
Deploying the Mutation Impact mining pipeline with SADI:
an exploratory case study

Alexandre Riazanov, Jonas Bergman Laurila and Christopher J O Baker∗

Department of Computer Science & Applied Statistics, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada.

Email: Alexandre Riazanov - alexr@unb.ca; Jonas Bergman Laurila - j02h9@unb.ca; Christopher J O Baker∗- bakerc@unb.ca;

∗Corresponding author

Abstract

Our previous work on text mining for mutation impacts resulted in (i) the development of a GATE-based

pipeline that mines texts for information about impacts of mutations on proteins, (ii) the population of this

information into our OWL DL mutation impact ontology, and (iii) establishing an experimental OWL

database for storing the results of text mining. The current focus of the project is to look for ways of

deploying our software and data to facilitate the integration of our mutation impact data in a broader

biological context.

This paper explores the possibility of using the SADI framework as a medium for publishing our mutation

impact software and data. SADI is a set of conventions for creating web services with semantic

descriptions that facilitate automatic discovery and orchestration. Here we describe a case study exploring

and demonstrating the utility of the SADI approach in our context. We describe several SADI services we

created based on our text mining API and data, and demonstrate how they can be used in a number of

biologicaly meaningful scenarios through a SPARQL interface (SHARE) to SADI services. In all cases we

pay special attention to the integration of mutation impact services with external SADI services providing

information about related biological entities, such as proteins, pathways, and drugs.

1



Introduction.

The annotation of mutants with their consequences is central task for researchers investigating the role of genetic

changes on biological systems and organisms. These annotations facilitate the reuse and re-interpretation of

mutations and are necessary for the establishment of a comprehensive understanding of genetic mechanisms,

biological processes and the resulting mutant phenotypes.As a result there are numerous mutation databases, albeit

perpetually out of date and often with a latency of many years. Automated mutation extraction systems based on text

mining techniques can identify and deliver mutation annotations for database curators to review. In this paper we

outline the publication of a mutation impact extraction system in the form of semantic web services, and their

integration with other semantically described bioinformatics services, based on the SADI framework.

In our previous work we developed the Mutation Impact pipeline [1] – a program, based on a GATE [2] pipeline, that

makes it possible to extract mutation impacts on protein properties from texts, categorising the directionality of

impacts as positive, negative or neutral. Moreover, the systemgrounds mentions of proteins and mutationsto their

respective UniProt identifiers and protein properties described in the Gene Ontology.

For example, consider these two excerpts from [3]: “Thehaloalkane dehalogenasefrom the nitrogen-fixing hydrogen

bacteriumXanthobacter autotrophicusGJ10 (DhlA) prefers 1,2-dichloroethane (DCE) as substrateand converts it to

2-chloroethanol and chloride” and “DhlA shows only a smalldecrease in activitywhenTrp-125 is replaced with

phenylalanine”. Our pipeline (i) identified “haloalkane dehalogenase” as a protein, (ii) mapped it to the UniProt ID

P22643 by grounding it to the identified organism “Xanthobacter autotrophicus”, (iii) identified “Trp-125 is replaced

with phenylalanine” as the point mutation W125F, (iv) identified “activity” as a protein property (GO00188786 in

the Gene Ontology, and (v) identified “decrease” as the direction of the impact of the mutation on the protein

property.

Until now the Mutation Impact pipeline has been deployed as asimple Java API and could only be used

programmatically. When the pipeline is executed on a document, it computes a sequence of Java objects representing

mutation specifications. Every such object contains information about a series of elementary mutations, the

corresponding wildtype and mutant proteins, and the discovered impacts of the mutations. The Java class

representing impacts contains the direction of an impact and the type of the protein property being affected.

The practical use of the system and its results in this form islimited, because it requires programming. Recently

in [1] we also explored the possibility of using semantic technologies for exporting the system outputs according to a

domain specific knowledge representation. Now our system, like [4], delivers its results in the form of an OWL

ABox, i.e., as a collection of logical statements characterising the extracted mutations, proteins and impacts. The

classes and property predicates in these statements are defined in our Mutation Impact ontology [5] in OWL, based

2



on the earlier mutation ontology from [6]. Figure 1 (borrowed from [1]) shows the top level concepts of the ontology

with some relations between them.

