message m; and ends with message m; blocks both components from the
moment of the invocation until its end; this is formalized by formulae (21-22),
in which h and k are indexes identifying the occurrences of objects A and B in
the IOD. In case of an asynchronous message m between A and B (such as, for
example, incomingCall in SD waitingCall, as denoted by the wire-like arrow),
the semantics is the one defined by formulae (23-24), which state that the objects
are blocked only in the instant in which the message occurs.

m; V Since(—-m;, m;) <& ABLOCKED,, (21)
m; V Since(—m;, m;) <& BBLOCKED), (22)
m < ABLOCKED,, (23)
m < BBLOCKED;, (24)

Finally, if n is the number of occurrences of object A in the I0OD, formula
(25) states that all executions involving A are mutually exclusive.
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V1<i,j<n(i+#jANABLOCKED; = ~ABLOCKED),) (25)

The following formulae are instances of (21-25) for object ConnectionUnit,
which appears in four separate SDs in the IOD of Figure 2:

ConnectionUnit BLOCK ED1 < checkSM SV
Since(—replyl, checkSMS)
ConnectionUnit BLOCK ED?2 < incomingClall
ConnectionUnit BLOCK ED3 < downloadSM SV
Since(—reply2, donwloadSMS)
ConnectionUnit BLOCK ED4 < beginCallV
Since(—reply3, beginCall)
V1 <i,j <4(i # j A ConnectionUnit BLOCKED; =
—ConnectionUnit BLOCKED)j)

4.3 Properties

Using the formalization presented above, we can check whether the modeled
system satisfies some user-defined properties or not, by feeding it as input to the
Zot verification tool.

We start by asking whether it is true that, if no SMS is received in the
future, then nothing will ever be downloaded. This property is formalized by the
following formula:

=SomF(SMS) = =SomF(downloadSMS) (26)

After feeding it the system and the property to be verified, the Zot tool
determines that the latter does not hold for the telephone system of Figure 2. In
fact, between the check for a new SMS and its download there can be an arbitrary
delay; hence, the situation in which the last SMS has been received, but it has
not yet been downloaded, violates the property. Zot returns this counterexample
in around 8.5 seconds.?

The following variation of the property above, instead, holds for the system:

=(SomP(SMS) v SMS) = —=WithinF(downloadSM S, 3) (27)

4 The complete Z.ot model can be downloaded from
http://home.dei.polimi.it/rossi/telephone.lisp.

® All tests have been performed with a time bound of 50 time units (see [16] for
the role of time bounds in Bounded Model/Satisfiabliity Checking), using the
Common Lisp compiler SBCL 1.0.29.11 on a 2.80GHz Core2 Duo laptop with
Linux and 4 GB RAM. The verification engine used was the SMT-based Zot
plugin introduced in [2], with Microsoft Z3 2.8 (http://research.microsoft.com/en-
us/um/redmond/projects/z3/) as the SMT solver.
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Formula (27) states that, if no SMS has yet been received, for the next 3
instants there will not be an SMS download. Zot determines that formula (27)
holds in around 7 seconds.

The following formula states that after a nextSMSToken request from Trans-
missionUnit to Server, no data concerning an incoming call can be received by
the TransmissionUnit until a new SMS is received.

nextSM SToken = Until(—receiveCall Data, receiveSM ST oken) (28)

Zot verifies that property (28) does not hold in around 8 seconds. As wit-
nessed by the counterexample produced by Zot, the reason why (28) does not
hold is that the downloadSMS diagram and the receiveCall diagram can run in
parallel, and after sending a nextSMSToken message the TransmissionUnit and
the Server are free to exchange a receiveCallData message.

5 Related Work

Scenario-based specifications such as UML sequence diagrams, UML interaction
diagrams, and Message Sequence Charts (MSCs) are classified as semi-formal,
meaning that their syntax is formal but not their interpretation. As a conse-
quence, the research community has devoted a significant effort to studying
ways to give these diagrams a formal semantics.

Many works focus on the separate formalization of sequence diagrams and
activity diagrams. Storrle analyzes the semantics of these diagrams and pro-
poses an approach to their formalization [18]. More recently, Staines formalizes
UML2 activity diagrams using Petri nets and proposes a technique to achieve
this transformation [17]. Also, Lam formalizes the execution of activity diagrams
using the m — C'alculus, thus providing them with a sound theoretical founda-
tion [13]. Finally, Eshuis focuses on activity diagrams, and defines a technique
to translate them into finite state machines that can be automatically verified
[9][8]-

Other works investigate UML2 interaction diagrams. Cengarle and Knapp in
[6] provide an operational semantics to UML 2 interactions, and in [5] they ad-
dress the lack of UML interactions to explicitly describe variability and propose
extensions equipped with a denotational semantics. Knapp and Wuttke trans-
late UML2 interactions into automata and then verify that the proposed design
meets the requirements stated in the scenarios by using model checking [12].

When multiple scenarios come into play, like in IODs, there is the problem
of finding a common semantics. Uchitel and Kramer in [19] propose an MSC-
based language with a semantics defined in terms of labeled transition systems
and parallel composition, which is translated into Finite Sequential Processes
that can be model-checked and animated. Harel and Kugler in [10] use Live
Sequence Charts (LCSs) to model multiple scenarios, and to analyze the problem
of knowing if there exists a satisfying object system and, if so, to synthesize one
automatically.
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In spite of the extensive research on the diagrams mentioned above, to the
best of our knowledge very little attention has been paid to IODs. Kloul and
Kister-Filipe [11] show how to model mobility using IODs and propose a formal
semantics to the latter by translating them into the stochastic process algebra
PEPA nets. Tebibel uses hierarchical colored Petri nets to define a formal se-
mantics for IODs [4]. Our work is quite different, because it uses metric temporal
logic to define the semantics of IODs; as briefly discussed in Sections 1 and 6, this
opens many possibilities as far as the range of properties that can be expressed
and analyzed for the system is concerned.

6 Conclusions and Future Works

In this paper we presented the first steps towards a technique to precisely model
and analyze complex, heterogeneous, embedded systems using an intuitive UML-
based notation. To this end, we started by focusing our attention on Interaction
Overview Diagrams, which allow users to describe rich behaviors by combining
together simple Sequence Diagrams. To allow designers to rigorously analyze
modeled systems, the basic constructs of IODs have been given a formal seman-
tics based on metric temporal logic. This semantics has been implemented in a
fully automated verification tool, which has been used to prove some properties
of an example system.

The work presented in this paper is part of a longer term research, and it
will be extended in several ways.

As mentioned in Section 3, the TRIO temporal logic on which the seman-
tics of IODs presented here is based has a metric notion of time. As such, it
allows users to express real-time properties (e.g., ”a message will be sent within
3 seconds”). Nonetheless, in the present paper we only formalize qualitative
temporal properties, like (partial) ordering among events and eventualities. The
metric features of TRIO will be used to extend the formalization of SDs and
IODs to real-time features that will be introduced in the modeling language by
providing support for the MARTE UML profile.

Furthermore, we will provide semantics to constructs of IODs that are not yet
covered. This semantics will be used to create tools to automatically translate
IODs into the input language of the Zot tool, and to show designers the feed-
back from the verification tool (e.g., counterexamples) in a user-friendly way. In
particular, we will define mechanisms to show counterexamples provided by Zot
as SDs. These tools will allow domain experts who have little or no background
in formal verification techniques to take advantage of these techniques in the
analysis of complex systems.

A longer term goal of the present research is to include in the formalization
not only Sequence Diagrams, but also other, related, notations that are cus-
tomarily used to specify the behavior of the modeled systems, most typically
State Diagrams. TRIO, and its related verification engine Zot, will become the
common underlying semantic ground on which to build an integrated, coherent
verification environment for real-time critical systems.
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Abstract. System development and integration with a sufficient ma-
turity at entry into service is a competitive challenge in the aerospace
sector. With the ever-increasing complexity of products, this can only be
achieved using efficient model-based techniques for system design as well
as for system testing. However, natural language requirements engineer-
ing is an established technique that cannot be completely replaced for a
number of reasons. This is a fact that has to be considered by any new
approach. Building on the general idea of model-based systems engineer-
ing, we aim at building an integrated virtual verification environment for
modeling systems, requirements, and test cases, so that system designs
can be simulated and verified against the requirements in the early stages
of system development. This paper provides a description of the virtual
verification of system designs against system requirements methodology
and exemplifies its application in a ModelicaML modeling environment.

Keywords: Requirements, Verification, ModelicaML, Modelica, MBSE,
Model-based testing

1 Introduction

The ever-increasing complexity of products has had a strong impact on time to
market, cost and quality. Products are becoming increasingly complex due to
rapid technological innovations, especially with the increase in electronics and
software even inside traditionally mechanical products. This is especially true
for complex, high value-added systems such as aircraft and automobile that are
characterized by a heterogeneous combination of mechanical and electronic com-
ponents. The economic aspects of electronic subsystems (Embedded Systems)
running within these products are remarkable. For example, avionics costs are
about 30% of the overall cost of an aircraft and embedded systems represent
about 40% of avionics cost. An important component of embedded systems is
embedded software whose importance is rising almost exponentially in time:
From the 1980s Airbus A300 which had a couple of thousand lines of software
code on board, to the A380 whose software size is in the range of millions of
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lines. For this aircraft, a single line of software code certified according to DO-
178b level A is estimated to cost about 100 € thus yielding an overall cost for
software of hundreds of millions of Euros. System development and integration
with sufficient maturity at entry into service is a competitive challenge in the
aerospace sector. Major achievements can be realized through efficient system
specification and testing processes. Limitations of traditional approaches relying
on textual descriptions are progressively addressed by the development of model-
based systems engineering! (MBSE) approaches. Building on this general idea
of MBSE, we aim at building a virtual verification environment for modeling
systems, requirements and test cases, so that a system design can be simulated
and verified against the requirements in the early system development stages.

1.1 Scope

For our methodology we assume that the requirements from the customer have
been elicited? as requirement statements according to common standards in
terms of quality, e.g. according to Hull et al.[4] stating that the individual re-
quirements should be unique, atomic, feasible, clear, precise, verifiable, legal, and
abstract, and the overall set of requirements should be complete, non-redundant,
consistent, modular, structured, satisfied and qualified. The methods to achieve
this have been well defined and can be considered to be established. Further-
more, the overall MBSE approach to system design, that is the development of
a system design model from textual requirements, is not within the scope of this
paper?.

Paper structure: First we establish and describe the idea of virtual verification
of system designs against system requirements (Section 2). Then we present
background information on ModelicaML and the running example (Section 3)
before we will explain the methodology in detail with the help of said running
example (Section 4). Finally, we close with a summary of the current status and
propose a number of ideas for future research (Sections 5 and 6).

2 Virtual Verification of System Designs Against System
Requirements

This chapter provides the motivation behind our work, a general description
thereof and the benefits of using the virtual verification of system design against
system requirements (vVDR) approach. Furthermore, related work is discussed.

! The International Council on Systems Engineering (INCOSE) defines MBSE as fol-
lows: "Model-based systems engineering (MBSE) is the formalized application of
modelling to support system requirements, design, analysis, verification and valida-
tion activities beginning in the conceptual design phase and continuing throughout
development and later life cycle phases”[1].

2 A description of the various requirement elicitation, i.e. capturing, techniques can
be found in [2] and [3].

3 The interested reader can find a detailed overview of existing solutions for that in
[5] and [6].
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2.1 Objectives

A number of studies have demonstrated that the cost of fixing problems increases

as the lifecycle of the system under development progresses. As an example

Davis[7] reports the following well-known relative cost of repairs for software?:

Lifecycle phase Relative cost of repair

Requirements 0.1-0.2
Design 0.5
Coding 1.0
Unit test 2.0
Acceptance test 5.0
Maintenance 20.0

Fig. 1. Relative cost of repair for fixing defects in different lifecycle phases [7]

Thus, the business case for detecting defects early in the life cycle is a strong
one. Testing thus needs to be applied as early as possible in the lifecycle to keep
the relative cost of repair for fixing a discovered problem to a minimum. This
means that testing should be integrated into the system design phase so that
the system design can be verified against the requirements early on. To enable
an automatic verification of a design model against a given set of requirements,
the requirements have to be understood and processed by a computer. MBSE
typically relies on building models that substitute or complement the textual
requirements. Links between the model elements and the textual requirements
are usually kept at the requirements’ granularity level, meaning that one or more
model elements are linked to one requirement. This granularity is good enough
for basic traceability and coverage analysis but fails when an interpretation of
a requirement’s content by a computer is necessary. There is research concern-
ing the automatic translation of natural language requirements into behavioral
models to support the automation of system and acceptance testing (see e.g.
[8]) but it is not widely adopted in industrial practice[9]. Formal mathematical
methods may be used to express requirements, but their application requires
high expertise and, hence, they are not very common in industrial practice. A
recent survey came to the conclusion that ”in spite of their successes, verification
technology and formal methods have not seen widespread adoption as a routine
part of systems development practice, except, arguably, in the development of
critical systems in certain domains.”[10]. The bottom line is that natural lan-
guage is still the most common approach to express requirements in practice[9)].
We want to provide a solution to the question of how to formalize requirements
so that they can be processed and evaluated during system simulations in order

4 Other researchers have found different absolute values but they have all found the
same trend.
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to detect errors or inconsistencies in a way that is easy to understand and to
apply.
2.2 vVDR Concept

Figure 2 depicts the relationship of the various engineering artifacts in the frame
of vVDR.

represent m

Textual requirements _r6ql_J|remen.ts
(Violation monitors)

satisfies

Fig. 2. Engineering data relations overview

A subset of a given set of textual requirements is selected and formalized
into so-called requirement violation monitors by identifying measurable proper-
ties addressed in the requirement statement. A requirement violation monitor is
basically an executable model for monitoring if the constraints expressed by the
requirement statement are adhered to. To test a given design model, the require-
ment violation monitors are linked to the design model using explicit assignment
statements. Furthermore, a test suite consisting of a test context and a number
of test cases has to be built manually. The test suite uses the formalized require-
ments as test oracles for the test cases, i.e., if a requirement is violated during
a test, the test case is deemed failed. The separation of requirement and system
design modeling provides a degree of independence that ensures a high fidelity
in the testing results. The test cases, requirement violation monitors and the de-
sign model can be instantiated and run automatically. Visual graphs (e.g. plots)
allow the monitoring of the requirement violation monitors during run-time to
see if the design model fails to implement a requirement.

2.3 Benefits

Our approach contributes to three main steps in the system development lifecy-
cle: requirements analysis, system design and system testing. Experience shows
that the main benefit of modeling in general is a contribution to the identifi-
cation of ambiguities and incompleteness in the input material. Even though
we assume that the textual requirements that are provided as an input to the
process adhere to a high quality standard, vVDR enables the requirements an-
alyst to further improve the quality by modeling the requirements in a formal
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representation as this forces a detailed analysis of the requirements. The main
contribution of vVDR is to the quality of the system design. The automatic
verification of a design model based on the formalized requirements allows the
detection of errors in the system design. The separation of requirements mod-
eling and design modeling allow a reuse of the requirements for the verification
of several alternative system designs. Furthermore, even for one design model
the same requirements violation monitors can be instantiated several times. As
described in [11], the benefits of using a model-based testing approach during
the system design phase facilitates error tracing and impact assessment in the
later integration and testing stages by providing a seamless traceability from the
initial requirements to test cases and test results. Furthermore, it allows reusing
the artifacts from the engineering stage at the testing stage of the development
cycle which results in a significant decrease in overall testing effort. By integrat-
ing the requirements model in a test bench the test models can also be reused
for hardware-in-the-loop test setups.

2.4 Related work

In [12] an approach to the incremental consistency checking of dynamically de-
finable and modifiable design constraints is presented. Apart from focusing on
design constraints instead of design requirements which can be argued as be-
ing a marginal issue, the main difference to vVDR is that the constraints are
expressed using the design model variables whereas our approach is based on
a separation of the requirements and the design model. Only for a specific test
context are they connected using explicit assignment statements. Additionally,
the monitoring of model changes and the evaluation of the defined constraints
is done by a separate ”Model Analyzer Tool” whereas our approach relies on
out-of-the-box modeling capabilities. The Behavior Modeling Language (BML)
or more specifically the Requirement Behavior Tree technique that is a vital
part of the BML is another method for formalizing requirements into a form
that can be processed by computers[13][14]. But whereas vVDR relies on a sep-
aration between the set of independent requirements that are used to verify a
design model and the building of a design model by the system designer, the
BML methodology merges the behavior trees that each represent single require-
ments into an overall design behavior tree (DBT). In other words, the transition
from the requirements space to the solution space is based on the formalized
requirements.

