
Martin Atzmüller, Rainer Knauf (Eds.) and
Stephan Bode, Qurat-ul-ann Farooq, Matthias Riebisch (Eds.)

Proceedings

International Workshop on
Design, Evaluation and Refinement
of Intelligent Systems (DERIS2010)
and

First International Workshop on
Evolution Support for Model-Based
Development and Testing (EMDT2010)

part of the umbrella conference
55th International Scientific Colloquium (IWK2010)

Ilmenau, Germany, September 13 and 16, 2010

EMDT2010 in Coorporation with the SIG OOSE of the German Computer Society GI
and with ACM/ SIGSOFT

In-Cooperation

Copyright c© 2010 for the individual papers by the papers’ authors. Copying permitted for private and academic
purposes. This volume is published and copyrighted by its editors.

Editors’ addresses:

Martin Atzmüller Rainer Knauf
University of Kassel Ilmenau University of Technology
Knowledge and Data Engineering Group Chair of Artificial Intelligence
Wilhelmshöher Allee 73 P.O. Box 100565
34121 Kassel, Germany 98684 Ilmenau, Germany
atzmueller@cs.uni-kassel.de rainer.knauf@tu-ilmenau.de

Stephan Bode, Qurat-Ul-Ann Farooq, Matthias Riebisch
Ilmenau University of Technology
Department of Software Systems/Process Informatics
P.O. Box 100565
98684 Ilmenau, Germany
{stephan.bode | qurat-ul-ann.farooq |matthias.riebisch}@tu-ilmenau.de

Contents

Part I – DERIS2010 5
Preface . 7
Validation of Mixed-Structured Data using Pattern Mining and Information Extraction

Martin Atzmüller and Stephanie Beer . 9
Validation of Knowledge-based Systems through CommonKADS

Feras Batarseh, Avelino J. Gonzalez and Rainer Knauf . 13
Composing Tactical Agents through Contextual Storyboards

Avelino J. Gonzalez, Rainer Knauf and Klaus P. Jantke . 19
Rule Modularization and Inference Solutions – a Synthetic Overview

Krzysztof Kaczor, Szymon Bobek and Grzegorz J. Nalepa . 25
An Adaptable E-Learning System for Pupils with Specific Learning Difficulties

Petia Kademova-Katzarova, Rumen Andreev, and Valentina Terzieva 31
Decision-Maker-Aware Design of Descriptive Data Mining

Benedikt Kaempgen, Florian Lemmerich and Martin Atzmüller 37
Validation of a Data Mining Method for Optimal University Curricula

Rainer Knauf, Yoshitaka Sakurai, Kouhei Takada and Setsuo Tsuruta 43

Part II – EMDT2010 49
Preface . 51
Keynote: Model-Based Software Development – Perspectives and Challenges (Abstract)

Bernd-Holger Schlingloff, Germany . 53
Invited talk: Agility vs. Model-based Testing: A fair Play?

Baris Güldali and Michael Mlynarski, Germany . 55
A Test Case Generation Technique and Process

Nicha Kosindrdecha and Jirapun Daengdej, Thailand . 59
From Natural Language Requirements to a Conceptual Model

Christian Kop, Günther Fliedl and Heinrich C. Mayr, Austria . 67
Test Case Reduction Methods by Using CBR

Siripong Roongruangsuwan and Jirapun Daengdej, Thailand . 75
Evolution Support for Model-Based Development and Testing – Summary

Stephan Bode, Qurat-Ul-Ann Farooq, and Matthias Riebisch, Germany 83

3

4

Part I

International Workshop on
Design, Evaluation and Refinement
of Intelligent Systems (DERIS2010)

5

6

Preface
Welcome to the International Workshop on Design, Evaluation and Refinement of Intelligent Systems (DERIS
2010), September 13th, 2010, Ilmenau, Germany.

Evaluation, Verification, Validation and Refinement of Intelligent systems have been an important issue from
the very beginning of their applications. These issues were an important research area and engineering aspect in
the 80’s and 90’s. A number of conceptual approaches as well as practical tools were developed then.

With time the focus of research in the design of intelligent systems moved away from these topics, towards
knowledge representation, discovery and processing, the Semantic Web technologies, and a number of other AI-
inspired areas. However, recently a number of researchers have realized that the lack of systematic methods and
formal techniques for the design, evaluation and refinement is often an important reason for limited applications of
even mature intelligent systems. Therefore, there is a growing need to reconsider some of the basic issues in this
field. Today, in fact, the classic approaches to the Design, Evaluation, Verification, Validation and Refinement have
to be assessed from the new perspectives in order to transfer their principles to new approaches and application
fields. The practical design issues are of prime importance. The integration of Intelligent Systems with mainstream
technologies and related design approaches from other areas, e.g., from Software Engineering, from Machine
Learning, or from the Social Sciences, is especially important. The quality issues need to be considered as early as
possible during the Design phase of the system.

The goal of the workshop was to promote and further a community-wide discussion of ideas that will influence
and foster continued research concerning the topics of Design, Evaluation, and Refinement, as well as attract
new researchers to the field. The objective was to focus on the contributions in the above fields and to provide an
environment for communicating different paradigms and approaches, thus hopefully stimulating future cooperation
and synergistic activities.

DERIS2010
The proceedings contain the papers presented at DERIS 2010 held on September 13th, 2010 in Ilmenau, Germany.
In total, we received 10 submissions, from which we were able to accept seven submissions based on a rigorous
reviewing process, as regular research papers. Each submission was reviewed by at least 2 program committee
members.

The topics of interest of the DERIS workshop series were mainly located in the area of Design, Evaluation,
Verification, Validation, and Refinement and include but are not limited to:

• Principles in knowledge systems and ontology design
• Detecting and handling inconsistencies and other anomalies within knowledge bases
• Fundamentals and formal methods for verification of AI systems
• Fundamentals and formal methods and techniques of validity assessment of AI systems, AI principles, and

intelligent behavior in general
• Special approaches to verify and/or validate certain kinds of AI systems: Rule-based, case-based
• Special approaches or tools to evaluate systems of a particular application field
• Knowledge base refinement by using the results of evaluation
• Development and evaluation of ontologies
• Maintenance and evolution of knowledge systems and ontologies
• Explanation in the context of evaluation and assessment
• Problems in system certification
• Ontology and knowledge capture
• Design and evaluation issues in automatic knowledge capture and knowledge discovery
• Design and evaluation of semantic web applications and systems
• Formal methods in verification and evaluation of intelligent systems
• Case studies in design and evaluation and the lessons learned

The organizers would like to thank all who contributed to the success of the workshop. We thank the authors for
their submissions, and especially thank the Program Committee for their good work in carefully reviewing and
collaboratively discussing the submissions. For the submission and reviewing process we used the Easy-Chair
system, for which the organizers would like to thank Andrei Voronkov, the developer of the system.

September 2010 Martin Atzmüller
Rainer Knauf

7

Organizing Committee
Martin Atzmüller, Knowledge and Data Engineering Group, University of Kassel, Germany
Rainer Knauf, Artificial Intelligence Group, TU Ilmenau, Germany

Program Committee
M. Atzmüller, University of Kassel, Germany
J. Baumeister, University Würzburg, Germany
S. Gaudl, Fraunhofer IDMT, Germany
A. Gonzalez, University of Central Florida, Florida, USA
K. P. Jantke, Fraunhofer IDMT, Germany
R. Knauf, TU Ilmenau, Germany
A. Ligêza, AGH UST Krakow, Poland
G. J. Nalepa, AGH UST, Krakow, Poland
Th. Roth-Berghofer, DFKI GmbH, Germany
D. H. Sleeman, University of Aberdeen, United Kingdom

8

VALIDATION OF MIXED-STRUCTURED DATA USING
PATTERN MINING AND INFORMATION EXTRACTION

Martin Atzmueller

University of Kassel
Knowledge and Data Engineering

Kassel, Germany
atzmueller@cs.uni-kassel.de

Stephanie Beer

University-Hospital of Würzburg
Gastroontologics Research Group

Würzburg, Germany
beer_s@klinik.uni-wuerzburg.de

ABSTRACT

For large-scale data mining utilizing data from ubiq-
uitous and mixed-structured data sources, the appro-
priate extraction and integration into a comprehensive
data-warehouse is of prime importance. Then, appro-
priate methods for validation and potential refinement
are essential. This paper presents an approach apply-
ing data mining and information extraction methods
for data validation: We apply subgroup discovery and
(rule-based) information extraction for data integration
and validation. The methods are integrated into an in-
cremental process for continuous validation options. The
results of a medical application demonstrate that sub-
group discovery and the applied information extraction
methods are well suited for mining, extracting and val-
idating clinically relevant knowledge.

1. INTRODUCTION

Whenever data is continously collected, for example,
using intelligent documentation systems [1], data min-
ing and data analysis provide a broad range of options
for scientific purposes. The mining and analysis step
is often implemented using a data-warehouse [2, 3, 4].
For the data preprocessing and integration of several
heterogenous sources, there exist standardized extract-
transform-load (ETL) procedures, that need to incorpo-
rate suitable data schemas, and integration rules. Ad-
ditionally, for unstructured or semi-structured textual
data sources, the integration requires effective informa-
tion extraction methods. For clinical discharge letters,
for example, the structure of the letter is usually non-
standardized, and thus dependent on different writing
styles of different authors.

However, a prerequisite of data mining is the vali-
dation and the quality assurance of the integrated data.
Especially concerning unreliable extraction and inte-
gration methods, the quality of the obtained data can
vary significantly. If the data has been successfully val-
idated, then the trust in the data mining results and their
acceptance can be increased.

In this paper, we propose an approach for the vali-
dation of mixed-structured data using data mining and
information extraction and propose appropriate refine-
ment options. We focus on a data mining technique for
mining local patterns, i.e., subgroup discovery, e.g., [5,
6, 7] that are especially suitable for the task: Local
patterns consider local regularities (and irregularities)
of the data and are therefore useful for spotting non-
expected, contradicting, and otherwise unusual patterns
potentially indicating problems and errors in the data.

Concerning the information extraction techniques,
we consider popular methods implemented in the UIMA
[8] and ClearTK [9] framework, and especially focus
on the TEXTMARKER system, e.g., [10, 11] for rule-
based information extraction. Rules are especially suit-
able for the proposed information extraction task since
they allow a concise and declarative formalization of
the relevant domain knowledge that is especially easy
to acquire, to comprehend and to maintain. Further-
more, in the case of errors, the cause can easily be iden-
tified by tracing the application of the individual rules.

The combined approach enables data mining from
heterogenous sources. The user can specify simple rules
that consider features of the text, e.g., structural or syn-
tactic features of the textual content. We focus on an
incremental level-wise approach, such that both meth-
ods can complement each other in the validation and
refinement setting. Furthermore, validation knowledge
can be formalized in a knowledge base, for assessing
known and expected relations in the data.

The approach has been implemented in a clinical
application for mining data from clinical information
systems, documentation systems, and clinical discharge
letters. This application scenario concerns the data in-
tegration from heterogenous databases and the infor-
mation extraction from textual documents. The experi-
ences and results so far demonstrate the flexibility and
effectiveness of the presented approach that make the
data mining and information extraction methods suit-
able components in the mining, validation and refine-
ment process.

9

2. BACKGROUND

In the following, we shortly summarize the methods
for data mining and information extraction, subgroup
discovery, and rule-based information extraction using
TEXTMARKER.

2.1. Subgroup Discovery

Subgroup discovery is a flexible data mining method
for discovering local patterns that can be utilized for
global modeling in the context of exploratory data anal-
ysis, description, characterization and classification.

Subgroup discovery is applied for identifying rela-
tions between a (dependent) target concept and a set
of explaining (independent) variables. Then, the goal
is to describe subsets of the data, that have the most
unusual characteristics with respect to the concept of
interest given by the target variable [6]. For example,
the risk of coronary heart disease (target variable) is
significantly higher in the subgroup of smokers with a
positive family history than in the general population.

In the context of the proposed validation approach,
we consider certain gold-standard concepts as targets,
as well as target concepts that are true, if and only if
equivalent concepts from two different sources match.
Then, we can identify combinations of factors that cause
a mismatch between the concepts. These combinations
can then indicate candidates for refinement.

2.2. Rule-based Information Extraction

Information extractions aims at extracting a set of con-
cepts, entities and relations from a set of documents.
TEXTMARKER [10, 11] is a robust system for rule-
based information extraction. It can be applied very
intuitively, since the used rules are especially easy to
acquire and to comprehend. Using the extracted infor-
mation, data records can be easily created in a post-
processing step. Humans often apply a strategy accord-
ing to a highlighter metaphor during ’manual’ informa-
tion extraction: First, top-level text blocks are consid-
ered and classified according to their content by col-
oring them with different highlighters. The contained
elements of the annotated texts segments are then con-
sidered further. The TEXTMARKER [10, 11] system
tries to imitate this manual extraction method by for-
malizing the appropriate actions using matching rules:
The rules mark sequences of words, extract text seg-
ments or modify the input document depending on tex-
tual features.

TextMarker aims at supporting the knowledge en-
gineer in the rapid prototyping of information extrac-
tion applications. The default input for the system is
semi-structured text, but it can also process structured
or free text. Technically, HTML is often the input for-
mat, since most word processing documents can be ob-
tained in HTML format, or converted appropriately.

3. THE MINING AND VALIDATION PROCESS

Figure 1 depicts the process of validation and refine-
ment of mixed-structured data using pattern mining and
information extraction methods. The input of the pro-
cess is given by data from heterogenous data sources,
and by textual documents. The former are processed
by appropriate data integration methods adapted to the
different sources. The latter are handled by information
extraction techniques, e.g., rule-based methods that uti-
lize appropriate extraction rules for the extraction of
concepts and relations from the documents. In general,
a variety of methods can be applied.

The process supports arbitrary information extrac-
tion methods, e.g., automatic techniques like support-
vector machines or conditional random fields as imple-
mented in the ClearTK [9] toolkit for statistical natu-
ral language processing. However, the refinement ca-
pabilies vary for the different extraction approaches:
While black-box methods like support vector machines
or conditional random fields only allow an indirect re-
finement and adaptation of the model, i.e., based on
adapting the input data and/or the method parameters
for constructing the model, a white-box approach im-
plemented using rules provides for a direct modifica-
tion of its model, namely the provided rules. Therefore,
we especially focus on rule-based methods due to their
rich refinement capabilities.

After the integration and extraction of the data, the
result is provided to the pattern mining system which
obtains a set of validation patterns as output. This set
is then checked both for internal consistency and com-
pared to formalized background knowledge. In the case
of discrepancies and errors, refinement are proposed
for the data integration and/or the information extrac-
tion steps. After the rules have been refined, the pro-
cess iterates with the updated schemas and models.

In the following we discuss exemplary results ob-
tained from a medical project. We applied data col-
lected by the SONOCONSULT system, a multifunctional
knowledge system for sonography, which has been in
routine use since 2002 documenting more than 12000
patients in two clinics. The system covers the entire
field of abdominal ultrasound (liver, portal tract, gall-
bladder, spleen, kidneys, adrenal glands, pancreas, in-
testine, lymph nodes, abdominal aorta, cava inferior,
prostate, and urinary bladder). The data was integrated
with the SAP-based i.s.h.med system, and the infor-
mation extraction techniques were applied for textual
discharge letters from the respective patients; SONO-
CONSULT was used for documentation. By integrating
different data sources into the warehouse it is possible
to measure the conformity of sonographic results with
other methods or inputs. In our evaluations, we applied
computer-tomography diagnoses and additional billing
diagnoses (from the hospital information system) as a
gold-standard.

10

Data Sources

Documents

Data
Integration

Data
Integration

Pattern Mining
System

Data
Integration

Information
Extraction

Pattern Mining
System Pattern Set Validation &

Quality Assurance
Background
Knowledge

Refine Rules, Schema

Refine Model/Rules

Fig. 1. Process Model: Validation of Mixed-Structured Data using Pattern Mining and Information Extraction

Table 1 shows the correlation of SONOCONSULT
based diagnosis with CT/MR, diagnoses listed in the
discharge letter and diagnoses contained in the hospi-
tal information system for a selection of cases from
a certain examiner. It was quite interesting that the
conformity between SONOCONSULT based diagnoses
with the diagnoses contained in the hospital informa-
tion system was relatively low. Evaluating this issue it
was obvious that various diagnosis were not listed in
the hospital information system because they were not
revenue enhancing and not relevant for all clinical situ-
ations. Therefore, we looked at the accordance with the
discharge letters which were found to be highly concor-
dant at least for the diagnosis of liver metastasis. Liver
cirrhosis is more awkward to detect using ultrasound
and has to be in a more advanced stage. Therefore,
some of the discharge diagnoses "liver cirrhosis" were
only detected using histology or other methods.

In some cases, there are discrepancies with respect
to the formalized background knowledge that still per-
sist after refinement of the rules and checking the data
sources. In such cases, explanation-aware mining and
analysis components provide appropriate solutions for
resolving conflicts and inconsistencies. By support-
ing the user with appropriate justifications and expla-
nations, misleading patterns can be identified, and the
background knowledge can be adapted. The decision
whether the background knowledge needs to be adapted
is performed by the domain specialist. As we have de-
scribed in [12] there are several continuous explanation
dimensions in the context of data mining and analysis,
that can be utilized for improving the explanation ca-
pabilities. In the medical domain, for example, pat-
terns are usually first assessed on the abstract level,
before they are checked and verified on concrete pa-
tient records, i.e., on a very detailed level of abstrac-
tion. Then, discrepancies are modeled in the back-
ground knowledge, for example, certain exception con-
ditions for certain subgroups of patients.

The validation phase is performed on several levels:
On the first level, we can use a (partial) gold-standard

both for checking the data integration and information
extraction tasks. We only require a partial gold-standard,
i.e., a sample of the correct relations, because we need
to test the functional requirements of the data integra-
tion and extraction phases. On the next level, we can
incrementally validate the integrated data using the ex-
tracted information, or vice versa, using the mined pat-
terns. In the case of discrepancies, we can rely on the
partial gold-standard data for verification, or we can
identify potential causes and verify these on concrete
cases. Therefore, the final decision for the refinements
relies on the user, which reviews all proposed refine-
ments in a semi-automatic approach.

For the refinement steps, we can either extend the
(partial) gold-standard, or we perform a boot-strapping
approach, using a small gold-standard sample of tar-
get concepts for validation, e.g., for validating and re-
fining the information extraction approach, which is in
turn used for the validation of the data sources. In the
next step, the validation targets can be extended and
the process for refinement is applied inversely. The
boot-strapping approach for validation and refinement
is thus similar to the idea of co-training, e.g., [13] in
machine learning that also starts with a small labeled
(correct) dataset and iteratively adapts the models us-
ing another co-trained dataset.

4. CONCLUSIONS

This paper presented an approach for the validation of
mixed-structured data using information extraction and
pattern mining methods. In an incremental approach,
data can both be validated and refined with an increas-
ing level of accuracy. The presented approach has been
successfully implemented in a medical project targeted
at integrating data from clinical information systems,
documentation systems, and textual discharge letters.

The experiences and results so far demonstrate the
flexibility and effectiveness of the pattern mining and
information extraction methods for the presented vali-
dation and refinement approach.

11

Total
Case
Number

SONO
CONSULT
Diagnoses

SAP
Diagnoses

%
Conformity
with
SONO
CONSULT

CT/MR
Diagnoses

%
Conformity
with
SONO
CONSULT

Discharge
Letter
Diagnoses

%
Conformity
with
SONO
CONSULT

Liver cirrhosis

16 12 6 20 1 33 9 50

Liver metastasis

28 16 11 65 15 87 17 94

Fig.1. Conformity of various sources of diagnosis input. Correlation of the different
sources with SONOCONSULT diagnoses.

Having different data sources in the warehouse it is possible to measure the
conformity of sonographic results with other methods or inputs. Figure 1
shows the correlation of SONOCONSULT based diagnosis with CT/MR,
diagnoses listed in the discharge letter and diagnoses nursed in the hospital
information system for a first number of cases. It was quite interesting that the
conformity between SONOCONSULT based diagnoses with the diagnoses
listed in the hospital information system was quite low. Evaluating this issue it
was obvious that various diagnosis were not listed in the hospital information
system because they were not revenue enhancing. Therefore, we looked at
the accordance with the discharge letters which were found to be highly
concordant at least for the diagnosis of liver metastasis.

Liver cirrhosis is more awkward to be diagnosed with ultrasound and has to be
in a more advanced stage. Therefore, some of the discharge diagnoses “liver
cirrhosis” were found with histology or other methods. In one case liver
cirrhosis was listed in the hospital information system but was neither found
with ultrasound nor in the discharge letter. It came out that the input was
performed by another department (neurology).