This semantic representation of text mining results already provides a great deal of flexibility – the results can be

used with any toolsets that work with OWL. The most straightforward way of using semantically described data is by

querying it directly, so we established an OWL database, using Sesame [7], that stores the results of mining different

documents. Our users can query the populated OWL database via a SPARQL [8] endpoint [9]. Figure 2 shows an

example of a query for proteins mutated with a specified impact.

As we anticipate a multitude of data reuse cases, the provision of a SPARQL endpoint as the sole data access form

may not be sufficient. Consequently, we are looking for additional ways to provide access to the data. Our primary

requirement is that the framework should support integration with other software and data for proteins, mutations,

impacts and related biological entities, such as pathways,and drugs. This criterion is critical because the mutation

impact mining results alone have limited reusability.

In this paper we review the SADI framework [10] as a candidateplatform for providing interoperable access to our

semantically exposed Mutation Impact data. The choice is based on the robust integrative features displayed by SADI

services, discussed in the next section. This paper describes an exploratory case study using four biologically

meaningful queries that require (i) some data from our Mutation Impact DB, as well as (ii) some biological

knowledge from external sources. Furthermore, we test the queries using the SHARE client [11] which is designed to

automatically discover and combine the required SADI services.

What is SADI?

The SADI framework [10] is a set of conventions for creating Semantic Web Services that can beautomatically

discovered and orchestrated. A SADI-compliant service consumes a whole RDF model as input and produces an

RDF model as output. An input RDF model has some URI node designated as the central input node, and the whole

input model is considered a description of the central node.Exactly the same node is always present in the output

model as the central output node. The sole function of a SADI service is to annotate this node with new properties

and assert these properties in the output model, in contrastwith more conventional Web services that usually compute

output without an explicit connection to the input.

The most important feature of SADI is that the predicates forthese property assertions are fixed for each service. A

declaration of these predicates, available online, constitutes a semantic description of the service. For example, ifa

service is declared with the predicatemyontology:isTargetOfDrug described in an ontology as a property linking

proteins to drugs, the user knows that he can use the service to search for drugs targeting a given protein.

3



The declaration of the service predicates is done by specifying an OWL class for the output nodes. If this output class

entails an existential restriction for some property, it means that the property is declared as produced by the service

and the corresponding output data may be available from the service.

Another part of a service declaration is the input (OWL) class that imposes restrictions on the kind of input nodes the

service can process. In particular, if this class subsumes an intersection of property restrictions, a well-behaved

service will look for the corresponding properties attached to an input node, and use the values as parts of the input.

As an example, consider the SADI service [12] computing the Body Mass Index. ItsInputClass is defined as the

intersection of∃ mged:has height.mged:Measurement (mged abbreviates [13]) and

∃ mged:has mass.mged:Measurement, so the service expects these two properties attached to an input node. The

service’sOutputClass is a subclass of∃ bmi:BMI.xsd:int, so the service provides the predicatebmi:BMI (bmi

corresponds to the service’s own ontology that describes the input and output classes). Given the following RDF as

input

<http://www.freewebs.com/riazanov>
mged:has_height <http://www.freewebs.com/riazanov/he ight> ;
mged:has_mass <http://www.freewebs.com/riazanov/mass > .

<http://www.freewebs.com/riazanov/height>
mged:has_value "1.7"ˆˆxsd:float ;
mged:has_units mged:m.

<http://www.freewebs.com/riazanov/mass>
mged:has_value "85"ˆˆxsd:float ;
mged:has_units mged:kg .

the service generates this RDF as output:

<http://www.freewebs.com/riazanov>
bmi:BMI "29.4"ˆˆxsd:float .

The declaration of the input and output classes of a SADI service constitutes asemantic descriptionof the service.

Importantly, such semantic descriptions allow completelyautomatic discovery and composition of SADI services

(see, e.g., [10,11]). In practice, using SADI services to provide access to the Mutation Pipeline and DB will allow

automatic integration with hundreds of external resourcesdealing with mutations, proteins and related biomedical

entities, e.g., pathways and drugs, so long as they are registered with a SADI registry. These are desirable features of

SADI motivating us to deploy our mutation impact services with this framework.

SADI services for Mutation Impact pipeline and data.