3 Background

This chapter provides background information on the graphical modeling nota-
tion ModelicaML [15] and its underlying language Modelica [16] which was used
to implement our approach, and introduces the running example that will be
used to illustrate the vVDR methodology in Section 4.
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3.1 Technical Background

Modelica is an object-oriented equation-based modeling language primarily aimed
at physical systems. The model behavior is based on ordinary and differential
algebraic equation (OAE and DAE) systems combined with difference equa-
tions/discrete events, so-called hybrid DAEs. Such models are ideally suited
for representing physical behavior and the exchange of energy, signals, or other
continuous-time or discrete-time interactions between system components.

The Unified Modeling Language (UML) is a standardized general-purpose
modeling language in the field of software engineering and the Systems Model-
ing Language (SysML) is an adaptation of the UML aimed at systems engineer-
ing applications. Both are open standards, managed and created by the Object
Management Group (OMG), a consortium focused on modeling and model-based
standards.

The Modelica Graphical Modeling Language is a UML profile, a language
extension, for Modelica. The main purpose of ModelicaML is to enable an ef-
ficient and effective way to create, visualize and maintain combined UML and
Modelica models. ModelicaML is defined as a graphical notation that facilitates
different views (e.g., composition, inheritance, behavior) on system models. It
is based on a subset of UML and reuses some concepts from SysML. Modeli-
caML is designed to generate Modelica code from graphical models. Since the
ModelicaML profile is an extension of the UML meta-model it can be used as
an extension for both UML and SysML?®.

3.2 Running Example: Automated Train Protection System

In this section we introduce an example, which will be used in the remainder
of this paper to demonstrate the vVDR approach. It is based on the example
from[13]. Most railway systems have some form of train protection system that
uses track-side signals to indicate potentially dangerous situations to the driver.
Accidents still occur despite a train protection system when a driver fails to
notice or respond correctly to a signal. To reduce the risk of these accidents,
Automated Train Protection (ATP) systems are used that automate the train’s
response to the track-side signals. The ATP system in our example design model
has three track-side signals: proceed, caution and danger. When the ATP system
receives a caution signal, it monitors the driver’s behavior to ensure the train’s
speed is being reduced. If the driver fails to decrease the train’s speed after a
caution signal or the ATP system receives a danger signal then the train’s brakes
are applied. The textual requirements for the ATP can be found in Appendix A.
Figure 3 shows the top-level architecture of the system consisting of a driver, a
train and train tracks, and the internal architecture of the train consisting of an
HMI system, a control system, an engine and a braking system. The behavior
of each of the components is modeled in ModelicaML.

5 SysML itself is also a UML Profile. All ModelicaML stereotypes that extend UML
meta-classes are also applicable to the corresponding SysML elements.
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Fig. 3. Train transportation system and train architecture in ModelicaML

4 Methodology Description

Figure 4 provides an overview of the envisaged vVDR process and includes a
mapping of the identified activities to the executing roles. The following subsec-
tions contain a description of the method steps and illustrate the methodology
using our running example.

4.1 Method Step: Select Requirements to Be Verified

From the set of agreed input requirements the requirements analyst selects re-
quirements that are to be verified by means of simulation. The selection criteria
depend on the requirement types as well as on the system design models that
are planned to be created. Generally speaking, the requirements analyst needs
to decide if the vVDR approach is suitable to test a given requirement. This step
requires a close collaboration between the requirements analyst and the system
designer. The output of this activity is a selected subset of the input require-
ments. This activity contributes to the system design modeling by clarifying the
level of detail that is required of the model for an automatic evaluation of the
selected requirements. For example, the requirements 001, 001-2 and 002 would
not be selected because appropriate models will be missing or simulation is not
best suited® for their verification. In contrast, the requirements 003-009 are good
candidates for the verification using simulations. The recommended procedure
for the selection of requirements is as follows:

5 For example, design inspection could be sufficient.
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Requirements analyst
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test cases
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Fig. 4. Methodology overview

Read a requirement

— Decide if this requirement can and shall be evaluated using a simulation
model

— Decide if this requirement is complete, unambiguous and testable by using

the kind of design models that are to be created

If yes: Mark this requirement as selected

— If no: Skip this requirement

The selected subset of requirements will then be transferred into the modeling
tool and used in the subsequent steps.

4.2 Method Step: Formalize Textual Requirements

The second step is to formalize each requirement in order to enable its automatic
evaluation during simulations. Consider requirement 006-1: ”If at any time the
controller calculates a ”caution” signal, it shall, within 0.5 seconds, enable the
alarm in the driver cabin.” Based on this statement we can:

— Identify measurable properties included in the requirement statement, i.e.,
the reception of a caution signal, the activation of the alarm and the time
frame constant,

— Formalize properties as shown in Fig. 5 and define a requirement violation
monitor as illustrated in Fig. 6.

In order to determine if a requirement is fulfilled the following assumption is
made: A requirement is implemented in and met by a design model as long as
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«Requirements

id = 006-1

text = If at any time the controller calculates a
“"caution” signal, it shall, within 0.5 seconds, enable the
alarm in the driver cabin.

crequirement»
Controller behavior for caution signals 1

& alarm_is_activated: ModelicaBoolean
& caution_signal_received: ModelicaBoolean
& violated: ModelicaBoolean

Fig. 5. Formalized requirement properties in ModelicaML

its requirement violation monitor is evaluated but not violated. Now the violation
relations can be defined. This example uses a state machine” (as shown in Fig.
6) to specify when the requirement is violated. In general, it is recommended to

«modelicaStateMachinex»
R6-1: Requirement violation monitor

Y

Monitoring signal reception

‘ Start condition for the L
evaluation Unset violated /entry

[caution_signal_received]

g ‘ Waiting for alarm activation ‘
‘ evaluated = true; L Setevaluted ‘entry |

[AFTER(0.5)| and (notalarm_is_activated) ]

[notcaution_signal_recdived ]
Violated
Set violated /entry

‘ violated := true; L\

Fig. 6. Requirement violation monitor example

create the following attributes for each requirement:

— evaluated: Indicates if the requirement was evaluated at least once,
— violated: Indicates if this requirement was violated at least once.

The evaluated attribute is necessary, because, while a violation during a simula-
tion provides sufficient indication that a requirement is not met, a non-violation
is not enough to ensure the satisfaction of a requirement. For example, if the
value of ” caution_signal received” is never true during a particular test case sim-
ulation this can mean that:

— This requirement is not addressed by the design (i.e., the caution signals are
not received by the controller at all),

7 A ModelicaML state machine is one possible means to express the violation of a
requirement. It is also possible to use other formalisms, equations or statements for
it.
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— Or this requirement is not verified by this test case because the test case
does not provide appropriate stimuli for the design model.

This method step supports the requirements analyst in improving the quality
of the selected requirements by identifying ambiguities or incompleteness issues.
For example, the following questions were raised when formalizing the original
input requirement:

— "If a caution signal is returned to the ATP controller then the alarm is
enabled within the driver’s cab. Furthermore, once the alarm has been en-
abled, if the speed of the train is not observed to be decreasing then the
ATP controller activates the train’s braking system.”

— What does decreasing mean, by which rate?

— The driver will need time to react, how much?

— The controller cannot activate things instantaneously. How much time is
allowed at the most to pass between the stimuli and the expected result?

Any issues that are identified in this step have to be resolved with the stake-
holders and all affected textual requirements have to be updated accordingly.
In our example, the updated version of this requirement has been split into two
separate requirements 006-1 and 006-2.

4.3 Method Step: Select or Create Design Model to Be Verified
against Requirements

The actual system design is not in the scope of this paper. The system designer
builds a design model for each design alternative that he comes up with®. Since
the requirements are kept separate from the design alternatives, the same re-
quirements can be reused to verify several designs, and the same requirement
violation monitors can be reused in multiple test cases.

4.4 Method Step: Create Test Models, Instantiate Models, Link
Requirement Properties to Design Model Properties

After the formalization of the requirements and the selection of one design model
for verification, the system tester starts creating test models, defining test cases
and linking requirement properties to values inside the design model. The rec-
ommended procedure is as follows:

— Define a test model that will contain test cases, a design model, the require-
ments and their requirement violation monitors.

— Define test cases for evaluating requirements. One test case can be used for
evaluating one or more requirements.

8 For ease of use, the design will normally be modelled in the same notation and the
same tool as the requirements. However, it can be imagined to build interfaces to
executable models that were built using different modelling notations in different
tools and then subsequently use vVDR to test these models.
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— Create additional models if necessary, for example, models that simulate the
environment, stimulate the system or monitor specific values.

— Bind the requirements to the design model by setting the properties of a
requirement to values inside the design model using explicit assignments.

Particularly the last step will require the involvement of the system designer in
order to ensure that the requirement properties are linked properly, i.e. to the
correct properties values inside the design model. For example, the assignment
for the requirement property caution_signal_received is as follows:

caution_signal_received =
design_model.trainl.pcl.tcs.controller.tracks_signals_status ==

This means that the requirement property caution_signal_received will become
true when the controller property tracks_signals_status is equal to one”.

Another example is the assignment of the requirement property alarm_is_activated.
Here the system tester will have to decide which design property it should be
linked to. It could be accessed from the ATP controller or from the HMI system,
that is between the controller and the driver (see Fig. 3), or from the driver
HMI port directly. The answer will probably be: It should be accessed from the
driver HMI port because failures in HMI system may also affect the evaluation
result. Furthermore, it is recommended to create the following attributes and
statements'® for each test model:

— test_passed := evaluated and not violated;
Indicates if the test is passed or failed.

— evaluated := if reql.evaluated and ... and regN.evaluated then true ...;

Indicates if the test case has evaluated all requirements.
— violated := when {reql.violated,... ,reqN.violated} then true ...;
Indicates if any of requirements was violated.

These definitions enable an automated test case results evaluation by using the
requirement violation monitors of the involved requirements as a test oracle
for the test case. Figure 7 presents an example of a test case that drives the
simulation.

4.5 Method Step: Test and Observe Requirement Violations

After having created the test models, the system tester can run simulations
and observe the results. Hereby, the system tester will be interested in knowing
if test cases have passed or failed. A test case is deemed to have failed when
not all requirements were evaluated or some requirements were violated dur-
ing the execution of the test case. In our approach a Modelica simulation tool
(e.g. MathModelicall) allows a visual monitoring of the requirement violation
monitors during the simulation as shown in Fig. 8.

9717 denotes a caution signal in the design model

10 These statements are written in Modelica.
" http://www.mathcore.com
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Fig. 8. Test execution and requirement violations observation

4.6 Method Step: Report and Analyze Test Results

After the execution of all test cases, the system tester creates a simulation report
that should, for each test model, at least include the following information:

— Which design model, test cases and requirements were included?
— Did the test cases pass?

If not, were all requirements evaluated?
If yes, are there requirements violations?

This information is the basis for discussions among the involved parties and may
lead to an iterative repetition of the system design and testing process described
here. Furthermore, it allows the precise reproduction of test results at a later
state. Additionally, these reports can be reused as a reference for later product
verification activities, i.e., the physical system testing at a test bench.
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5 Current Status and Future Directions

The methodology presented in this paper has been successfully applied in several
case studies. However, the case studies included only a small number of require-
ments. In the future, a real-sized case study is planned, i.e., one that contains
more than a hundred requirements to be verified using the vVDR method to
determine the applicability and scalability of this approach. The traceability be-
tween requirements and design artifacts is a critical issue in the daily engineering
work, particularly with regards to change impact analysis. When the system de-
sign is evolving or changing then the vVDR approach presented in this paper
contributes to an efficient way of verifying the new designs against requirements
by reusing the formalized requirements and test cases for quick and easy regres-
sion testing. This is enabled by the separation of requirements and test cases
on the one hand and the design models on the other hand. However, it is still
hard to determine the impact of a requirement change on the system design.
In order to support impact analysis, a traceability of requirements to design
artifacts is necessary at an appropriate level of granularity. For example, parts
of a requirement statement, i.e.,. single words, should be linked to the different
design model elements that they are referring to. Moreover, an effective visual-
ization and dependencies exploration is necessary in order to enable an efficient
handling of changes. A model-based development approach enables an effective
and efficient reporting on and monitoring of the requirements implementation.
For example, a bidirectional traceability between requirement and design allows
the determination of the system development status and supports project risk
management and planning. While the test cases for our running example can be
easily derived directly from the input requirements, manual test case generation
becomes an increasingly tedious task for real-life specifications with hundreds
of requirements. Model-based testing provides methods for automated test case
generation some of which already work on UML models[17] and look promis-
ing to be adapted to vVDR. Requirements traceability, a higher test automation
through adaptation of model-based testing techniques as well as reporting topics
are subject to our future work.

6 Conclusion

This paper presents a method for the virtual verification of system designs
against system requirements by means of simulation. It provides a detailed de-
scription of all method steps and illustrates them using an example case study
that was implemented using ModelicaML. It points out that this method strongly
depends on the design models that are planned to be created and that not all
type of requirements can be evaluated using this method. In the vVDR ap-
proach, formalized requirements, system design and test cases are defined in
separate models and can be reused and combined into test setups in an efficient
manner. In doing so, a continuous evaluation of requirements along the system
design evolution can be done starting in the early system design stages. This ap-
proach enables an early detection of errors or inconsistencies in system design,

Oslo, Norway, October 4, 2010

65



MoDELS 2010 ACES-MB Workshop Proceedings

as well as of inconsistent, not feasible or conflicting requirements. Moreover,
the created artifacts can be reused for later product verification (i.e., physical
testing) activities.
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A ATP requirements

ID

Requirement Text (based on [13])

001

The ATP system shall be located on board the train.

001-2

The ATP system shall consist of a central controller and five boundary
subsystems that manage the sensors, speedometer, brakes, alarm and a
reset mechanism.

002

The sensors shall be attached to the side of the train and read informa-
tion from approaching track-side signals, i.e. they detect what the signal
is signaling to the train driver.

002-2

Within the driver cabin, the train control display system shall display
the last track-side signal values calculated by the controller.

003

Three sensors shall generate values in the range of 0 to 3, where 0, 1 and
2 denote the danger, caution, and proceed track-side signals respectively.
Each sensor shall generate the value 3 if a track-side signal that is out
of the range 0..2 is detected.

004

The controller shall calculate the majority of the three sensor readings.
If no majority exists then the value shall be set to "undefined” (i.e. 3).

005

If the calculated majority is ”proceed” (i.e. 0) then the controller shall
not take any action with respect to the activation of the braking system.

006-1

If at any time the controller calculates a ”caution” signal, it shall, within
0.5 seconds, enable the alarm in the driver cabin.

006-2

If the alarm in the driver cabin has been activated due to a ”caution”
signal and the train speed is not decreasing by at least 0.5m/s? within
two seconds of the activation, then the controller shall within 0.5 seconds
activate the automatic braking.

007-1

If at any time the controller calculates a ”danger” signal it shall within
0.5 seconds activate the braking system and enable the alarm in the
driver cabin.

007-2

If the alarm in the driver cabin has been activated due to a ”caution”
signal, it shall be deactivated by the controller within 0.5 seconds if a
”proceed” signal is calculated and the automatic braking has not been
activated yet.

008

If at any time the automatic braking has been activated, the controller
shall ignore all further sensor input until the system has been reset.

009

If the controller receives a reset command from the driver, then it shall
within 1 second, deactivate the train brakes and disable the alarm within
the driver cabin.
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Abstract. Architecture description languages (ADLs) allow specifying
system information in architecture models. These are generally used
for capturing early design decisions concerning system or software de-
velopment. Therefore, ADLs can be utilized for an early and iterative
validation of the modelled system. With EAST-ADL an automotive-
specific ADL is defined which allows describing an automotive system at
different layers of abstraction targeting AUTOSAR systems. SystemC
is an executable system modelling and simulation language which per-
mits Hardware/Software-Co-Design. With the Transaction-Level Model-
ing (TLM) methodology the description of different layers of abstraction
in SystemC is enabled. This work addresses the early validation of auto-
mobile electronic systems by providing a transformation of EAST-ADL
models to SystemC at different layers of abstraction. This allows spe-
cific analysis with Hardware/Software Co-Simulation iteratively in the
development process. The proposed approach is realized in a tool-chain
and demonstrated by a typical automotive use case. Hence, we show the
potential of an early validation of system and software designs based on
architecture models.