Within the limited number of examined cases we found only one case of
pancreatic mass which was found in the ultrasound examination and listed in
the discharge letter. However, it was not included in the hospital information
system.

The first results of the correlations of diagnoses which were input by various
sources show that there is a promising high conformity between SonoConsult
and discharge letters, but for further quality improvement the correlation with
other imaging techniques is very important. With a higher number of cases it

Table 1. Exemplary study for a selection of cases concerning liver examinations performed by a certain examiner:
Conformity of system diagnoses with various sources of diagnosis input. The columns indicate the degree of
correlation of the different sources with SONOCONSULT diagnoses measured by the number of covered cases.

5. REFERENCES

[1] Frank Puppe, Martin Atzmueller, Georg Buscher,
Matthias Huettig, Hardi Lührs, and Hans-Peter
Buscher, “Application and Evaluation of a Med-
ical Knowledge-System in Sonography (Sono-
Consult),” in Proc. 18th Europ. Conf. on Artificial
Intelligence (ECAI 2008), 2008, pp. 683–687.

[2] Jonathan C. Prather, David F. Lobach, Linda K.
Goodwin, Joseph W. Hales, Marvin L. Hage, and
W. Edward Hammond, “Medical Data Mining:
Knowledge Discovery in a Clinical Data Ware-
house,” in Proc. AMIA Annual Fall Symposium
(AIMA-1997), 1997, pp. 101–105.

[3] Rüdiger Wirth and Jochen Hipp, “CRISP-DM:
Towards a Standard Process Model for Data Min-
ing,” in Proc. 4th Intl. Conf. on the Practical Ap-
plication of Knowledge Discovery and Data Min-
ing. 2000, pp. 29–39, Morgan Kaufmann.

[4] Martin Atzmueller, Stephanie Beer, and Frank
Puppe, “A Data Warehouse-Based Approach for
Quality Management, Evaluation and Analysis of
Intelligent Systems using Subgroup Mining,” in
Proc. 22nd International Florida Artificial Intel-
ligence Research Society Conference (FLAIRS),
accepted. 2009, pp. 372–377, AAAI Press.

[5] Martin Atzmueller, Frank Puppe, and Hans-Peter
Buscher, “Exploiting Background Knowledge
for Knowledge-Intensive Subgroup Discovery,”
in Proc. 19th Intl. Joint Conference on Artifi-
cial Intelligence (IJCAI-05), Edinburgh, Scot-
land, 2005, pp. 647–652.

[6] Stefan Wrobel, “An Algorithm for Multi-
Relational Discovery of Subgroups,” in Proc.
1st European Symposium on Principles of Data
Mining and Knowledge Discovery (PKDD-97),
Berlin, 1997, pp. 78–87, Springer Verlag.

[7] Willi Klösgen, “Explora: A Multipattern and
Multistrategy Discovery Assistant,” in Ad-
vances in Knowledge Discovery and Data Min-
ing, Usama M. Fayyad, Gregory Piatetsky-
Shapiro, Padraic Smyth, and Ramasamy Uthu-
rusamy, Eds., pp. 249–271. AAAI Press, 1996.

[8] David Ferrucci and Adam Lally, “UIMA: An
Architectural Approach to Unstructured Informa-
tion Processing in the Corporate Research Envi-
ronment,” Nat. Lang. Eng., vol. 10, no. 3-4, pp.
327–348, 2004.

[9] P. V. Ogren, P. G. Wetzler, and S. Bethard,
“ClearTK: A UIMA Toolkit for Statistical Nat-
ural Language Processing,” in UIMA for NLP
workshop at Language Resources and Evaluation
Conference (LREC), 2008.

[10] Martin Atzmueller, Peter Kluegl, and Frank
Puppe, “Rule-Based Information Extraction for
Structured Data Acquisition using TextMarker,”
in Proc. of the LWA-2008, Special Track on
Knowledge Discovery and Machine Learning,
2008, pp. 1–7.

[11] Peter Kluegl, Martin Atzmueller, and Frank
Puppe, “Textmarker: A tool for rule-based in-
formation extraction,” in Proc. Biennial GSCL
Conference 2009, 2nd UIMA@GSCL Workshop.
2009, pp. 233–240, Gunter Narr Verlag.

[12] Martin Atzmueller and Thomas Roth-Berghofer,
“Ready for the MACE? The Mining and Analy-
sis Continuum of Explaining Uncovered,” in AI-
2010: 30th SGAI International Conference on Ar-
tificial Intelligence. Accepted.

[13] Avrim Blum and Tom Mitchel, “Combining La-
beled and Unlabeled Data with Co-Training,” in
COLT: Proceedings of the Workshop on Com-
putational Learning Theory. 1998, pp. 92–100,
Morgan Kaufmann.

12

VALIDATIO� OF K�OWLEDGE-BASED SYSTEMS THROUGH COMMO�KADS

Feras Batarseh

Avelino J. Gonzalez

Rainer Knauf

Intelligent Systems Lab

School of Electrical

Engineering and

Computer Science

University of Central

Florida (UCF)

Intelligent Systems Lab

School of Electrical

Engineering and

Computer Science

University of Central

Florida (UCF)

Ilmenau University of

Technology

Department of Computer

Science and Automation

P.O.Box 100565

Ilmenau, Germany 98684

4000 Central Florida Blvd.

Orlando, FL 32816

4000 Central Florida Blvd.

Orlando, FL 32816

ABSTRACT

This paper defines a method that can be used for

validating knowledge-based systems (KBS)

throughout their entire lifecycle. Method’s name is

MAVERICK. It stands for Method for Automated

Validation Embedded into the Reusable and

Incremental CommonKADS. The lack of suitable,

rigorous and general validation methods has become a

serious obstacle to user acceptance of KBS for critical

applications. In spite of recent significant advances in

validation of KBS, it still remains an open problem.

The ideas presented in this paper are based on the

concept that validation should be performed in a

structured and guided manner, integrated within a

knowledge-based systems’ lifecycle development

method.. We define an incremental validation method

for KBS based on extracting test cases from

CommonKADS. Furthermore, we introduce our

method for reducing the number of test cases and thus

reducing validation’s effort and cost.

Index Terms - Validation, CommonKADS,

Knowledge-based systems, Test case.

1. I�TRODUCTIO�

This paper describes a method that integrates

validation within a life-cycle development method.

The most comprehensive definition of validation was

recently introduced by Gonzalez et al. [1] in the

context of knowledge-based systems: “Validation is

the process of ensuring that the output of the

intelligent system is equivalent to those of human

experts when given the same input.” We adopted this

definition because it is general and because it states

that validation is comparing the system to the real

world. Different methods for the validation of

knowledge bases have been developed such as BKB

[2], VKB [3], KVAT [4], SEEK and SEEK2 [5].

Furthermore, methods for system validation were

developed, such as Bi-directional many-sided

explanation typed multi-step validation, VESA [3],

CORUS [6], CASE VALIDATOR [7], KJ3 [8], VVR

[4] and quasi-exhaustive set validation [9].

Additionally, other multi-purpose validation tools

were developed such as SHIVA, DIVER, EITHER

and EMBODY [10]. None of these methods is fully

incorporated into a life-cycle model.

2. BACKGROU�D

Validation can and should be performed at any

and all levels of the system development stages [1]

[11]. O’Keefe et al. [11] and Lee et al. [12] have

looked into incorporating validation into a conceptual

software development model. However, their success

was limited. After working with different general

validation approaches, O’Keefe et al. [11] concluded

that “We should build validation into the development

cycle”. However, none of the existing methods

perform formal validation across all development

phases. Furthermore, none of the mainstream methods

presented here is completely based on a life-cycle

model for system development. In this paper, we

introduce a formal method towards achieving the goal

of having a guided and incremental validation. This

will be done through CommonKADS. Anderson et al.

[13] conducted a study to measure the benefits of

incremental validation using many systems in many

domains. They came out with the following

conclusions:

1. Rates of uncovering errors early in development

were better.

13

2. Validation and verification found 2.3 to 5.5 errors

per thousand lines of code.

3. Over 85% of the found errors affect reliability and

maintainability.

4. Early error detection saved 20-28% of validation

costs if validation begins at coding phase.

5. Incremental validation saved 92-100% of

validation costs if validation begins at requirement

phase.

Gilb et al. [14] did a similar study and illustrated their

results. They concluded that when validation is

postponed, costs will grow exponentially. Incremental

validation can prevent this increase in costs.

Incremental validation helps the user in getting

frequent information about the development process

of the system, helps the knowledge engineer in finding

early comprehensive solutions instead of rushing fixes

to meet deadlines and helps the manager in decision-

making and instant feedback.

3. COMMO�KADS SET OF MODELS

CommonKADS (Knowledge Acquisition and

Design Support) is based on KADS. It concentrates on

the conceptual structure of the knowledge and the

system. The most accepted KBS development method

is CommonKADS. It doesn’t currently include

guidelines for validation, verification or testing in any

of its models. The six CommonKADS models are

categorized in three groups [15]:

1. Context Models:

Organization model: Supports the description and the

analysis of the organization.

Task model: Describes the tasks that might be

performed by the system within the organization.

Agent model: Supports the capabilities, constraints

and roles of the agents performing the tasks.

2. Concept Models:

Knowledge/Expertise model: Supports the description

of the knowledge invoked in the tasks.

Communication model: Describes the relation

between the agents, their interaction and their

communication.

3. Artifact Models:

Design Model: Supports the design and the structure

of the system.

Figure 1 illustrates the CommonKADS set of models.

These models are presented in worksheets, UML

diagrams, pseudo code and text. All the models are

mapped to implementation to form the system. Tools

were developed to help in implementing

CommonKADS such as Model-K and OMOS [15].

The development of these and other tools reflects the

general acceptance of CommonKADS by the KBS

development community. Conceptual model

languages had been introduced to support

CommonKADS representation formally such as ML
2
,

VITAL and FORKADS [15]. CommonKADS

supports reusability, and offers guidelines for the

developer to achieve high quality systems.

CommonKADS is a knowledge representation

dependent model and was not created independently

from other software models. Rather, other software

models (e.g. object-oriented paradigm) influenced the

definition of CommonKADS. CommonKADS has a

powerful organizational sub-model that can represent

many domains. CommonKADS offers a de facto

standard for building systems and ensures a modular

approach. CommonKADS is the most used

knowledge-based systems lifecycle model and is the

most accepted [15] [16]. Considering all the

advantages of CommonKADS mentioned above, it

should be no surprise that we chose it as our

knowledge-based system development model for our

validation method

In the next three sections, the validation lifecycle, test

cases extraction and reduction are introduced.

4. MAVERICK

Incremental validation is based on the idea that

“prevention is better than cure”. Incremental

validation locates the problem in its early stages. For

example, if there is an error that is created during

knowledge elicitation as a result of miscommunication

between the expert and the knowledge engineer,

incremental validation helps in identifying the error

before it’s absorbed into the design and then the

implementation. The deeper this error is absorbed the

harder it will be to identify it. Therefore, based on the

CommonKADS structure, MAVERICK is performed

at five levels in the following order:

1. Context Test Cases Extraction: This step defines

the test cases that need to be executed after defining

the first three models (the Context models:

Organization, Task and Agent).

2. Analysis Test Cases Extraction: In this step, the

test cases are extracted from the communication and

knowledge models. In CommonKADS, the analysis

phase is done after building five models: organization,

task, agent, communication and knowledge. These

five models represent all the requirements of the

system. After those five models are defined and before

moving into the design model, analysis validation is

performed. Inspection validation starts here, first step

of inspection validation is analysis validation. This

validation checks for conflicting requirements,

missing aspects in the analysis and any ambiguities.

This validation is performed by the experts and the

knowledge engineer manually on all the documents

and diagrams defined so far.

14

3. Design Test Cases Extraction: This is the last step

for test case extraction where test cases are extracted

from the design model. Inspection validation stops

here, second step of inspection validation is design

validation. It is performed after this step and before

implementation of the knowledge-based system starts.

Validation inspects the Class diagrams for DM1 to

check the initial design. DM1 represents the whole

system.

4. Spiral System Implementation: Implementation of

the system is performed iteratively. While iterating,

system development proceeds and validation is

performed by executing test cases. Test cases are

selected in every iteration by the CBV tool described

later in this dissertation.

5. Spiral System Validation: Validation is performed

spirally, test case selection occurs iteratively and test

cases are executed on the system. The validation

approach is discussed and introduced in greater detail

in section 6. Steps 4 and 5 are indicated to as CBV.

Figure 1 illustrates our general approach towards

performing incremental validation within the

CommonKADS steps. Different validation steps are

performed during the building of the CommonKADS

models and the system.

5. COMMO�KADS TEST CASE EXTRACTIO�

 The test case extraction starts early, while defining

the Organization model. The first worksheet from

which to extract cases from is OM3. OM1, OM2 and

OM4 are used to introduce the knowledge engineer to

the process that needs to be developed into the

knowledge-based system and the assets of the

organization. Nothing from OM1, OM2 and OM4 is

used as a part of the target system. OM3 is the process

break down sheet. All the processes in OM3

breakdown into the Task model for more details. In

this sheet, each task is defined with who is performing

it and what part of knowledge is needed for it. This

worksheet doesn’t involve the essence of the task.

That’s the goal of the Task model. Example: Task1 is

performed by Paul Hewson and for this task

documents 1 and 2 are needed. When the system is

built, a test case would be necessary to check the

availability of the needed documents when this task is

performed by the mentioned employee. The test case

would have the following format:

1. Test case ID: 1.

2. CommonKADS model: Organizational model

(worksheet: OM3 (organization tasks)).

3. Input variables: Paul Hewson’s user name and

password.

4. Test setup values: Logout from all accounts and

close all documents.

5. Test execution steps: Run task 1 by clicking on the

“start task” button, log in as Paul Hewson and click

on ”get documents 1 and 2”

6. Expected solution: Two PDF files opening on your

computer with documents 1 and 2.

7. System’s solution: Document 1 opened but

document 2 didn’t.

8. Local Importance: 2.5.

9. Number of execution times: 1.

10. Informal description: Paul Hewson needs access to

documents 1 and 2 with task 1.

OM2 has a “culture and power” part in the worksheet

that deals with social issues, political constraints and

rules of thumbs at the organization. This part doesn’t

apply to many organizations, but in case it’s

necessary, then for every point in this part of the

worksheet there should be test cases to cover it.

Figure 1 MAVERICK

An important part where test cases are to be

extracted is the worksheet TM1. TM2 deals with

making the knowledge engineer familiar with

assigning tasks to knowledge. It won’t be used for test

case extraction. In worksheet TM1 however, each task

is likely to need a number of test cases, where the

inputs of the test case come from the dependency and

flow section. In this section, the input objects and the

output objects are defined, which are then transformed

to the input variables and the test setup values of the

test case. In the expected output part of the test case

format, the quality and performance part are used. The

quality and performance part in the worksheet deals

with expected outcome of the task; this would be the

criteria for the test case failure or success.

Furthermore, in TM1, one part discusses the

preconditions and the post conditions of the task. For

each condition a set of test cases should be defined.

Worksheet AM1 defines the agents’ access to the

system. Test cases extracted from this worksheet are

related to security, roles and accesses. As previously

introduced in test case 1 example, Paul Hewson

needed access to task 1. Similar test cases are

extracted from AM1. The Knowledge model is a

critical model in CommonKADS as it is transformed

to represent the knowledge base. In CommonKADS,

the inference structure and the domain schemas

15

provide the set of test cases to validate the knowledge.

The inferences and the transfer functions are parts of

the inference structure, each instance of them is

presented in a test case. KM1 is a central worksheet

for test case extraction as it defines important parts of

the knowledge. The knowledge engineer might need to

present some domain requirements in the domain

schemas of the Knowledge model, as every object in

the domain schema is presented by a test case (refer to

test case 2 for an example). In KM1, an important part

is the “scenarios” section where any scenario related

to a certain part of the knowledge is introduced. Other

parts in this worksheet include a glossary of terms, the

elicitation material and other sections that will not be

transformed into a knowledge-based system. An

example of a scenario and a test case: scenario (The

employee Dave Evans needs knowledge about credit

cards overdraft fees to answer a bank’s client). A test

case for this scenario would be:

1. Test case ID: 2.

2. CommonKADS model: Knowledge model

(worksheet: KM1).

3. Input variables: Dave Evans user name and

password.

4. Test setup values: Run the credit card sub-system.

5. Test execution steps: log in as Dave Evans, enter a

clients name and account number, click on ”Display

credit cards fees rules”

6. Expected solution: Correct overdraft fees list of

rules should display to employee Dave Evans.

7. System’s solution: Correct overdraft fees list of

rules displayed to employee Dave Evans.

8. Local Importance: 1.75.

9. Number of execution times: 1.

10. Informal description: Overdraft fees rules display

when required by the employee.

The Communication model defines the

interaction between the tasks, the agents and the

system. CM1 and CM2 are used for test case

extraction as both of these worksheets components are

built into the targeted knowledge-based system. In

CM1 the constraints section is used to extract test

cases and the agents involved in this test case.

CM2 defines the contents of the communication

messages and the control over the messages, each

transaction needs to be tested using at least one test

case. In the Communication model, all the information

exchange, message sending and processes between

agents are represented in a pseudo code defined

specifically for CommonKADS.

For each pseudo construct, a set of test cases

should be defined. For example, a message for a new

loan is to be sent from the teller Adam Clayton to the

management department employee Larry Mullen

indicating that a new loan is granted to a client ahs the

following construct: SE;D tramsaction1(loan

granted) from teller to RECEIVE management.

The dialogue diagram in the Communication model is

used to test the sequence of the tasks performed by the

system and the agents. The Design model in

CommonKADS represents the initial design of the

targeted system. DM2, DM3 and DM4 are worksheets

that help the knowledge engineer to select the

hardware platform, software platform and all technical

issues related with building the system, but the real

system design is found in DM1. DM1 defines all the

subsystems. Test case extraction from this worksheet

targets the issue of the integration of those subsystems.

Relation between the subsystems is reflected by

communication between the subsystems and the tasks

sequencing among subsystems. In all the subsystems,

the domain specifications are introduced in the

Organizational, Task and Agent models. The

functional specifications are presented in the

Knowledge and Communication models. Using the

test case extraction step defined in this section, all the

aspects of the knowledge-base are covered and test

cases are generated from all the entities included in

the targeted system.

6. TEST CASE REDUCTIO� (CO�TEXT

BASED VALIDATIO�)

In our method, Knowledge-based system

development and validation are performed using the

spiral model. At any iteration of development,

variables’ values need to be modified and the system

undergoes refinement. This work reduces the number

of test cases based on the user’s needs and the context

of validation. This is where the term context-based

validation (CBV) came from. In problem solving, the

context would inherently contain much knowledge

about the situation’s context in which the problem is to

be solved or the problem’s environment [17]. In the

case of test case reduction, testing is intensified for the

model that failed the most in the previous testing

cycle. To reduce the number of test cases, the

knowledge engineer chooses what test cases to

remove. This is not performed manually; it is

performed spirally by the knowledge engineer and

based on the CommonKADS models.

Before the knowledge engineer starts with system

implementation, it is necessary to define a number of

control variables that are used to select what test cases

to be used in every cycle. These variables are:

1. Local Importance (LI): Each test case is assigned a

local importance variable that falls between 1 and 5.

Local importance = Average of (dependency +

domain importance + criticality + occurrence). Local

importance is a factor of dependency (Value assigned

from 1-5), domain importance (Value assigned from

1-5), criticality (Value assigned from 1-5) and

occurrence (Value assigned from 1-5). All the values

are defined by the knowledge engineer and the expert.

Additionally, the frequency of the task is indicated in

TM2, this is the basis for defining the occurrence

16

factor. Dependency is in the nature of

CommonKADS, the Design model depends on the

Knowledge and Communication models, which

depend on defining the task and the Agent models

which are both based on the Organization model

which is defined based on the knowledge elicitation.

The Organization model has the lowest dependency

rate (1) and the Design model has the highest

dependency rate (5).

2. Model Weight (MW): Every CommonKADS

model is assigned a weight after any iteration of

development. Initially all the models have the same

importance (MW is set to 5), but when the

development starts, model weights will constantly

change based on the outcomes of the test cases. The

model weight values fall between one and ten. Model

weight reflects the assurance level in testing for the

CommonKADS models. When the assurance of all

models reaches 10 and implementation is done,

validation stops.

3. N: Represents the number of test cases to be

selected in any iteration.

4. Global Importance (GI): This variable is used to

decide what test cases to select in any iteration.