As an initial implementation with SADI, we created a servicethat takes a reference to a text, and outputs the property

assertions derived from the input text, such as links from the text URI to the identified grounded mutations. Note that

those grounded mutations also have links to ungrounded mutations, proteins and impacts. This SADI service can be

4



mostly useful in combination with services that find documents, as well as for users just wishing to use our pipeline

remotely (with no installation effort). In fact, we currently use this service ourselves to populate the Mutation Impact

DB with OWL ABox assertions, because it has the capability ofconverting the raw results of the Mutation Impact

pipeline to OWL.

All other our SADI services essentially wrap some ad hoc queries to our Mutation Impact DB. For example, one of

the most intensively used services –getMutationByWildtypeProtein – finds all instances of the Mutation Impact

ontology classMutationSpecification, given the UniProt ID of a protein that acts as the wildtype protein in those

mutations. The classMutationSpecification is central to the ontology and the DB: its instances represent

grounded mentions of mutations and are linked to the corresponding wildtype and mutant proteins, the mutation

impacts, and also the texts from which the mutation mentionswere extracted. So, two other services also find

MutationSpecification instances by their mutant proteins and mutation impacts.

Two other services retrieve instances of biological entities of specified types, present in our DB. The service

getMIDBBioEntityByType does this for the top level biological entity classes in our ontology, such asProtein

orPointMutation. The servicegetProteinPropertyByType specialises in protein property types, most of which

are currently inherited from the Gene Ontology. Given a subclass ofProteinProperty, e.g.,GO 0018786

(’haloalkane dehalogenase activity’) from the Gene Ontology, it finds all known properties of this type, grounded to

specific proteins.

There are currently two auxilliary services:getMutationImpactByProteinProperty finds mutation impact

instances linked to a specified protein property grounded toa specific protein, andgetMutationSubseries finds

series of elementary mutations identified in a text, that aresubsets of a specified set of elementary mutations.

The list of all SADI services based on the Mutation Impact pipeline and DB, can be found in [14] and is also

summarised in the following table:

service operation
mineTextForMutationImpacts extracts mutation specifications from a document
getMutationByWildtypeProtein finds specifications of mutations grounded to a given protein
getMutationByMutantProtein finds specifications of mutations resulting in a specified protein
getMutationImpactByProteinProperty finds mutation impact instances affecting a specified grounded

protein property
getMutationByImpact finds mutation specifications corresponding to an impact on

a specified grounded protein property
getMutationSubseries finds mutation series instances that are subseries of a given

mutation series
getMIDBBioEntityByType finds biological entities by their type URIs
getProteinPropertyByType finds protein properties grounded to specific proteins by their

type URIs

All the services are also registered with the central SADI registry [15].

5



Use cases.

Here we introduce the use cases we have adopted to test the suitability of SADI as a medium for providing access to

out Mutation Impact data. All our use cases are in the form of queries, i.e., the user is seeking some information from

our Mutation Impact DB in combination with external resources.

Use case 1: Find all mutations and the structure images of wild type proteins that were mutated, where the

impact of the mutation is an enhanced haloalkane dehalogenase activity. In this use case we aim to address the

needs of a protein engineer who is seeking to understand whatmutational changes can enhance the catalytic activity

of an industrial enzyme, which is haloalkane dehalogenase in this scenario. The medium for reviewing the causal

relationship of mutations on protein activity is a protein structure image which can be annotated with mutations and

their impacts retrieved from a database/triplestore [16] or extracted automatically from documents using text mining

techniques [4,17]. In our use case, we perform retrieval of the specific protein structures where there are published

reports of mutations having a positive impact on catalytic activity. The user would wish to retrieve and review these

strucutres along with mutation locations and impact annotations. The expected output of the integrated SADI

services is the selected protein structure files and the corresponding mutations.

Use case 2: Find all pathways, together with the corresponding pathway images, that might have been altered

by a mutation of the protein Fibroblast growth factor receptor 3. In this scenario we address the needs of a

systems biologist who is seeking to understand the likely impact of reported mutations on signalling or metabolic

pathways [18] in which the mutated protein participates. This entails the retrieval of pathway information for the

mutated proteins, which can be provided as a pathway diagramalso. In the current use case we deal with mutations to

the proteinFibroblast growth factor receptor 3reported in scientific papers which impact the protein either positively

or negatively.