1 Introduction

Model-driven design has been successfully introduced into diverse application
areas for abstracting from complex systems. With Architecture Description Lan-
guages (ADLs) a solution is provided to capture design information on a high
level of abstraction [1]. Various model-based tools exist which model the distinct
behaviour of functions. ADLs allow to model the interaction of such functions
on a system level describing the software and system architecture. An explicit
modelling of layers of abstraction of the system provides the possibility to ab-
stract from the system implementation at different points of view. Thus, special
attention can be given to specific details of interest at the particular level. As
architecture models include system information they can be used for a valida-
tion of the architecture even in early design phases. Approaches integrating well
with the tool flow enable the validation in iterative steps as the system is refined.
This permits early feedback to the development avoiding changes because of late
identified design problems.
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The automotive domain poses an area with complex interconnected embed-
ded systems. Domain-specific modelling languages have been introduced to re-
alize distinct functional behaviour. As this alleviates the development of sin-
gle applications, with the more interacting functionality a more course-grained
view on the overall system is needed. EAST-ADL [2] as a system level view
for the automotive domain allows abstracting from the automotive electronic
system at different levels. At implementation level the AUTomotive Open Sys-
tem ARchitecture (AUTOSAR) [3] meta-model is adopted enabling a well de-
fined integration in present development methodologies. For the simulation and
validation of hardware/software systems the system-modelling language Sys-
temC [4] was developed. It incorporates a simulation kernel and structures for
Hardware/Software-Co-Design. With Transaction-Level Modeling (TLM) [5] dif-
ferent levels of abstraction can be modelled in SystemC. Additionally, a subset
of SystemC is synthesizable, e.g. for FPGA implementations.

Since the application of SystemC for a simulation-based validation of au-
tomotive electronic systems is a promising approach for design exploration and
hardware sizing, its integration within the architecture design has to be pursued.
Therefore, we introduce in this work an adoption of SystemC in the develop-
ment process with architecture descriptions based on EAST-ADL. An automatic
transformation on the different layers of abstraction of EAST-ADL to SystemC
is presented in this paper which enables a simulation-based validation. Thereby,
architecture models can be iteratively refined and improved in the development
process.

This paper is structured as follows. In the next section related work to our
approach is described. Afterwards, in Section 3 and 4 the concepts and main
language elements of EAST-ADL and SystemC are presented. In Section 5 we
introduce at first a mapping of the layers of abstraction of both languages.
Subsequently, we detail the transformation of language artefacts of EAST-ADL
to SystemC. A case study within the automotive domain shows the applicability
of our approach in Section 6. This paper is concluded and an outlook on our
future work is given in the last section.

2 Related Work

In this section we briefly describe related work to our approach with the focus on
architecture descriptions and validation by simulation. The Architecture Anal-
ysis and Design Language (AADL) [6] was initially developed for the avionics
domain but addresses generally the modelling of embedded real-time systems.
It provides a textual and graphical notation for the architecture design of hard-
ware and software components. Several approaches focus on the generation from
AADL models for simulations [7] [8].

EAST-ADL (cp. Section 3) is a specific ADL for the automotive domain.
It features defined layers of abstraction of the system and an orthogonal single
environment model. The realization of the implementation layer of EAST-ADL
is provided by AUTOSAR. As EAST-ADL was chosen as automotive ADL for
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this work it is more comprehensively described below. AUTOSAR (Automotive
Open System Architecture) [3] is a widely spread software architecture in the
automotive domain. Instead of the traditionally ECU (Electronic Control Unit)
centric development it focuses on the entire system and separates functional-
ity from infrastructure. AUTOSAR provides well-defined interfaces for software
components and layers of abstraction for hardware and infrastructure.

The Component Language (COLA) [9] is defined by formal syntax and se-
mantics based upon synchronous dataflow. It also allows the hierarchical de-
composition of the system. Even though it addresses the general modelling of
embedded systems, it is evaluated for automotive case studies. A transformation
to SystemC for an early design validation has also been carried out [10].

An approach to integrate virtual prototyping in the development process of
vehicles is presented in [11]. In this work a mapping of Automotive Open Sys-
tem Architecture (AUTOSAR) [3] components to an equivalent SystemC model
at different levels of granularity is outlined. Due to this mapping it is possi-
ble to co-simulate AUTOSAR-conform automotive software systems at different
stages of the development process. In [12] and [13] a co-simulation approach
for automotive embedded systems is described. The aim of this SystemC based
approach is to enhance the diagnosis ability of the system. It integrates the func-
tional model and the hardware specification with multi levels of granularity. In
[14] and [15] a methodology for embedded systems based on SystemC TLM [5] is
proposed. This methodology enables the rapid prototyping of embedded systems
for functional validation and performance evaluation in early stages of the design
process. Stepwise refinement of the system model allows the co-simulation at an
untimed, cycle approximate or cycle accurate level.

3 EAST-ADL

EAST-ADL (Electronics Architecture and Software Technology - Architecture
Description Language) [2] was initially developed and refined during several
research projects as an automotive domain-specific ADL. Its main purpose is
the model-based management of all engineering information in a single model.
EAST-ADL is used at the design stage in the automotive domain. It is an ar-
chitecture description language which supports different abstract views on an
automotive electronic architecture. EAST-ADL integrates the component-based
architecture of AUTOSAR [3], making it an AUTOSAR compliant architecture
description language. The language is defined as a UML Profile [16] allowing a
consistent description of the architecture with UML. The model of the complete
system is separated into different layers of abstraction as shown in Figure 1.
The upper modelling layers provide an architecture independent system de-
scription which can be mapped to the AUTOSAR architecture description on
the implementation layer. Orthogonal to the horizontal layers is the Environ-
ment Model as it exhibits no abstraction layers. It encapsulates plant models,
i.e. models of the behaviour of the vehicle and its non-electronic systems. Func-
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Fig. 1. EAST-ADL layers of abstraction with the orthogonal environment model [2]

tions in the Environment Model are connected with components representing
hardware in the Analysis or Design Level by ClampConnectors.

Components communicate with each other through specializations of Func-
tionPorts. FunctionFlowPorts are inspired by SysML FlowPorts [17] and used
for data flow-based communication. Additionally, for client-server interactions
components can also interact through FunctionClientServerPorts. FunctionPow-
erPorts denote physical interactions between the environment and the sensing or
actuation functions. FunctionPorts are typed by EADataTypes which represent
data types in EAST-ADL, e.g. integer within a specifiable range as EAInteger.
Hardware components communicate through specialized HardwarePins. Commu-
nicationHardwarePins represent hardware connection points of communication
buses. A PowerHardwarePin is used for modelling power supply. IOHarwarePins
denote electrical connection points for digital or analog I/0.

At the most abstract layer, the Vehicle Feature Level, only features of the
vehicle are modelled allowing the integration of product variability. Variabil-
ity at all lower levels can be modelled through VariationPoints. Features can
also be grouped and are realized by FunctionTypes. Diverse dependencies be-
tween features can be modelled as VariabilityDependencyKind. The focus of the
Analysis Level lies on the modelling of the system in a way which is suitable
for analysis. The architecture model at this level is called Functional Analysis
Architecture. Components can be defined by AnalysisFunctionTypes and Func-
tionalDevices (the latter represent actuators and sensors on the Analysis Level).
AnalysisFunctionPrototypes denote instances of these two. Software components
are interconnected by FunctionConnectors.

At Design Architecture Level the software and hardware is represented in
distinct models, the Functional Design Architecture and the Hardware Design
Architecture. Software components are represented by DesignFunctionTypes or
LocalDeviceManagers (the latter represent software interfaces to sensors and
actuators). Hardware components are modelled by Nodes (ECUs), Sensors, Ac-
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tuators and LogicalBusses. They are interconnected with HardwareConnectors.
A LogicalBus represents the allocation target for FunctionConnectors, i.e. ex-
changed data in the Functional Design Architecture. Nodes are the allocation
targets for DesignFunctionTypes and LocalDeviceManagers. HardwareCompo-
nentPrototypes are properties typed with the above mentioned hardware types
representing instances.

On the transition from the Design Level to the Implementation Level a map-
ping to the AUTOSAR meta-model is foreseen. Therefore, modelling artefacts
on this level are compliant to the AUTOSAR specification in version 3 [3]. The
Operational Level refers to the deployed and running system and is not mod-
elled for this reason. Behaviour is not explicitly considered in EAST-ADL. It
can either be modelled externally (e.g. in domain-specific tools like Matlab or in
a platform-specific programming language like C/C++) or internally in EAST-
ADL utilizing UML behaviour modelling (like Activity Diagrams or Statecharts).
As we have introduced EAST-ADL and its layers of abstraction, in the next sec-
tion the language and a methodology to abstract different levels of SystemC are
outlined.

4 SystemC - Transaction-Level Modeling

SystemC is a standardized system modelling and simulation language which
supports Hardware/Software-Co-Design and Co-Simulation. It is standardised
and promoted by the Open SystemC Initiative (OSCI) [18] and has been ap-
proved by the IEEE Standards Association as IEEE 1666-2005 [4]. Based on
the wide-spread programming language C++, SystemC provides artefacts to
simulate concurrent processes and an event-driven simulation kernel. Although,
having semantic similarities to hardware description languages (like VHDL and
Verilog), SystemC can be used to model the holistic system using plain C++.

A SystemC model usually consists of several modules (sc_module) which may
be organized hierarchically. Computation in SystemC is modelled by so-called
processes which are enclosed in modules. Processes are inherently concurrent.
Communication from inside a module to the outside - mostly other modules
- is realized via ports (sc_port). These are connected to channels (sc_channel)
by SystemC interfaces (sc_interface). This enables the modelling of complex
communication structures (e.g. FIFO or network bus) in SystemC.

With SystemC new models can be connected easily to existing hardware
or functional models - either in platform-specific programming languages like
C/C++ or domain-specific modelling tools, e.g. Matlab/Simulink within the
automotive domain. Furthermore, it is possible to include any existing C or
C++ library in the own system model. Thus, suppliers, for example within the
automotive domain, can interchange pre-compiled hardware or software modules
with other suppliers or car manufacturers and do not need to disclose their
intellectual property.

To integrate Hardware/Software Co-Simulation effectively in the develop-
ment process of networked embedded systems, a stepwise refinement of the mod-
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els is necessary. This can be realized by using SystemC because it implements a
top-down design process according to the Transaction-Level Modeling (TLM) [5]
methodology. TLM is a methodology used for modelling digital systems which
separates the details of communication among computational components from
the details of the computational components. Details of communication or com-
putation can be hidden in early stages of the design and added later. There-
fore, communication mechanisms such as interconnection buses are modelled
as sc_channels which can be accessed by sc_modules using SystemC interface
classes. Transaction requests take place by calling interface functions of these
channels. Low-level details of the communication process are encapsulated by
the sc_interfaces. By this, the refinement of computation is separated from the
refinement of communication. This approach enables the evaluation of different
interconnection systems without having to re-implement the computation mod-
els that interact with any of the buses, because the computation models interact
with the communication model through the common interfaces.

The OSCI Transaction Level Working Group has defined different levels of
abstraction for TLM [19]. The most abstract level is denoted as Communicating
Processes (CP). At this level the behaviour of the system is partitioned into
parallel processes that exchange complex, high-level data structures through
point-to-point connections. Communicating Processes with Time (CPT) is iden-
tical with CP, but introduces timing annotations. The next more detailed level,
Programmers View (PV), is much more architecture-specific. Bus models are in-
stantiated to act as transport mechanisms between the model components and
some arbitration of the communication infrastructure is applied. Programmers
View with Time (PVT) is functionally identical with PV but is annotated with
more accurate timing information than CPT. At the level called Cycle Callable
(CC) computation models are clocked and all timing annotations are accurate
to the level of individual clock cycles. Communication models are fully protocol
compliant. After introducing the abstraction levels of SystemC TLM we intro-
duce in the next section our approach of mapping the architecture description
of EAST-ADL to SystemC TLM.

5 Simulation-based Validation With Architecture Models

Architecture models capture information of the system development and allow a
simulation-based validation. As described in Section 3 EAST-ADL enables the
modelling of a system on different layers of abstraction. With TLM different
levels for abstracting the modelled system are introduced in SystemC (cp. the
previous Section 4). A combination of this ADL with the SystemC allows for an
iterative design with early feedback on the models through Hardware/Software-
Co-Simulation. For combining the advantages of an ADL and of simulations, the
levels of abstraction have to be aligned. Thus, in the following we motivate a
mapping of the levels of abstraction of EAST-ADL to the SystemC TLM levels
as depicted in Figure 2.
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Fig. 2. EAST-ADL layers of abstraction in comparison to SystemC TLM levels

The most abstract functional levels in EAST-ADL and TLM are the Analysis
Level and the CP. As the Vehicle Level only includes features it is not considered
in this mapping for a simulation of the system behaviour. The TLM level Com-
municating Processes (CP) represents parallel processes which communicate via
point-to-point connections. On the Analysis Level the inter-dependencies be-
tween the modelled functionalities and their externally visible behaviour are de-
scribed. The functions of the Analysis Level represent abstract, communicating
components. Thus, they can be transformed to parallel communicating processes
and a mapping of the Analysis Level to the CP is possible. A specific transforma-
tion of the EAST-ADL component of this level is shown in the following section.
As CPT adds timing annotation to the CP it corresponds to the Analysis Level
with consideration of timing in the model.

On the next more detailed level are the EAST-ADL Design Level and the
TLM PV. The Programmer’s View (PV), additionally to the CP, incorporates
bus architectures and arbitration of the communication infrastructure. Also, the
Design Level introduces hardware models and bus infrastructure in EAST-ADL
and refines the more abstract layer. Thus, the Design Level of EAST-ADL with
its modelled software and hardware distributed on several ECUs may be mapped
to the PV in SystemC. The software functions (DesignFunction Types) represent
the processes and the hardware with interconnecting buses can be modelled as
hardware architecture and corresponding communication infrastructure. Because
the Programmers View with Time (PVT) includes more precise timing informa-
tion than at CPT level, it is consistent with a model at the EAST-ADL Design
Level with timing.

The most detailed functional abstraction layer in EAST-ADL is the Imple-
mentation Level. It is represented by AUTOSAR models and includes the most
detailed and accurate system information. As this level is platform specific, rep-

Oslo, Norway, October 4, 2010

75



MoDELS 2010 ACES-MB Workshop Proceedings

resents a specific implementation and provides the necessary detailed informa-
tion for a cycle-accurate simulation, it can be transformed to the TLM Cycle
Callable Level (CC). The latter is cycle accurate with respect to individual clock
cycles and thus well suited for simulating time-accurate AUTOSAR models. The
aligned levels of abstraction as shown in Figure 2 include specific artefacts of the
modelling languages which need to be transformed for a mapping. These are in
the focus of the next subsection.

5.1 Mapping of EAST-ADL Artefacts to SystemC TLM

In the previous section we pointed out the general commonalities of the differ-
ent levels of abstraction of EAST-ADL and SystemC. For an integration of a
validation in SystemC the single artefacts of EAST-ADL have to be mapped
to SystemC language elements. In the following we address such a mapping for
the structural parts of the upper two functional levels of EAST-ADL the Anal-
ysis Level and the Design Level. As the Implementation Level is realized with
AUTOSAR models, a mapping does not relate to EAST-ADL but to the AU-
TOSAR meta-model. Thus, a simulation with SystemC TLM can be realized by
an approach based on AUTOSAR software components as presented in [11]. By
this transformation particular emphasis has to be put on the semantic mapping
and preservation of the defined artefacts. The structure of the model is preserved
in the transformation. Thus, a tracing of the model artefacts to the SystemC
code-level artefacts is possible, with the drawback of not optimized code. This
also enables the feedback from the simulation to the respective model elements.

