
Toward Mega Models for Maintaining Timing
Properties of Automotive Systems

Stefan Neumann and Andreas Seibel

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

forename.surname@hpi.uni-potsdam.de

Abstract. In the recent years diverse modeling tools for the develop-
ment of automotive systems emerged and each tool and the associated
modeling language have different strengths and weaknesses. A compre-
hensive solution tries to integrate multiple partially overlapping models
from different tools. In general, timing properties are crucial when de-
veloping real-time system and in a complex setting minor changes of the
models may lead to violations of existing timing requirements. Thus, it
is crucial that relevant dependencies between models and related timing
properties are explicitly captured, allowing the analysis of the impact
of changes on the timing properties and timing requirements. However,
current modeling tools and languages do not explicitly encode all rele-
vant dependencies and, thus, violations may remain undetected. In this
paper we propose to use the initial concept of mega models as a solution
for the support of those dependencies relevant for timing properties.

1 Introduction

Over the last few years, diverse modeling tools for the development of automotive
systems emerged with each has different strengths and weaknesses. Examples
of professional modeling tools are TOPCASED (see http://topcased.org),
which employs SysML (see http://www.omgsysml.org) as modeling language
with a strong focus on modeling several types of requirements, SystemDesk
(see http://www.dspace.de), which supports AUTOSAR (see http://www.

autosar.org) as architectural modeling language, and MATLAB/Simulink (see
http://www.mathworks.com/products/matlab/), which strength is modeling
behavioral aspects.

A comprehensive solution has to combine the strengths of individual solu-
tions. Thus, it has to integrating multiple partially overlapping models from
different modeling tools. In the past, we have developed a tool-chain that in-
tegrates several tools (including the aforementioned tools) for modeling in the
domain of automative systems. We additionally integrated a real-time simula-
tion tool called chronSIM (see http://www.inchron.com/chronsim.html) for
analyzing timing properties [1], which is an important part of the development
process.

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 107



In general, timing properties are crucial when developing real-time system
and they need to be considered at different levels of abstraction, within dif-
ferent models and in different development steps. In a complex setting, minor
changes of the models may lead to violations of existing timing properties and,
therefore, timing requirements. Thus, it is crucial that relevant dependencies
between models and related timing properties are explicitly captured, which
permits analyzing the impact of changes on the timing properties and timing
requirements. However, in the most cases current modeling tools do not explic-
itly encode all relevant dependencies that have an impact on timing properties,
which are dependencies between different models and even between elements
in the same model. This may result in violations of timing requirements that
remain undetected. In this paper, we propose the initial concept of employing
mega models as a solution to encode these dependencies, which supports the
explicit maintenance of timing properties. Generally, mega models are models
of models and their relationships [2], which can be used to explicitly represent
any kind of modeling artifacts. To also encode dependencies within models, we
need more detailed relationships as proposed in [3]. There we proposed to use
hierarchical modeling artifacts and relationships to encode dependencies at any
level of detail.

Following in Section 2, we give an example of how different models depend on
each other and how different techniques can be employed to support an overall
development process. We also discuss limitations and restrictions of the employed
techniques and in Section 3 a discussion concerning the proposed solution is
given. Section 4 provides related work and in Section 5 we conclude our proposal.

2 Application Scenario

In our current tool-chain, we have various dependencies between elements of dif-
ferent models (inter-model) and even between elements of the same model (intra-
model), which are insufficiently supported in a sense that timing requirements
are not violated by changing individual model elements. In many cases, even
detecting that crucial timing properties are potentially impacted by some mod-
ification is rarely possible. To show how different types of dependencies might
look like, Figure 1 shows a simple application example with elements organized
in different models.