Global Importance = Local Importance * Model

Weight.

Approaches to test case reduction have varied between

random, formal and informal. Using a well established

model like CommonKADS provides a solid ground

and an assurance that all the aspects of the system are

covered, and that the test cases extracted using this

method make sure that the system is well covered for

tests. The steps of CBV presented in figure 2 are:

1. Extract test cases from the worksheets and

diagrams. Set all the parameters defined previously.

Assign each test case to a CommonKADS model

2. Assign local importance for each test case.

3. Set the size of test case subset: ;, initially all the

test cases that have global importance more than 20

(LI*MW = 4*5 = 20). All test cases with local

importance of 4 or 5 needs to be selected, cases with

1, 2 and 3 importance are less important.

4. Set all models’ weights/assurance to 5

5. Calculate global importance = local importance *

model weight. Sort test cases according to global

importance

6. Start implementation using the spiral model

7. At the end of the first iteration, select N number of

test cases. From the ordered list pick test cases 1 to n.

8. Execute the test cases on the system, and record

the results

9. Based on results for each CommonKADS model

test cases, re calculate assurance for each model.

Example: if 30% of test cases of a certain model went

wrong, that model’s assurance will be 7 using the

following formula: 100 - (percentage of successful test

case)/10

10. Recalculate global importance of test cases and

reorder

11. Refine system; go to next iteration (Manual)

12. Flag test cases with a positive outcome (not to be

picked again unless a change to their status was

made), flag test cases with unexpected outcomes (this

is used to make sure that the test case is reselected

before end of validation), select different test cases

every next iteration

13. Stop when assurance of all models is equal to 10.

Assurance of all models = average of all models

assurances.

Figure 2 CBV

Test case reduction steps are illustrated in Figure 2.

A Java tool was developed to select, sort and

recommend test cases for the knowledge engineer

from the universal set of test cases using the method

presented in this paper. Figure 3 is a screen shot that

represents one panel from the seven panels in the tool.

This tool updates the test cases instantly and sorts all

the test cases in real time for selection of N test cases.

17

Figure 3 Test execution Java panel

7. CO�CLUSIO�S

The approach presented in this paper requires some

manual work from the knowledge engineer or any

other person performing validation but it has many

advantages. Advantages of this approach are:

1. Flexibility: the weights and the models could be

changed to any other values. This gives the knowledge

engineer full control.

2. Usage-oriented: this approach is based on the user

needs and a real time testing feedback. It is not a static

function, rather a resilient one.

3. It’s based on a comprehensive, well defined and

well structured model: This function is based on

CommonKADS, which as discussed previously, has

many advantages.

4. Effort and time reduction: reducing the number of

test cases reduces effort and time.

In this paper, we introduced a validation method based

on a lifecycle model called CommonKADS; we

introduced the validation lifecycle, extracting test

cases from the six CommonKADS models and

reducing the number of executed test cases and thus

reduce time, manpower and expenses.

8. REFERE�CES

[1] A.J. Gonzalez, and V. Barr, ”Validation and

Verification of Intelligent Systems – what are they and

how are they different” Proceedings of the Journal of

Experimental &Theoretical Artificial Intelligence,

pp.407-420, 2000

[2] E. Santos Jr., and H. Dinh, “Consistency of Test

Case in Validation of Bayesian Knowledge Bases”,

Proceedings of the 16th IEEE International

Conference on Tools with Artificial Intelligence –

ICTAI 2004.

[3] R. Knauf, S. Tsuruta, and A.J Gonzalez, “Towards

Reducing Human Involvement in Validation of

Knowledge- Based Systems”, Proceedings of the

IEEE transaction on Systems, Man and Cybernetics,

Volume 37, pp.120-131, January 2007

[4] N. Zlatareva and A. Preece, “State of the Art in

Automated Validation of Knowledge-Based Systems”,

Proceedings of the journal of Expert Systems with

Applications, pp.151-168, 1994

[5] A. Ginsberg. S. Weiss, and P. Politakis, “SEEK2:

A Generalized Approach to Automatic Knowledge-

base Refinement” Proceedings of International Joint

Conference on Artificial Intelligence (IJCAI), pp.

367-374, 1985

[6] K. Abdallah, T. Mohammad, and F. Louis,

“Validation of Intelligent Systems: a Critical Study

and a tool, Corus”, Proceedings of the International

Journal of Soft Computing, pp.191-198, 2007.

[7] S. Smith and A. Kandel, “Validation of Expert

Systems” Proceedings of the Third Florida Artificial

Intelligence Research Symposium (FLAIRS), pp.197-

201, 1990

[8] Wu, C. and Lee, S. “KJ3- a tool assisting formal

validation of knowledge-based systems”, Proceedings

of the Int. J. Human-Computer Studies, pp. 495-525,

2002.

[9] J. Herrmann, K. Jantke, and R. Knauf, “Using

Structural Knowledge for System Validation”

Proceedings of the 10th FALIRS Conference, pp. 82-

86, 1997.

[10] S. Lockwood, and Z. Chen, “Knowledge

Validation of Engineering Expert Systems”

Proceedings of the Journal of Advances in Software

Engineering, pp. 97-104, 1995.

[11] R. O’Keefe, R. Balci, and E. Smith, “Validating

Expert System Performance” IEEE, Proceedings of

the IEEE Expert, Volume 2, pp.81-90, 1987

[12] S. Lee, and R. O’Keefe, “Developing a Strategy

for Expert System Validation and Verification” ,

IEEE, Proceedings of the IEEE Transaction on

systems, Man and Cybernetics, Volume 24, pp.643-

655, 1994.

[13] C. Anderson, T. Thelin, P. Runeson,N.

Dzamashvili, “An Experimental Evaluation of

Inspection and testing for Detection of Design Faults”,

Proceedings of the International Symposium on

Empirical Software Engineering – ISESE 2003

[14] T. Gilb, and D. Graham “Software Inspection”

Published by Addison Wesley 1993

[15] G. Shreiber, H. Akkermans, A. Anjewierden, R.

De Hoog, N. Shadbolt, W. Van De Velde, and B.

Wielinga,. “Knowledge Engineering and

Management-The CommonKADS Methodology”

published by The MIT Press 2000

[16] A. Al Korany, K. Shaalan, H. Baraka, and A.

Rafea, “An Approach for Automating the Verification

of KADS-Based Expert Systems” Proceedings of the

7th International Conference on Applied Informatics

and Communications- (WSEAS), pp. 1-22, 2007

[17] A.J Gonzalez, B. Stensrud, and G. Barret,

“Formalizing context-based reasoning: A modeling

paradigm for representing tactical human behavior”,

Proceedings of the International Journal of Intelligent

Systems, pp. 822-847, 2008

18

Composing Tactical Agents through Contextual Storyboards

Avelino J. Gonzalez(1), Rainer Knauf(2) and Klaus P. Jantke(3)

 (1)Intelligent Systems Laboratory

School of EECS
University of Central Florida

Orlando, FL 32816-2362
USA

(2)Faculty of Artificial Intelligence
Technical University of Ilmenau

PF 10 05 65
98684 Ilmenau

Germany

(3) Fraunhofer IDMT
Children’s Media Dept.

Hirschlachufer 7
99084 Erfurt

Germany

ABSTRACT

This paper presents the novel use of storyboards for
composing, organizing and visualizing tactical agents
designed to serve as computer generated forces.
These tactical agents represent enemy forces that act
and react to trainee actions and are specifically used
here to populate military training scenarios. The
tactical agents are based on the Context-based
Reasoning human behavior representation paradigm.
This application of storyboards facilitates the use and
visualization of the contextual elements that make up
the composed agents. The use of the approach is
described and an informal qualitative evaluation is
conducted.

1. INTRODUCTION

Preparing a simulation for a military training session
can be a time-consuming process. First of all, training
objectives must be expressed by the instructor.
Secondly, a mission or task to be executed by the
trainee(s) must be specified, and the accompanying
environmental conditions must be defined and
subsequently reflected in the simulation environment.
Thirdly, if the training objectives call for the
trainee(s) to be faced with a specific situation, the
external entities with which the trainees interact must
be designed such that they present that situation to the
trainee correctly and at the appropriate time. When
this requires the involvement of intelligent software
agents, these must be integrated into the simulation in
just the right manner to accomplish the desired
objective. Planning and organizing the simulation-
based training exercise to systematically include these
three steps presents a significant problem for
simulation-based training.

In recent times, the widespread reuse of standard,
reusable scenarios has led to exercises becoming
known in advance by the trainees, thereby negating
the effect of built-in surprises and diminishing the
effectiveness of the training session. This ultimately
prematurely requires that new and expensive
exercises be created. It would be ideal, therefore, if

new training exercises could be easily custom-made
for each group of trainees, but that they nevertheless
would guarantee an equivalent learning experience
for all trainees.

This leads us to the concept of assisted scenario
generation for training simulations. While the
selection and implementation of certain
environmental effects such as weather, time and other
such issues is relatively easy, depending on the
facilities provided by the simulation infrastructure,
others such as the behavior and plans of the external
entities typically require much greater care. This is
because these intelligent tactical agents could exhibit
the wide range of behaviors typically used in these
scenarios, thereby resulting in large and complex
models. Their large size and high complexity make
these agents difficult to build and possibly
computationally expensive to run.

However, this is not the entire problem. The
external entities are the primary means through which
the scenario designer causes the desired situations to
be presented to trainees at the right moment. These
agents have to be able to react to the trainee actions
and still be able to present the desired educational
situation. In situations where the roles of the external
entity are quick and of a short duration, it may not
need to be artificially intelligent. An example of this
could be a distracted pedestrian crossing the street in
front of the car. In such cases, the model of the
pedestrian is simple, as it needs no reaction. Selection
and placement of such an external entity would be
rather simple. However, for other roles that require
extended contact with the trainee such simplicity may
not suffice. Examples of this include a driver with
road rage, a persistent enemy combatant, or a police
officer pursuing a fleeing driver. A more complex
process must be developed to assist the training
session author in building the appropriate external
entities and place them correctly within the
simulation.

A tool that helps the session author design the
training session – specially the agents used in the
training session would be immeasurably helpful.
Description of such a tool is our objective here.

19

2. OVERALL SOLUTION APPROACH

Planning has been a core part of AI research since the
beginning. Planning is something that humans do
naturally and for the most part, effectively. Many
tools have been built to assist planners. We
investigated the feasibility of using storyboards, as
defined by Jantke and Knauf [3], to serve as the
infrastructure upon which the agent models could be
planned and stored.

The concept of storyboards has been used
successfully for many years in many applications
such as cinematography, theater, musicals and such
time-based works. Storyboarding is a modern
approach to planning that actually goes beyond
conventional planning. It can be said to be the “…
organization of experience” [3]. Jantke [4] asserts that
when human activity comes into play (e.g., games,
war) predicting the future situations becomes difficult
because it is unknown what situation will be faced by
the human in a conflict-based context. He maintains
that storyboards provide room for such human
activity by furnishing means to represent alternative
worlds.

Knauf [6] and Knauf et al [7] more recently applied
the storyboard concept to course design. They are
specifically used to guide the didactic process in
traditional learning environments and in e-learning.

The storyboard approach devised by Jantke &
Knauf is built upon standard concepts which enjoy
(1) clarity by providing a high-level modeling
approach, (2) simplicity, which enables everybody to
easily become a storyboard author, and (3) visual
appearance as graphs. While other means of
structuring the contents of the agents exist, such as
state diagrams, Petri nets, etc., none meet the above
three requirements as easily as does the storyboard
tool described here.

Jantke and Knauf define their storyboard as a
nested hierarchy of directed graphs with annotated
nodes and annotated edges. Nodes can be either
scenes or episodes where scenes denote leaves of the
nesting hierarchy and represent a non-decomposable
learning activity. A scene can be (1) the presentation
of a (media) document, (2) the opening of any other
software tool that supports learning (e.g., an URL
and/or an e-learning system) or (3) an informal
description of the activity. Episodes, on the other
hand, denote a sub-graph. Graphs are interpreted by
the paths through which they can be traversed. Edges
denote transitions between nodes. Figure 1 shows a
top-level storyboard that reflects an organization for
teaching a college-level course in Artificial
Intelligence.

The processes that are commonly represented
through storyboarding are characterized by non-
determinism, involvement of human players and the
attempt to anticipate the behavior of these human
players. These characteristics also apply to

simulation-based training sessions. Therefore, we
propose here to use this storyboard approach to
represent the agent being composed for a session in a
training simulation.

The agents themselves are defined in the Context-
based Reasoning (CxBR) modeling paradigm. CxBR
specifies that agents built through CxBR be composed
of several major contexts, some accompanying minor
contexts and definition of transition criteria between
the major contexts. While it is active, a major context,
together with possibly several minor contexts,
controls the actions of the agent. When the situation
changes so that the context has changed, a transition
to a new active context is effected, with its attendant
functions and knowledge taking over the control of
the agent. Transition criteria determine when the
situation calls for a new major context to be made
active and the currently active major context to be de-
activated. Only one major context can be active at any
one time. We expect here that the major contexts will
be defined and created a-priori and be available in
some repository, providing a baseline behavior for the
agent when it finds itself in the correct context.
However, the transition criteria are very application-
dependent, and must thus be specified carefully for
each application. See Gonzalez et al [1] for details
about CxBR.

Figure 1 – Application of Story Boarding to
Course Definition

We should note that the storyboard is not the agent. It
merely helps a human to compose the agents for a
specific scenario in a way that is clear, simple and
easily visualized. The CxBR-based agents contain
the intelligence and the ability to react to events in the
simulation exercise.

20

The objective of the research was not to develop
a working model of the tactical agents themselves, but
rather to organize their definition in an easily-
visualized and manoeuvrable tool. This is what we
describe as composing agents from existing
components, in our case, major and minor contexts.
Our software tool provides a medium for the scenario
storyboard to be reflected, provides an infrastructure
to store the agent models for all situations, and can
assist the session author with customizing the
transition criteria for the major contexts vis-à-vis the
training session. The storyboard, however, is not an
agent representation paradigm. CxBR is the agent
representation paradigm used. The storyboard merely
helps in composing the agents from previously
defined major contexts and easily visualizing the
resulting agent. To better describe the concept, we
introduce an example military scenario.

3. SPECIFIC SCENARIO USED

The training scenario used for this experiment
involves a fictional maritime country (Blue state) with
a lightly defended base in an island far off its
mainland coast. This island is the subject of a
territorial dispute between the Blue state and a
neighbouring and also fictitious Red state. In light of
current situations that may lead to potential hostilities
with the Red state, the Blue state seeks to reinforce
the defences on the island by sending a cargo vessel
with supplies and armaments needed to enhance the
defences of its island base.

This cargo vessel (M1) is escorted by a small task
force composed of one anti-aircraft destroyer and
flagship of the task force. This vessel is armed with
SAM launchers, one torpedo tube and assorted guns.
This is the vessel to be directly controlled by the
trainees in this training exercise and it is labelled TF1.
Three other warships make up this task force. Two
anti-submarine frigates respectively labelled BF1 and
BF2 come armed with anti-submarine rockets and
assorted guns. The fourth warship is a mine layer,
armed with mines and a 12.7 mm machine gun. It is
labelled BF3. Their mission is to escort and protect
the unarmed cargo vessel (M1) containing critical
supplies and weapons from the mainland port to the
naval base in the island in question. Their orders are
to protect the cargo vessel and to confront any force
threatening it, whether air, surface or subsurface. The
Blue state ships are at the command of the TF1
commander, who can order them to take any action in
accordance with the imposed rules of engagement.

Unbeknown to the trainee Blue force, a Red state
force intends to land a heavily armed contingent in
the island and capture it without a fight, given the
light defences of the island base, and its long distance
to the mainland. The invading Red force consists of
three vessels, and they are labelled RF1, RF2 and
RF3. RF2 and RF3 two are AEGIS-type anti-aircraft

destroyers. Besides anti-aircraft missiles, they are
armed with an assortment of guns. RF1 is a mother
ship carrying three landing crafts that can be deployed
from her hull. Each landing craft can carry a platoon-
size unit with a light armoured vehicle or jeep with
machine guns mounted on them. These landing craft
are also armed each with one 12mm machine gun.

RF1 will seek to get close enough to the island on
its north side so that it can launch the landing craft
and land their forces. They are not aware of the Blue
state convoy task force, the cargo vessel or its
contents. The initial conditions of the developing
situation are described in Figure 2 below. Each task
force is not initially aware of the other. When the
Red task force enters the Blue state’s territorial
waters, it is detected by an unarmed aerial
surveillance aircraft (not shown), that monitors the
waters surrounding the island, and continues to
monitor the movements of the Red force. Without air
or satellite assets, the Red force later discovers the
presence of the Blue task force only when the latter
gets within range of their ship-based radar. No other
aircraft are relevant in this scenario.

Figure 2 – Initial Conditions of Scenario

In the initial scenario, the Blue force is in a major
context that calls for it to escort the cargo vessel.
This means that the Blue task force is to sail at full
speed toward its destination, maintaining close
scrutiny of their sensors for the presence of threats, as
the possibility of a Red force attack on the island has
been considered a distinct possibility in the recent
past. This major context in control is labelled Escort
and it enforces a diamond shaped formation designed
to protect the cargo ship from all directions. This
major context looks for the possibility of transitioning
to several other contexts, such as Confront, Engage,
Attack, Retreat and Dock, among others.

The Red force, on the other hand, has as its objective
to land undetected on the island’s north shore which
has good beaches for that purpose, deploy its forces
and march overland to the base in the south end of the

Island

base
M1

BF2

BF1

TF1 BF3

RF3

RF1

Territorial water boundary

RF2

21

island and take it through sheer intimidation,
preferably without firing any shots. Its initial major
context, while in international waters, is simply to
navigate to certain coordinates. This major context is
called Transit, and involves no special care other
than to maintain navigational awareness and avoid
collision with other objects as well as each other.
Upon reaching the target coordinates, it is to
transition to a more guarded form of navigation,
where they get into a formation that is protective of
the mother ship, and proceed in total radio silence,
while at the same time in general quarters. This is the
StealthTransit major context.

Planning in CxBR is carried out rather informally.
Unlike other AI planning languages and systems,
such planning is reflected merely by a sequence of
major contexts with defined transition criteria. These
plans are easily visualized via the storyboarding tool
described here. The major contexts that compose the
agent being built can also be easily described
likewise, as can the minor contexts. For example, the
plan to be initially followed by the Red force agents
as a unit, in terms of a sequence of major contexts is
shown below and pictorially in Figure 3.

Red Force: Transit StealthTransit
Disembark Retreat Transit

It is somewhat more complicated for the Blue force.
Upon detecting the Red force, the task force splits up
and different tasks are assigned by the trainee force
flagship (TF1). Thus, the ships do not behave
uniformly as a unit as do the Red force ships. In
other words, each member of the task force has
different tasks to execute. So, we describe each ship
individually below:

Blue Force TF1: Escort Confront Pursuit
Transit

Blue Force BF1: Escort Confront Pursuit
Transit

Blue Force BF2: Escort StandBy Confront
 Pursuit Transit

Blue Force BF3: Escort MineFieldApp
StandBy MineRetrieval Rescue

Transit
Blue Force M1: Transit Dock

A full description of the scenario and the composition
of the agents involved therein would exceed the page
limits of this paper. The reader is referred to [2] for
the full details of the scenario and its implementation.

4. MODEL ASSEMBLY WITH TOOL

The storyboard tool presents the availability to create
sheets, where each of these sheets contains some logic
related to the progression of the story. The sheets can
contain episodes, scenes or to-do boxes. An episode
contains a longer lasting series of actions or sub-
actions. It can be composed of other episodes or of

scenes. Episodes are depicted by rectangles with
small notches at the left and right sides. As the name
suggests, scenes contain more temporally short
actions. Scenes are depicted by simple rectangles.
They intuitively equate to major contexts and minor
contexts respectively.

Figure 3 – Red Force Mission Plan

The storyboard tool is based on Microsoft Visio, with
some custom-made functions and shapes to allow the
free and easy movement among sheets. The main
progression of the storyboard is reflected in the
Mission sheet. This sheet is the plan for the agents
that will participate in the scenario. In terms of CxBR,
these represent the progression of major contexts to
be executed by the agent being composed. These
major contexts are represented as episodes in the
mission sheet. The all-important transition criteria
that triggers transitions between major contexts is
found on the mission sheet, placed between the major
context episodes.

Figure 3 depicts the Mission sheet for the Red
Force in this scenario. The comments shown between
each major context represents a textual description of
the transition criteria. In the case where the rule
language syntax for the system being used is known,

22

this comment could include the actual code for the
transition rule.