Use case 3: Find all drugs related to mutated proteins, together with their interaction partners, where the

mutation impact is a decreased carbonic anhydrase activity. In this use case we address a query that a researcher

in drug discovery would make when looking for existing drugstargeting a new disease condition. In the case of

Carbonic anhydrase, an enzyme involved in the acid-base balance of blood (via the interconverion of carbon dioxide

and bicarbonate), enzyme inhibitors such as acetazolamidecause mild metabolic acidosis. This can be beneficial to

patients with severe chronic obstructive pulmonary disease (COPD) with chronic hypercapnic ventilatory failure who

need a reduction in arterial carbon dioxide and a rise in arterial oxygen and the transport carbon dioxide out of

tissues. The query will help us to identify the names of knowndrugs targeting the enzyme and what experimental

modifications on the protein have resulted in lowering its activity in situ. Moreover, the query will also retrieve the

names of proteins that interact with the enzyme directly through protein-protein interactions.

6



Use case 4: From the literature, find all reported mutations of the protein with the nsSNP rs2305178.In this

use case, a researcher in genomics asks for all known mutations reported in the literature for a protein containing a

non-synonymous SNP. Here the researcher is primarily looking for any literature describing impacts of a nsSNP on a

protein. By retrieving all known mutations for the protein in which the nsSNP is reported, the researcher can find out

if any of these reported mutations corresponds to the location of the SNP in question. Minimally the researcher can

retrieve the full set of mutations to the protein based on reported experimental analysis and their impacts, together

with references to the supporting literature.

Experiments with SHARE.

SHARE [11] is an experimental client featuring automatic discovery and orchestration of SADI services. From the

user point of view, SHARE is a SPARQL engine that computes queries by picking and calling suitable SADI services

from some registry. In a typical scenario, the user first looks up property predicates he needs for his query, in the list

of predicates declared as provided by SADI services in a registry, and also related classes and properties in the

referenced ontology. Then he uses the available concepts toform a regular SPARQL query, and sends it to a SHARE

endpoint. Importantly, the SHARE engine decides itself which services have to be invoked and in what order, to

execute the query. Note that the user deals only with an almost declarative query, i.e., he only needs to understand the

semantics of the URIs being used in the query, although knowing the services providing the predicates can be

beneficial. This situation suits our purposes well, so, for our experiments with SADI services for Mutation Impact

data we are using the Web interface for SHARE [19].

Note that in the query examples below we omit prefix declarations – the information can be found in the

corresponding URL references [20–27]. We also omit FROM clauses instructing SHARE to use our ontology for

processing the queries, as well as FROM clauses importing RDF file [28] qualifying some individuals, e.g.,

go:GO 0018786, as instances of the corresponding classes, e.g.,mioe:ProteinPropertyType. Full versions of the

queries are available from [29].

Ouruse case 1(“Find all mutations and the structure images of wild type proteins that were mutated, where the

impact of the mutation is an enhanced haloalkane dehalogenase activity”) can be realised with the following

SPARQL query:

7



1 SELECT DISTINCT ?StructImage ?NormalizedMutation
2 WHERE {
3 ?Property mioe:proteinPropertyHasType go:GO_0018786 .
4 ?Impact mio:affectProperty ?Property .
5 ?Impact mio:hasDirection mio:Positive .
6 ?MutationSpec mio:specifiesImpact ?Impact .
7 ?MutationSpec mio:groundMutationsTo ?Protein .
8 ?MutationSeries mio:mutationSeriesIsSpecifiedBy ?Mut ationSpec .
9 ?MutationSeries mio:containsElementaryMutation ?Muta tion .
10 ?Mutation mio:hasNormalizedForm ?NormalizedMutation .
11 ?Protein pred:has3DStructure ?Struct .
12 ?Struct obj:hasJmol3DStructureVisualization ?Struct Image . }

Let us analyse how we construct this query. The predicatemioe:proteinPropertyHasType in our ontology links

grounded protein properties with their types, so we can use it to enumerate known instances ofGO 0018786. In lines

7-8,mio:affectProperty links the grounded protein properties to the correspondinginstances of mutation impacts

andmio:hasDirection selects only positive impacts. Usingmio:specifiesImpact, we can select instances of

mutation specifications (line 9), which in turn link to the corresponding wildtype proteins (line 10) and series of

elementary mutations (line 11). We would like to see readable IDs of elementary mutations in the output, like D124N

or V226A, so we usemio:containsElementaryMutation to retrieve the corresponding elementary mutations and

mio:hasNormalizedForm to map them to the corresponding IDs.