The figure represents in a simplified form artifacts related to four different
models: a SysML model, an AUTOSAR model, a task-based model and a behav-
ioral model. The task-based model is used by chronSIM for real-time simulation
purpose. The behavioral model is a specification that is modeled within MAT-
LAB/Simulink. MATLAB and chronSIM models are depicted as dashed rectan-
gles only because currently we only import and export these models from and to
AUTOSAR. The models itself exist manifested in form of associated project or
model files. The figure also shows some model elements of the provided models.
The SysML model defines a hardware platform, a software component and a
timing requirement. The AUTOSAR model also defines a hardware platform,
a software component and a timing requirement (latency timing requirement),
which are semantically equivalent to the hardware platform, the software com-

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 108



ponent and the timing requirement of the SysML model because they represent
equivalent parts of the system. In addition, the AUTOSAR model has a a latency
timing guarantee, which is a timing property that is somehow guaranteed, e.g.,
by the developer. The software component of the AUTOSAR model additionally
contains a runnable, which defines its behavior.

AUTOSAR Model

Software
Component

Hardware
Platform

OS-
Task

Runnable

LatencyTiming
Requirement

LatencyTiming
Guarantee

SysML
Model

Software
Component

Hardware
Platform

Timing
Requirement

D0

Task-
based
Model

D1

D4

D3

Behavioral
Model

D2

Fig. 1. Simplified application example

The dashed ellipses D0-D4 denote dependencies that implicitly exist be-
tween different models (D0, D1 and D2) as well as within models (D3 and
D4). D0 reflects the bi-directional dependency between the SysML Model and
the AUTOSAR model, which is currently realized by a bi-directional model-
synchronization (cf. [1]). It synchronizes the overlapping model elements of both
models. D1 denotes a dependency between the AUTOSAR model and the task-
based model, which is currently realized in one direction by a model transfor-
mation implemented directly in Java. After simulating the task-based model,
the simulation results must be propagated back to the AUTOSAR model, which
is currently done manually. D2 denotes a dependency between the behavioral
model and the AUTOSAR model. This is currently realized by generating code
from MATLAB/Simulink and subsequently mapping the generated code man-
ually into the AUTOSAR model. D3 is an implicit dependency between the
OS-Task, the hardware platform, the runnable and the latency timing guar-
antee. The timing guarantee is an end-to-end timing property of the software
component. Thus, if one of the dependent elements has changed the timing
guarantee is potentially invalidated. D4 depicts the dependency that implicitly
exists between the latency timing guarantee and the latency timing requirement.
In the case the timing guarantee changes the timing requirement may be vio-
lated. Currently, those exemplary dependencies cannot explicitly defined in our
tool-chainbecause we have no model for inter-model dependencies nor the AU-
TOSAR metamodel supports defining dependencies (D3 and D4) between all
related elements explicitly.

3 Employing Mega Models in the Automotive Domain
In this position paper, we overcome the aforementioned issue of not being able to
express inter-model and even intra-model dependencies by employing the notion
of mega models. Our proposed solution employs mega models for defining rela-
tionships between modeling artifacts as fist-class entities. Therefore, models are

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 109



explicitly represented as modeling artifacts in a mega model and dependencies
between models are explicitly encoded by means of relationships between mod-
eling artifacts. Additionally, a mega model supporting a flexible level-of-detail,
as shown in [3], allows the definition of arbitrary relationships also between
single elements of models. Thus, we can overcome the problem of defining intra-
model-dependencies by encoding required dependencies between model-elements
as relationships in the mega model without changing the metamodel (e.g., in the
case of dependency D2 of the AUTOSAR model). In addition, the semantic of
relationships can be expressed by arbitrary model operations, like in the case
of a model-synchronization, etc. Figure 2 shows a high-level view of our current
tool-chain captured by a mega model.

SysML
Model

AUTOSAR
Model

Task-based
Model

Behavioral
Model

Sync. Simulation

Trans.

Mapping Artifact RelationshipLegend:

Trans.

C-CodeGenerate

Fig. 2. High-level view of the mega model

The figure shows five models, which are now represented as modeling artifacts
of the mega model. Between these modeling artifacts we can define relationships,
which reflect the required dependencies of our application example in Figure 1.
The SysML model has a bi-directional synchronization relationship with the
AUTOSAR model. The behavioral model has a generation relationship to C-
Code, which is mapped to the AUTOSAR model expressed by the mapping
relationship. The AUTOSAR model has a transformation relationship to the
task-based model. For each direction there is a distinct relationship because it
is not a bi-directional synchronization. The simulation relationship denotes that
the task-based model is in a simulation dependency with itself. When simulating
the model, the results are stored in the same model.