The following mapping focuses on the structural parts of the languages as
the behaviour is not modelled explicitly in EAST-ADL (s. Section 3). Timing
definitions have been integrated as non-funtional properties in the last version of
EAST-ADL. As this relates to the non-functional property timing, it does not de-
fine the functional behaviour. An integration of the EAST-ADL timing semantics
(Timing Augmented Description Language [20]) is currently in progress as future
work. Only references to behaviour specified externally (e.g. UML behaviour or
Matlab/Simulink Models) are included in the architecture model. Thus, the be-
haviour can be mapped directly to SystemC. For realizing the mapping of the
behaviour off-the-shelf C/C++ code generators for the referenced behaviour can
be used, e.g. TargetLink or UML Statechart generators. The generated platform
code can be integrated as behaviour of SystemC Modules (sc_modules).

The orthogonal Environment Model can be represented by a single sc_module
which includes the environment behaviour as sub modules, e.g. as code gener-
ated from a Matlab/Simulink model. ClampConnectors are specific elements
for interfacing environment components with the horitontal Functional Analysis
Architecture and the Functional Design Architecture. This connections can be
realized with sc_channels and sc_interfaces in SystemC.

In the previous section the general relation of the Analysis Level of EAST-
ADL and the CP level of TLM has been explained. For a specific mapping of
these levels rules for transforming the EAST-ADL artefacts to SystemC elements
have to be defined. As shown in Figure 3 EAST-ADL components can generally
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Fig. 3. Mapping of EAST-ADL artefacts to SystemC elements

be represented by sc_modules. The EAST-ADL ports and connectors can be
transformed to sc_ports, sc_channels and sc_interfaces.

At Analysis Level sensors and actuators are represented by FunctionalDe—
vices. AnalysisFunctionTypes are used to model functions. These components
can directly be transformed to sc_modules. FunctionFlowPorts are ports for a
data flows between AnalysisFunctionTypes. FunctionClientServerPorts can
be utilized for function calls through a defined interface. Ports are interconnected
by FunctionConnectors. The ports and connectors are transformed to simple
sc_signals or sc_channels and sc_interfaces at CP level.
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Fig. 4. Mapping of the EAST-ADL Design Level to SystemC PV simulation

At Design Level the simulation of software functions distributed over hard-
ware platforms (ECUs) is addressed. Therefore, we introduce a SystemC-based
framework which allows the modelling of automotive-specific elements in Sys-
temC PV, like ECUs or software functions. As shown in Figure 4 the sys-
tem is simulated in our approach at PV with software functions scheduled on
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ECUs communicating via interconnecting buses. The respective components in
SystemC are specialized sc_modules. For example, a DesignFunctionType is
mapped to a software function (SWF) defined in the framework which is derived
from a sc_module.

A general mapping of the EAST-ADL elements at Design Level to SystemC
is depicted in Figure 4. The Design Level consists of software and hardware
models. DesignFunctionTypes represent software functions. Software interact-
ing with hardware sensors and actuators are modelled as LocalDeviceMana-
gers. The hardware components at this level are Sensors, Actuators and
LocalBuses. These components can be transformed to sc_modules at PV level
as mentioned above. HardwarePorts and HardwareConnectors are transformed
to sc_channels and sc_interfaces level. An extract of the main EAST-ADL

Table 1. Overview of the mapping of core elements of EAST-ADL onto SystemC TLM
elements

[EAST-ADL [[SystemC TLM
AnalysisFunctionType sc_module
FunctionalDevice sc_module
FunctionConnector sc_channel,sc_interface
DesignFunction Type sc_module
LocalDevice Manager sc_module
HardwareConnector sc_channel,sc_interface
Node sc_module

Sensor sc_module

Actuator sc_module

LogicalBus sc_module
FunctionFlowPort sc_port
FunctionClientServerPort ||sc_channel,sc_interface
HardwarePort sc_port

elements and their corresponding SystemC elements is given in Table 1. In the
next section these transformation rules are applied in an automobile case study
emphasizing their applicability for enabling an iterative validation within the
development process based on an architecture model.

6 Case Study

The use of architecture models for a validation by simulation is evaluated in a
case study for the previously described transformation of EAST-ADL to Sys-
temC. Thereby, the focus of this work lies more on the structural mapping and
generation of simulations than on the validation or analysis itself.

The afore introduced transformation of EAST-ADL models to executable
SystemC models has been realized in a prototypical tool-chain. For evaluation
purposes an automotive case study [21] has been modelled in EAST-ADL and
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transformed to SystemC simulations. The use case is within the so-called body
domain of an automobile and consists of the four features exterior light, direction
indication, central door locking and keyless door entry.
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Fig. 5. Composite diagram of the use case at Analysis Level

The exterior light feature allows controlling the front and rear lights of the
vehicle. The lights can be switched on/off manually or automatically through
darkness or rain detected by the rain/light sensor. These inputs are interpreted
by the function exterior light control which controls the light units (front and
rear). For the direction indication a direction indication switch can be used to
signal the turning direction. With the hazard light switch, risky driving situa-
tions can be signalled to other road users. Therefore, the direction indication
master control informs the direction indication front and rear controls about
the designated status of the direction indication lights. These turn the direction
indication lights on or off in the front and rear light units. Central door lock-
ing allows locking and unlocking all doors simultaneously by using the key in
the lock or by radio transmission. A radio receiver signals the information to
the central door locking control. This function flashes the direction indication
lights for a feedback to the driver and controls the four door locks of the car.
An additional feature to the un-/locking of an automobile is the keyless entry. A
driver can approach his car with the key in his pocket and the doors will unlock
automatically. It can be locked by simply pressing a button on the door handle.
Antenna components detect the key in the surrounding and inform the central
door locking function which in turn unlocks the doors. With respect to the in-
teraction with exterior light (which gives feedback via the direction indication
lights), it does not make any difference whether the doors have been unlocked
in a standard way or via the keyless entry. In the following a realization of these
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features at Analysis Level and Design Level of EAST-ADL is described with its
corresponding SystemC implementation.

At Analysis Level this use case is modelled in EAST-ADL by the Functi-
onalDevices KeylessEntryController, CentralDoorLockingController, Di-
rectionIndicationMasterController, DirectionIndicationFrontControl-
ler,DirectionIndicationRearController and ExteriorLightController as
can be derived from Figure 5. The behaviour of these functionalities is described
as opaque behaviour of the components (C++ source code). Additionally, be-
haviour can be modelled with straight-forward UML Statecharts providing a
UML based behaviour specification. Communication is designed as data flow
represented by FunctionFlowPorts and FunctionConnectors.

A SystemC simulation generated from this level includes modules intercon-
nected for each of the above mentioned FunctionalDevices. They implement the
respective behaviour of these modelled components in a thread of the module.
With this transformation a simulation based on the Analysis Level in EAST-
ADL of the use case was realized. Thus, the interaction of the abstract modelled
functionalities can be validated with a simulation-based analysis.

DesignFunctionType Sensors Actuators Nodes LocalBus
AN A VAN —& ?
DI-FR-CTRL ] KES-CTRL Antennal __" dioRecel DoorLockl n FrontLightL B Dcup CAN
DI-RE-CTRL [ CDL-CTRL | | Directi i DoorLock2 i FrontLightR B bcuc
EL-CTRL ] DI-CTRL Antenna3 __ﬁnlﬂl' h DoorLock3 | RearLightL N SMsC
B LightSwitch DoorLockd i RearLightR L] BPMF
L BPMR

Fig. 6. EAST-ADL elements of the use case at Design Level

At Design Level the use case is modelled in a Functional Design Architec-
ture (FDA) representing the software parts and a Hardware Design Architec-
ture (HDA) representing the hardware parts of the use case realization. The
FDA includes DesignFunctionTypes for the software functionalities of the use
case and LocalDeviceManagers representing the software access to the mod-
elled sensors and actuators. The latter are designed in the HDA together with
the hardware platforms (Nodes) and the interconnecting LocalBus. Components
in the FDA are interconnected with FunctionConnectors and in the HDA with
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HardwareConnectors. An overview of the elements modelled at Design Level for
the use case is shown in Figure 6. Additionally, LocalDeviceManagers exist for
each depicted Sensor and Actuator in the Functional Design Architecture which
are not explicitly displayed in this figure.

KES-CTRL DI-FR-CTRL DHRE-CTRL DI-CTRL COL-CTRL EL-CTRL
st e + ||: e He ;1‘|¢
] T | |
i B DirectionSwitch | é ¢? JL?T : e i -ﬁ--{vlt
pcuc | e SMSC Anena3 | gpMR - BPMF
—_— tLightL - \
o || Hardware o | Hardwara Rearlighl. | yardware e | Hardware
Ank 2 N— = FroniLightR R S | LEasasmin RadioReceiver | | L 5
el T ] e Rearlight | [T R
I DioorLockd ‘ ‘
o4t
( CAN BUS OJ

Fig. 7. Overview of the generated SystemC PVT use case at Design Level

The generated SystemC implementation of the use case at Design Level is
depicted in Figure 7. It includes the use of a framework for automotive-specific
modules. For example, ECUs and software functions can be included out of a
library as specific sc_module implementations (cp. Section 5.1). As can be de-
rived from Figure 7 the EAST-ADL Design Level components are generated as
sc_modules representing software functions. These modules are included in an-
other SystemC module which realizes a hardware platform with attached sensors
and actuators in form of sc_modules. These hardware platforms are intercon-
nected by a module implementation of the defined LocalBus. SystemC interfaces
and channels realize the concrete interconnections of the modules. For example,
a specialized type of sc_interface (EcuSw_If) realizes the communication be-
tween software functions and ECU modules.

The introduced transformation is realized in a prototypical toolchain which
integrates into the Eclipse environment as a plug-in. By this, it can easily be
used with EAST-ADL models based on UML in Eclipse (e.g. with the Papyrus
UML modelling tool which supports EAST-ADL). The transformations itself are
implemented as templates of the Xpand model-to-text transformation language.
They use EAST-ADL models as input and generate the particular SystemC files
with respect to the previously introduced mapping of the languages. Currently,
simulations can be generated from the Analysis Level or Design Level. Simple
checks allow to check the conformity for a simulation. Because a generation of
incomplete models in early design stages should be possible, the checks are only
as strict as needed for generating correct SystemC simulations. This supports
the iterative simulation of ADL models in the design process. For the simula-
tion at Design Level we utilize a self-developed framework (cp. Section 5.1) called
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DynaSim which allows the modelling of an automotive in-vehicle network in Sys-
temC. The generated files refer to SystemC models in the DynaSim library (e.g.
ECUs or software functions). By this, a simulation can be performed considering
the automotive-specific system environment. Future work will be the automatic
feedback to the model as well as the integration and analysis of timing definition
semantics.

7 Conclusion

Architecture Description Languages capture design information in architecture
models. A simulation of these models in the development process allows an early
validation. In this work we have briefly described the automotive-specific EAST-
ADL and system modelling language SystemC. We showed that simulations from
EAST-ADL can be generated automatically by a transformation to SystemC.
Therefore, the EAST-ADL layers of abstraction were compared and mapped to
corresponding layers of SystemC TLM. Also, transformation rules for the mod-
elling artefacts of EAST-ADL with their concrete target elements in SystemC
were presented. The approach was evaluated with an automobile case study with
respect to the generation of simulations from EAST-ADL models on two different
layers of abstraction. For this purpose a prototypical toolchain was built which
allows the automatic generation of SystemC simulations from EAST-ADL mod-
els. By this, we showed that our approach allows the iterative simulation-based
validation of automobile functions at different layers of abstraction.

In future work we plan to refine this approach by focusing on the simulation
and preservation of non-functional requirements (e.g. timing) and integrating
externally defined models. Additionally, more detailed automotive-specific Sys-
temC models will be integrated in the simulation for a more precise analysis. A
special emphasis will be taken on the design and simulation-based validation of
adaptive embedded systems.
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Abstract. The more modelling substitutes programming the more mod-
elling tools should become development environments. Beyond enforcing
the syntactic correctness of models tools should support a methodologi-
cally guided development in which milestones are indicated and warnings
are generated to inform the user about issues that are to be solved to
reach these milestones. In this paper we present an approach from the
embedded systems domain that is materialized by the implementation
of a prototypical model development environment. It indicates model
maturity levels that correspond to an underlying development method
and shows in the model maturity view which elements or parts of the
model do not yet reach a level and why they do not reach it.

1 Introduction

Program development environments have led to a substantial increase of pro-
ductivity in the construction of software. Completion suggestions based on the
grammar of the programming language and the code produced so far, navigation
in large amounts of code according to different kinds of relations, like place
of declaration or place of usage, and, of course, the indication of errors and
suggestions how to correct them reduce the time needed to produce compilable
code drastically. Beyond the necessary conditions to produce code that can be
compiled warnings are generated by the environment that indicate code quality
according to different criteria. These warnings can be used to produce better
code, or be ignored if they are considered not relevant.

Model development deserves the same kind of comprehensive support. Whether
modelling is employed to replace programming as in pure generative approaches
or to support programming by stating requirements, designs, and algorithms
concisely, the development of models is an engineering task and bears its own
complexity. Therefore it is not enough to be able to build a model. Construction
support, navigation, indication of errors and methodological support are needed,
too.

The modelling language and tool used as example in this paper have been
designed for the automotive domain, in particular the development of AUTOSAR
systems (see [AUT]). The AUTOSAR extension language aXLang (see [aXBench])
is a component description language that is used in the early process stages to
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represent functional requirements as function components, then to map these
to software components, and to describe their distribution onto hardware com-
ponents. The latter two are also defined in the aXLang and can be mapped to
AUTOSAR descriptions.

2 The Development Process

The general pattern of the aXLang development process is shown in Figure 1. A
task is represented by a model that is to be completed in the next step. In order
to do so several solutions are worked out as far as necessary to be able to judge
whether the solution satisfies the task, and to evaluate the solutions to decide for
the best one. The solutions are also represented as models, and the selected best
solution defines the task for the next development step — until the modelling part
of the process has finished and code is produced.

l, construct Cf

model 0 maturity level 0
task 0
l construct
T compare
solution 1.1 solution 1.2 solution 1.n1 maturity level 1
model 1.1 model 1.2 model 1.n1 )
task 1 evaluation 1
l construct
T compare
solution 2.1 solution 2.2 solution 2.n2 maturity level 2
model 2.1 model 2.2 model 2.n2 )
task 2 evaluation 2

Fig. 1. Models as tasks and solutions in the development process.

There are two possibilities to decide whether a solution solves a task. Either
an appropriate comparison operation on models is given that states whether a
solution model solves a task model, or the development must make sure that the
model is a solution by construction. In the aXLang approach the latter approach
has been chosen, as discussed in Section 2.4.

The identification of the best solution requires appropriate evaluation op-
erations. Furthermore, an indication is needed whether the models are both
sufficiently and homogeneously detailed to yield comparable evaluation results.
An estimation of the software size or the development effort for instance that
is based on counting function points will only yield reliable results if functional
designs are represented in the solution models at comparable levels. Otherwise
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the more detailed models always yield the worse estimations, independently of
the adequacy of the design they represent. The indication of the appropriateness
for an evaluation that demarcates a specific development stage is called a model
maturity level. In general, development stages should always be defined by the
evaluations that have to be passed and the validation operations that are possible
at a stage.

In the aXLang process up to now the following model maturity levels are
defined:

Level 1 Function Interface Model
Level 2 Function Simulation Model
Level 3 Deployment Model

Level 4 AUTOSAR Model

The first two are described in more detail in the following. They can be applied
to any component description language. The third level is specific to languages
that incorporate an application level and a resources layer. The fourth level is
specific to AUTOSAR.

2.1 Function Interface Model

The function interface model is the first model constructed in an aXLang process.

It represents one application function of an embedded system and specifies which
information this function exchanges with the environment or other functions
in the system. Its main usage is virtual integration, i. e. the check whether the
application functions that make up the system according to their interfaces fit
to each other. The model is derived from a use case analysis of the function. A
function interface model has the following elements.

— one component, the one that represents the function;

— the input and output ports of the component;

— the logical signals and the operation calls the function shall accept or is
allowed to deliver to other ones via its ports;

— the services of the component that represent the expected i/o-behaviours of
the function;

— and its internal storages that are used to specify stateful functions.

As indicated in Figure 2 the elements of the model correspond to questions that
should be posed to gather the functional requirements systematically. The model
structure thus serves as a schema for the requirements elicitation.

At the function interface level the services are the use cases of the function.