So far we have used only predicates from our Mutation Impact ontology. Since the essense of the use case 1 is

visualisation, we look for predicates in SADI-related ontologies, that could link proteins to their images. There is no

direct link, but we can use the composition ofpred:has3DStructure and

obj:hasJmol3DStructureV isualization to first retrieve the PDB ID of a protein, and then find the corresponding

graphics file.

SHARE was able to compute our query using three of our SADI services and two third party SADI services from the

registry, providingpred:has3DStructure andobj:hasJmol3DStructureV isualization. However, this was

completely transparent to us as the end users. We only dealt with an almost completely declarative query composed

of predicates we were able to find in ontologies. The only thing we need to know beyond the semantics of a predicate

is the direction in which available services compute it: e.g., we cannot usepred:has3DStructure to get from a PDB

ID to the corresponding protein because there is currently no service that would annotate a PDB ID with the inverse

of pred:has3DStructure. Finding the services, their invocation and some deductionwith the ontological definitions

of predicates, was done by SHARE completely automatically.Note especially the ease with which integrating our

mutation-related information with the external sources ofdata was achieved.

The work required byuse case 2(“Find all pathways, together with the corresponding pathwayimages, that might

have been altered by a mutation of the protein Fibroblast growth factor receptor 3“) can also be divided into two

8



parts: the first part can be done using the predicates from ourontology, and the second part has to be delegated to

external resources, dealing with genes, pathways and pathway visualisation. Since we know that the wildtype protein

is Fibroblast growth factor receptor 3(UniProt ID P22607), we can easily retrieve the mutation specifications linked

to this protein with the propertymio:groundMutationsTo. These instances will have impacts attached to them

with mio:specifiesImpact, and we can specify the interesting impact directions withmio:hasDirection.

Usingpred:isEncodedBy we also map the protein to the corresponding gene, andont:isParticipantIn allows to

retrieve the pathways in which the protein participates,pred:visualizedByPathwayDiagram will fetch the

corresponding graphics file URL. The resulting query is as follows:

SELECT DISTINCT ?Pathway ?PathwayDiagram
WHERE {

?MutationSpecification mio:groundMutationsTo uniprot: P22607 .
?MutationSpecification mio:specifiesImpact ?Impact .
{?Impact mio:hasDirection mio:Positive}

UNION {?Impact mio:hasDirection mio:Negative} .
uniprot:P22607 pred:isEncodedBy ?Gene .
?Gene dmt:isParticipantIn ?Pathway .
?Pathway pred:visualizedByPathwayDiagram ?PathwayDiag ram }

SHARE evaluated the query using our service that links proteins to mutations specifications, and two external SADI

services providingont:isParticipantIn andpred:visualizedByPathwayDiagram, and found five pathways

with diagrams.

Use case 3(“Find all drugs related to mutated proteins, together with their interaction partners, where the mutation

impact is a decreased carbonic anhydrase activity”) is somewhat similar to use case 1: given the protein property

type, we retrieve the grounded properties, positive impacts and the wildtype proteins with the help of some predicates

from our ontology. The conection from the proteins to drug names is realised with the predicates

obj:isTargetOfDrug andobj:hasDrugGenericName. Separately, we find the interacting proteins with

pred:hasMolecularInteractionWith. The resulting query is

SELECT ?DrugName ?InteractingProtein
WHERE {

?Property mioe:proteinPropertyHasType go:GO_0008270 .
?Impact mio:affectProperty ?Property .
?Impact mio:hasDirection mio:Negative .
?MutationSpecification mio:specifiesImpact ?Impact .
?MutationSpecification mio:groundMutationsTo ?Protein .
?Protein obj:isTargetOfDrug ?Drug .
?Drug obj:hasDrugGenericName ?DrugName .
?Protein pred:hasMolecularInteractionWith ?Interactin gProtein }