Episodes and scenes have the ability to switch to
other sheets that may contain an expansion of the
elements found in the episode or scene. This provides
the ability to quickly inspect a sub-context and its
contents.

The storyboard begins with an initial condition and
ends with a final condition shape. These shapes are
scenes. Clicking twice on the initial conditions scene
will take one to the initial condition sheet, which
contains the same graph shown above as Figure 2.
This is shown in Figure 4 below. The Initial
Condition Sheet also refers to a document which
describes the initial conditions in a narrative text.
This document gives the scenario developer
background information on the scenario to be created.
Note in Figure 3 the text between the Initial
Conditions Scene and the Transit major context
episode in the mission sheet. This represents the
transition to the major context. In this case, the
transition is a simple one – commencement of the
simulation, at t = 0.0.

Island

base

M
1

BF2

BF1

TF1

BF3

RF
3

RF1R
F2

Transit

Escort

Island

base

M
1

BF2

BF1

TF1

BF3

RF
3

RF1R
F2

Transit

Escort

Figure 4 – Initial Conditions page

The funnel-looking pentagon shapes are return “worm
holes”, so to speak. They represent a way to quickly
return the user to the page from which the sub-sheet
was called. For example, when double-clicking on
the Transit MC episode on the mission page, this
takes one to the page where the details of the Transit
major context are described. To return from there
back to the mission page, the funnel shape is clicked
and the return is executed. Figure 5 shows the Transit
major context details. The two worm holes below the
sub-contexts depict the return pipe from the
respective sub-contexts Navigate and
AvoidCollision. The worm hole below the entire
graph is the return pipe to the Mission sheet.

A sub-context sheet is shown in Figure 6. This one
in particular is that Navigate sub-context. This one is

shown for a particular reason. One of the advantages
of CxBR is the potential for reusability of lower-level
contexts by several major contexts. One of those
predictably re-used is the Navigate sub-context. It is
called by the Transit MC and the Retreat MC.
Conceivably, it is such an important function that it
should be called by all major contexts. Once the
control passes to the Navigate sub-context, a return
should be executed to the major context that called it.
The ability to remember which major context called it
is not intrinsic in Visio, so several return worm holes
must be created, one for returning to each of the
various major contexts that may call it. While this
puts the burden of remembering on the user, it
nevertheless works well.

Lastly, an important part of a CxBR is the reactive
context set. These major contexts are not included in
the mission plan because their use is not expected in
the plan. However, the behaviors represented within
these reactive contexts could be useful if the mission
does not go strictly according to plan (as they rarely
ever do). Note that reactive major contexts are
structurally similarly to those in the mission plan. It
could be that a major context could be reactive in one
mission but part of the plan in another. It just
depends on the needs of the mission.

Figure 5 – Transit Major Context Page

The reactive major contexts are contained in a
separate sheet called, appropriately enough, “Reactive
Major Contexts”. This sheet includes an episode for
each major context whose activation could be
possible in the course of this mission but not
explicitly planned. These episodes have a link to its
respective major context description page. These
include links to the sub-contexts they call, just as was
done for those major contexts included in the mission
plan.

23

Figure 6 – Navigate Sub-Context Sheet with
multiple Returns.

5. EVALUATION AND RESULTS

The tool was used to build the scenario for the
intruder interception mission described above. No
quantitative evaluation was done, as it is not a
performance-oriented tool. Rather, a qualitative and
rather informal evaluation was deemed to be the
sensible alternative. This was judged by how long it
took to learn to use the tool.

As part of this research, the first author used the
tool for the first time after only having attended a few
paper presentations by the second author, totalling
approximately two hours of lecture. These
presentations were in the context of the latter’s
research in didactic design, and not in building
tactical agents for a simulation. Learning the use of
the tool took approximately another two hours of
working with it. This was done without
documentation of the tool, other than reading the
afore-mentioned papers. [3, 4, 5, 6, 7 and 8]
However, it only took the first author a total of
approximately 12 working hours to develop and
organize the storyboard once he learned how to use
the tool. This informal and qualitative evaluation
shows that it is indeed an extraordinarily intuitive tool
to learn to use, even without formal documentation.

The advantages of this tool go beyond the
organization of the agent components. It is quite
feasible to have the sheets included in the tool contain
the actual source code for each component, such as
the major contexts, the minor contexts and all
functions that are to be included with the CGF model
for the mission in question. The ability to attach files,
although not extensively used in this particular work,
can serve to attach source code files to each major
context and sub-context.

6. SUMMARY

The research preformed here hypothesized that an
existing storyboard tool, used previously for
academic coursework organization and development,
could be used to also define, organize and visualize
military missions for the purposes of preparing

training scenarios. The research consisted of defining
a training scenario that would be typical of a military
mission to teach trainees about tactics and doctrinal
courses of action. Then, that scenario would be
implemented in to the storyboard tool. The objective
of the implementation was to gauge its applicability to
simulation-based training. The results indicate that,
after an informal evaluation, it does indeed satisfy the
hypothesis that it would be a highly useful tool for
this type of applications. While some improvements
can be made to the tool vis-à-vis this type of
application, it is useful as is, with only minor
modifications made as part of this research.

7. REFERENCES

[1] A.J. Gonzalez, B.S. Stensrud and G. Barrett,
“Formalizing Context-Based Reasoning - A Modeling
Paradigm for Representing Tactical Human
Behavior”, International Journal of Intelligent
Systems, Vo. 23, No. 7, pp. 822-847, July 2008

[2] A.J Gonzalez, “Composing Tactical Agents
through Contextual Storyboards“, Final Report, July
16, 2009. Unpublished, but available upon request.

[3] K.P. Jantke and R. Knauf, “Didactic Design
though Storyboarding: Standard Concepts for
Standard Tools”, Proc. 4th Int’l Symp. on Information
and Communication Technologies (ISICT) Workshop
on Dissemination of e-Learning Technologies and
Appl., Cape Town, South Africa, pp. 20-25, Jan.
2005

[4] K.P. Jantke, “Why Storyboarding? Why not
Planning?” Computer Methods & Syst., Krakow,
Poland, Nov. 2009.

 [5] K.P. Jantke, R Knauf and, A.J. Gonzalez,
“Storyboarding for Playful Learning”, Proc. of World
Conf. on E-Learning in Corporate, Government,
Healthcare, and Higher Education 2006 (E-Learn
2006), Honolulu, Hawaii.

 [6] R. Knauf, “Storyboarding - An AI Technology to
Represent, Process, Evaluate, and Refine Didactic
Knowledge”, Proc. of the Knowledge Media
Technologies. First Core-to-Core Workshop,
Dagstuhl Castle, Germany, pp. 170-179, 2006.

[7] R. Knauf, Y. Sakurai and S. Tsuruta, “Toward
Making Didactics a Subject of Knowledge
Engineering”, Proc. of the 7th IEEE International
Conf. on Advanced Learning Technologies, Niigata
(Japan), pp. 788-792, 2007.

[8] S. Dohi, Y. Sakurai, S. Tsuruta and R. Knauf,
“Managing Academic Education through Dynamic
Storyboarding”, Reeves, T.C. & Yamashita, S.F.
(Eds.) Proc. of the World Conf. on e-Learning in
Corporate, Government, Healthcare, & Higher
Education 2006, October 13-17, 2006.

24

Rule Modularization and Inference Solutions – a Synthetic Overview

Krzysztof Kaczor and Szymon Bobek and Grzegorz J. Nalepa

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

ABSTRACT

Rule–based expert systems proved to be a successful
AI technology in a number of areas. Building such
systems requires creating a rulebase, as well as pro-
viding an effective inference mechanism that fires rules
appropriate in a given context. The paper briefly dis-
cusses main rule inference algorithms Rete, TREAT
and Gator. Since large rulebases often require identify-
ing certain rule clusters, modern inference algorithms
support inference rule groups. In the paper the case of
the new version of Drools, introducing the RuleFlow
module is presented. These solutions are contrasted
with a custom rule representation method called XTT2.
It introduces explicit structure in the rulebase based on
decision tables linked in an inference network. In this
case, the classic Rete–based solutions cannot be used.
This is why custom inference algorithms are discussed.
In the paper possible integration of the XTT2 approach
with that of RuleFlow is discussed.

1. INTRODUCTION

Rules constitute a cardinal concept of the rule–based
expert systems (RBS for short) [1]. Building such sys-
tems requires creating a knowledge base, which in case
of RBS can be separated into two parts: factbase con-
taining the set of facts and rulebase containing the set of
rules. To make use of this two parts, the inference en-
gine must be provided. The inference engine is respon-
sible for generating findings. This is done according
to the current state of the factbase and with the help of
the rules. In the first task of the inference mechanism
the conditional parts of the rules are checked against
the facts from the factbase. This task is performed by
pattern matching algorithm. The output from the al-
gorithm is the set of rules, which conditional parts are
satisfied. This set of rules is called a conflict set. The
following task of the inference mechanism is the execu-
tion of the rules from the conflict set. There are many
different algorithms for determining an execute order
of the rules, but they are not discussed in this paper.

The main problem discussed in this paper concerns
inference methods in structured rule-bases. A rule-base
can contain thousands or even milions rules. Such large

rule-bases cause many problems: 1) Maintenance of
the large set of rules. 2) Inference inefficiency – the
large number of rules may be unnecessary processed.
The modularization of the rule-base that introduces struc-
ture to the knowledge base can be considered as the
way to avoid these problems. The rules can be grupped
in the modules, what can facilitate the maintenance of
the large set of rules. What is more, the inference algo-
rithm may be integrated with structured rule-base. The
integration can influence the inference performance.

The main focus of this paper is the inference in
the structured rule bases. The Section 2 presents the
well-known expert system shells such as CLIPS [1],
JESS [2] and Drools 5 [3]. It shows how the knowl-
edge base can be structured in these systems and how
the inference algorithm can be used over this structure.
The next Section 3 describes three main pattern match-
ing algorithms such as Rete [4], TREAT and the most
recent and general Gator. In the Section 5 the main
concepts of the XTT method are introduced. The sec-
tion presents the structure of the XTT knowledge base.
It also introduces the inference methods taking the un-
derlying algorithm into consideration. The conclusions
of the paper are included in the Section 6.

2. EXPERT SYSTEMS SHELLS

Expert system shell is a framework that facilitates cre-
ation of complete expert systems. Usually, they have
most of the important functionalities built-in such as:
rule-base, inference algorithm, explanation mechanism,
user interface, knowledge base editor.

Such system must be adopted to the domain-specific
problem solving. This can be done by creation of the
knowledge base. The knowledge engineer must cod-
ify the captured knowledge according to the formalism.
The knowledge can be captured in a several ways, but
this issue is not discussed in this paper.

CLIPS is an expert system tool that is based on
Rete algorithm. It provides its own programming lan-
guage that supports rule-based, procedural and object-
oriented programming [1]. Thanks to this variety of
programming paradigms implemented in CLIPS, there
are three ways to represent knowledge in it:

25

• rules, which are primarily intended for heuristic
knowledge based on experience,

• deffunctions and generic functions, which are pri-
marily intended for procedural knowledge,

• object-oriented programming, also primarily in-
tended for procedural knowledge. The generally
accepted features of object-oriented programming
are supported. Rules may pattern match on ob-
jects and facts.

The condition in CLIPS is a test if given fact ex-
ists in knowledge database. The right-hand side (RHS)
of rule contains actions such like assert or retract that
modifies facts database or other operations such like
function invocations that does not affect system state.

CLIPS has been written in C language. This makes
the tool very efficient and platform independent. How-
ever, the integration with other existing systems is not
as easy as it is in case JESS.

JESS is a rule engine and scripting environment
written entirely in Sun’s Java language by Ernest
Friedman-Hill [2] that derives form CLIPS.

Jess uses a very efficient method known as the Rete
algorithm. In the Rete algorithm, inefficiency of the
combinatoric explosion of rules analysis is alleviated
by remembering the past test results across the itera-
tions of a rule loop. Only new facts are tested against
each rule conditional part, but still all rules must be
taken into consideration.

Jess supports both forward-chaining and backward
chaining. The default is forward-chaining. As the knowl-
edge representation JESS uses rules as well as XML-
based language called JessML. JESS uses LISP-like
syntax, which is the same as in CLIPS. The JessML is
not convenient to read by human. It contains more de-
tails, what makes this representation suitable for parsers.

Drools 5 introduces the Business Logic integration
Platform which provides a unified and integrated plat-
form for Rules, Workflow and Event Processing. Drools
is now split up into 4 main sub projects: 1) Drools Gu-
vnor (BRMS/BPMS) – centralised repository for Drools
Knowledge Bases. 2) Drools Expert (rule engine). 3)
Drools Flow (process/workflow) provides workflow or
(business) process capabilities to the Drools platform.
4) Drools Fusion (event processing/temporal reason-
ing) – the module responsible for enabling event pro-
cessing capabilities. Drools Expert is a rule engine ded-
icated for the Drools 5 rule format.

Drools 5 implements only forward-chaining engine,
using a Rete-based algorithm – ReteOO. In the future,
Drools 5 is promised to support a backward-chaining.

3. RULE INFERENCE ALGHORITHMS

This section discusses three the most important pattern
matching algorithms. The descriptions of these algo-
rithms introduce specific nomenclature.

A rule base in the RBS consists of a collection of
rules called productions. The interpreter operates on
the productions in the global memory called working
memory (WM for short). Each object is related to a
number of attribute–value pairs. The set of pairs re-
lated to the object and object itself constitute a single
working element.

By convention, the conditional part (IF part) of
a rule is called LHS (left–hand side), whereas the con-
clusion part is known as RHS. The inference algorithm
performs the following operations: 1) Match – checks
LHSs of rules to determine which are satisfied accord-
ing to the current content of the working memory. 2) Con-
flict set resolution – selects production(s) (instantia-
tion(s)) that has satisfied LHS. 3) Action – Perform
the actions in the RHS of the selected production(s).
4) Goto 1. The first step is a bottleneck of inference
process. The algorithms, which are presented in this
section, try to alleviate this problem.

The Rete algorithm [4] is an efficient pattern match-
ing algorithm for implementing production rule sys-
tems. It computes the conflict set. The naive implemen-
tation of the pattern matching algorithm might check
each production against each working element. The
main advantage of the Rete algorithm is that it tries to
avoid iterating over production and working memory.

Rete can avoid iterating over working memory by
storing the information between cycles. Each pattern
stores the list of the elements that it matches. Due to
this fact, when working memory is changed only the
changes are analysed.

Rete also can avoid iterating over production set.
This is done by forming a tree-like structure (network)
that is compiled from the patterns. The network com-
prise of two types of nodes: intra–elements that involve
only one working element and inter–elements that in-
volve more than one working element. At first, the
pattern compiler builds a linear sequence of the intra-
elements. This part of the network is called alpha mem-
ory and contains only the one-input nodes. After that,
the compiler builds the beta memory from the inter-
elements. The beta memory consists of the two-input
nodes. Each two-input node (except the first one) joins
one two-input node and one one-input node. The first
two-input node joins two one-input nodes.

R1(a > 17, d(X)),
R2(d(X), e(Y), g(Z)),
R3(c = on, g(Z)),
R4(e(Y), f(W)),
R5(b = Friday, f(W))

(1)

When the working memory is changed, the working el-
ements, that has been changed, are let int to the net-
work. Each node of the network tries to match the given
working element. If it matches, then the copy of the el-
ement is passed to all the successors of the node. The

26

R1 R2 R3 R4 R5

R2R1

R2 R5R1 R3 R4

R2R1 R3

R2R1 R3 R4

Fig. 1. A general schema of the Rete network.

two-input nodes joins the elements from the two differ-
ent paths of the network into bigger one. The last two-
input element (terminal element) is the output from the
algorithm and contains the information about changes,
which must be applied to the conflict set.
Rete algorithm has been invented by Charles L. Forgy
of Carnegie Mellon University. At first, Rete has been
assumed as the most efficient algorithm for this prob-
lem. The literature did not contain any comparative
analysis of the Rete with any other algorithm. Nowa-
days, other algorithms such as Treat, A-Treat, Gator are
known. Some of them are discussed in this paper.

TREAT algorithm. State saving mechanism im-
plemented in Rete is not very efficient. The structure
of the Rete network often stores redundant information
and number of elements stored in beta-memory nodes
may be combinatorially explosive. Moreover cost of
join operation in beta-memory are very expensive when
many addition and deletion operations are preformed.
To address these problems new version of Rete algo-
rithm called TREAT was proposed.

Rete algorithm is based on two concepts: Mem-
ory support that creates and maintains alpha–memory
and Condition relationship that join operations in beta–
memory. TREAT also uses Memory support, but does
not use Condition relationship. Instead Conflict set sup-
port and Condition membership are used. Absence of
Condition relationship implies fact that in TREAT net-
work structure there is no beta memory. Hence, the
structure of TREAT network is flat.

R1 R2 R3 R4 R5

R2 R5R1 R3 R4

Fig. 2. TREAT network for rule 1

The main idea of the TREAT algorithm is to ex-
ploit the conflict set support for temporarily redundant
systems. The conflict set is explicitly retain across pro-
duction system cycles which allows for the following
advancements comparing to Rete [5]:

• in case of addition of WM element, conflict set
remains the same, and constrained search for new
instantiation of only those rules that contain newly
added WM element is performed.

• deletion from WM triggers direct conflict set ex-

amination for rules to remove. No matching is
required to process deletion since any instanti-
ation of the rule containing removed element is
simply deleted.

Condition membership introduces new property for
each rule called rule-active that determines weather each
of the rule condition elements is partially matched. The
match algorithm ignores then rules that are non-active
during production system cycles.

Gator algorithm. Both Rete and TREAT offer static
networks, which structures are defined arbitrary by the
design engineer (Rete) and looks mostly the same for
all kinds of knowledge databases (Rete and TREAT).
This very often leads to the creation of networks that
are not optimal for some knowledge bases.

To address this problem a new discrimination net-
work algorithm called Gator was proposed. It is based
on Rete, but additionally implements mechanisms for
optimizing network structure according to specific kno-
wledge base characteristic. It can be said that Rete and
TREAT are special cases of Gator and as reported in [6]
it outperforms TREAT and Rete in most cases.

Every rule in production system can be represented
by a condition graph with nodes for rule condition ele-
ments and edges for join conditions.

Gator networks are general tree structures. They
consist of alpha–memory elements (leaves), optional
beta-memory elements (internal nodes, that can have
multiple inputs) and a P–node which is a root of the
tree representing a complete RHS of the rule.

R1 R2 R3 R4 R5

R2 R5R1 R3 R4

R2 R5R1 R3 R4

Fig. 3. Gator network for rule 1

The optimizing algorithm is iterative. It starts form
networks of size one (which are basically alpha–memory
elements) and combine them into larger optimal net-
works. There is a constraint which states that every
newly created network have to be optimal. That en-
sures that the final network would also be optimal.

The network is built and optimize according to the
following rules:

• Connectivity Heuristic – do not combine two
Gator networks unless there is an explicit con-
nection between them in connectivity graph.

• Disjointness constraint – do not combine net-
works unless their respective sets of rule condi-
tion elements do not overlap.

• Lowest Cost Heuristic – if there is already a net-
work that covers the same set of condition as the

27

new network, and the existing network cost (ac-
cording to the cost function) no more than the
new one, discard new network.

More detailed information about cost functions and
rules for combining Gator networks can be found in [6].

4. KNOWLEDGE MODULARIZATION

Most of the well–known expert systems have a flat knowl-
edge base. In such case, the inference mechanism have
to check each rule against each fact. When the knowl-
edge base contains a large number of rules and facts
this process becomes inefficient. This problem can be
solved by providing a structure in the knowledge base
that allows for checking only a subset of rules. This
Section describes the three well–known expert system
shells CLIPS, JESS and Drools and knowledge base or-
ganisation implementen in them.

CLIPS Modules. CLIPS offers functionality for
organising rules into so called modules. Modules al-
lows for restriction of access to their elements from
other modules, and can be compared to global and local
scoping in other programming languages. Modulariza-
tion of knowledge base helps managing rules, and im-
proves efficiency of rule-based system execution. Mod-
ules in CLIPS are defined with defmodule command.
In CLIPS each module has its own pattern-matching
network for its rules and its own agenda. When a run
command is given, the agenda of the module which is
the current focus is executed. Rule execution contin-
ues until another module becomes the current focus, no
rules are left on the agenda, or the return function is
used from the RHS of a rule. Whenever a module that
was focused on runs out of rules on its agenda, the cur-
rent focus is removed from the focus stack and the next
module on the focus stack becomes the current focus.
Before a rule executes, the current module is changed
to the module in which the executing rule is defined
(the current focus). The current focus can be dynami-
cally switched in RHS of the rule with focus command.