They are described informally by natural language texts, but constrained by a
schema implemented in the language that guarantees that only the behaviour
visible at the interface is described, and that only declared elements (ports, signals,
operation calls, storages) are used for the description. The schema contains slots
for the precondition, the interaction, and the postcondition of the service. Within
the textual description references to ports, signals, operation calls, and storages
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| Which input information is requested? | Which output information is provided? |

.| function component
j out_port1

in_port1 [] service
Which output depends on which input? :‘
What triggers the service?
Where does the result go to?
|_] out_port4
storage
Which information is maintained? B
port declaration

int operation1(par1, par2);
double operation2(par3);

Fig. 2. Function interface model as requirements elicitation schema.

are marked such that their declaration in the function interface model can be
checked and renamings can be carried through as consistent refactorings.

As running example we use the function Condition Based Service (Cbs). It
monitors the state of a vehicle and computes a summary of the overall state
of the vehicle (green, yellow, red) and a car maintenance service date, i. e. a
suggestion when to go next to the service. The function has been a case study in
a project with the BMW Group (see [VEIA]). A graphical representation of its
interface model is shown in Figure 3, the aXLang description in Table 1.

The behaviour description of the service compute_cbs_data is given as follows.

service compute_cbs_data {

behavior {
precondition {$
The ’ignition’ is on.

$}

interaction {$
1. For each adaptive volume Cbs reads the ’relative_wear’
from the corresponding sensor port.
2. Cbs computes the ’service_date’ and the ’summary_estimation’.

$}

}

References are indicated by ’ ’, as in ’service_date’ and 'summary_estimation’.
Deriving function interfaces in this liberal but constrained way turned out to
be very constructive in the industry projects in which a predecessor of the language
has been used (see [Gro08]). The basic idea is that functions are understood best
in terms of their behaviour and that the structure of the function can be elicited
most concisely if it is based on a use case analysis. On the other hand, the method
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top component Cbs {
ports {

in <ignition> pin_ignition;
out <service_date, summary_estimation> pout_driver_interface;
in <tick> pin_clock;
in <cars_time, mileage> pin_board_data;
in <relative_wear, initial_availability> pin_wheels;
in <relative_wear, initial_availability> pin_motor_oil;
optional in <initial_availability, relative_wear> pin_particle_filter;
optional in <relative_wear, initial_availability> pin_spark_plug;

storages {
storage cbs_data {
int service_date;
int summary_estimation;
}
}

services {
service display_service_date {...}
service compute_cbs_data {...}
}
}

Table 1. Interface model of the function CBS as aXLang text.

Cbs

pin_clock

pin_board_data

compute_cbs_data
summary_estimation

j pout_driver_interface
display_service_date

pin_wheels

pin_motor_oil -

ISR

pin_particle_filter

pin_spark_plug

relative_wear

initial_availability 1‘?\'”—'9”'“0”

Fig. 3. Interface model of the function Cbs.
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must make sure that behaviour descriptions are constrained to interactions with
the environment; internal behavior must not be specified here. This is achieved in
the aXLang by checking that each phrase in the behaviour description contains
references to the elements declared in the interface model, i. e. each phrase must
refer to an externally visible interaction. In the Cbs behaviour description the
ignition signal is indicated as well as the input signals relative_wear and the
output signals service_date and summary_estimation.

The usage of storages and the description of the access of a function to its
storage in a use case might seem to contradict this principle. However, storages are
considered as interface elements in the sense that they are only used as abstract
means to describe that the function has a state. So the reader of a function
interface model should be informed about the statefulness of the function, and in
the refinement the storages must be refined and finally be implemented, too. In
the Chs example the storage of the Chs data is used to decouple the continuous
(periodic) computation of the Cbs data from its occasional display, triggered by
the driver turning on the ignition.

The properties that are checked for the model maturity level function inter-
face model are systematically derived from this methodological approach. Each
element must be justified by its contribution to a use case. Since the model is a
requirements model for the further development this strict rule itself is justified:

Later on each element must be implemented, which results in development costs.

Therefore no superfluous elements are allowed in the model.

The first set of properties that is checked is whether there is at least one
service in the function, and whether each service has a use case (behaviour)
description.

The second set of properties concerns the interconnection of the service with
the structural elements of the function. Each service must have at least one
trigger, which is given by a port and a signal or an operation call declared for
that port. Moreover, the service must yield a result, i. e. there must be a port
onto which the service writes an output or, in the case of a stateful function, there
must be a storage to which the service delivers a result. Since these properties
cannot be deduced automatically from the natural language descriptions the
language contains service specification slots where read and write accesses to
ports and storages are declared. The corresponding part of the specification of
the Cbs service compute_cbs_data is:

service compute_cbs_data {
trigger pin_clock.tick;
read pin_ignition.ignition;
read pin_wheels.relative_wear;
read pin_motor_oil.relative_wear;
read pin_particle_filter.relative_wear;
read pin_spark_plug.relative_wear;
write service_date;
write summary_estimation;

Oslo, Norway, October 4, 2010

90



MoDELS 2010 ACES-MB Workshop Proceedings

behavior {...}

}

Checking the properties thus is a simple task; having these declarations in the
model, however, is an important methodological contribution and within larger
developments their indication in the maturity level view is indeed helpful.

Now, as mentioned above, it is checked whether all structural elements are
justified by a use case. First for each port it is checked whether signal or operation
calls are declared for this port at all; otherwise it is superfluous. Then it is checked
whether the incoming signals and operation calls at the port are read by some
service and whether the declared outgoing signals and operation calls are provided
by some service. The analogous property is checked for the storages: each one
must be both written and read by one or more services.

2.2 Dealing with Variants

Since the aXLang has been designed for the automotive domain it must provide
means to deal with variants. At the architectural level, including the function
interface models, variability can be expressed by alternatives, encapsulated in
mutually exclusive elements (xor), optional elements, and parameterised elements
(see [MR09]). In the case of a function interface model ports, signals, operation
calls, and storages can be optional; services can be xor, i. e. product specific
behaviours of a service can be specified.

Since the product specific behaviour and structure of a system in general
cannot be localized to one place in the architecture but is spread over several
components, feature models are employed to encapsulate the variance. An aXLang
model altogether thus consists of several specific models. One is the application
model, a model of the component architecture of the application view of the
system. The function interface model is an application model at the first level
of maturity; it represents an application function as one component. A second
one is the feature model that characterizes the commonalities, differences, and
dependencies of the different variants of the system in terms of abstract system
features. The feature model is a tree of features indicating the mandatory, optional,
and alternative features of the products of the system family. A mapping of
the features to the application model defines which of the variant architecture
elements are present in a system variant when a given configuration of features is
selected. (For an introduction to feature oriented software product line engineering
see [KLLKO02].)

In the model of the Cbs function we have optional ports for the particle filter
and spark plug sensor inputs because these are not present in all vehicles. They
are indicated by the keyword optional (see Table 1). Whether one of the optional

ports is present depends on whether the vehicle has a diesel or a gasoline engine.

This is expressed in the feature model and the mapping of the feature model to
the application model (f2a_mapping):
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featuremodel CbsFeatures {
features {
xor engine {
diesel;
gasoline;
}
}
}

f2a_mapping CbsApplicationBinding CbsFeatures -> CbsApplication {
\\ feature to port links
£2p_links {
engine.diesel -> pin_particle_filter;
engine.gasoline -> pin_spark_plug;
}
b

The feature mapping is estimated according to the same principle as above:
each element must be justified. In this case this means first that each optional or
alternative feature of the feature model must be mapped to an element of the
function interface model and that each variant element of the function interface
model must be bound by a feature. Furthermore the semantics of the features and
the variant element must be respected: No mandatory feature must be mapped
to a variant architecture element and no invariant architecture element must be
bound by a variant feature.

2.3 Evaluation of Function Interface Models

As mentioned above a development stage should be defined by the evaluations
that have to be performed and by the validation operations it allows.

The validation operation that becomes possible (and meaningful) with function
interface models is virtual integration, i. e. the check whether the interfaces of
the application functions of the systems fit to each other. For that purpose a
system model is built by connecting the considered function interface models.
More precisely: the ports of the function interface models are connected to specify
which functions are senders and receivers of which signals and operation calls
respectively. Communication with the environment is modelled by encapsulating
the function interface models in a common super component (the system) and
delegating the corresponding ports to the ports of the super component (see
Figure 4). Composition and decomposition of components are discussed in more
detail in section 2.4.

The necessary condition of the virtual integration is that each required signal
and operation is provided, either within the system or by the environment. Input
signals are required by a function, otherwise it would not be able to produce
its output. Thus the connections in the system must be checked as to whether
each signal is delivered somewhere and transported to the requesting function.

Oslo, Norway, October 4, 2010

92



MoDELS 2010 ACES-MB Workshop Proceedings

2
%

>
-

©
Ly

[ 1

Fig. 4. Virtual integration of function interface models.

Operation calls are required by a function if they are sent from an output port.

There must be a function that receives the function call at an input port, and
operates it.

A sanity check can and should be performed here, too. If a function provides
a signal at one of its output ports, there should be someone in the system or
the environment who needs the signal; i. e. there must be a connection to the
input port of a function where the signal is consumed, or an explicit delegation
to the environment. Otherwise the specification would require the generation of a

useless signal by the originating function — which produces development overhead.

Since the implementor of the function typically does not receive the whole system
model but only the model of the function she cannot check whether the required
functionality is indeed needed. Analogously, operation calls at input ports of a
function are checked: is there someone in the system or the environment who
needs (calls) the operation? If no, remove it from the specification.

The evaluations of a function interface model implemented in the aXBench,
the modelling environment for the aXLang, are estimations on the size of the
software and the effort of its development. Both are based on a metric for system
family models (see [KFS06]) that is an extension of the function point metrics
to specifications including variance. The first estimation, the software size, is
important for the cost estimation of the product (the necessary size of memories),
the second one is important for the cost estimation of the process.

The aXBench furthermore provides an interface for the integration of other
evaluation operations. Metrics that count elements as the one mentioned above,
for instance, would get the elements of the model via the interface and deliver
their results as a view to the aXBench.

2.4 Function Simulation Model

The behaviour of a function has been described in the function interface model
in natural language only. The second milestone in its development is reached
when an executable model is delivered.
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In general an application function of an automotive system is too large as
to be immediately modelled in such detail that the model can be executed.
Therefore the model has to be decomposed into components representing parts of
the function that are small enough to be provided with an executable description.

Decomposition is supported in the aXLang as in most other component
or architecture description languages by component hierarchies. To allow the
multiple use of subcomponents of the same type, the hierarchy is not directly
represented in the language. Instead, components and subcomponents are different
entities in the metamodel; a component (strongly) aggregates subcomponents and
each subcomponent has a reference to a component that is its type. This encoding
of hierarchies via instance-type relations is common in component or architecture
description languages, as for instance in the UML composite structure diagrams,
EAST-ADL, AADL, and AUTOSAR.

Executable behaviour is described in the aXLang by programming language
code. Beyond the standard assignments and control structures it contains expres-
sions for the access to the ports of the function. A write statement, used for the
emission of signals and operation calls respectively, is of the form write(port.signal,
value) or write(port.operation, par_1_value, ..., par-n_value). An expression for
reading a signal at a port has the form read(port.signal). Operation parameters
can be read in the function that received the call with read(port.operation, par_j).

Checking the function simulation model maturity level first means to check
whether each service of an atomic function has an executable behaviour descrip-
tion. Only atomic functions are checked because the decomposition overwrites
the higher level description. The behaviour of the composed function is com-
pletely described by the composition of the behaviour of the subfunctions. The
higher level function does not add behaviour to its parts, but just organizes their
interconnection by connecting their interfaces.

The replacement of the function interface model by the function simulation
model via decomposition implies the further checks that are performed to reach
the function simulation model maturity level.

The first part is the structural decomposition. According to the definition of
the language subcomponents can only be introduced and interconnected within
the component that is decomposed. Thus the structural coincidence of the function
interface model with the top level of the function simulation model is guaranteed
by construction (see Figure 5).

What has to be checked, however, is whether the subcomponents are connected
with each other correctly and whether they are connected with the higher level
component correctly. Both amounts to checking the data flow in the composition,
as in the virtual integration discussed above. Each required signal or operation
call at the port of some subcomponent must be provided either by another
subcomponent via a connection or by the super component via a delegation. To
be economic, furthermore, each provided signal or operation must be requested
by another subcomponent or the super component.

The second part of the check concerns the behavioural decomposition, or,
to be more precise, the structural aspect of the behavioural decomposition. A
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Fig. 5. Decomposition of services and storages.

service of the super component is refined by services of subcomponents, which
means that the abstract (informal) specification of the super service is replaced
by the more concrete (executable) specifications of the subservices that refine the
super service. To state which subservices refine the super service, the language
has a subservices slot for each service (see also Figure 5).

service compute_cbs_data {

subservices {
clientWheels.compute_cbs_client_data;
clientMotor0il.compute_cbs_client_data;
clientParticleFilter.compute_cbs_client_data;
clientSparkPlug.compute_cbs_client_data;
master.compute_cbs_master_data;

}

b

In the subservices slot only the set of refining subservices is given; the way in
which they interact to realize the super service is determined by the way in which
the containing subcomponents are connected. Thus there is no need to describe
control structures in the subservices slot.

The first property that is checked for the maturity level is thus whether
each service of the function interface model is decomposed, i. e. it has a non
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empty subservices slot. Next the declaration of the interconnection of the super
service within the super component is checked: Are its triggers and read and
write accesses correctly refined by the decomposition?

The decomposition must show the same effects at the function interface as the
super service, i. e. it must neither introduce new inputs or outputs nor must it
ignore inputs or outputs of the super service. If a decomposition of a service would
require more input than the super service the integration of the implemented
functions would fail. If it provides more output more implementation work than
necessary would have to be done.

In order to check this property the data flow of the subcomponents according
to the declaration of their services (read and write accesses inside the subcompo-
nents) and their connections (data flow in between the subcomponents) has to
be computed. With this information the read and write accesses of the composed
subservices to the ports of the function interface can be compared with the read
and write accesses of the super service declared in the function interface model.

Analogous to the decomposition of the services of the super component into
services of the subcomponents the storages must be decomposed. For that purpose
the aXLang provides a substorages slot in the specification of a storage:

top component Cbs {
storages {
storage cbs_data {
int service_date;
int summary_estimation;
substorages {
master.cbs_data {

service_date -> master.cbs_data.service_date;
summary_estimation -> master.cbs_data.summary_estimation;

In the example the storage is not distributed to subcomponents but resides in
one single component, the master.

Using the substorages declaration also the correct decomposition of the read
and write accesses of higher level services to their storages can be checked. If
the super service has read or write access to a storage then at least one of its
subservices must have an access of the same type to at least one of the substorages.
Vice versa the subservices must not introduce more accesses than declared by
the superservice.

Obviously the analysis of the decomposition is not complete. It covers only
the structural declarations at the two levels. Whether the behaviour respects
the declarations is another issue, which requires program or behaviour model
analysis techniques that are not incorporated into the aXBench yet.

Oslo, Norway, October 4, 2010

96



MoDELS 2010 ACES-MB Workshop Proceedings

2.5 Refinement and Iteration

The check of the consistency of the function interface model and the function
simulation model is based on the correctness of the decomposition. The basic idea
thereby is to use hierarchical decomposition as refinement. Since the interface of
the abstract model is fixed — additions are only made in the internal structure — we
thus have substitutability by construction. In whatever way the function interface
model is refined it fits structurally into the overall system. The decomposition
information in the function interface model, i. e. the subservices and substorages
slots, allows requirements tracing. They indicate the implementation (composition
of lower level services) of a functional requirement (description of a higher level
service) as well as the implementation of the required state properties.

In a development process, however, requirements typically are not entirely
stable. One reason is that the more detailed design of a solution often reveals that,
for instance, more input is needed by a function to compute its outputs, or that
a restriction to less output would make the overall design more adequate. Having
both the abstract super component (the requirements) and the subcomponents
(the solution design) as hierarchy levels in one model supports the proliferation
of requirements changes immediately. The maturity level check indicates whether
new input signals for instance have been introduced at the sublevel but not yet
delegated to the super level. Thus the user receives a warning that the interface of
the super component has to be updated. Changing this interface must of course
be reflected by a revision of the virtual integration, which can and should not
be automated. However, the maturity level check provides the methodological
support for the users’ activities that yield concisely documented requirements
change requests. The management of the changed requirements is best supported
by organizational means in the process.

