MoDELS 2010 ACES-MB Workshop Proceedings

Identifying Features for Ground Vehicles Software
Product Lines by Means of Annotated Models

Rafael S. Durelli’T+#, Daniel B. F. Conrado®f, Ricardo Argenton Ramos?'%, Oscar
Lopez Pastor’%, Valter V. de Camargo!* %, and Rosangela A. D. Penteado'+ 9

1 Computing Dept., Federal University of Sio Carlos, Sdo Carlos — Sdo Paulo — Brazil
{rafael_durelli, daniel_conrado, valter, rosangela}@dc.ufscar.br
2 Collegiate of Computer Engineering, Federal University of Vale do Sdo Francisco, Juazeiro —
Bahia — Brazil
ricargentonramos@gmail.com
3 Dept. of Computer Systems and Computation, Universidad Politécnica de Valencia, Valencia
— Spain
opastor@dsic.upv.es

Abstract. An approach for the identification of features supported by class mod-
els annotated with stereotypes is shown in this paper. The models are automat-
ically reverse engineered by a tool called Rejasp/Dmasp where attributes and
methods are stereotyped if they have some relation with candidate features. The
approach consists of four guidelines and focuses on identifying features in em-
bedded systems of ground vehicles. As a preliminary evaluation, the guidelines
were applied in creating a product line in the domain of ground vehicles.

Keywords: Software Product Line, Embedded Systems, Ground Vehicles

1 Introduction

Software Product Line (SPL) enables systems to be developed quickly through the com-
position of reusable artifacts [2], that is, in other words, the software — a product line
member or product — is developed by composing features of a specific domain [7]. Fea-
tures are abstractions of design and code that represent the variability of a domain and
may be optional, alternative or mandatory.

In general, the development of Embedded Systems (ES) is not supported by sys-
tematic techniques of reuse, leading to bad time-to-market and low quality of products.
Previous studies have explored the use of SPL techniques for developing embedded sys-
tems aiming at increasing productivity and quality of these systems [3,4,6]. However
none of these papers present clear guidelines or support tools for the agile identification
of features for rapid development of SPL in a fast way [5].

Most researchers in the literature do not provide explicit guidelines for the identifi-
cation of features to build product lines of ES. Recent research such as Mohan et al [5]

t Financial support provided by CNPq and FAPESP under INCT-SEC processes 573963/2008-8 and 08/57870-9 respectly.
i Financial support provided by Capes.
8 Financial support provided by CNPq — Projeto Universal — Process n® 483106/2009-7.

Oslo, Norway, October 4, 2010

119

MoDELS 2010 ACES-MB Workshop Proceedings

recognizes the need to integrate the product line engineering with agile methods, such
as XP [1]. The authors state that the time-to-market is less each day and techniques
that facilitate the rapid engineering of a product line are extremely important. However,
they do not present clear and systematic guidelines that can be easily replicated for
identifying features from a set of products previously developed.

Kim [3], Lee et al [4] and Polzer et al [6] use techniques of SPL to aid the develop-
ment of ES, however, did not have clear guidelines to identify the characteristics.

This paper presents an approach that consists of four guidelines that support the
identification of features for the agile construction in of SPL for ground vehicle (GV)
domain. The main contribution consists in an alternative approach for features identi-
fication based on analyzing models rather than analyzing only source code or trust in
knowledge of the domain. We argue that the identification of features based on models
is easier than when it is conducted only base on experience and analysis of the source
code of existing systems. Although the approach is composed of four guidelines, only
the second one is commented in a more detailed way due to space limitations.

2 Agile Approach for Derivation of LPS for Embedded Systems

Figure 1 depicts schematically the process of applying the four proposed guidelines for
identifying features in ES domain. Each “Gn” acronym represents a guideline.

<=

G2
compare and Iie ntify

GVvi

GVj
. N, aZr
set of GV (N) i=1 j=i+1

Table of features
of LPS

accept

G3

possible features
of LPS

Fig. 1. Guidelines for identifying features of SPL.