SysML
Model

AUTOSAR
Model

Synchronization

Hardware Platform

OS-Task

Runnable

LatencyTiming
Requirement

Timing
Dependency

LatencyTiming
Guarantee

Requirement
Dependency

Software
Component

Mapping

Hardware
Platform

Mapping

Artifact RelationshipLegend:

Requirement Mapping Software
Component

Fig. 3. Lower-level view of the mega model

As shown in [3], a mega model can also represent lower-level modeling ar-
tifacts, e.g., elements of models. This refinement also holds for relationships.
Figure 3 shows a view on the mega model with details of the SysML model, the
synchronization relationship and the AUTOSAR model. The synchronization
relationship contains three mapping relationships, which denote the correspon-
dence of the synchronized modeling artifacts. Within the AUTOSAR model, we

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 110



can now explicitly encode the dependencies of the elements that directly impact
the latency timing guarantee (timing dependency) as well as the dependency that
directly impacts the latency timing requirement (requirement dependency).

A prerequisite for implementing this solution is a platform like Eclipse in com-
bination with EMF (see http://www.eclipse.org/emf), which is responsible
for hosting all models in central workspace. If all required artifacts are accessible
in that workspace, we can easily represent all required modeling artifacts within
the mega model and relate them appropriately.

4 Related Work
Due to the lack of space, we will only briefly discuss two different approaches
related to our proposal. In [4] an approach called ModelBus is described that
integrates tools through adapters to bridge different technologies. Their focus is
on orchestrating the development process through modeling services provided by
diverse tools. Thus, their approach is process oriented but not model oriented.
We want to focus on a generic model (mega model) that represents modeling
artifacts of different tools and further maintains relationships between these
models on the basis of the generic model. Nevertheless, ModelBus can potentially
be combined with our approach by employing its adapter capabilities.

DUALLY [5] is a framework for the support of language and tool inter-
operability by providing mechanisms to specify dependencies between different
(meta) models. Based on these dependencies model transformations can be auto-
matically derived. While we understand model transformation and also model-
synchronization (like described in [6]) as a key concept to be used to obtain
interoperability between different models, intra-model dependencies are rarely
supported by the transformations used in DUALLY.

5 Conclusions
In this paper, we proposed a shift from a tool oriented solution to a model
oriented solution to manage the dependencies concerning real-time properties
between models in different tools as well between model elements included in the
same tool or model. Therefore, we suggest applying mega models for capturing
modeling artifacts and dependencies in between. On top of the mega models, we
can formally reason about dependencies but also apply impact analysis, etc.

References

1. Giese, H., Hildebrandt, S., Neumann, S.: Towards Integrating SysML and AUTOSAR Modeling
via Bidirectional Model Synchronization. In: 5th Workshop on Model-Based Development of
Embedded Systems (MBEES). (2009)

2. Bézivin, J., Jouault, F., Valduriez, P.: On the Need for Megamodels. In: Proc of the OOPSLA/G-
PCE: Best Practices for Model-Driven Software Development workshop, 19th Annual ACM Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications. (2004)

3. Seibel, A., Neumann, S., Giese, H.: Dynamic Hierarchical Mega Models: Comprehensive Trace-
ability and its Efficient Maintenance. Software and System Modeling 009(s10270) (2009)

4. Aldazabal, A., Baily, T., Nanclares, F., Sadovykh, A., Hein, C., Ritter, T.: Automated model
driven development processes. In: ECMDA - Tools and Process Integration Workshop, Berlin,
June. (2008)

5. Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.A.: Providing Architectural Languages
and Tools Interoperability through Model Transformation Technologies. IEEE Transactions on
Software Engineering 36(1) (January/February 2010)

6. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model synchro-
nization. Software and Systems Modeling 8(1) (1 February 2009)

MoDELS 2010 ACES-MB Workshop Proceedings

Oslo, Norway, October 4, 2010 111