2.6 Simulating Models with Variants

The possible evaluations of the function simulation model are the same as the
ones for the function interface model: counting elements to measure the predicted
software size and development effort. The difference is that the basis for the
estimation is now more detailed and thus the prediction more precise.

The major advantage of the function simulation model is that simulation
becomes possible to validate and to debug the model. The aXBench has a
simulation machine that uses the aXLang programming language description of
the services’ behaviours and the interconnection as expressed in the structure, i.
e. the connection of the subcomponents.

A challenge in the automotive domain, as mentioned above, is dealing with
variants. One possibility is to derive product specific models from the family
model and then to simulate each of these. The aXBench has an operation that
performs this derivation. Given an application model, a feature model, a feature-
to-application mapping, and a feature configuration (i. e. a consistent subset of
the feature model) it returns a new application model where all variant elements
that are not bound to features in the configuration are removed. The removal of
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course respects all dependencies such that the result of the operation is a correct
model again.

However, this procedure is tedious and neglects the advantages of product line
engineering, namely to use only one model for all variants. A better solution is to
provide a simulation that simulates all variants simultaneously, i. e. a simulation
of the family model. The essential idea thereby is that each simulation run
collects all configuration decisions that must be drawn in order to realize this run.
Thus whenever a run encounters an xor component with its delegations to the
alternatives it splits into all alternatives and memorizes in each branch that this
alternative has been chosen. The result is then a tree of events where in each step
the selected variant elements are indicated. This result can be used to identify
behavioural invariants (commonalities) as well as to validate the variant specific
behaviour (differences). The details of this system family model simulation are
out of the scope of this paper, however.

3 Summary and Conclusion

Modelling is a part of the development process. In order to be useful it must
be guided by a method and supported by a tool that does not only allow the
construction of models but gives feedback on the state and the quality of the
models.

The model maturity levels discussed in this paper are an effort to supply
this kind of support, without constraining the development activity unduly.
A distinction is made between syntactically correct models and models that —
beyond that — represent milestones of the process. Error messages and correction
suggestions are given in the case of violations of syntactic rules. Warnings are
used to indicate what is missing in order to reach the maturity levels defined
in the process. These warnings are grouped according to the checks that are
preformed for the different levels, as discussed above. Within these groups the
elements that are the causes for not passing a test are given and linked with the
model editor such that corrections or amendments can be made immediately.
Analogous to program development environments, the idea is to rise the efficiency
of the modelling process by this support, and to achieve models of a better —
since checked — quality.

Beyond the two maturity levels discussed in this paper two further ones are
implemented in the aXBench. The first one, the deployment model maturity level,
addresses models that contain a further specific model, the resource model. This
one represents the computation and communication resources of the system, i. e.
the nodes (electronic control units) and the buses and other communication means
of the system. Similar to the feature-to-application mapping the aXLang supports
the specification of application-to-resource mappings that define how the functions
are allocated to the nodes and how the application level communication is realized
by the communication infrastructure of the underlying system. The corresponding
maturity level is checked according to the same principles as discussed above. Are
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all relevant model elements present; are all elements justified; are the semantics
respected?

Having the resource level included in the model further evaluations are possible.
A real time behaviour analysis for example can be made, provided information is
given on the real time behaviour of the resources. A prototypical implementation
of a schedule analysis algorithm has been used in the aXBench to illustrate the
integration of an evaluation operation into the aXBench development process.
The long term goal, however, is to use the aXBench interface to connect other,
more professional evaluation tools.

The next maturity level indicates the AUTOSAR interface, i. e. the step in the
process where the requirements and function design models of the aXLang can
be handed over to the system generation process of the AUTOSAR methodology.
The check of this maturity level is done constructively. The AUTOSAR export
operation tries to translate an aXLang model to an AUTOSAR representation,
and thereby collects all obstacles, i. e. all elements that cannot be translated to
AUTOSAR. This yields the warnings of the AUTOSAR maturity level that are
presented to the user in the maturity level view.

As discussed above the definition and implementation of a maturity level might
not be technically challenging. Rather, a detailed analysis of the methodological
role of the model’s elements is required. The effect of the maturity level checks
and the presentation of the results as a view in the tool, however, is considerable,
as the programming development environments have shown.
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Abstract. Development of software-intensive systems nowadays rely ex-
tremely on middleware platforms as a major building block especially to
handle the distribution issues. This dependency has become even more
crucial in the distributed embedded systems environment. As such, the
architectural choices of such systems are being driven by middleware
platforms. However, diversity and high frequency of evolution in middle-
ware platforms lead to architectural models becoming obsolete relatively
rapidly, which is in distinct contrast to the resistance nature of software
architecture to frequent change. We believe that the key to this is to ab-
stract away from architectural platforms and their induced architectural
styles to more abstract representation of applications. In recent work
we have shown that architecture-independent application models, devel-
oped using modern model-based development (MBD) techniques, can be
mapped to application architectures in a variety of architectural styles.
Although the work provided an important proof of concept, the styles,
or architectural spaces, to which application models were being mapped
were simple, idealized styles. Di Nitto and Rosenblum recognized that
middleware and similar platforms induce defacto architectural styles. In
this paper, we discuss some of the related issues we are addressing in our
research towards a systematic approach for software synthesis.

1 Introduction

Software-intensive systems are continuously growing in size and complexity. In
recent years, they have ever more migrated from the traditional, localized setting
to highly distributed, and embedded environments. While software engineering
researchers and practitioners have recognized software architecture as a promis-
ing means of managing the complexity of software systems in general [17,15],
other studies have shown its significant role in developing distributed embedded
systems [16, 11].

Distributed embedded systems, furthermore, rely extremely on middleware
as a major building block to handle the distribution issues [8]. However, because
of the pervasiveness of middleware platforms, the architectural choices are being
driven by such platforms and since they are both changing rapidly and are very
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diverse, the architecture of most of software-intensive systems and distributed
embedded systems, in particular, are accidental nowadays [5]. This is in distinct
contrast to the way that software architecture is designated to be, i.e. software
architecture typically comprises the early decisions made about a system, and
is consequently very difficult to change [17]. As such, there is a pressing need to
understand how to make architectural changes much more readily.

We believe that the key to this is to abstract away from architectural styles
and architectural platforms to more abstract representation of applications. In
recent work [2] we demonstrated the feasibility of separating and combining
formal representations of application properties and architectural styles, respec-
tively. In doing so, we defined style-specific architectural mappings that relate
style-independent application models to architectural models in given styles.

We have continued studying the notion of architectural mappings and the
ways in which they can be defined and exploited in system development. In this
paper we discuss some of the issues we are addressing in our work.

2 Previous Work

Our earlier work [2] suggests that the concept of application type, parallel to the
notion of architectural style, is important, and that it is possible to separate, and
combine formal representations of, application contents and architectural styles,
respectively. To that end, we formulate the mapping problem as one of finding
satisfying solutions to a specification that combines an application model of a
given application type, with an architectural style specification, and with rules
for mapping application models of the given type to architectural models in the
given style. We have implemented such mappings using Alloy as a language and
satisfaction engine [9].

In view of the increasing platform diversity and complexity of software-
intensive systems, model-based development (MBD) approach has become a
viable means to address system-integration issues in the early phases of develop-
ment. In recent work [3] we showed that software architectural styles can serve as
analogs to choices of platforms in model-based development, and that the con-
cept of application type leads naturally to an abstract, user-friendly approach to
application modeling. That is, the proposed separation of concerns supports a
model-based development and tools approach to architectural-style-independent
application modeling, and architecture synthesis with style as a separate design
variable. More precisely, by providing a prototype tool, Monarch [1], we illus-
trated how an approach giving as inputs the formal specifications of application
descriptions and architectural styles can be implemented in a computationally
effective manner by being placed within the formal framework of MBD.

These work provided a proof of concept of the feasibility of the proposed
formal architectural mappings in an automated way. However, it suffers from
some shortcomings especially with respect to the pervasiveness of middleware in
system development. In the next section, we discuss some of the ongoing issues
we are addressing in our work.
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3 Proposed Work

3.1 Middleware-induced architectural styles

Middleware infrastructures are emerging to be used extensively as a major
building block in facilitating system development especially in the large-scale
distributed systems. Notwithstanding the several categories of middleware plat-
forms, there are numerous middleware infrastructures from which to choose such
as TAO [13], Aura [16], PolyORB [18] and even Enterprise JavaBeans (EJB) [6].

An approach that may be commonly used and could be ineffective and coun-
terproductive in practice is that a middleware is chosen first with respect to
its provided services and in turn leads to an unnecessary impact over the sys-
tem’s architecture. In contrast, deferring middleware decisions has several ad-
vantages such as separation of concerns and promoting level of abstraction in
the early phase of software design [12,17]. Furthermore, a middleware decision
is not independent of the system’s architecture. As such, decisions made during
the development of the system’s architecture may limit the decision space of the
middleware that will be used to implement the system.

Problems can arise when the architectural styles chosen for the application
conflict with the assumptions of the chosen middleware. Blair et al. [4] argue
that the architectural models can be used in systematic synthesis of middle-
ware configurations. Particularly, it would be helpful to consider structural and
behavioral constraints implied by middleware infrastructures as architectural
styles [12]. Formal definition of these styles will allow architects to exploit these
styles in a way that avoids unintentional mismatch between the required ap-
plication’s properties and the constraints imposed by the middleware-induced
architectural styles.

Although a number of approaches explored to separate and relate middleware
infrastructures and architectural styles induced by them in various domains (e.g.
embedded systems [11], web-based systems [7]) insufficient progress has been
made on mapping architecture-independent application models into the mod-
ern and practical, middleware-induced architectural styles and in turn, into the
realized architecture implementations. We envisage an approach that is based
on model-based development to mapping architecture-independent application
models, considered as platform-independent models, to the realized architecture
implementations in conformance with the architectural styles that are induced by
middleware platforms and other complex and practical application frameworks.
This approach can be used to automate the derivation of the architectural models
(Platform-specific models) from the application models (Platform-independent
model) that refines application types.

3.2 Code Generation

The architectural styles so derived promise benefits for both development and
maintenance. However, formal specifications often lack bindings to implementation-
level constructs. Thereby, it is particularly difficult to verify the fidelity of the
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developed software system with respect to the formally generated architectural
model. To use generated architectural models and stylistic guidelines extracted
from the middleware platforms in an effective manner, they should be provided
with support for their implementation [14]. Implementing architectural models
further is an issue of considerable importance that relates design decisions to
implementation elements that realize those decisions [17], which in turn, leads
to a gap between the architectural concepts from one side and the constructs of
the target programming language from the other side.

There are various kind of tools intended for supporting the implementation
of considerable part of code on varying programming languages. However, to our
best knowledge neither of them pay enough attention to the key role that archi-
tectural styles can play in filling the implementation gap. The lack of flexibility
on the subject of the architectural styles is a significant limitation of current
approaches to code generation from architectural models [10]. That is, the ar-
chitect is forced to develop models in a specific architectural style supported by
a given approach, rather than a suitable style chosen by the architect.

In this regard, architectural frameworks are emerged to support specific archi-
tectural styles. In concrete terms, an architectural framework is a software tech-
nologies built upon the functionalities provided by the programming language
and the operating system that provides services with respect to supported archi-
tectural styles [17]. Architectural frameworks are practical technologies that fa-
cilitate the system’s development in conformance to specific architectural styles.
They are considered as a significant strategy for bridging the gap between ar-
chitectural models and their associated implemented technologies. We investi-
gate the extensions of our work to include subsequent mappings for synthesis
of executable code from formally derived architectural models on the basis of
architectural styles for a wide variety of such frameworks that support architec-
tural styles to which the architectural models conform, which in turn returns
the responsibility for stylistic decisions to the architect.

4 Conclusion

In this paper we have discussed the role of architectural mappings in synthe-
sis of software implementations from abstract application models. We have also
touched upon a number of issues we are exploring in our study of architec-
tural mappings. Consequently, we believe that architectural mappings represent
a promising approach to addressing the challenges of software-intensive systems
and especially of the embedded systems, and will continue to be a focus of our
ongoing research in this domain.
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Abstract. In the recent years diverse modeling tools for the develop-
ment of automotive systems emerged and each tool and the associated
modeling language have different strengths and weaknesses. A compre-
hensive solution tries to integrate multiple partially overlapping models
from different tools. In general, timing properties are crucial when de-
veloping real-time system and in a complex setting minor changes of the
models may lead to violations of existing timing requirements. Thus, it
is crucial that relevant dependencies between models and related timing
properties are explicitly captured, allowing the analysis of the impact
of changes on the timing properties and timing requirements. However,
current modeling tools and languages do not explicitly encode all rele-
vant dependencies and, thus, violations may remain undetected. In this
paper we propose to use the initial concept of mega models as a solution
for the support of those dependencies relevant for timing properties.

1 Introduction

Over the last few years, diverse modeling tools for the development of automotive
systems emerged with each has different strengths and weaknesses. Examples
of professional modeling tools are TOPCASED (see http://topcased.org),
which employs SysML (see http://www.omgsysml.org) as modeling language
with a strong focus on modeling several types of requirements, SystemDesk
(see http://www.dspace.de), which supports AUTOSAR (see http://www.
autosar.org) as architectural modeling language, and MATLAB/Simulink (see
http://www.mathworks.com/products/matlab/), which strength is modeling
behavioral aspects.

A comprehensive solution has to combine the strengths of individual solu-
tions. Thus, it has to integrating multiple partially overlapping models from
different modeling tools. In the past, we have developed a tool-chain that in-
tegrates several tools (including the aforementioned tools) for modeling in the
domain of automative systems. We additionally integrated a real-time simula-
tion tool called chronSIM (see http://www.inchron.com/chronsim.html) for
analyzing timing properties [1], which is an important part of the development
process.
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In general, timing properties are crucial when developing real-time system
and they need to be considered at different levels of abstraction, within dif-
ferent models and in different development steps. In a complex setting, minor
changes of the models may lead to violations of existing timing properties and,
therefore, timing requirements. Thus, it is crucial that relevant dependencies
between models and related timing properties are explicitly captured, which
permits analyzing the impact of changes on the timing properties and timing
requirements. However, in the most cases current modeling tools do not explic-
itly encode all relevant dependencies that have an impact on timing properties,
which are dependencies between different models and even between elements
in the same model. This may result in violations of timing requirements that
remain undetected. In this paper, we propose the initial concept of employing
mega models as a solution to encode these dependencies, which supports the
explicit maintenance of timing properties. Generally, mega models are models
of models and their relationships [2], which can be used to explicitly represent
any kind of modeling artifacts. To also encode dependencies within models, we
need more detailed relationships as proposed in [3]. There we proposed to use
hierarchical modeling artifacts and relationships to encode dependencies at any
level of detail.

Following in Section 2, we give an example of how different models depend on
each other and how different techniques can be employed to support an overall
development process. We also discuss limitations and restrictions of the employed
techniques and in Section 3 a discussion concerning the proposed solution is
given. Section 4 provides related work and in Section 5 we conclude our proposal.

2 Application Scenario

In our current tool-chain, we have various dependencies between elements of dif-
ferent models (inter-model) and even between elements of the same model (intra-
model), which are insufficiently supported in a sense that timing requirements
are not violated by changing individual model elements. In many cases, even
detecting that crucial timing properties are potentially impacted by some mod-
ification is rarely possible. To show how different types of dependencies might
look like, Figure 1 shows a simple application example with elements organized
in different models.

The figure represents in a simplified form artifacts related to four different
models: a SysML model, an AUTOSAR model, a task-based model and a behav-
ioral model. The task-based model is used by chronSIM for real-time simulation
purpose. The behavioral model is a specification that is modeled within MAT-
LAB/Simulink. MATLAB and chronSIM models are depicted as dashed rectan-
gles only because currently we only import and export these models from and to
AUTOSAR. The models itself exist manifested in form of associated project or
model files. The figure also shows some model elements of the provided models.
The SysML model defines a hardware platform, a software component and a
timing requirement. The AUTOSAR model also defines a hardware platform,
a software component and a timing requirement (latency timing requirement),
which are semantically equivalent to the hardware platform, the software com-
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ponent and the timing requirement of the SysML model because they represent
equivalent parts of the system. In addition, the AUTOSAR model has a a latency
timing guarantee, which is a timing property that is somehow guaranteed, e.g.,
by the developer. The software component of the AUTOSAR model additionally
contains a runnable, which defines its behavior.