JESS Modules. Jess provides modules mechanism
that helps to manage large numbers of rules. Rules
modularisation can be considered as the structure of the
rulebase. Modules also provide a control mechanism:
the rules in a module will fire only when that module
has the focus, and only one module can be in focus at
a time. Jess makes the modules defining possible with
the help of defmodule command. The module name can
be considered as a namespace for rules. This means
that two different modules can each contain a rule with
a the same name without conflicting. Modules can also
be used to control execution. In general, although any
Jess rule can be activated at any time, only rules in the
focus module will fire. It is possible to manually move
the focus to another module using the focus function.

Each rule can decide which module should be focused
as the next one. To accomplish that, the operation of
the focus changing should be included in the rule con-
clusion part. This leads to the structured rulebase, but
still all rules are checked against the facts. In terms of
efficiency the modules mechanism does not influence
on the performance of the conflict set creation.

Drools RuleFlow. It is a workflow and process en-
gine that allows advanced integration of processes and
rules. It provides a graphical interface for processes
and rules modelling. Drools have built-in a function-
ality to define the structure of the rulebase which can
determine the order of the rules evaluation and exe-
cution. The rules can be gruped in a ruleflow–groups
which defines the subset of rules that are evaluated and
executed. The ruleflow–groups have a graphical rep-
resentation as the nodes on the ruleflow diagram. The
ruleflow–groups are connected with the links what de-
termines the order of its evaluation. A ruleflow diagram
is a graphical description of a sequence of steps that the
rule engine needs to take, where the order is important.

Rules grouping in Drools 5 contributes to the effi-
ciency of the ReteOO algorithm, because only a subset
of rules are evaluated and executed. However there is
no policy which determines when a rule can be added
to the ruleflow-group. Due to this fact, the rules grup-
ping can provide a muddle in the rule base especially
in case of large rulebases.

5. XTT–BASED EXPERT SYSTEMS

Knowledge bases in expert system shells described in
Section 2 are flat and do not have any internal structure.
To create a conflict set the entire knowledge base have
to be searched, and an intelligent inference control in
such unstructuralised system is very difficult. Knowl-
edge representation languages are not formal neither in
Drools, Jess, nor in CLIPS and as a consequence there
are not formalized methods for verifying and analysing
systems designed with those tools. To solve these prob-
lems a new knowledge representation method called
XTT2 (Extended Tabular Trees) was proposed which
is part of the HeKatE [7] methodology for designing,
implementing and verifying production systems.

5.1. Knowledge representation

Main goals of XTT2 knowledge representation was 1)
to provide an expressive formal logical calculus for rules,
2) allow for advanced inference control and formal anal-
ysis of the production systems, 3) provide structural
and visual knowledge representation. XTT2 incorpo-
rates extended attributive table format, where similar
rules are grouped within separated tables, and the sys-
tem is split into such tables linked by arrows represent-
ing the control strategy. Each table consist of two parts
representing condition and decision part of the rule.

28

To help creating the XTT2 network, ARD+ dia-
grams provide the conceptual design. This stage is sup-
ported by VARDA tool that generates XML file (called
HML in HeKatE methodology) with specification of
types, domains, attributes and dependencies between
them. Based on this file a XTT2 skeleton is created in
HQEd editor, and the tables are filled with rules [8].

Rules representation in XTT2 is based on attribu-
tive logic called ALSV(FD) [7]. Each rule in XTT table
is of the form:

(A1 ∝1 V1) ∧ . . . ∧ (An ∝n Vn) −→ RHS (2)

where the logical formula on the left describes the rule
condition, and RHS is the right-hand side of the rule
covering conclusions (see [7] for more details).

The logical rule representation is mapped to the HMR
language (Hekate Meta Representation) which is an in-
ternal rule language for XTT. Following example shows
HMR the notation and its pseudocode representation.

xrule tab_4/1: [today eq workday,
hour in [9 to 17]] ==>

[operation set bizhours].
xrule tab_4/4: [today eq workday,

hour gt 17] ==>
[operation set not_bizhours].

Pseudocode representation:

IF today=workday AND hour>=9 AND hour<=17 THEN
operation := bizhours

IF today = workday AND hour > 17 THEN
operation := not_bizhours

This formal, logical representation of the rules al-
lows for formal analysis and verification of the system.

5.2. Intelligent inference controll

Described in section 5.1 XTT2 knowledge representa-
tion allows for more efficient inference control during
rule-based system execution. The inference control is
assured thanks to firing only rules necessary for achiev-
ing the goal. It is achieved by selecting the desired
output tables and identifying the tables necessary to be
fired first. The links between tables representing the
partial order assure that when passing from a table to
another one, the latter can be fired since the former one
prepares an appropriate context knowledge. There are
four algorithms based on XTT2 notation that control
the inference. They were successfully implemented in
HeaRT (HeKatE RunTime) inference engine [9].

[FOI] The simplest algorithm consists of a hard-
coded order of inference, in such way that every table
is assigned an integer number; all the numbers are dif-
ferent from one another. The tables are fired in order
from the lowest number to the highest one. This infer-
ence algorithm is usefull when a reasoning path is well
defined and does not change over rule-based system cy-
cles. [DDI] A data-driven inference algorithm iden-
tifies start tables, and put all tables that are linked to

the initial ones in the XTT network into a FIFO queue.
When there is no more tables to be added to the queue,
algorithm fires selected tables in order they are poped
from the queue. This inference mode s especially use-
ful for diagnosis systems, where a lot of symptoms
are given as an input that can lead to multiple diagno-
sis. Choosing apropriate reasoning path by the system
saves time and memory. [GDI] A goal-driven approach
works backwards with respect to selecting the tables
necessary for a specific task, and then fires the tables
forwards so as to achieve the goal. One or more out-
put tables are identified as the ones that can generate
the desired goal values and are put in LIFO queue. As
a consequence only those tables that leads to desired
solution are fired, and no rules are fired without pur-
pose. This inference algorithm works best in hypotesis-
proving systems, where value of attribute from partic-
ular table is wanted. [TDI] This approach is based on
monitoring the partial order of inference defined by the
network structure with tokens assigned to tables. A
table can be fired only when there is a token at each
input. A token at the input is a kind of a flag sig-
nalling that the necessary data generated by the preced-
ing table is ready for use. This inference mode was de-
signed to support systems where a lot of dependencies
between tables and rules are denoted that would require
many redundant conditions XTT tables. Tokens allow
to omit those unnecessary conditions, which saves time
and memory and makes the system more readable.

The highly modularised knowledge representation
that is used in XTT2 was one of the reasons why in-
ference engine – HeaRT – implemented for XTT2 ap-
proach does not use matching algorithm based on Rete.
Due to the fact that HeaRT was implemented entirely
in Prolog, fast and efficient unification algorithm that
is implemented in Prolog interpreter was used instead.

5.3. Structure of the Knowledge Base

Considering the differences between the XTT2 approach
and the classic Rete-based solutions, at least two mean-
ings of the notion „structure of the rule base” can be
given. The first one is related the previously discussed
modules in classic expert system shells. There a physi-
cal structure of the rule base is introduced using mod-
ules. The global set of rules is partitioned by the system
designer into several parts in an arbitrary way. This is
a technical solution, similar to source code partitioning
methods such as packages is programming languages.
Practically, these partitions are often merged during the
inference process. Therefore, the partitioning process
itself does not support in optimizing the design and in-
ference. The second one is realized in the XTT2 rep-
resentation. Here rules working in the same context,
i.e. having the same conditional attributes are grouped
into tables (forming simple rule sets) during the design
process. This forms a logical structure of the rule base.

29

This structure is considered during the inference pro-
cess – only necessary rules are considered, an possibly
fired. Therefore, the modularization process does sup-
port optimization of both the design and inference.

6. CONCLUDING REMARKS

All of the common expert system shells described in
this paper use Rete or its variants as a matching algo-
rithm. This is so, because Rete algorithm is very effi-
cient on flat and not structured knowledge base. Once
knowledge base becomes modularized, Rete loses its
assets. Although idea of modules as sets of not related
in any way rules was introduced in CLIPS, the core in-
ference algorithm – Rete – remained the same. Such
partial modularisation slightly increases performance
of the system, but still did not solve efficient design
and verification problems. Most of solutions presented
in CLIPS or Jess are just modifications of existing ap-
proaches that have their own historical drawbacks.

To address these problems a new knowledge rep-
resentation called XTT2 was proposed that is a part
of newly designed methodology for designing, imple-
menting and verifying expert systems, called HeKatE.
It provides visual representation of the knowledge base,
formal verification of the rule–based systems and in-
telligent inference control. XTT2 knowledge base are
highly modularized and hence its internal structure al-
lows for more advanced reasoning. Modularisation in
XTT is not partial as in CLIPS. XTT tables are not only
a mechanism for managing large knowledge bases, but
they also allow for context reasoning, due to the fact
that each XTT table groups rules that belongs to the
same context (have similar LHS and RHS). Moreover,
rules in XTT2 are based on attributive logic which al-
lows for formal verification of knowledge base. Table 1
contains the comparison of the expert system shells de-
scribed in this paper and XTT2 approach.

Table 1. Comparison of expert system shells

Feature XTT CLIPS Jess Drools
Knowledge modulari-
sation

Yes Yes Partial Yes

Knowledge visualisa-
tion

Yes No No Yes

Formal rules repre-
sentation

Yes No No No

Knowledge base veri-
fication

Yes No No No

Inferences strategies DDI,
GDI,
TDI, FOI

DDI DDI,
GDI,

DDI

Inference algorithm HeaRT +
Unification

Rete Rete Rete

Allows for modelling
dynamic processes

No No No Yes

The idea of integrating XTT2 approach with Drools-

Flow will allow to combine business processes with
formal, modular knowledge representation. Since Drools-
Flow diagrams may contain other DroolsFlow diagrams,
relations between XTT tables would not be limited to
relation table to table, but may also be considered as
realtion system to system. Integrating DroolsFlow and
XTT can be done by invoking HeaRT from within Drools-
Flow blocks directly, using the SWI JPL package for
Java integration, or via TCP/IP protocol.

Acknowledgements

Paper is supported by the BIMLOQ Project funded from
2010–12 resources for science as a research project.

7. REFERENCES

[1] Joseph C. Giarratano and Gary D. Riley, Expert
Systems, Thomson, 2005.

[2] E. Friedman-Hill, Jess in Action, Rule Based Sys-
tems in Java, Manning, 2003.

[3] Paul Browne, JBoss Drools Business Rules, Packt
Publishing, 2009.

[4] Charles Forgy, “Rete: A fast algorithm for the
many patterns/many objects match problem,” Artif.
Intell., vol. 19, no. 1, pp. 17–37, 1982.

[5] Daniel P. Miranker, “TREAT: A Better Match
Algorithm for AI Production Systems; Long Ver-
sion,” Tech. Rep. 87-58, University of Texas, July
1987.

[6] Eric N. Hanson and Mohammed S. Hasan, “Gator:
An Optimized Discrimination Network for Active
Database Rule Condition Testing,” Tech. Rep. 93-
036, CIS Department University of Florida, De-
cember 1993.

[7] Grzegorz J. Nalepa and Antoni Ligęza, “HeKatE
methodology, hybrid engineering of intelligent
systems,” International Journal of Applied Mathe-
matics and Computer Science, 2010, accepted for
publication.

[8] Grzegorz J. Nalepa, Antoni Ligęza, Krzysztof Kac-
zor, and Weronika T. Furmańska, “HeKatE rule
runtime and design framework,” in Proceedings
of the 3rd East European Workshop on Rule-Based
Applications (RuleApps 2009) Cottbus, Germany,
September 21, 2009, Gerd Wagner Adrian Giurca,
Grzegorz J. Nalepa, Ed., Cottbus, Germany, 2009,
pp. 21–30.

[9] G. J. Nalepa, S. Bobek, M. Gawędzki, and
A. Ligęza, “HeaRT Hybrid XTT2 rule engine
design and implementation,” Tech. Rep. CSLTR
4/2009, AGH University of Science and Technol-
ogy, 2009.

30

AN ADAPTABLE E-LEARNING SYSTEM FOR PUPILS
WITH SPECIFIC LEARNING DIFFICULTIES

Petia Kademova-Katzarova, Rumen Andreev, Valentina Terzieva

Institute of Information and Communication Technologies, Bulgarian Academy of Sciences

ABSTRACT

The education of pupils with learning difficulties is
very complicated due to great variety of their specific
cognitive abilities and psychological factors. It
requires the use of personalized learning facilities that
can help achievement of their learning goals. For that
reason we design an adaptable system for
development of tools on the basis of suitable
pedagogical methods and learning resources. The
system provides facilities for adaptation of learning
units to the learning profile of each pupil. The
substantial elements of this adaptation technique are
carried out by activities of the resource-developer.
The paper presents an approach to a description of
these activities supported by the adaptable system.
The adaptation bases on reusable learning units that
can be modified in correspondence with the learner’s
profile, learning context or scenario.

Index Terms – Learning difficulties, Cognitive
abilities, Learning style, Adaptation, Personalisation,
Reusable learning units

1. INTRODUCTION

There are many electronic educational systems but for
the purposes of school education almost nothing has
been done in this regard. Rarely as it may be, e-
learning can be found in secondary schools. However
teachers don’t utilise modern ICT in primary school.
Long ago children in kindergartens have been playing
on computers, but this interesting “thing” is not set to
work in educational process. The reason probably is
the difficulty of creating appropriate educational
products for young children, because their teaching
requires not only a mechanical "dumping" of useful
information and knowledge. The learning process is
much more complex and includes structured
presentation of the learning material in appropriate
form and appearance consistent with age and
background.

From another point of view, the education in
primary school comes across other important problem
– certain characteristics of the individuals might
hamper them to acquire basic skills such as reading,
writing, arithmetic. Many children still lag behind in
this early stage of their education not because they are
stupid or lazy (common labels), but because they have

a special way of perceiving and processing
information. These children do not receive teaching
adequate to their abilities, the education system
rejects them, and society loses specialists with
valuable qualities simply because the school failed to
discover and develop these qualities on time. Typical
examples are children with dyslexia (dyscalculia,
dysgraphia), with ADHS and ADS, even with autism.

2. PUPILS WITH LEARNING DIFFICULTIES

Dyslexia, dyscalculia, dysgraphia are disorders in the
development of school skills, which are classified in
the medical registers, though they are not diseases.
The perceiving of environment signals and their
processing in the brain shows a specificity that can
lead to some distortion of the information and to
confusion. For example, in contrast to other people
the dyslexics think mostly in pictures [6]. Every
thought, every idea and every emotion they “see” as a
three-dimensional image in their minds.
Consequently, they have problems with two-
dimensional symbols and signs which have to be
ordered or directed in a certain way to be deciphered
correctly. Letters with the same graphical
representation but different orientation are
confounded (N and Z, b and d). Words without a
picture image as prepositions or adverbs hamper
them. Therefore, the so-called “cultural techniques”
[3] – reading, writing, mathematical expressions are
difficult to handle.

3. AN OPPORTUNITY FOR SPECIAL
EDUCATION

According to state requirements such children should
be integrated together with the others, but they need
individual curricula, extra special trained teachers,
etc. The aim is to achieve individualization in the
teaching process, using pupil’s strong skills and
personal qualities, and through appropriate exercises
to support and develop the weak ones.

That is why these pupils with specific learning
(cognitive) difficulties need special education. It
could be achieved by development of e-learning
system [1] that has to ensure collaboration among all
the professionals involved in teaching, generation and
adaptation of learning facilities.

31

Table 1 Technological tools meeting psychological and pedagogical requirements for education of pupils with
learning difficulties

Table 1 gives an overview of the psychological,

pedagogical and technological requirements for the
education of pupils with specific learning difficulties.

4. CONCEPTUAL MODEL OF AN
ADAPTABLE E-LEARNING SYSTEM

The development of personalized e-learning facilities
requires design of adaptable e-learning system that
supports production and delivery of learning
resources. We suggest a conceptual model of such
adaptable e-learning system shown on Figure 1.

The basic elements in this model are the learner’s
profile, the pedagogical aspects, the resulting
pedagogical format and the appropriate learning units.

4.1.
4.2.

 The learner’s profile
The learner’s profile represents cognitive abilities and
psychological characteristics. It defines a learning
style and appropriate pedagogical methods and tools.
The determination of the cognitive abilities depends
on the following important characteristics, which are
derived during psychological testing:
• Memorizing (short term and long term memory),
• Attention,
• Concentration,
• Absorption capacity,
• Observing ability,
• Working capacity,
• Orientation, Coordination, Balance,
• Motor functions (fine motor skills),
• Communication skills,
• Handling abstract terms and symbols,

• Way of thinking – in terms (“sequential”) / in
pictures (“quasi parallel”).

Some significant psychological features that have
influence on the learning process are self-assessment,
imagination, patience, excitability and emotionality.
All these characteristics could be easily assessed by
computerized psychological tests. They should be in
the form of amusing games or entertaining tasks in
order to prevent stress and frustration, so that children
could do their best. The results and indicators are the
basis for the psychological profile of the pupil. This
profile determines the teaching style, methods and
tools which serve to arrange and to accomplish the
education process in the most appropriate way.

 The pedagogical room
The pedagogical room consists of pedagogical
methods and pedagogical tools that are in
correspondence with the learning style. The most
commonly used pedagogical methods are:
• Informational – the teaching is performed using

“instructions”. Key elements of this method are
the messages and the symbols.

• Phenomenological – the knowledge is build up
as an event. It is accepted and absorbed through
senses and emotions [7].

• Collaborative – this method is connected with
the socio-cultural environment. Thus knowledge
and skills are formed in a family, in a class,
communities, societies, ethnic groups, etc. The
knowledge and the skills are “passed over”, the
experience is shared. Games are typical example
of this educational approach.

Psychological Pedagogical Technological
Early screening and identification of
children with learning difficulties

Individual curricula, personal
teaching assistant

Tool for generation of computerized
psychological tests

Detection of cognitive abilities and
psychological characteristics

Close collaboration among all
professionals concerned with the
problem

ICT-based tools allowing collaboration

Defining of psychological profile
and learning style

Authoring tool enabling adaptation of
learning resources and building
personalized learning paths according
to learner’s preferences;

Suggestions for appropriate
pedagogical methods and formats:
teaching methods arousing interest
and catching attention; inducing an
emotional connection to the
learning matter; illustrative
representation of learning units

Incorporation of various instruments
for illustration (audio, video,
simulation, 3D-modeling, etc.)
contributing efficiency to education

Recommendations for learning
environment (comfortable, without
stress and frustration)

Relaxed and adaptable learning
environment enabling to bestow
various encouraging bonuses
(music, videos, games, etc.)

ICT-based adaptable user-friendly
environment (intuitive, language
independent, allowing tuning and
contextualization)

32

Subject Domain Learning Goals
Ps

yc
ho

lo
gi

ca
l T

es
t

Pedagogical Format

Cognitive Abilities:

strong / weak
Learner’s Profile

Pedagogical
Methods Learning Styles

Pedagogical Room

Pedagogical Tools

declares

de
te

rm
in

e

defines
detects

bu
ild

s

se
le

ct
s

supplied

adjusts

implemented

R e u s e a b l e L e a r n i n g U n i t s

New-Composed Units

supplied

us
ed

Existing Units Ready for Use
Unit

supplied

Local Specifics

Contextualization

Fine Tuning

Figure 1 Conceptual model of an adaptable e-learning system

Children with dyslexia are predisposed to learn

mostly by the phenomenological method as they can
observe the action and get a real idea of the
phenomenon. At the same time they can form an
emotional connection with the subject matter, which
helps focusing attention and supports the memorizing.

4.3.

4.4.

 The pedagogical format
The pedagogical format describes the way of
knowledge presentation in the learning units. It is
built on the basis of the selected pedagogical methods
and tools in compliance with pupils’ learning style.

 The learning units
The system allows access to learning units stored in
databases or repositories. These resources can be
modified, adapted and reused in a process of
composition of new learning units according to the
given pedagogical format [5].