Finally, the most difficultuse case 4(“From the literature find all reported mutations of the protein with the nsSNP

rs2305178”) was implemented with the following query:

9



1 SELECT DISTINCT ?NormalizedMutation ?DocumentURL
2 WHERE {
3 dbsnp:rs2305178 obj:correspondsToEntrezGene ?EzGene .
4 ?Protein mioe:biologicalEntityHasType mio:Protein .
5 ?Protein pred:isEncodedBy ?KeggGene .
6 ?KeggGene obj:hasRefSeqTranscript ?RefSeq .
7 ?RefSeq obj:correspondsToEntrezGene ?EzGene .
8 ?MutationSpecification mio:groundMutationsTo ?Protei n .
9 ?MutationSeries mio:mutationSeriesIsSpecifiedBy ?Mut ationSpecification .
10 ?MutationSeries mio:containsElementaryMutation ?Mut ation .
11 ?Mutation mio:hasNormalizedForm ?NormalizedMutation .
12 ?Document foaf:topic ?MutationSpecification .
13 ?Document rss:link ?DocumentURL }

The propertyobj:correspondsToEntrezGene (line 3) maps the specified dbSNP ID to an Entrez gene ID. If we

were dealing with completely declarative queries, it wouldbe enough to use a composition of the predicates

obj:correspondsToEntrezGene, obj:hasRefSeqT ranscript andpred:isEncodedBy, as in lines 5-7, to map the

Entrez gene ID to a protein. However, no SADI service currently provides the inverses to the first two predicates, so

the composition can only work in the direction from proteinsto Entrez gene IDs. To do so, we had to implement a

service that enumerates all proteins known in our DB. In fact, it is more general – it enumerates instances of several

main biological entity classes from our ontology, such asMutationImpact orPointMutation. The service

provides the inverse ofmioe:biologicalEntityHasTypewhose use is demonstrated in line 4. Linking the protein to

elementary mutations is done exactly the same way as in use case 1. Finally, the last two lines in the query serve to

retrieve the URLs of the documents from which the corresponding mutation specifications were extracted.

Conclusions and future work.

The primary goal of our case study was to explore the suitability of the SADI framework as a medium to faciliate

data sharing and integration across biological data types.We have identified that SADI provides an effective way of

exposing our mutation impact data such that it can be leveraged by a variety of stakeholders in multiple use cases.

Our experience in deploying and regisrering mutation services in accordance with SADI specifications was positive,

albeit with some challenges. Specifically, we identified that advanced skills in knowledge engineering were required

to build semantic representations of the services. In addition, we note that formulating the queries based on the SADI

services still requires extensive search for predicates inthe SADI-related ontologies. Clearly, the necessary

infrastructure for such search is yet to be built. We also didnot yet fully explore the current capabilites of other SADI

clients, such as the plugins for Taverna [30] and Sentient Knowledge Explorer (see, e.g., [11]) for our use cases.

In future work we aim to extend the Mutation Impact DB with more data types related to mutation annotations

extracted from the literature, and create the corresponding SADI services facilitating integration with other

10



Bioinformatics data.

Acknowledgements.

This research was funded in part by the New Brunswick Innovation Foundation, New Brunswick, Canada; NSERC,

Discovery Grant Program, Canada; and the CANARIE NEP-2 Program (C-BRASS project). We also thank Luke

McCarthy for helping us with various SADI-related technical issues.

References
1. Laurilla J, Naderi N, Witte R, Riazanov A, Kouznetsov A, Baker CJO:Algorithms and semantic infrastructure for

mutation impact extraction and grounding. In ICOB20102010. [To appear.].

2. Cunningham H, Maynard D, Bontcheva K, Tablan V:GATE: A Framework And Graphical Development Environment
For Robust NLP Tools And Applications. In Proceedings of the 40th Anniversary Meeting of the Association for
Computational Linguistics (ACL’02)2002.

3. Lau EY, Kahn K, Bash P, Bruice T:The importance of reactant positioning in enzyme catalysis: a hybrid quantum
mechanics/molecular mechanics study of a haloalkane dehalogenase. Proc. Natl. Acad. Sci. USA2000,97(18):9937–42.

4. Rajaraman K, Choo KH, Ranganathan S, Baker CJO:A Workflow for Mutation Extraction and Structure Annotation . J.
Bioinformatics and Computational Biology2007,5(6):1319–1337.