"""""""""" AUTOSARModel |

SysML : : Hard e ¥ : ;
Model : ] ardware | ____ "' pa o— 0S: : S B | e
: : Platform ~ - Task : / ~ b
: E b2 RS D1 )»-->: based
Hardware : 3 ,” N - === : Model
Platform 4 3 £ A : : d
: : Software | 1 T
: ST TS : ] Component
: ’ N> LatencyTiming \
Software e Do == Guarantee | | mMmm————— | 1 e
Component g == : Runnable : 4 3
: : S-l_-mTe : . H
: ; i © "7 b2 <~ Behavioral
Timing : ; RA : P : ]
Requirement 3 b ‘/’ D4 nooo___ = LatencyTiming : : :
g ; X i : 3 3
3 4 N~ Requirement o e

Fig. 1. Simplified application example

The dashed ellipses D0-D4 denote dependencies that implicitly exist be-
tween different models (D0, D1 and D2) as well as within models (D3 and
D4). DO reflects the bi-directional dependency between the SysML Model and
the AUTOSAR model, which is currently realized by a bi-directional model-
synchronization (cf. [1]). It synchronizes the overlapping model elements of both
models. D1 denotes a dependency between the AUTOSAR model and the task-
based model, which is currently realized in one direction by a model transfor-
mation implemented directly in Java. After simulating the task-based model,
the simulation results must be propagated back to the AUTOSAR model, which
is currently done manually. D2 denotes a dependency between the behavioral
model and the AUTOSAR model. This is currently realized by generating code
from MATLAB/Simulink and subsequently mapping the generated code man-
ually into the AUTOSAR model. D3 is an implicit dependency between the
OS-Task, the hardware platform, the runnable and the latency timing guar-
antee. The timing guarantee is an end-to-end timing property of the software
component. Thus, if one of the dependent elements has changed the timing
guarantee is potentially invalidated. D4 depicts the dependency that implicitly
exists between the latency timing guarantee and the latency timing requirement.
In the case the timing guarantee changes the timing requirement may be vio-
lated. Currently, those exemplary dependencies cannot explicitly defined in our
tool-chainbecause we have no model for inter-model dependencies nor the AU-
TOSAR metamodel supports defining dependencies (D3 and D4) between all
related elements explicitly.

3 Employing Mega Models in the Automotive Domain

In this position paper, we overcome the aforementioned issue of not being able to
express inter-model and even intra-model dependencies by employing the notion
of mega models. Our proposed solution employs mega models for defining rela-
tionships between modeling artifacts as fist-class entities. Therefore, models are
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explicitly represented as modeling artifacts in a mega model and dependencies
between models are explicitly encoded by means of relationships between mod-
eling artifacts. Additionally, a mega model supporting a flexible level-of-detail,
as shown in [3], allows the definition of arbitrary relationships also between
single elements of models. Thus, we can overcome the problem of defining intra-
model-dependencies by encoding required dependencies between model-elements
as relationships in the mega model without changing the metamodel (e.g., in the
case of dependency D2 of the AUTOSAR model). In addition, the semantic of
relationships can be expressed by arbitrary model operations, like in the case
of a model-synchronization, etc. Figure 2 shows a high-level view of our current

tool-chain captured by a mega model.
SysML AuTosaR [ Task-based

S| o . "
Model ‘_"—’ Model |  Model ‘_’

Behavioral q ) N " "
Model Generate C-Code Mapping Legend: Artifact Relationship

Fig. 2. High-level view of the mega model

The figure shows five models, which are now represented as modeling artifacts
of the mega model. Between these modeling artifacts we can define relationships,
which reflect the required dependencies of our application example in Figure 1.
The SysML model has a bi-directional synchronization relationship with the
AUTOSAR model. The behavioral model has a generation relationship to C-
Code, which is mapped to the AUTOSAR model expressed by the mapping
relationship. The AUTOSAR model has a transformation relationship to the
task-based model. For each direction there is a distinct relationship because it
is not a bi-directional synchronization. The simulation relationship denotes that
the task-based model is in a simulation dependency with itself. When simulating
the model, the results are stored in the same model.

SysML (" Synchronization ) AUTOSAR
Model Model

Hardware | A ety | »| Hardware Platiorm |

Platform = - ‘
([P [ | Timing 08-Task
Software » N Mappin < Dependency
Component | g 9 = l
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\ J
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Fig. 3. Lower-level view of the mega model

As shown in [3], a mega model can also represent lower-level modeling ar-

tifacts, e.g., elements of models. This refinement also holds for relationships.

Figure 3 shows a view on the mega model with details of the SysML model, the

synchronization relationship and the AUTOSAR model. The synchronization

relationship contains three mapping relationships, which denote the correspon-
dence of the synchronized modeling artifacts. Within the AUTOSAR model, we

A

LatencyTiming
Requirement
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can now explicitly encode the dependencies of the elements that directly impact
the latency timing guarantee (timing dependency) as well as the dependency that
directly impacts the latency timing requirement (requirement dependency).

A prerequisite for implementing this solution is a platform like Eclipse in com-
bination with EMF (see http://www.eclipse.org/emf), which is responsible
for hosting all models in central workspace. If all required artifacts are accessible
in that workspace, we can easily represent all required modeling artifacts within
the mega model and relate them appropriately.

4 Related Work

Due to the lack of space, we will only briefly discuss two different approaches
related to our proposal. In [4] an approach called ModelBus is described that
integrates tools through adapters to bridge different technologies. Their focus is
on orchestrating the development process through modeling services provided by
diverse tools. Thus, their approach is process oriented but not model oriented.
We want to focus on a generic model (mega model) that represents modeling
artifacts of different tools and further maintains relationships between these
models on the basis of the generic model. Nevertheless, ModelBus can potentially
be combined with our approach by employing its adapter capabilities.

DUALLY [5] is a framework for the support of language and tool inter-
operability by providing mechanisms to specify dependencies between different
(meta) models. Based on these dependencies model transformations can be auto-
matically derived. While we understand model transformation and also model-
synchronization (like described in [6]) as a key concept to be used to obtain
interoperability between different models, intra-model dependencies are rarely
supported by the transformations used in DUALLY.

5 Conclusions

In this paper, we proposed a shift from a tool oriented solution to a model
oriented solution to manage the dependencies concerning real-time properties
between models in different tools as well between model elements included in the
same tool or model. Therefore, we suggest applying mega models for capturing
modeling artifacts and dependencies in between. On top of the mega models, we
can formally reason about dependencies but also apply impact analysis, etc.
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Abstract. In many industries, embedded software plays an increasingly
important role in defining the characteristics of the products. Often, a product
line approach is used, and the system architecture is developed through
evolution rather than being redone from scratch for each product. In this paper,
we present a model of such an evolutionary process based on architecture
transformations. The model attempts to give an accurate description of how real
architects actually work. Key elements of the approach are how the
transformations interact with consistency constraints and with feasibility in
terms of resource limitations. The work is based on findings from previous case
studies in the automotive industry. The model can be used to enhance our
understanding of the architecting process, and to find ways to improve it.

Keywords: Architecture, embedded systems, evolution, transformations.

1 Introduction

The increasing complexity of embedded systems leads to soaring development costs,
and many companies strive to curb this trend by reusing software and hardware
between products through a product line approach. This makes architecture very
important, and we have previously done in-depth studies of the architecting practices
at a some companies (see e.g. [6]), showing that instead of following a well-defined
process and method, the architects base their work on experience and gut feeling.
Academic literature on architecting is mostly concerned with developing a new
system from scratch, something that rarely occurs in the organizations mentioned
above. We term this traditional approach revolutionary architecting, and we have
previously argued based on another case study that the focus should instead be on the
evolutionary architecting where a new version of an existing product is developed [1].
To systematically attack the problem of lacking processes and methods for
architecting, there is a need to provide a description of how architects work today.
The research question of this paper is therefore: What is a suitable model for
capturing how evolutionary architecting is performed in organizations developing
complex embedded system? The contribution of the paper is to propose such a model,
which is based on transformations of an architectural description and related analyses.
Using this model, it becomes possible to reason about aspects of the architect's work
and to describe phenomena encountered during empirical research on architecting.
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2 Evolutionary architecting and architecture descriptions

In the evolutionary process, architecting is triggered by a product change request. The
architects get input in terms of requirements primarily from the function developers.
The architects then try to design a high-level technical solution, focusing on the
distribution of functionality onto different systems, and on the interfaces between
systems. When designing the high-level solution and evaluating alternatives, they take
into account not only the requirements, but also architectural quality attributes, which
are properties of the architecture itself which they strive to maintain. Throughout the
work, the architects create descriptions of the architecture. The descriptions are used
to define pre-requisites for the system developers.
The architect primarily focuses on resolving issues that go across several
subsystems, and this entails dealing with the following concerns:
e  Feasibility, i.e. possibility to implement the functionality by the available
computational resources.

e Consistency, i.e. that all interfaces between parts are well defined.
e  Optimality, in terms of important quality attributes (including cost).
*  Modifiability, to enable future evolution.

The model presented here attempts to describe what information the architects deal
with in their work. That information might appear in many forms: formal models,
sketches, texts, or just as mental models inside the architect's head. Our model tries to
capture the essence of that information, and disregard its representation.

For modeling the architecture descriptions for embedded systems, it suffices with a
metamodel (M2 level) that is essentially an annotated graph, containing elements of
different kinds; relations between pairs of elements or between pairs of relations; and
attributes describing properties of elements and of relations.

For distributed, embedded systems, a model (M1 level) for describing the
architecture can be grouped into several levels of abstraction. In this paper, we will
use four different views, whose elements and relations are shown in Table 1. (The
description is similar to that provided in [2], except that the cluster level is implicitly
captured through the allocation relations. Also, the physical packaging level is added
in this paper, and the task level is excluded since it is internal to an ECU.) There are
also relations between entities in different views, indicating which modules realize
each function, how modules are allocated to ECU:s, where hardware elements and
external entities are positioned, and how communication is routed.

The metamodel allows attributes on elements and relations describing their
properties. For architects, the primary properties have to do with desired qualities and
limited resources present. The desired qualities are those properties that the architect
tries to optimize when selecting among alternative feasible solutions. One of the most
important ones is cost, which can be further divided into product cost and
development cost. The product cost is essentially the cost of hardware, so we add a
product cost attribute to each element of the hardware view. Important resources are
present in ECUs (processing capacity, memory size, I/O pins), communication
channels (bandwidth), and spaces and routing channels (volume).

Oslo, Norway, October 4, 2010 114



MoDELS 2010 ACES-MB Workshop Proceedings

Table 1. Views, elements, and relations in architecture descriptions.

View Element Relations within view
Functional Function Functional dependency
External entity
Logical Module Data flow
Hardware ECU Signal flow
Sensor
Actuator

Comm. channel

Positioning Space Connection
Routing channel

Architects do usually not make complete models of the entire architecture, but
rather only describe those parts which are relevant to resolve a certain change request.
Therefore, we should not assume that we are dealing with complete information.
However, among those elements related to the change request, consistency must be
reached so that for instance all necessary relations are present. As an example, if the
change is to add a new function, which is realized by a certain set of modules, all
those modules must be allocated to ECUs, and none can be left dangling.

3 Transformations and analyses

We believe that the essence of the architect's work can be captured as a sequence of
transformations of the architectural description (on the instance, or MO, level),
together with analyses to see that the solution is feasible, cost efficient, and future
proof. Just as the architecture descriptions can take many forms, including mental
models, the transformations can in reality be explicit or very implicit.

There are two basic transformations on the metamodel level: add entity and remove
entity. Since the entities are either elements or relations, the possible transformations
become add element, remove element, add relation, and remove relation. At the
model level, these abstract transformations can be made concrete, resulting in, e.g.,
add module, remove ECU.

Sometimes architects also use composite transformations. A good example is
change relation, which basically consists of add relation, followed by remove
relation,. A concrete example is when a module that used to be allocated to one ECU
is moved to another ECU by a change allocation transformation. Other composites
are change element (e.g. change ECU to, e.g., an upgraded processor); split element
(e.g., split module when a software module is divided to allow distribution); and the
reciprocal merge element. Through the composite relations, we end up with a formal
language which is very close to the natural language used by architects during their
daily work.

As described in Section 2, the architect's work is triggered by a change request to
an existing architecture, which is consistent and feasible. This change request can be
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described as an initial set of transformations. A typical change request is to integrate a
new function, i.e., the transformation add function. At this point, the architecture
description has become largely inconsistent.

The first step of the architect is usually to try to get more details about the
functionality in the requirements analysis phase. This involves identifying external
entities involved (using the transformations add external entity, add functional
dependency). Also, it is important in this phase to identify placement limitations.
After the requirements analysis is completed, there is usually a complete and
consistent description of the functional view.

Next, the architect starts to generate possible solutions. This is done by filling in
the details at the logical level through transformations such as add module, add
dataflow, but also change module since a consequence of an added functional
dependency may be that an existing module needs to be updated. Also, the hardware
view is detailed, possibly by add ECU, add sensor, add actuator or add network
transformations. The relations between the logical and hardware views also need to be
figured out, by add allocation transformations. In this step, it is common that the
logical view needs to be revisited to perform split module transformations in order to
find a good allocation. Finally, the hardware and positioning views must be connected
by add positioning and add routing transformations. According to our observations,
there is usually not a clear step-by-step process through the views, but the architects
appear to work with all views in parallel or iterate between them. Figure 1 illustrates
the search process performed by architects when dealing with a change request.

Change O Feasible and consistent

request o

O Feasible and inconsistent

Final O Infeasible and consistent
~ 1 .
Initial architecture

architecture Q Infeasible and inconsistent

— Transformation(s)

Fig. 1. Evolutionary architecting as a sequence of transformations.

If consistency is what drives the architecting forward, analysis of feasibility and
quality is what guides it. The most important analyses correspond to the concerns of
the architect described in Section 2 above. Usually, the analyses are qualitative rather
than quantitative, and often relative rather than absolute. Difficult trade-offs between
the concerns are often needed.

For each resource, a set of users can be derived to see that the solution is feasible,
i.e. that the resources are not exhausted. Whenever a relation is added to the model,
which entails that one element will use resources of another, the feasibility should be
checked. An example is when a module is allocated to an ECU. Then the architect
must evaluate if it will fit in terms of ECU memory and CPU footprint.

The product cost is simply the sum of the cost of all components, which can be
calculated by adding the cost attributes of all entities in the hardware view.
Development cost is more complex to assess. In [3], it is described how to reason
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about the cost for software changes. The approach is to first identify which modules
change, and then either simply count how many modules are touched, or try to
perform a more refined analysis or initiated guess of the magnitude of change.

The architects also try to keep in mind that the architecture should be modifiable.
However, as pointed out in [5], it is not meaningful to reason about modifiability as
such, but only how modifiable the architecture is with respect to a certain class of
changes. For embedded systems, a common barrier to modification is lack of
hardware resources. The architects try to strike a balance between adding surplus
resources to the hardware for future growth, and optimizing the resources in order to
reduce product cost. This kind of reasoning can be thought of as a real options
analysis [4]. In such an analysis, the main difficulty is to estimate the likelihood of
certain types of changes. If architects keep track of how frequent certain
transformations are, they can extrapolate more reliable figures. The transformation
model thus gives the architect a language for capturing knowledge about changes.

4 Conclusions

In this paper, we have outlined a Transformation-based Evolutionary Architecting
Model (TEAM), which attempts to describe essential knowledge about how real
architects go about developing embedded system product lines. The basis is data
collected from observing real architecting work, and we have attempted to construct a
model with a high fidelity in the sense that the language the architects use to describe
their own process should be possible to map to the model.

Although the model presented in the paper is largely based on experiences from the
automotive domain, the fundamental ideas are captured in the metamodel which is
much more general and allows many different views and elements to be included.
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Abstract. An approach for the identification of features supported by class mod-
els annotated with stereotypes is shown in this paper. The models are automat-
ically reverse engineered by a tool called Rejasp/Dmasp where attributes and
methods are stereotyped if they have some relation with candidate features. The
approach consists of four guidelines and focuses on identifying features in em-
bedded systems of ground vehicles. As a preliminary evaluation, the guidelines
were applied in creating a product line in the domain of ground vehicles.