According to the Figure 1, the psychological test
detects the strong and week points of cognitive
abilities that have to be underlined in the learner’s
profile. Subject domain contains knowledge about the
learning subject(s) (reading, writing, language,
mathematics, etc.). It gives the criteria for selecting
the appropriate personal features from the learner’s
profile. On that basis the learning style is determined

and the pedagogical methods and tools are chosen. As
above mentioned, those are the factors for building
the pedagogical format. The latter serves as a frame
for composing learning units. The activities regarding
constructing of pedagogical formats and learning
units are supported by the ICT-based authoring tool.
Considering the methodological recommendations
and employing the authoring tool, teachers create new
learning units, reuse the existing ones or edit, update
them and save for future application. Each learning
unit done according to the above described procedure
is contextualized with regard to the local specifics and
learner’s preferences. Thus, the composed unit is
ready for use.

5. FUNCTIONAL MODEL OF THE
E-LEARNING SYSTEM

The functional model of e-learning system can be
represented as composed of three parts [4] – the users,
the ICT platform and their interactions (Figure 2).
Some essential characteristics of the system are:
• To have sufficient technical tools in order to

meet the requirements for diverse presentations
of the learning matters including sounds,
pictures, movies, clips, animations etc.

33

USERS
Pa

re
nt

s

Pu
pi

ls

Pr
of

es
si

on
al

s

INTERACTION

Records of the learning process
(task – solution – attempts – errors)

E
va

lu
at

io
n

A
da

pt
at

io
n

In
fe

re
nc

e

Interaction Knowledge Base

ICT PLATFORM

Intention layer:
goals to be obtained

Conceptual layer:
methodology

Implementation layer:
authoring tool

Su
bj

ec
ts

Sk
ill

s

A
bi

lit
ie

s

T
ea

ch
in

g
M

et
ho

ds

L
ea

rn
in

g
St

yl
es

T
yp

e
of

E

xa
m

in
at

io
n

C
om

po
si

tio
n

Pr
es

en
ta

tio
n

Pe
rs

on
al

iz
at

io
n

Figure 2 Functional model of the presented e-learning system

• To allow access to appropriate tools for

modelling and design of 3D objects.
• To maintain data bases that contain learning

resources – learning units, learning facilities.
• To have user friendly design.
• To be flexible and adaptable.

5.1.

5.2.

 Users
Among the above mentioned essentials, such a
system must have very specific features and
characteristics that meet the requirements and
perform functions of different types of users:

1. Professionals (psychologists, pedagogues –
methodologists, teachers and speech
therapists),

2. Pupils,
3. Parents.

These types of users (PPP) exploit the facilities
of the system in different ways and in different
capacity and therefore they obtain different access
rights.

Pupils have access only to learning materials
and to some games and entertainment, which they
receive as bonuses and rewards in order to be
stimulated to deal with the material. It should be
noted that the stimulus should only be positive; i.e.
there shouldn’t be penalties.

Parents have access to the learning outcomes of
their children and in case they could support
children in their training. Also they can share ideas,

impressions and experiences in parental forums.
They can seek advices about problems concerning
the children’s training from the professionals.

Professionals have greater access rights to the
system. On the one hand, they must monitor the
training process in order to record and analyse the
mastering of learning material. Future steps in the
learning path are determined by these records and
analysis (adaptation). On the other hand, they also
participate in the forums – both professional and
popular. In the first case they share their problems,
ideas, solutions, tips, experiences, arrange
conferences. In the latter case, they give advices
and suggestions at "common level" in
communication with parents, who generally are not
experts in the matter.

 ICT platform
The ICT platform consists of three layers –
intentional, conceptual and implementation. The
intention layer presents learning goals that have to
be achieved and are built-in parameters of the e-
learning system. Those specify the knowledge,
skills and abilities (in one or several subjects) that
must be acquired, in compliance with the
government regulations.

The possible approaches to attain the learning
goals are presented in the conceptual layer.
According to the personal profile of the child the
appropriate pedagogical method(s) are selected and

34

implemented so as to achieve the learning goals
efficiently. Furthermore, this profile serves for
determination of the learning style and gives guide-
lines for the choice of relevant modes and forms of
the examination. The latter shouldn’t be distressful
and upsetting, but motivating the pupils to do their
be

s the self-
est

ented by the specially designed authoring
too

 learning units,
re r llowing aspects:

• nt types of media
ns),

•
o tion – language, custom,

o Fine Tuning – font, colour, ; etc.

sary
adaptations to the specific needs of the pupils.

st.
Methodologists consider motivation and

learner’s activity as the most important elements for
successful learning strategy. In order to awake the
children’s activity it is necessary to engage them in
the learning process, which could be done best
through the emotional connection with the learning
matter. Motivation can be provoked by presenting
the subject clearly and precisely so as to be
understood and absorbed quickly enough. Thus the
accomplishment of learning tasks with noticeable
results forces the motivation and heighten

eem and self-confidence of the child.
The implementation layer includes diverse

instruments that serve to gain the learning
objectives identified in the intention layer. Modern
technologies provide a huge range of capabilities to
assist to the full extent the creation of learning units
using different pedagogical formats. The latter are
implem

l.
Professionals use this authoring tool to compose

learning resources. It supports various functions –
development, structuring, reusing and adaptation of
learning units, so as to carry out different learning
courses and scenarios. In order to meet the
necessities of the pupils, determined by their
individual cognitive characteristics, the authoring
tool must allow adaptation of

ga ding the fo
• Volume,

Presentation (through differe
– illustrations, simulatio
Contextualization:

Content Localiza
traditions, etc.,

size

5.3. Interaction
The interaction part of the system contains a
database for every child's reactions (assigned tasks,
provided solutions, performed attempts, made
errors). On this basis, the professionals can
determine the level of the acquired knowledge and
infer how to continue the learning path. Besides the
above mentioned the system provides opportunities
to exchange information – opinions, ideas, plans,
experiences, tips – between the different type of
users on the one hand and among peers on the
other. Therefore the professionals outline and
arrange guidelines for both the further development
and assembling of learning units and any neces

6. AN EXAMPLE

The children with dyslexia (one of the common
learning difficulties) need visual representation of
every single conception in order to understand its
meaning. That is why they have difficulty with
prepositions, adverbs and similar words. Therefore
a phenomenological approach is applied for solving
such problems. The Davis’ method [2] is based on
this technique. It recommends following steps:
• clear and precise explanation of the selected

word;
• helping pupils to use this word in examples;
• motivating them to construct model(s),

representing their idea of the word.
The models could be either hand-made of plasticine
(clay), or formed using ICT-based tools (e.g.
Google SketchUp 6, TopMod3d, etc.). In addition
the modelled word has to be written. In this way the
child obtains an integral idea of the word: meaning,
image and spelling and is able to understand and
use it properly. The example on Figure 3 shows the
process of building the conception of the adverb
“backwards”.

Figure 3 “Backwards”

The child’s explanation was: “Four balls plus
one ball make five balls; ‘Backwards’ means the
opposite action”.

7. CONCLUSIONS

The presented e-learning system exploits
effectively ICT for gaining better educational
results for all pupils. Obviously, pupils with
learning difficulties have characteristics and
perceptions that distinguish them from the other
pupils. These differences vary in some extent and
cause specific knowledge processing. For that
reason such pupils demand personalized education.
It should be adapted to their individual cognitive
abilities and corresponding learning style. This
approach is of benefit for all the children as well,
but it is crucial for these with learning difficulties
as dyslexics.

On the other hand, the composition and
adaptation of learning units for learners who need

35

special education is very complicated and fatigue
process, which requires additional teachers’
abilities. Hence ICT-based authoring tools are
badly needed and of vital importance nowadays.
That is the reason for developing a system that
integrates ICT tools for:
• Collaboration between professionals,
• Facilities supporting the learning process,
• Creation, reusing and adaptation of learning

units.
Furthermore, the system performs a technique

for personalisation of learning units in
correspondence with the learners’ profile of each
pupil. All this activities integrated in such a system
not only make easier and optimize the teachers’
work, but contribute to achieving efficient learning
process.

8. REFERENCES

[1] R. Andreev, V. Terzieva, and P. Kademova-
Katzarova, “An Approach to Development of
Personalized E-learning Environment for Dyslexic

Pupils’ Acquisition of Reading Competence”,
International Conference CompSysTech’09. ACM
Series, vol. 433, 2009.
[2] Davis, R., The Gift of Learning. The Berkley
Publishing Group, USA, 2003.
[3] M. Kalmár, “Theorie und Praxis der
metaphonologischen Analyse”, mitSPRACHE 36,
(2), pp. 5-17, 2004.
[4] R. J. Keeble and R.D. Macredie, “Assistant
Agents for the World Wide Web Intelligent
Interface Design Challenges”, Interacting with
Computers, Elsevier, pp. 357-381, 12, 2000.
[5] R. Koper and B. Olliver, “Representing the
Learning Design of Units of Learning”,
Educational Technology & Society, pp. 97-111, 7
(3), 2004.
[6] Temple, R. Dyslexia: Practical and Easy-to-
Follow Advice. Element Books Limited,
Shaftsbury, Dorset, 1998.
[7] W. Iser, “The Reading Process: a
Phenomenological Approach”, The Implied Reader,
Johns Hopkins UP, pp. 274-294, Baltimore, 1974.

36

DECISION-MAKER-AWARE DESIGN OF DESCRIPTIVE DATA MINING

Benedikt Kaempgen

Karlsruhe Institute of

Technology (AIFB)

Karlsruhe, Germany

benedikt.kaempgen@kit.edu

Florian Lemmerich

University of Würzburg

Department of Computer Science VI

Würzburg, Germany

lemmerich@informatik.uni-wuerzburg.de

Martin Atzmueller

University of Kassel

Knowledge and Data Engineering

Group, Kassel, Germany

atzmueller@cs.uni-kassel.de

ABSTRACT

This paper presents two real-world case studies focus-
sing on descriptive data mining for decision-makers.
For that, we first propose a process-oriented design of
descriptive data mining that helps in describing and
performing such projects. Finally, we discuss impor-
tant lessons learned during the implementation of the
respective projects.

1. INTRODUCTION

With the implementation and collection of data in rou-
tine fashion, e.g., in industrial, medical, administrative
and social-web-based scenarios, the analysis and min-
ing of such accumulated data is of prime importance
for intelligent decision support. However, currently up
to 60% [1] of data mining projects fail. One problem
concerns the integration of the key stakeholders in data
mining projects, i.e., the decision-makers. They need to
be tightly integrated into the project, similar to the ac-
tual data mining engineers. Thus, in order to improve
the common understanding on goal, approach and out-
come a more transparent data mining process consid-
ering both developer team and decision-maker is rather
important.

In this paper, we consider two case studies: The
first one is concerned with the analysis of the success
and failures of (bachelor) student groups in order to
help decision support for improving the success rate
of individual curricula. The second one is concerned
with the evaluation of a web-based training system and
aims, e.g., at analyzing the outcomes of different study
groups and their learning differences.

We focus on approaches for obtaining descriptive
reports and descriptive data mining models, e.g., local
patterns and rules as actionable knowledge for decision
support. Descriptive data mining focuses on describing
the data by the discovered patterns and relations: In
contrast to predictive data mining no specialized model
is extracted (for later prediction or classification) but a
set of patterns and/or relations is mined for characteriz-
ing and describing the data and its hidden components.

In this context, the contribution of this work is three-
fold: First, we propose a process-oriented design for
describing and performing projects in the context of
decision-maker-aware descriptive data mining. Second,
since only few descriptions of successful data mining
projects that concentrate on decision-makers as well
as the development team are available, we present two
such case studies. Third, we discuss specific experi-
ences and lessons learned during the implementation of
the case studies. Altogether, it is our motivation to en-
able more successful descriptive data mining projects.

The rest of the paper is structured as follows: Sec-
tion 2 discusses related approaches. After that, Sec-
tion 3 presents the process-oriented design for describ-
ing and performing the case studies. Next, the im-
plemented case studies are described in detail. Sec-
tion 4 reports specific experiences and lessons learned
obtained during the implementation of the case studies.
Finally, Section 5 concludes the paper with a summary
and interesting directions for future work.

2. RELATED WORK

In the following, we describe related work that deals
with data mining design and implementations.

Process models provide an high level overview of
the input and output of required data mining tasks. Ac-
cording to Kurgan and Musilek [2] CRISP-DM [3] is
most prominently used in data mining projects. It con-
sists of six iteratively executed phases: Business Un-
derstanding and Data Understanding make sure that
the developer team has necessary background know-
ledge to deal with the problem of the decision-maker.
In Data Preparation the available data is transformed
for analysis, e.g., by selection, cleaning, construction,
transformation and integration. In the Modeling step
data mining techniques (algorithms) are applied to the
prepared data to extract information and knowledge.
In the Evaluation these results are evaluated, validated
and checked against the data mining objectives. Fi-
nally, in the Deployment phase the results are employed
for action, i.e., integrated into the respective processes
of the decision-maker.

37

Marbán et al. [1] discuss the evolvement of data
mining to an engineering discipline. They emphasize,
that successful projects take more than CRISP-DM’s
Development Processes: Organizational Processes in-
fluence the whole organization in which data mining
techniques are being used, e.g., continuous improve-
ment and training or establishing of an appropriate data
mining infrastructure. Project Management Processes
assure successful project planing, e.g., by continuous
communication with the decision-maker. Furthermore,
Integral Processes support the development, e.g., doc-
umentation or configuration management. Although
process models help developer teams and decision-ma-
kers to understand what to do in data mining projects,
they do not describe how it can be done.

In contrast, methodologies, e.g., Catalyst [4] fea-
ture step-by-step guidance to data mining. However,
as methodologies are more dependent on current tech-
niques and systems, they are difficult to keep up to date.

Most case studies describe how techniques and sys-
tems can be applied in a specific project and concrete
application domain. However, while many case studies
of data mining projects have been presented (e.g., [5]),
they are primarily used for demonstration of specific
tools, results or techniques and therefore are seldom
more generally applicable.

3. CASE STUDIES

In this section, we present two case studies. After pre-
senting the process-oriented design, we discuss each
one in detail.

3.1. Process-Oriented Design

Following Yin’s [6] recommendations for well-designed
case studies the purpose of the covered case studies is
thoroughly describing how descriptive data mining can
be successfully applied. As such the case studies are
aimed at readers with both some technical background
and business interest that consider data mining tech-
niques in a project.

3.1.1. Focused Roles

On the one hand the decision-maker intends to bene-
fit from data mining techniques. More precisely, the
decision-maker has access to raw data and expects de-
scriptive data mining techniques to extract information
suitable to support his decision(s). The needs of the
decision-maker are formalized as requirements.

On the other hand, the team of developers intends to
fulfill the specified requirements by applying descrip-
tive data mining tasks. The team usually consists of
three kinds of experts [7]: Data mining experts are fa-
miliar with data mining techniques and the respective
tools. Data experts offer thorough understanding of

available and useful data, e.g., the data representation
or the data acquisition process, while domain experts
hold knowledge of the application area.

3.1.2. Focused Processes

We focus on three components (see Figure 1 for an
overview): First, decision-maker processes are mainly
related to the decision-maker, considering his or her
specific needs. They include project definition, engi-
neering of data mining requirements and result presen-
tation. Second, developer team processes deal with
techniques and systems that enable the developer team
to fulfill the requirements and obtain useful results.
Third, organization processes cover functions shared
by different projects.

Fig. 1. Case Study Design w/ Information Flow

Decision Maker Processes Based on interviews with
the decision-maker and possible feasibility studies, the
developer team proposes a data mining approach to the
decision-maker’s problem in a Business Case document
written “in management terms” [4, p. 205] and asks for
his approval. The Business Case is a central document
for any data mining project. It should include the back-
ground and motivation of the project, an explicit state-
ment of the problem tackled by the project, a detailed
description of the current situation and available data,
recommended and alternative solutions, a project plan
with time and cost estimations and a glossary.

As decision-maker and developer team mostly have
different backgrounds, exact specification of suitable
project requirements is a tedious, however, an essential
task in descriptive data mining [8].

For that, the problem is restated in single “report-
ing type questions” [9] asking for attribute-value-pairs
in tabular form describing instances of an object. These
single Data Reports are then possibly analyzed further
by “deeper analytic questions” [9] asking for hidden
Data Patterns retrieved by techniques ranging from sim-
ple visualizations with diagrams or charts up to cluster-
ing or classification by machine learning algorithms.

38

To improve the decision-maker’s understanding of the
requirements both Data Reports and Patterns may be
illustrated by (fictional) examples. Additionally, possi-
bilities for evaluation might be given, e.g., background
information and other (secondary) data.

A Business Case is not a static document. In fact,
especially requirements will be exposed to constant
changes. These are mainly due to results from devel-
opment processes and have strong influence on the life
cycle of a data mining project. In a successful project
each requirement is fulfilled and documented in a Busi-
ness Story [4, p. 509].

Developer Team Processes By preparing a Data As-
say [4, p. 278] Business Understanding, Data Under-
standing and Data Preparation from CRISP-DM are im-
plemented. It involves a concise description of the raw
data, that is made available in a precisely specified tab-
ular form. Additionally, quality issues, for example
missing values, should be mentioned explicitly.

Data Preparation is done by making all neccessary
data available in a Data Warehouse. The team identifies
objects, attributes and relationships within the raw data
and integrates them in an entity relationship model. Fur-
thermore, data cubes are developed as a more subject-
oriented view, if required. Each cell within a data cube
can be described by shared attributes (dimensions) and
aggregated attributes (measures). From these data
cubes, a multidimensional model [10] is developed.

Next, the team creates Data Reports, which consist
of a query from the data warehouse and additional lay-
out information, e.g., a title or content explaining notes.
Additional information can also be included as seman-
tic annotations [11, 12], providing additional presenta-
tion possibilites and extended exchangeability. Based
on these reports the team applies data mining algorithms
to acquire Data Patterns specified in the requirements.
Both data reports and mined patterns are evaluated and
attached to the business story.

Organization Processes To support knowledge man-
agement between projects a standardized way of doc-
umentation is necessary. Instead of using single docu-
ments, we utilize a Knowledge Base, cf., [13], that sup-
ports references and more efficient searching. Based
upon these approaches, we have designed an object-
oriented documentation structure, that keeps track of
various objects, e.g., goals, tasks, results, tools and doc-
uments, and their relationships, and makes these crucial
experiences also available across different projects.

Also, a project can only be executed if an appro-
priate Infrastructure of hardware and software is avail-
able. For the different steps of our case study design
highly specialized software components are available.
For the Data Assay, for example, an ETL (Extraction,
Transformation, Loading) component can be used, while

implementing an entity relationship model or multi-
dimensional model and or effective querying through
SQL or MDX 1 is supported by specialized data ware-
house components. A data reporting component makes
it possible to customize data exports (CSV, ARFF) and
to create reports with flexible layout information in var-
ious formats (e.g., PDF, XLS). A data mining com-
ponent is able to read such exports and use data min-
ing techniques (e.g., diagrams, correlation coefficients,
subgroup discovery) on their data in order to make data
patterns accessible. Finally, a documentation compo-
nent supports web-based content management of ob-
jects, attributes and relationships.

The utilized documentation structure also provided
the necessary information for an extensive description
of the case studies.

3.2. Case Study I: Student Performance Evaluation

In the following, we describe the decision-maker pro-
cesses, the developer team processes, and the organiza-
tional aspects of the bachelor project.

3.2.1. Decision Maker Processes

In Germany, the introduction of standardized bachelor
degrees has been exposed to much criticism lately.

Therefore, for objective assessment on university
level an in depth analysis is needed. Basic analytic
questions to justify changes in the curriculum are for
example: “How do important measures of bachelor de-
grees evolve?”, “How do important measures of exams
evolve?” or “What performance do current students
achieve?”.

The raw data for this proejct was provided by uni-
versity administration. Since this data includes private
student data, it was very carefully selected and pre-
cautiously pseudonymized. The legal process for get-
ting permission to access the sensible data took several
months in total. The data includes information on:

1. Enrollment information, with the actual semester,
number of past semesters and degree of all bach-
elor students.

2. Exam information, with subject, number of achiev-
able credits, number of lecture hours per week
and the type of exam, e.g., module or submod-
ule.

3. Information about student performance in an exam,
with pass/fail status, achieved credits and mark.

4. Curricula information, that for each student sep-
arately defines categories to exams, e.g., obliga-
tory or compulsory.

1http://msdn.microsoft.com/en-us/library/aa216767(SQL.80).aspx

39

Exemplary requirements, on which the head of the
university faculty of (for example) biology, as a rele-
vant decision-maker and the developer team might have
agreed, is described as follows: As a Data Report, for
each current student of biology the starting semester,
number of past semesters, number of university seme-
sters, sum of credits, average credits per semester and
overall average grade should be presented. Addition-
ally, the last two measures should be provided for each
category of exam separately. As Data Patterns, for a
better overview the reports were to be sorted on the
number of past semesters and the sum of credits. Also,
the histogram of credit points acquired by all students
should be provided. This diagram was expected to re-
veal the number of very unsuccessful (and therefore
probable to fail) and very successful (e.g. students al-
ready going to university before the end of college) stu-
dents. Finally, student groups with low/high numbers
of semesters and particlarly bad/low marks were to be
discovered. This might extract information as “students
in their fifth semester have an average mark of 2.0, stu-
dents in their second semester have an average mark of
3.1, wheras all students have an average mark of 2.6”.