The first step to start the process is to choose a particular domain in which the SPL
must be built, for example, ground vehicles or unmanned aerial vehicles. Next, the “G1-
Select GV guideline consists of obtaining a set of GVs. At least three systems in the
domain must be selected. In our case study, four systems for GVs that use many devices
were obtained from an Internet Repository*. One of them, called BumperCar, has the
responsibility to avoid collisions with obstacles, thus it uses some types of sensors such
as ultrasonic and touch. The second one, called Explorer, has the capability to exploit a
specific environment. The third one, called Forklift is responsible for pick up a partic-
ular object and carry it to another place, this GV is controlled by the user by means of
Bluetooth protocol. The forth follow the same pattern.

When Gl is done, each of the systems must be labeled with numbers ranging from
1 to N. For each GV, it is performed one cycle, as shown in Figure 1. For instance,

4 .
http://www.nxtprograms.com/projects2.html

Oslo, Norway, October 4, 2010 120

MoDELS 2010 ACES-MB Workshop Proceedings

the GVs of our case study have been enumerated from 1 to 4 so that the first GV was
compared with GVs 2, 3, and 4; the second GV with the GVs 3 and 4 and the third was
compared with the fourth GV.

The guideline “G2-Compare and Identify” is the most important of the approach. It
states that GVi should have its hardware (sensors and actuator) and software compared
to the others GVsj, where i+1 < j < N, in order to identify features in this domain. This
comparison is supported by a tool called Rejasp/Dmasp, that aims to recover annotated
(stereotyped) class models from source code of systems, where the stereotypes means
indications of candidate features. These indications are evident in the models through
stereotypes, that is, attributes and methods that have some key words representing a
“concept” of the domain are stereotyped. This tool has a “Concept Manager” where the
“domain concepts” which must be mined in the source code of systems can be regis-
tered. Thus, we can register the “domain concepts” that must be searched in the source
code. Domain concepts are words that represent information relevant to the domain, for
instance, the concepts “motor” and “sensor” are considered important terms in the field
of GV and can be features of a SPL in this domain. These concepts must be obtained
through experience of the developers in the domain or through existing ontologies.

Figure 2 depicts parts of class diagrams generated by Rejasp/Dmasp based on source
code of two GVs (BumperCar and LineFollower) used as our case study. Stereotypes
only appear upper class names when either an attribute or method has been identified as
an occurrence of the underlying Concept Domain (Candidate Feature). So if a class has
the stereotype <Motor>> it is because some attribute/method also has that stereotype.

As can be seen, the stereotype <Motor>> is presented in all classes. Due to that, the
concept “Motor” possibly will be indicated as a mandatory feature. However the stereo-
type < TouchSensor>>>, < UltraSonicSensor>> and < LightSensor>> do not appear in
all classes, which means that each system has different types of sensors and possibly
they will be classified as alternative or optional features. We argue that identify fea-
tures only based on an analysis of the source codes is an expensive and time consuming
task. Thus, this tool reduces complexity and improves the productivity of the task of
identifying features of SPL.

After the process of identifying features it must be created an artifact called Table
of Candidate Features, as shown in Table 1, wherein, at first, all the concepts identified
in the class models must be inserted. In the next guideline, these candidate features
will be analyzed in order to decide if they can be considered final or relevant feature of
the domain. It is worth to mention that the tool can annotate (stereotype) methods and
attributes that are not features, generating false-positives. It is also important to point
out that the quality of the process of identifying features is completely dependent on
the quality of the concepts registered with the Concept Manager.

An important detail is that the identification coverage (how much the tool manages
to identify all correct features) can be higher if we use the tool incrementaly. For ex-
ample, if some features are not present in the first retrieved model, we can update the
Concept Manager including new Domain Concepts and run the tool again to retrieve a
new model that has a higher coverage. Then, this process can be repeated until most of
the features have been stereotyped in the model.

Oslo, Norway, October 4, 2010 121

MoDELS 2010 ACES-MB Workshop Proceedings

In the “G3-Accept’ guideline, one must analyze and classify the features of the
Table of Candidate Features. The analysis consists in deciding if a feature must be con-
sidered as a “relevant feature” of the domain. This decision process must be supported
by the domain engineer’s knowledge and other information sources like sensor’s man-
ual and API documentation. Furthermore, the selected features must be classified in
mandatories, optionals or alternatives; however, it’s beyond the scope of this paper. The
final step is to create a new artifact called Table of SPL Features shown in Table 2
which contains all relevant features and the type of them. Table 2 contains a subset of
the relevant features for the SPL of our case study.