5. Mutation Impact Ontology. [http://unbsj.biordf.net/ontologies/mutation-impact-ontology.owl].

6. Witte R, Kappler T, Baker CJO:Enhanced semantic access to the protein engineering literature using ontologies
populated by text mining. Int J Bioinform Res Appl2007,3(3).

7. Broekstra J, Kampman A, van Harmelen F:Sesame: A Generic Architecture for Storing and Querying RDFand RDF
Schema. In The Semantic Web ISWC 20022002:54–68.

8. SPARQL Query Language for RDF, W3C Recommendation 15 January 2008.
[http://www.w3.org/TR/rdf-sparql-query/].

9. Mutation Impact RDF triplestore SPARQL endpoint.
[http://unbsj.biordf.net/openrdf-workbench/repositories/mutation-impact-db/query].

10. Wilkinson MD, Vandervalk BP, McCarthy EL:SADI Semantic Web Services – ’cause you can’t always GET whatyou
want! In APSCC2009:13–18.

11. Vandervalk BP, McCarthy EL, Wilkinson M:SHARE: A Semantic Web Query Engine for Bioinformatics. In The
Semantic Web (ISWC 2009)2009:367–369.

12. SADI service computing the body mass index. http://sadiframework.org/examples/calculateBMI.

13. MGED ontology prefix, abbreviated asmged. http://mged.sourceforge.net/ontologies/MGEDOntology.owl.

14. SADI services based on the Mutation Impact pipeline and DB. http://unbsj.biordf.net/mutation-impact.

15. Central SADI registry. [http://sadiframework.org/registry/services/].

16. Gabdoulline RR, Ulbrich S, Richter S, Wade RC:ProSAT2Protein Structure Annotation Server 2006.

17. Baker CJO, Witte R:Mutation Mining-A Prospector’s Tale . Information Systems Frontiers2006,8:47–57.

18. Bauer-Mehren A, Furlong LI, Rautschka M, Sanz F:From SNPs to pathways: integration of functional effect of sequence
variations on models of cell signalling pathways. BMC Bioinformatics2009,10(S-8):6.

19. Web interface for SHARE. [http://biordf.net/cardioSHARE/].

20. Our Mutation Impact ontology core URL prefix, abbreviated as mio.
http://www.freewebs.com/riazanov/mutationOntology2010.owl\#.

21. Our Mutation Impact ontology extension URL prefix, abbreviated asmioe.
http://www.freewebs.com/riazanov/mutationOntology2010\ extras.owl\#.

11



22. Gene Ontology prefix, abbreviated asgo. http://purl.org/obo/owl/GO\#.

23. SADI service object ontology prefix, abbreviated asobj. http://sadiframework.org/ontologies/service\ objects.owl\#.

24. SADI predicates ontology prefix, abbreviated aspred. http://sadiframework.org/ontologies/predicates.owl\#.

25. Dumontier Lab ontology prefix, abbreviated asdmt. http://ontology.dumontierlab.com/.

26. BioRDF UniProt nomenclature prefix, abbreviated asuniprot. http://biordf.net/moby/UniProt/.

27. dbSNP nomenclature prefix, abbreviated asdbsnp. http:// lsrn.org/dbSNP:.

28. RDF file containing descriptions for seed values in our queries. http://dl.dropbox.com/u/2483134/ input.rdf.

29. Full versions of the SPARQL queries presented in this paper.
[http://unbsj.biordf.net/mutation-impact/aimm2010queries.html].

30. Withers D, Kawas E, McCarthy L, Vandervalk B, Wilkinson M: Workflow Construction in Taverna: The SADI and
BioMoby Plug-ins. In ISoLA 2010 (to appear).

Figures
Figure 1 : Mutation impact ontology structure.

Visualization of top level concepts asMutation Specification, Protein, Mutation ImpactandProtein Propertybeing

connected through object properties.

Figure 2 : Sample SPARQL query to our Mutation Impact DB

A SPARQL query expressing the natural language question ”Which proteins have been mutated so that there is a

negative impact on haloalkane dehalogenase activity and what is the sequences of the corresponding mutants?” is

shown to the left. The first four answers (result rows) are displayed to the right.

12