During project life cycle these requirements were
adapted several times. E.g., the formula for the compu-
tation of the overall average grade was not sufficiently
specified at the project start. Furthermore, highly de-
tailed requirements on the layout of result representa-
tions evolved. Since the utilized open source reporting
software could not sufficiently support these require-
ments, tailored project specific java programs were ad-
ditionally developed.

As part of the resulting business story the data re-
port was given to the heads of faculities and provided
insight into the overall student’s performance. The cre-
dit distribution indicated a credit threshold for likely-
to-fail-students suitable for an automatic warning sys-
tem, that proposes these students for an additional men-
toring program. Influences on student performance in-
dicators will be further enhanced in the future with more
information, e.g., survey answers, nationality, gender
or age. Such reasons might propose actions towards
a more adequate degree program. However, interpreta-
tions should be undertaken carefully. Students studying
two-subject bachelor degrees need less credits in each
subject and may indicate poor performance in compari-
son to others. Separating these student groups is issued
to a follow up project.

3.2.2. Developer Team Processes

The developer team first imported several CSV file ex-
ports from the university information system into the
data warehouse system. Based on that data, the team
developed an entity relationship model made of five
entities: Enrollment, person, exam, performance and
exam category, each further described by attributes and

relationships. Due to the complexity of SQL queries
required for the data mining tasks, the ER-model was
transformed into a multidimensional model. It con-
tained two data cubes, one of enrollments and one of
single performances.

Both an enrollment and a single performance are
described by the student, the semester, the number of
past semesters, the bachelor degree and an informa-
tion whether that student is still enrolled in the actual
semester. Each single performance is further described
by the status, the exam and the type and category of the
exam. For a data cell in the enrollment cube the number
of individual students and both the minimal and maxi-
mal number of past semesters can be calculated. For a
data cell of single performances the sum, number and
average mark and the sum of credits can be calculated.

Now the team created reports based on data queries
in MDX and specified layout informations according to
the requirements. Additionally, exports for tools spe-
cialized on advanced pattern discovery were created.
In this case distribution diagrams were created and sub-
group discovery tasks were performed.

3.2.3. Organization Processes

As infrastructure three separate computer systems (each
common 32-bit machines, 2 GHz, 2 GB RAM) were
used: On one workstation the team mainly used Pen-
taho Data Integration2 for the ETL processes and both
VIKAMINE3 and Weka4 for data mining. On a server,
MySQL and Pentaho Mondrian OLAP5 were used for
the data warehouse and Pentaho Business Intelligence
Platform6 was used for creating the data reports. As
knowledge base the team used Semantic MediaWiki7

on another server (for an overview, see Figure 2).

Fig. 2. Bachelor Infrastructure

The results of the project provided valueable in-
sights on the performance of the students, on an au-
tomated and on-demand basis.

2http://kettle.pentaho.org/
3http://www.vikamine.org/
4http://www.cs.waikato.ac.nz/ml/weka/
5http://mondrian.pentaho.org/
6http://community.pentaho.com/projects/bi_platform/
7http://www.semantic-mediawiki.org/

40

3.3. Case Study II: E-Learning system evaluation

Again, the processes centric to the decision-maker, the
developer team and the organization are discussed.

3.3.1. Decision Maker Processes

Students at the university of Wuerzburg are offered
exam-relevant case-based training courses. The ben-
efits of such a learning system need to be evaluated
regularly. Exemplary questions include: “What influ-
ence does learning with the system have on exam per-
formances?” or “How satisfied are users of the learning
system?”. User logs can provide useful data to answer
such questions:

1. Log data tracks information about users learning
with single cases. Each case execution consists
of questions each offering a single score that is
accumulated to a total score. The log data also
contains information on the usage of help func-
tions, e.g., asking for background information,
reading hints or taking a break. Furthermore, at
the end of most cases the user is asked for sys-
tem evaluation: A mark about the case and the
system and some textual feedback.

2. Meta information contains additional facts about
cases: The form of case evaluation and the time
the author expects a user to finish a case.

3. Exam results are available for some courses sup-
ported by case-based training.

Exemplary requirements can be described as fol-
lows: As a Data Report, for each exam result of a stu-
dent the number of processed cases, the overall time
used for learning with the system, the average overall
practice score and the mark and percentage of correct
answers in the exam are presented in tabular form. As
Data Patterns, correlations between the engagement of
the students with the system and their performances at
the exam should be discovered, e.g., using a scatter plot
and correlation coefficients. This requirement was ini-
tially expected to show a high influence of a student’s
effort with the system and his exam results, showing the
effectiveness of the system. While providing promising
results, however, no statistically significant correlation
was discovered, in contrast to expectations: This is pos-
sibly due to not considered influences on student per-
formances, e.g., present knowledge (level) of students,
and due to a limited availability of (external) exam re-
sults in the considered sample of data.

3.3.2. Developer Team processes

The developer team first imported the provided data
into the data warehouse system. This was a non-trivial
task, since some data was available in a semi-structured

form. Then, the team developed an entity-relationship
model made of eight entities: student, case, case ex-
ecution, evaluation, exam result, score, score action
and case action. A multidimensional model consist-
ing of three cubes was added for better querying. Each
cube is described by several partially shared dimen-
sions, e.g., student, case and date of execution. A case
action is further described by the time of action (be-
ginning and end of case execution) and the kind of
action (e.g., pause, case summary, link). A case exe-
cution is further described by the exam that execution
was relevant to. For a data cell of case execution ac-
tions the number and overall time of the actions can
be calculated. For a data cell of case executions can
be given e.g., the number of case executions, the av-
erage overall score, the overall time and the average
performance of corresponding exams. For a data cell
of scores the number of scores, the average score and
the average/overall time taken for viewing the question
and answer hints can be calculated. Similar to the bach-
elor case study, the developer team now designed data
reports and exports as stated in the requirements, e.g.,
correlation mining.

3.3.3. Organization Processes

The Organization processes were executed similar to
the bachelor case study. Both projects could not only
use the same knowledge base but basically rely on the
same infrastructure.

For examining the learning behavior of the students
using the CaseTrain system, the performed reports and
descriptive data mining results proved promising. There-
fore, similar data mining approaches will be implemen-
ted as routine mechanisms within the CaseTrain system
in the near future.

4. LESSONS LEARNED

From the case studies we could obtain several lessons
learned: The proposed methodology appears to be gen-
erally applicable: Both projects – though substantially
different in domain and requirements – were success-
fully finished; Data Reports in tabular form are flexible
enough to contain most kinds of information; from sim-
ple diagrams to sophisticated machine learning algo-
rithms – Data Patterns include the whole range of tech-
niques to retrieve knowledge from this preprocessed
raw data. Moreover, for most neccessary components
open source software is available.

More than 70% of development time was used for
the Data Assay and Data Warehouse. Changes to the
data structure, e.g., when adding new features, result in
significant additional work. Versionizing and refactor-
ing of raw data description and preprocessing steps that
get repeated several times would have been useful and
seem essential in bigger projects.

41

Intensive documentation obviously is crucial for
long-running data mining projects, especially if team
members change. By documenting not only the project
itself, but also sharing experiences and best practices,
e.g., on applied tools and techniques, the documenta-
tion of one project proved to be extremely helpful for
the other. Further cross-project benefits were achieved,
since both projects shared a common infrastructure of
hardware and software.

Legal aspects of a project should be addressed very
early in a project, since the reviewing of data privacy
issues and the integration of additional data can require
a substantial amount of time. For having several and
long running projects a framework of tools as used here
seem crucial due to synergistic effects. The projects
could be executed exclusively using open source sys-
tems. However, some components of current open-
source system showed to be insufficient to match project
requirements, e.g., highly specialized layouting of the
results. Specifically tailored scripts were suitable to
fill this gap. This combination of a tool suite for gen-
eral purpose tasks and additional project specific imple-
mentations seems to be well suitable to handle highly
specialized requirements.

5. CONCLUSIONS

This paper presented two case studies of successful de-
scriptive data mining projects in two different contexts,
i.e., the context of the analysis of university students
performance and in usage data evaluation of an e-learn-
ing system. We proposed a decision-maker-aware ap-
proach for descriptive data mining, and discussed im-
portant lessons learned. In the future, in order to fully
evaluate the decision-maker-awareness, retrieve general
best practices and finally develop a full-scale method-
ology for descriptive data mining we aim to apply our
design to further case studies in various domains.

6. ACKNOWLEDGEMENTS

Part of this work has been funded by the EU IST FP7
project ACTIVE under grant 215040, and by the Ger-
man Research Council (DFG) under grant Pu 129/8-2.
Furthermore, this work has been partially supported by
the VENUS research cluster at the interdisciplinary Re-
search Center for Information System Design (ITeG) at
Kassel University.

7. REFERENCES

[1] Oscar Marbán, Javier Segovia, Ernestina
Menasalvas, and Covadonga Fernández-Baizán,
“Toward Data Mining Engineering: A Software
Engineering Approach,” Information Systems,
vol. 34, no. 1, pp. 87 – 107, 2009.

[2] Lukasz A. Kurgan and Petr Musilek, “A Survey
of Knowledge Discovery and Data Mining Pro-
cess Models,” Knowl. Eng. Rev., vol. 21, no. 1,
pp. 1–24, 2006.

[3] Pete Chapman, Julian Clinton, Randy Ker-
ber, Thomas Khabaza, Thomas Reinartz, Colin
Shearer, and Rudiger Wirth, “CRISP-DM 1.0
Step-by-step Data Mining Guide,” Tech. Rep.,
The CRISP-DM consortium, August 2000.

[4] Dorian Pyle, Business Modeling and Data Min-
ing, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2003.

[5] Michael Brydon and Andrew Gemino, “Classifi-
cation Trees and Decision-Analytic Feedforward
Control: A Case Study from the Video Game In-
dustry,” Data Min. Knowl. Discov., vol. 17, no. 2,
pp. 317–342, 2008.

[6] Robert K. Yin, Case Study Research, Number 5
in Applied social research methods series. Sage,
Thousand Oaks, Calif. [u.a.], 4. ed. edition, 2009.

[7] Sarabot S. Anand and Alex G. Buchner, Deci-
sion Support Using Data Mining, Trans-Atlantic
Publications, 1998.

[8] Paola Britos, Oscar Dieste, and Ramón García-
Martínez, “Requirements Elicitation in Data Min-
ing for Business Intelligence Projects,” in Ad-
vances in Information Systems Research, Educa-
tion and Practice. 2008, pp. 139–150, Springer
Boston.

[9] Ron Kohavi, Llew Mason, Rajesh Parekh, and Zi-
jian Zheng, “Lessons and Challenges from Min-
ing Retail E-Commerce Data,” Mach. Learn., vol.
57, no. 1-2, pp. 83–113, 2004.

[10] Sergio Luján-Mora, Juan Trujillo, and Il-Yeol
Song, “A UML profile for Multidimensional
Modeling in Data Warehouses,” Data Knowl.
Eng., vol. 59, no. 3, pp. 725–769, 2006.

[11] Martin Atzmueller, Fabian Haupt, Stephanie
Beer, and Frank Puppe, “Knowta: Wiki-Enabled
Social Tagging for Collaborative Knowledge and
Experience Management,” in Proc. Intl. Work-
shop on Design, Evaluation and Refinement of In-
telligent Systems (DERIS), 2009, vol. CEUR-WS.

[12] Martin Atzmueller, Florian Lemmerich, Jochen
Reutelshoefer, and Frank Puppe, “Wiki-Enabled
Semantic Data Mining - Task Design, Evaluation
and Refinement,” in CEUR-WS 545, 2009.

[13] Karin Becker and Cinara Ghedini, “A Documen-
tation Infrastructure for the Management of Data
Mining Projects,” Information & Software Tech-
nology, vol. 47, no. 2, pp. 95–111, 2005.

42

VALIDATION OF A DATA MINING METHOD
FOR OPTIMAL UNIVERSITY CURRICULA

R. Knauf ∗

Ilmenau University of Technology
Faculty of Computer Science

and Automation
PO Box 100565, 98684 Ilmenau

Germany

Y. Sakurai, K. Takada, S. Tsuruta

Tokyo Denki University
School of Information Environment

2-1200 MuZai Gakuendai
Inzai, Chiba, 270-1383

Japan

ABSTRACT
The paper deals with modeling, processing, evaluat-
ing and refining processes with humans involved like
learning. A formerly developed concept called story-
boarding has been applied at Tokyo Denki University
to model the various ways to study at this university.
Along with this storyboard, we developed a data min-
ing technology to estimate success chances of curric-
ula. Here, we introduce a validation method for this
technology and its results. Further, we discuss chances
to improve these results by implementing a formerly
introduced learner profiling concept that represents the
students’ individual properties, talents and preferences
for personalized data mining.

Index Terms— modeling learning processes, sto-
ryboarding, data mining, validation

1. INTRODUCTION

Learning systems suffer from a lack of an explicit and
adaptive didactic design. University education is es-
pecially effected by this lack, because university pro-
fessors are not necessarily educational experts. One
way of didactic support is providing a modeling con-
cept for didactic design, which allows the anticipation
of the learning processes.

An explicit formal didactic design provides a firm
basis to verify and validate the didactics behind a learn-
ing process by knowledge engineering techniques such
as machine learning and data mining. A modeling
concept called storyboarding [1] has been developed
formerly as a means of modeling learning processes.
Besides providing didactic support, this semi-formal
model is setting the stage to apply knowledge engi-
neering technologies to verify and validate the didac-
tics behind a learning process. The verification may

∗This author performed the work while at Tokyo Denki University
and was sponsored by the Japan Society for the Promotion of Sci-
ence (JSPS) with an Award-Fellowship for Rainer Knauf (Fellow’s
ID S-08742) and the Research Institute for Science and Technology
of Tokyo Denki University.

include both logical consistency issues and formally to
check didactic issues. According to different learning
and teaching preferences, it includes alternative paths
and possible detours if certain concepts to be learned
need reinforcement. Using modern media technology,
a storyboard also plays the role of a server that provides
the appropriate content material.

By storyboarding, didactics can be refined accord-
ing to revealed weaknesses and proven excellence.
Successful didactic patterns can be explored by apply-
ing data mining techniques to the various ways stu-
dents went through a storyboard and their related suc-
cess. As a result, future instructors and students may
utilize these results by preferring those ways through
a storyboard, which turned out to be the most promis-
ing ones. In [2], a data mining technology, which al-
lows students to utilize mined ”experience” of former
students to compose curricula with an optimal success
chance, is introduced.

However, so far we did not have a practically
proven significance, that this method is appropriate.
The basic problem so far was the collection of data,
which has to be accumulated during a complete un-
dergraduate study, which needs a period of four years.
Meanwhile, we could gain a significant amount of data
to validate the technology.

The paper is organized as follows. Section 2 in-
troduces the storyboard concept including the present
state of the current development. Section 3 provides an
overview on our data mining technique to compose op-
timal curricula for university studies. In section 4, we
describe the available data. Section 5 introduces the
validation technology and provides its results. In sec-
tion 6, we outline a refinement of the technology and
section 7 summarizes the paper.

2. STORYBOARDING

Our storyboard concept was introduced in [1] und later
refined (see [2] for the latest version). A storyboard
is a nested hierarchy of directed graphs with anno-

43

tated nodes and annotated edges. Nodes are scenes or
episodes. Scenes are not further structured, episodes
have a sub-graph as its implementation. Also, there is
exactly one start node and one end node in each graph.
Edges specify transitions between nodes and may be
single-color or bi-color. Nodes and edges can carry at-
tributes.

A storyboard may be seen as a model of an antici-
pated reception process that is interpreted as follows.

Scenes denote a non-decomposable learning activ-
ity that can be implemented in any way, e.g. by the pre-
sentation of a (media) document, opening a tool that
supports learning (an URL or an e-learning system) or
an informal activity description. Episodes are defined
by their sub-graph. Graphs are interpreted by the paths,
on which they can be traversed.

A start node of a graph defines the starting point
of a legal graph traversing. An end node of a graph
defines the final target point of a legal graph traversing.

Edges denote transitions between nodes. There are
rules to leave a node by an outgoing edge, namely (1)
The outgoing edge must have the same color as the in-
coming edge by which the node was reached and (2) If
there is a condition specified as the edge’s key attribute,
this condition has to be met for leaving the node by this
edge. So the colors express the dependence of ways
leaving a node from the way of arriving there.

Key attributes of nodes specify application driven
information, which is necessary for all nodes of the
same type, e.g. actors and locations. Key attributes
of edges specify conditions, which have to be true for
traversing on this edge. Free attributes specify what-
ever the storyboard author wants the user to know:
didactic intentions, useful methods, necessary equip-
ment, e.g. For further information, the reader may see
[3] or [4].

3. CURRICULUM VALIDATION BY DATA
MINING

A basic objective of storyboarding is to use knowledge
engineering technologies on the (semi-) formal process
models [3] [4].

In particular, we aim at inductively “learning” suc-
cessful storyboard patterns and recommendable paths.
This is some sort of meta-learning, i.e. the learning of
learning knowledge. It is performed by an analysis of
the paths where former students went through the sto-
ryboard [2].

To show the feasibility and benefit of high level
storyboarding for its qualified assistance of students
suffering from the “jungle of opportunities and con-
straints” in university education, we developed a simple
prototype storyboard for curricula of a university study.

This prototype is used to validate curricula, which
are created or modified by the students in advance of

their study [4][2] based on the success of former stu-
dents, who went a similar path through their study.

For this purpose, we introduced a concept to esti-
mate success chances of curricula, which are composed
by students at the School of Information Environment
of the Tokyo Denki University in their curriculum plan-
ning class in the first semester. Along with the estima-
tion, the students also receive (1) a significance of the
provided estimation statement (according to the suffi-
ciency of the available data) and (2) a recommendation
for modifications of their plan with respect to an opti-
mal success chance.

For such curricula we developed a data mining
technique, which is applied to storyboard paths that
(former) students went. Based on these examples, the
success chance of intended paths can be estimated [2].

The data mining technique is applied to the paths of
students through a storyboard, which anticipates possi-
ble ways through a complete study.

In a pre-processing step to determine the paths, the
individually visited items (episodes and scenes) in the
storyboard graph-hierarchy are “flatten down” to a big
graph that contains scenes only. This is performed by
systematically replacing episodes by the individually
visited items of the episode’s related sub-graph.

In the granularity of this storyboard application, a
scene is a course that holds over one semester. As a
result, we have a linear list of course sets, in which
each list item is the set of courses that the student took
in the subsequent semesters.

The technique consists of two steps, namely (1)
constructing a decision from the examples of former
students and (2) applying this decision tree to the
planned curricula.

The decision tree is based on the concept of
bundling common starting sequences of the various
paths to a node of the tree. Different subsequent fol-
lowing (next) nodes of the paths will result in different
sub-trees right below the actual root on the last node of
the common starting sequence.

This continues for each lower level sub-tree accord-
ingly. If there are different paths with a common start-
ing sequence from the root to the actual root different
in the next (subsequent) nodes, related sub-trees will be
established.

The utilization or application of this decision tree is
performed as follows.

If a submitted path is already represented in the de-
cision tree, the prediction or estimation is very easily
done through presenting the average Grade Point Av-
erage (average of a numeric performance metric of a
student over all subjects, weighted by the number of
each subject) that students gained, who went exactly
this paths, too.

In the other case, the longest leading (starting and
its succeeding) part in common with the path represent-
ing the submitted curriculum plan will be identified and

44

code subject
1 Advanced Project A
2 Advanced Project B
3 Agent Technology
...

...
155 Workshop

Table 1. Subject list

the average GPA of all students’ paths in the sub-trees
that start from that point, will be presented as a success
estimation. Additionally, the degree of similarity and
a recommended change of the submitted path will be
presented. T he data mining technology is described
more detailed in [2].

4. DATA PREPROCESSING

We collected 188 individual storyboard paths of stu-
dents, who studied Information Environment at the
School of Information Environment of Tokyo Denki
University from 2005 till 2009.

From these samples, we removed two samples of
students, who joint the university after taking several
semesters elsewhere, because their marks were derived
by recognition of marks received in similar subjects at
another university. This led to 186 samples.