Keywords: Software Product Line, Embedded Systems, Ground Vehicles

1 Introduction

Software Product Line (SPL) enables systems to be developed quickly through the com-
position of reusable artifacts [2], that is, in other words, the software — a product line
member or product — is developed by composing features of a specific domain [7]. Fea-
tures are abstractions of design and code that represent the variability of a domain and
may be optional, alternative or mandatory.

In general, the development of Embedded Systems (ES) is not supported by sys-
tematic techniques of reuse, leading to bad time-to-market and low quality of products.
Previous studies have explored the use of SPL techniques for developing embedded sys-
tems aiming at increasing productivity and quality of these systems [3,4,6]. However
none of these papers present clear guidelines or support tools for the agile identification
of features for rapid development of SPL in a fast way [5].

Most researchers in the literature do not provide explicit guidelines for the identifi-
cation of features to build product lines of ES. Recent research such as Mohan et al [5]

t Financial support provided by CNPq and FAPESP under INCT-SEC processes 573963/2008-8 and 08/57870-9 respectly.
i Financial support provided by Capes.
8 Financial support provided by CNPq — Projeto Universal — Process n® 483106/2009-7.
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recognizes the need to integrate the product line engineering with agile methods, such
as XP [1]. The authors state that the time-to-market is less each day and techniques
that facilitate the rapid engineering of a product line are extremely important. However,
they do not present clear and systematic guidelines that can be easily replicated for
identifying features from a set of products previously developed.

Kim [3], Lee et al [4] and Polzer et al [6] use techniques of SPL to aid the develop-
ment of ES, however, did not have clear guidelines to identify the characteristics.

This paper presents an approach that consists of four guidelines that support the
identification of features for the agile construction in of SPL for ground vehicle (GV)
domain. The main contribution consists in an alternative approach for features identi-
fication based on analyzing models rather than analyzing only source code or trust in
knowledge of the domain. We argue that the identification of features based on models
is easier than when it is conducted only base on experience and analysis of the source
code of existing systems. Although the approach is composed of four guidelines, only
the second one is commented in a more detailed way due to space limitations.

2 Agile Approach for Derivation of LPS for Embedded Systems

Figure 1 depicts schematically the process of applying the four proposed guidelines for
identifying features in ES domain. Each “Gn” acronym represents a guideline.

<=

G2
compare and Iie ntify

GVvi

GVj
. N, aZr
set of GV (N) i=1 j=i+1

Table of features
of LPS

accept

G3

possible features
of LPS

Fig. 1. Guidelines for identifying features of SPL.

The first step to start the process is to choose a particular domain in which the SPL
must be built, for example, ground vehicles or unmanned aerial vehicles. Next, the “G1-
Select GV guideline consists of obtaining a set of GVs. At least three systems in the
domain must be selected. In our case study, four systems for GVs that use many devices
were obtained from an Internet Repository*. One of them, called BumperCar, has the
responsibility to avoid collisions with obstacles, thus it uses some types of sensors such
as ultrasonic and touch. The second one, called Explorer, has the capability to exploit a
specific environment. The third one, called Forklift is responsible for pick up a partic-
ular object and carry it to another place, this GV is controlled by the user by means of
Bluetooth protocol. The forth follow the same pattern.

When Gl is done, each of the systems must be labeled with numbers ranging from
1 to N. For each GV, it is performed one cycle, as shown in Figure 1. For instance,

4 .
http://www.nxtprograms.com/projects2.html
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the GVs of our case study have been enumerated from 1 to 4 so that the first GV was
compared with GVs 2, 3, and 4; the second GV with the GVs 3 and 4 and the third was
compared with the fourth GV.

The guideline “G2-Compare and Identify” is the most important of the approach. It
states that GVi should have its hardware (sensors and actuator) and software compared
to the others GVsj, where i+1 < j < N, in order to identify features in this domain. This
comparison is supported by a tool called Rejasp/Dmasp, that aims to recover annotated
(stereotyped) class models from source code of systems, where the stereotypes means
indications of candidate features. These indications are evident in the models through
stereotypes, that is, attributes and methods that have some key words representing a
“concept” of the domain are stereotyped. This tool has a “Concept Manager” where the
“domain concepts” which must be mined in the source code of systems can be regis-
tered. Thus, we can register the “domain concepts” that must be searched in the source
code. Domain concepts are words that represent information relevant to the domain, for
instance, the concepts “motor” and “sensor” are considered important terms in the field
of GV and can be features of a SPL in this domain. These concepts must be obtained
through experience of the developers in the domain or through existing ontologies.

Figure 2 depicts parts of class diagrams generated by Rejasp/Dmasp based on source
code of two GVs (BumperCar and LineFollower) used as our case study. Stereotypes
only appear upper class names when either an attribute or method has been identified as
an occurrence of the underlying Concept Domain (Candidate Feature). So if a class has
the stereotype <Motor>> it is because some attribute/method also has that stereotype.

As can be seen, the stereotype <Motor>> is presented in all classes. Due to that, the
concept “Motor” possibly will be indicated as a mandatory feature. However the stereo-
type < TouchSensor>>, < UltraSonicSensor>> and < LightSensor>> do not appear in
all classes, which means that each system has different types of sensors and possibly
they will be classified as alternative or optional features. We argue that identify fea-
tures only based on an analysis of the source codes is an expensive and time consuming
task. Thus, this tool reduces complexity and improves the productivity of the task of
identifying features of SPL.

After the process of identifying features it must be created an artifact called Table
of Candidate Features, as shown in Table 1, wherein, at first, all the concepts identified
in the class models must be inserted. In the next guideline, these candidate features
will be analyzed in order to decide if they can be considered final or relevant feature of
the domain. It is worth to mention that the tool can annotate (stereotype) methods and
attributes that are not features, generating false-positives. It is also important to point
out that the quality of the process of identifying features is completely dependent on
the quality of the concepts registered with the Concept Manager.

An important detail is that the identification coverage (how much the tool manages
to identify all correct features) can be higher if we use the tool incrementaly. For ex-
ample, if some features are not present in the first retrieved model, we can update the
Concept Manager including new Domain Concepts and run the tool again to retrieve a
new model that has a higher coverage. Then, this process can be repeated until most of
the features have been stereotyped in the model.
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In the “G3-Accept’ guideline, one must analyze and classify the features of the
Table of Candidate Features. The analysis consists in deciding if a feature must be con-
sidered as a “relevant feature” of the domain. This decision process must be supported
by the domain engineer’s knowledge and other information sources like sensor’s man-
ual and API documentation. Furthermore, the selected features must be classified in
mandatories, optionals or alternatives; however, it’s beyond the scope of this paper. The
final step is to create a new artifact called Table of SPL Features shown in Table 2
which contains all relevant features and the type of them. Table 2 contains a subset of
the relevant features for the SPL of our case study.

<<Motor=> <<Motor=>

<<TouchSensor>> DriveForward

<<UltrasonicSensor=>
Detectwall

<<Motor=>
<<LightSensor=>
Main

- _suppressed : boolean

+ takeControl( : boolean
+ suppress( : void
- action( : void

+ <<Motor=><<LightSensor>> main(aArg : String) : void

- <<TouchSensor>> touch : TouchSensor
<=y sonar: U

+ suppressQ : void Main
+ <<Motor=> action() : void

String) : void

]
1
1
]
1
<<T D 0
+ <<TouchSensor>><<UltrasonicSensor=> takeControl() : boolean <<Motor»» 1
1
]
1
1

(a) BumperCar (b) LineFollower

Fig. 2. Candidate Features

Table 1. Table of candidate features.

Systems Stereotypes Candidate Features
< Motor> Motor
BumperCar < TouchSensor>> Touch
< UltraSonicSensor>> UltraSonic
LineFollower <Motor>> Motor
< LightSensor> Light

Table 2. Table of SPL Features

Candidate Concept/Feature Description Type
Motor Represents the existence of motors. Mandatory
Sensor A physical stimuli detection device. Optional
UltraSonic Measures its proximity to an object Optional
Touch Detects collisions Optional
Light Measure light intensity Optional

After guidelines G2 and G3 have been applied, the Feature Model must be created
using the guideline “G4-Develop”. The Table of SPL Features that was generated in
“G3-Accept” supports the Feature Model creation. Figure 3 depicts the Feature Model
of our case study. This guideline is also beyond the scope of this paper and will not be
detailed.
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Fig. 3. The developed Feature Model.
3 Final Remarks

We argue that identify features only by means of experience and existing source code is
more costly and error prone than using a model-based approach like the one presented
by us. In our approach, models assist in an agile identification of domain concepts in
several systems of a domain, which makes the identification of features a more con-
trolled and productive task. The quality of the identified features depends on the set of
concepts previously registered in Concept Manager of Rejasp/Dmasp. Therefore, we
suggest registering a concept list or a domain’s ontology in the tool.

We also argue that top-down strategies for feature identification, that is, those that
identify features by analyzing a certain domain instead of systems previously devel-
oped, are not suitable when the SPL must be created in a short time. The main cause is
that analyzing a domain usually takes a long time to be finished and yields a wide range
of features that are not relevant or that may never be used to derive products from the
PL.

As a future work, we intend to improve the proposed guidelines in order to be ap-
plied in existing agile methods like XP or SCRUM.
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Abstract. In model driven development (MDD), much meaning can be
given to the model using a domain specific language (DSL), and the code
generation rate can be increased. Model-based product line development
is possible using code generation to realize variability. In this paper, we
describe the development of line tracer robots for a contest, where we
achieved a high rate of code generation by using two DSLs, the charac-
teristics of which supplement each other. Structure is described by a high
generality DSL and behavior by a high specificity DSL. Furthermore, var-
ious kinds of products were able to be developed from one product line
efficiently by using code generation from two DSLs to realize variability.

Keywords: Domain Specific Language, Model Driven Development, Soft-
ware Product Line

1 Introduction

In recent years, due to the diversification, intensification, and complexification
of user and market needs, the ability to rapidly provide various types of products
has become an important competitive advantage. Software product line (SPL)
is one approach to solving such issues. SPL is a method for developing a variety
of products efficiently by reusing the common parts of the product line as a core
asset and switching the individual parts of each products as a variation point
which capability is called variability.

One technique for effective reuse is to incorporate model driven development
(MDD) based on the SPL component meta model. [1]

We have worked on the effective development of a variety of products by using
two or more domain specific languages (DSL) to design models, where each DSL
allows different variabilities to be realized its model. A high code generation
rate was achieved by gradually raising the degree of the domain specificity of
the DSLs, synchronized with the progress of the development process.
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2 Problems

2.1 Problem of variability over various kinds of products

In SPL, code generation is a technique for realizing variability. If variability is
expressible in the model, a system can be constructed with a high tolerance for
modifications and derivations.

However, in the case that source code is generated from a DSL description, if
variabilities are not expressible in the DSL’s specified domain, these variabilities
cannot be realized by the code generation, and a different technique of realizing
variability should be chosen (left side of Fig.1), e.g., structural DSL cannot
realize variability of behavior.

It becomes a problem when considering many kinds of products because the
variability that can be realized from one DSL is limited.

descriptable variability Undescriptable variability descriptable variability
in DSL1 in DSL1 in DSL2
| | |

Add System
description
® @ " Ran®® of

by DSL:
\ descriptable

\_ inDSL2 ./

System

Range of descriptable
in DSL1

Range of descriptable
in DSL1

Fig. 1. Problem of variability over various kinds of products

2.2 Problem of code generation rate and generality

Generally, a DSL with low generality can achieve a high code generation rate
because a lot of information of the specified domain is added to the meta model
of the DSL, but projects that can use the DSL are limited to ones that suit the
domain. On the other hand, a DSL for which generality is high might have a
lower code generation rate because little information of the specified domain is
added to the meta model of the DSL. There is a trade-off relating to the degree
of code generation rate and that of domain specificity, and it is difficult to satisfy
both.

3 Solutions

To solve the problems described in the preceding chapter, we propose a devel-
opment process that uses two or more DSLs.

1. Define products that apply SPL, and analyze variabilities.
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2. Select or design a DSL that can achieve variabilities. It is not necessary to
consider all the variabilities. Raise the degree of the domain specificity of
the adopted DSL as the development process advances. As a result, the code
generation rate is raised.

3. Implement the DSL tool (if a new DSL was necessary).

4. Design a product with the adopted DSL while considering variabilities that
remain.

5. If the product design is not complete, return to step 2.

The idea is to describe the outline with a high generality DSL, and to gen-
erate the code where the domain dependency is small in the early stage of the
development process. As the development process advances, adopt a higher do-
main specificity DSL, and generate code which was not able to be generated at
the early stage. In such a development process, by using multiple mutually sup-
plementing DSLs, a high code generation rate is achievable and the variability
of many kinds of products is expressible with tolerance for modifications. (right
side of Fig.1).

4 Case study

The proposed process was applied in the development of line tracer robots for
the Embedded Technology Software Design Robot Contest (ET Robot Contest).
2]

4.1 Realizing variabilities by two DSLs

In ET Robot Contest 2009, two kinds of robots, an RCX (LEGO MINDSTORMS
RCX) of four-wheel type and an NXT (LEGO MINDSTORMS NXT) of two-
wheel inverted pendulum type, could be selected from. We entered both an NXT
team and RCX team.

There are only minor differences in the basic rules between NXT and RCX, so
required functions are almost the same. Accordingly, we regarded unique parts,
such as sensors and actuators, as variation points and the rest as core assets for
reuse in both types of robots.

Furthermore, the contest required robots to run on both the inside and out-
side lanes which have different features. Therefore, we considered the running
methods that suit these features as variation points.

To realize these two aspects of variation points we use two DSLs. One is a
componentization DSL which realizes variability of structure; in other words, it
deals with differences between RCX and NXT parts. The other is a strategy DSL
which realizes variability of behavior; in other words, it deals with differences
among running methods.

The relation between the DSLs and the variabilities is shown in Fig.2.

If, for example, it becomes necessary to add a new type of robot which has
a different sensor and actuator, the componentization DSL makes adding it to
the product line easy. Similarly if a different running method is needed, we can
use the strategy DSL to ease addition of it.
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Fig. 2. Realizing variability by two DSLs

4.2 Componentization DSL and strategy DSL

The meta model of the componentization DSL consists of ”component”, ”port”,
”connector”, "interface” and ”task”. ”Components” have their ”ports” con-
nected to each other by a ”connector”. ”Ports” have ”interfaces” which fix the
data type. ”Components” send and receive data through a ”connector”. ” Tasks”
drive ”components” in the order we model.

The following is the design process with the componentization DSL.

. Describe models of component definition.

. Describe source code for component implementation.

. Deploy components and connect their ports.

. Schedule the timing for when a component is triggered during a cycle.
. Transform models to source code with the componentization DSL tool.

Tk W N~

The meta model of the strategy DSL consists of ”actions” and ”judgements”.
” Action” means how to drive the robot. ”Judgement” judges whether the trig-
ger of an "action” transition happened near the robot. To design the model
of the strategy DSL, which is like a state diagram regarding ”action” as state
and ”judgement” as transitions, we put ”judgements” between ”actions”, and
connect these. The strategy DSL tool transforms models to strategy data which
represent relationships between ”actions” and ”judgements”.

During the design of the architecture of the product we also considered how to
design the strategy DSL. Based on this architecture, we designed the framework
for reading strategy data by using the componentization DSL.

Fig. 3 shows the design process with both DSL tools.

Table 1 shows the code generation rate result as the ratio of the lines of the
codes generated by the DSLs to the total LOC. We achieved a high code genera-
tion rate of 75.6% by using both DSLs compared with only the componentization
DSL. Furthermore, we think that maintainability is improved by describing the
model from an appropriate view by each DSL.
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Fig. 3. Process of design by componentization DSL and strategy DSL

Table 1. LOC generated by tools and code generation rate in RCX

generated by compo-|generated by compo-|total LOC
nentization DSL nentization DSL &
strategy DSL

LOC 4,567 5,422 7,173

Code generation rate|63.7% 75.6%

5 Conclusion

In this paper, we proposed a product line development process using two or
more DSLs, and gave a case study of line tracer robot development to show the
realization of variabilities of many kinds of products and achievement of a high
code generation rate.

Future work includes verification that the process can be scaled to allow us
to build large-scale systems and evaluation that dealing with multiple DSLs for
variabilities can pay. The tools for multiple DSLs management might help latter
problem|3].
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