<<Motor=> <<Motor=>

<<TouchSensor>> DriveForward

<<UltrasonicSensor=>
Detectwall

<<Motor=>
<<LightSensor=>
Main

- _suppressed : boolean

+ takeControl(: boolean
+ suppress(: void
- action(: void

+ <<Motor=><<LightSensor>> main(aArg : String) : void

- <<TouchSensor>> touch : TouchSensor
<=y sonar: U

+ suppressQ : void Main
+ <<Motor=> action() : void

String) : void

]
1
1
]
1
<<T D 0
+ <<TouchSensor>><<UltrasonicSensor=> takeControl() : boolean <<Motor»» 1
1
]
1
1

(a) BumperCar (b) LineFollower

Fig. 2. Candidate Features

Table 1. Table of candidate features.

Systems Stereotypes Candidate Features
< Motor> Motor
BumperCar < TouchSensor>> Touch
< UltraSonicSensor>> UltraSonic
LineFollower <Motor>> Motor
< LightSensor> Light

Table 2. Table of SPL Features

Candidate Concept/Feature Description Type
Motor Represents the existence of motors. Mandatory
Sensor A physical stimuli detection device. Optional
UltraSonic Measures its proximity to an object Optional
Touch Detects collisions Optional
Light Measure light intensity Optional

After guidelines G2 and G3 have been applied, the Feature Model must be created
using the guideline “G4-Develop”. The Table of SPL Features that was generated in
“G3-Accept” supports the Feature Model creation. Figure 3 depicts the Feature Model
of our case study. This guideline is also beyond the scope of this paper and will not be
detailed.

Oslo, Norway, October 4, 2010

122

MoDELS 2010 ACES-MB Workshop Proceedings

-
[= igator | [

CaterpillarTrack

vigator] A

I Sensor i

UltraSonic Touch Camera Light

Legend

—— @ Mandatory features
A features Or features (at least one)
—Q optional features

Fig. 3. The developed Feature Model.
3 Final Remarks

We argue that identify features only by means of experience and existing source code is
more costly and error prone than using a model-based approach like the one presented
by us. In our approach, models assist in an agile identification of domain concepts in
several systems of a domain, which makes the identification of features a more con-
trolled and productive task. The quality of the identified features depends on the set of
concepts previously registered in Concept Manager of Rejasp/Dmasp. Therefore, we
suggest registering a concept list or a domain’s ontology in the tool.

We also argue that top-down strategies for feature identification, that is, those that
identify features by analyzing a certain domain instead of systems previously devel-
oped, are not suitable when the SPL must be created in a short time. The main cause is
that analyzing a domain usually takes a long time to be finished and yields a wide range
of features that are not relevant or that may never be used to derive products from the
PL.

As a future work, we intend to improve the proposed guidelines in order to be ap-
plied in existing agile methods like XP or SCRUM.

References

1. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change (2nd Edition).
Addison-Wesley Professional (2004)

2. Clements, P., Northrop, L.: Software Product Lines. Addison-Wesley (2002)

3. Kim, H.K.: Applying product line to the embedded systems. In: Computational Science and
Its Applications - ICCSA 2006. Springer (May 2006)

4. Lee, J., Cho, J.H., Ham, D.H., Kim, J.S.: Methodology for embedded system development
based on product line. vol. 2, pp. 920 -923 (2005)

5. Mohan, K., Ramesh, B., Sugumaran, V.: Integrating software product line engineering and
agile development. Software, IEEE 27(3), 48 —55 (may 2010)

6. Polzer, A., Kowalewski, S., Botterweck, G.: Applying software product line techniques in
model-based embedded systems engineering. In: MOMPES ’09: Proceedings of the 2009
ICSE Workshop on Model-Based Methodologies for Pervasive and Embedded Software. pp.
2-10. IEEE Computer Society, Washington, DC, USA (2009)

7. Weiss, D.M., Chi: Software Product-Line Engineering: A Family-Based Software Develop-
ment Process. Addison-Wesley Professional; Har/Cdr edition (1999)

Oslo, Norway, October 4, 2010 123