After collecting and studying all the samples and
organizational material rules to compose a curriculum,
which was available in Japanese only, we chose a com-
pact data representation by coding the particular sub-
jects and the particular students. Table 1 shows an ex-
tract from the subject coding list.

By using subject codes 1-155 and student IDs 1-
186, we composed a complete decision tree from the
186 samples.

To make sure that identical starting sequences of
semester curricula really end up in the same path, the
decision tree is well sorted: (1) the subject sequence
within a semester is sorted by ascending subject codes
and (2) the students samples are sorted by the code lists,
which are, compared element by element, ascending,
too. We adopted this technology from a similar tech-
nology, which is usually performed in data mining for
item lists to efficiently generate association rules.

Figure 1 shows an extract of the decision tree com-
posed by all the samples. For each student (coded by
his/her ID),

• each semester (columns s, with yellow-brown
background),

• the subjects (courses, columns c with light green
background),

• their number of units (columns u with light yel-
low background) and

• the achieved results (with light blue back-
ground), i.e. the mark (columns m: S, A, B,
C, D, or E) and the number of grade points
(columns GP: 4, 3, 2, or 0)

are listed up.

The last row contains a weighted (by the number of
units) grade point average GPA, which quantifies the
degree of success in the study. Again, both the subject
lists of the students within a semester and the complete
students’ samples (which are lists of lists), are sorted
by subject code. The bars between the paths show,
up to which semester the curricula of adjacent students
are identical (circles) respectively from which semester
they are different from each other (bullets). Thus, the
grey bars separate the sub-trees from each other.

The entire table has 42 columns and 1616 rows.
Figuratively spoken, the table illustrates the decision
tree in a horizontal direction wit the root being on the
very left hand side and the leaves being on the very
right hand side. The grey bars separate sub-trees from
each other.

Before applying the validation technology, we
found some “exotic samples” of students, who are not
representative. This applies to those students, who
never finished their study (as this was the case with
students 8, 11, 59, 97, 113, 118, 121 and 153) and re-
moved them because of incomplete data, i.e. 177 sam-
ples left. As a “learning curve”, in future validations,
we will leave at least those “dead end” paths in the set,
which are caused by a lack of performance.

Our validation technology uses an example set to
construct a decision tree and a test set to check its per-
formance. Both the example set and the test set are
recruited from the given samples.

Those storyboard paths, which are unique and do
not have anything in common with any other path, are
not appropriate for such a technology, because the test
set origins from the same source of data. If the test set
contained samples that do not have anything in com-
mon with any path of the decision tree, any data mining
can not really work because of missing data.

In practice, our data mining technology degenerates
to merge all paths of the decision tree and provides the
average degree of success of all former students.

Since this is not really a result of data mining, we
excluded such paths, which led us to 104 remaining
paths, which are used to validate the technology.

For practical use in the success estimation of new
paths submitted by students, however, we kept these
73 “lonely” paths, of course, because new paths may
be similar to them as well. In fact, any new path is
”lonely” when somebody goes it the first time, before
it may gain popularity and grow evolutionary towards
a sub-tree.

45

I

D
s c u m

G

P
s c u m

G

P
s c u m

G

P
s c u m

G

P
s c u m

G

P
s c u m

G

P
s c u m

G

P
s c u m

G

P

G

P

A

5 1 11 3 A 4 2 29 4 A 4 3 21 2 B 3 4 9 2 C 2 5 10 4 A 4 6 13 4 A 4 7 1 4 A 4 8 2 4 A 4 3,48

17 4 B 3 49 4 S 4 30 4 A 4 14 2 A 4 12 4 A 4 20 2 A 4 84 2 S 4

26 2 B 3 92 4 C 2 32 3 C 2 35 3 B 3 14 2 A 4 70 2 S 4

36 1 A 4 96 3 C 2 50 4 A 4 41 3 S 4 19 2 A 4 105 2 A 4

58 2 A 4 116 3 A 4 57 3 S 4 64 3 C 2 87 3 B 3 140 3 A 4

94 2 B 3 130 2 A 4 73 3 B 3 75 3 B 3 99 2 A 4 153 2 B 3

129 2 C 2 148 2 B 3 82 3 B 3 120 3 S 4

155 1 S 4 141 2 B 3 124 2 A 4

157 1 11 3 S 2 29 4 S 4 3 21 2 A 4 4 9 2 B 3 5 10 4 A 4 6 13 4 A 4 7 1 4 A 4 8 2 4 A 4 3,72

17 4 A 4 49 4 A 4 30 4 C 2 35 3 B 3 12 4 A 4 70 2 A 4

26 2 A 4 92 4 S 4 32 3 C 2 41 3 S 4 19 2 A 4 79 3 A 4

36 1 A 4 96 3 A 4 50 4 A 4 64 3 A 4 24 2 B 3 140 3 S 4

58 2 C 2 116 3 A 4 57 3 S 4 75 3 B 3 63 3 A 4 152 2 A 4

94 2 B 3 130 2 A 4 73 3 A 4 82 3 B 3 87 3 A 4 153 2 B 3

129 2 A 4 148 2 A 4 141 2 A 4 120 3 S 4

155 1 A 4 143 2 A 4

47 1 11 3 A 4 2 29 4 B 3 3 30 4 C 2 4 9 2 C 2 5 10 4 B 3 6 13 4 S 4 7 33 4 S 4 8 34 4 S 4 3,31

17 4 A 4 49 4 S 4 32 3 B 3 35 3 C 2 12 4 A 4 70 2 B 3 84 2 S 4

26 2 A 4 92 4 C 2 50 4 A 4 41 3 A 4 19 2 A 4 79 3 A 4

36 1 A 4 96 3 S 4 57 3 S 4 64 3 C 2 63 3 B 3 140 3 A 4

58 2 A 4 116 3 B 3 73 3 A 4 75 3 C 2 87 3 A 4 152 2 B 3

94 2 C 2 130 2 A 4 111 2 B 3 82 3 C 2 120 3 A 4 153 2 B 3

129 2 A 4 148 2 B 3 141 2 D 0 124 2 B 3

155 1 A 4 143 2 B 3

56 … 3,90

Fig. 1. Extract from the decision tree data

5. VALIDATION TECHNOLOGY AND
RESULTS

There are several approaches to validate data mining
technologies.

The holdout method splits the data into a training
set and a test set, typically in the ratio 2/3 by 1/3. The
data mining technology is applied to the training set
and validated with the test set. This method suffers
from the fact that it does not use the available data ex-
haustively. A sample, which is in the test set, is not
available for building the model (the decision tree, in
our case) and thus, decreases the performance of the
model. Thus, some performance features of the data
mining technology may not be revealed by such a test-
ing method. The splitting ratio is a trade off between
the quality of the model and a trustable statement about
the performance of the data mining technology.

Random sub-sampling is a refinement of this
method, which is a repeated holdout with various splits
of the available data and thus, uses the data a little more
exhaustively. However, there is no control on the issue,
how often a data object is used for building the model
and how often it is used for test.

A more exhaustive utilization of the available data
is done by cross validation. Here, each data object
is used for training with the same frequency and for
test exactly once. The data set is split into k equally
sized subsets. In k cycles, each subset is used for test,

stud. ID GPA GPA estimation difference
89 3.40 3.23 0.17

148 3,04 3,26 0,22
179 3,30 3,24 0,06
92 3,55 3,63 0,08

178 3,91 3,40 0,51
164 3,29 3,71 0,42
177 3,52 3,60 0,08

...
...

...
...

Table 2. Validation results

whereas the the other k − 1 sets is used for training.
The leave one out approach is a special case of

cross validation with k being the number of data ob-
jects and makes the most exhaustive use of the data.

Finally, we used this approach to validate our data
mining technology. In 104 cycles, we removed one
path from the complete decision tree and used this sam-
ple to check the remaining decision tree.

As a result, we received a list of all the 104 samples
along with their original GPA and the GPA as estimated
by the data mining technology as shown in Table 2. The
mean of the difference between both was 0.43 with a
standard deviation of 0.30.

Having in mind that this result is just based on a sta-
tistical analysis of former students’ curricula and their
related success, an average error of 0.43 grade points is

46

not too bad and promises remarkable results, when the
learner’ individual characteristics are also included in
the data mining technology.

6. PERSONALIZED DATA MINING AND ITS
REALIZATION

Individual learning plans should not only be based on
the success of former students who went similar ways.
Additionally, individual properties, talents and prefer-
ences should be considered.

For example, some students are more talented for
analytical challenges, some are more successful in cre-
ative or composing tasks, and others may have an ex-
traordinary talent to memorize a lot of factual knowl-
edge. Consequently, we need to include individual
learner profiles to avoid lavishing the students with sug-
gestions that don’t match their individual preferences
and talents.

In [5], we introduced an approach of personalized
data mining. This approach adopts the GARDNER’S
theory of multiple intelligences [6] and the learning
style model of FELDER and SILVERMAN [7]. The as-
sumption behind this approach is that there is a link
between

• typical “competence traits” (according to GARD-
NER) and subjects that typically challenge the
one or other “kind of intelligence” more than oth-
ers and

• typical teaching methods (according to FELDER
and SILVERMAN) and subjects that are typically
taught with these methods.

According to [5], the next steps of collecting and pro-
cessing data to integrate this technology, are (1) the ap-
praisal of the learner profile introduced in [5] for the
very best students in each subject, (2) the derivation a
typical “success profile” for each subject, (3) the esti-
mation of learner profiles for all students as a (by suc-
cess degree) weighted average success profile of the
subjects they took, and (4) the application of the same
technology to the data of “personalized” decision trees
for each learner, which are composed by samples of
learners, which have a similar learner profile.

The appraisal of the GARDNER - like items in the
learner profile can be performed by a questionnaire,
which derives an estimation of a human’s intelligence
distribution by his/her answers on 70 questions. This
questionnaire is available to the public in the Internet
as a downloadable Microsoft Excel file.1

The FELDER-SILVERMAN - like items of the
learner profile can be estimated by a questionnaire as
well. This questionnaire is also available to the public
in the Internet.2

1see http://www.businessballs.com/howardgardnermultiple. . .
. . . intelligences.htm

2see http://www.engr.ncsu.edu/learningstyles/ilsweb.html

attri- attribute description value range
bute
d1 Linguistic intelligence 0 ≤ v1 ≤ 1
d2 Logical-mathematical

intelligence
0 ≤ v2 ≤ 1

d3 Musical intelligence 0 ≤ v3 ≤ 1
d4 Bodily-kinesthetic intelli-

gence
0 ≤ v4 ≤ 1

d5 Spatial intelligence 0 ≤ v5 ≤ 1
d6 Interpersonal intelligence 0 ≤ v6 ≤ 1
d7 Intrapersonal intelligence 0 ≤ v7 ≤ 1
d8 Active vs. Reflective style 0 ≤ v8 ≤ 1
d9 Sensing vs. Intuitive style 0 ≤ v9 ≤ 1
d10 Visual vs. Verbal style 0 ≤ v10 ≤ 1
d11 Sequential vs. Global style 0 ≤ v11 ≤ 1

Table 3. Derived Learner Profile

We consider both in our model, which is defined as
an array of 11 attribute-value pairs that contains 7 intel-
ligence attributes and 4 learning style attributes. Both
can be appraised by questionnaires that are available to
the public in the web.

To make the dimensions of both sources compara-
ble to each other and see the quantitative relations, we
normalized them in a way that they all have the same
range of values. The intelligence dimensions rage from
10 to 40. The learning style dimensions range from -
11 to +11 (opposite algebraic sign for opposite styles).
The normalization can be done by

• v = result/40 for the intelligence dimensions
according to GARDNER and

• v = (result + 11)/22 for the learning style di-
mensions accodrding to FELDER and SILVER-
MAN.

Finally, our learner model looks as shown in Table 3.
However, it turned out to be very hard to find for-

mer students, who are still accessible and, moreover,
willing to fill in such questionnaires to obtain their
learner profiles. Our students are very sensible in re-
specting privacy and, vice versa, in expecting the same
respect from others. Since answers to the questions in
the questionnaire may reveal some private issues, it is
hard to ask them to answer these questions.

However, there are some students, who we dare to
ask for filling in the questionnaires because they had a
quite confidential relation to the one or other professor,
but these students are not necessarily the best ones.

Therefore, steps one and two of this plan need to
be changed. To infer a typical ”success profile” of a
subject, we can collect the questionnaire answers be
some student, which are not necessarily the best ones.

Thus, we modified the approach of computing
an ”average profile” of the best students towards a

47

”weighted average profile” of all available students,
who took part in a particular subject.

Let L(s) be the set of learners, who took part in the
subject s and for who a learner profile can be composed
from the questionnaires’ answers. So for each learner
li ∈ L(s), i = 1...|L(s)|, a learner profile p(li) =
[di

1, d
i
2, · · · , di

11 is available. Let

succi
s =

1.00 , if li received in subject s mark S
0.80 , if li received in subject s mark A
0.60 , if li received in subject s mark B
0.40 , if li received in subject s mark C
0.20 , if li received in subject s mark D
0.00 , if li received in subject s mark E

be the success degree of the learner l1i in subject s.
By using this success degree as a weight factor, the

“typical success profile” of a subject s can be computed
as

p(s) =
1

|L(S)|∑
i=1

succi
s

∑|L(s)|
i=1 (succi

s ∗ di
1)

∑|L(s)|
i=1 (succi

s ∗ di
2)

...
∑|L(s)|

i=1 (succi
s ∗ di

11)

This calculation has to be done for each subject sepa-
rately and the set of “most successful students” differs
from subject to subject, of course. The idea behind is
to mine a “typical success profile” for each subject sep-
arately.

After performing these computations, steps three
and four can be conducted as planned originally and de-
scribed in [5]. As a result of processing this additional
data in the way sketched above, we expect a remarkable
improvement the performance compared to the results
presented in section 5.

7. SUMMARY AND OUTLOOK

The research reported here is focused on modeling,
processing, evaluating and refining processes with hu-
mans involved like learning. A formerly developed
concept called storyboarding is briefly introduced.

Along with a storyboard application, we developed
a data mining technology to estimate success chances
of curricula, which are composed by students. So far,
there was no practical significance for the performance
of this technology.

The basic problem so far was the collection of data,
which has to be accumulated during a complete under-
graduate study of, which needs a period of four years.
Meanwhile, we could gain a significant amount of data
to validate the technology.

By cross validation with the available data, we
could empirically show performance of our data min-
ing technology.

However, the currently implemented way of statis-
tically analyzing all former students’ curricula ignores
the fact that the success chance heavily depends on in-
dividual properties.

A formerly developed approach to validate curric-
ula personalized by building the decision tree based on
former students with a similar learner profile only, was
refined here. This was necessary, because the required
personal data is not available.

As a result of practically implementing this re-
fined approach, we expect a remarkable improvement
of these results.

8. REFERENCES

[1] K.P. Jantke and R. Knauf, “Didactic design though
storyboarding: Standard concepts for standard
tools,” in Proc. of 4th Int. Symposium on Infor-
mation and Communication Technologies, Work-
shop on Dissemination of e-Learning Technolo-
gies and Applications, Cape Town, South Africa.
2005, ISBN 0-9544145-6-X, pp. 20–25, New
York: ACM Press.

[2] R. Knauf, R. Böck, Y. Sakurai, S. Dohi, and S. Tsu-
ruta, “Knowledge mining for supporting learning
processes,” in Proc. of the 2008 IEEE Int. Con-
ference on Systems, Man, and Cybernetics (SMC
2008), Singapore. IEEE, Piscataway, NJ, USA,
2008, IEEE Catalog number CFP08SMC-USB,
ISBN 978-1-4244-2384-2, Library of Congress:
2008903109, pp. 2615–2621.

[3] R. Knauf, Y. Sakurai, S. Tsuruta, and K.P. Jantke,
“Modeling didactic knowledge by storyboarding,”
Journal of Educational Computing and Research,
vol. 42, no. 4, pp. in press, 2010.

[4] Y. Sakurai, S. Dohi, S. Tsuruta, and R. Knauf,
“Modeling academic education processes by dy-
namic storyboarding,” Journal of Educational
Technology & Society, vol. 12, no. 2, ISSN 1436-
4522 (online) and 1176-3647 (print), pp. 307–333,
April 2009.

[5] R. Knauf, Y. Sakurai, S. Tsuruta, K. Takada, and
S. Dohi, “Personalized curriculum composition by
learner profile driven data mining,” in Proc. of the
2009 IEEE Int. Conference on Systems, Man, and
Cybernetics (SMC 2009), San Antonio, TX, USA,
2009, ISBN 978-1-4244- 2794-9, pp. 2137–2142.

[6] H. Gardner, Frames of Mind: The Theory of Mul-
tiple Intelligences, New York: Basic Books, 1993.

[7] R.M. Felder and L.K. Silverman, “Learning and
teaching styles in en-gineering education,” Engi-
neering Education, vol. 78, no. 7, pp. 647–681,
1988.

48

Part II

First International Workshop on
Evolution Support for Model-Based
Development and Testing (EMDT2010)

49

50

Preface
Welcome to the First International Workshop on Evolution Support for Model-Based Development and Testing
(EMDT2010), September 16, 2010, Ilmenau, Germany.

History The workshop continues a series of successful workshops on software evolution on the national level:
Object-orientation, Reengineering and Architecture ORA2006 and ORA2007, Model-driven Software architecture
– Evolution, Integration and Migration MSEIM 2008 and MSEIM 2009. With EMDT2010 we wanted to extend
the series on an international level to integrate it with a wider community.

Motivation The growing size and complexity of modern systems is one of the major reasons for the adaptation of
model-based development and testing techniques. There is an increase in academic and industrial interest in model-
based and model-driven development in recent years. However, the rapid evolution of systems due to changing
requirements and technological advancements is still a challenge for practitioners and researchers. The goal of this
workshop is to identify the key challenges, research questions and ideas for the support of evolution in software
development and testing. With EMDT2010 we intended to bring together the industrial practitioners and academic
researchers to exchange their experiences and ideas.

Topics of Interest Topics of interest for the workshop include but are not limited to:

• Architectural design methods supporting evolution and evolvability
• Model-driven software evolution and maintenance
• Traceability from requirements models to design and test models
• Model-based reengineering and refactoring for evolution support
• Model comparison and impact analysis
• Model transformation for test generation
• Model-based testing, validation and verification
• Model-based test specification
• Test model evolution and regression testing
• Model-based test processes
• Evolution support for system management
• Tool support for model-based development and testing
• Case studies and application of model-based development and testing
• Experiences of using models and relating models with their applications in the real-world development

process.

Workshop Format & Facts To enable interaction and discussion between the participants, the workshop was
held in two parts. First, the full papers and invited talks were presented including a short discussion after each
presentation. In the second part, short position statements were given, to initiate a focussed discussion with all
attendees on key challenges, research questions and ideas for the support of evolution in software development and
testing.

There were six submitted full papers. The reviewing process was performed anonymously with three peer
reviews per submission. We could accept three full papers. This results in an acceptance rate of 50% for full
papers for EMDT2010. Furthermore, we had one invited talk with an additional paper. Moreover, it was a great
pleasure to have Prof. Bernd-Holger Schlingloff from Humboldt University, Berlin, Germany as a keynote speaker.
During our workshop we had a number of 12 participants, which contributed to our discussion

Acknowledgement We would like to thank the contributors to the workshop for making this workshop possible –
the authors for their submissions, the speakers for their presentations. We would like to express our special thanks
to the program committee members for their extensive feedback in the reviews, which contributed to high quality
level of the discussions. We also thank all participants for their comments in the discussions and the organizers of
the umbrella conference IWK for their support in organizing the workshop.

Ilmenau, September 2010 Stephan Bode
Qurat-Ul-Ann Farooq

Matthias Riebisch

51

Organizing Committee
Stephan Bode, Ilmenau University of Technology
Qurat-Ul-Ann Farooq, Ilmenau University of Technology
Matthias Riebsich, Ilmenau University of Technology

Program Committee
Stephan Bode, Ilmenau University of Technology, Germany
Steve Counsell, Brunel University, UK
Zhen Ru Dai, Hamburg University of Applied Science, Germany
Qurat-ul-Ann Farooq, Ilmenau University of Technology, Germany
Peter Hänsgen, Intershop AG, Jena, Germany
Wilhelm Hasselbring, University Kiel, Germany
Zohaib Zafar Iqbal, Simula Research Labortries, Norway
Norbert Klein, Capgemini sd&m Research, Germany
Michael Mlynarski, University of Paderborn, Germany
Naouel Moha, INRIA, University of Rennes, France
Ilka Philippow, Ilmenau University of Technology, Germany
Matthias Riebisch, Ilmenau University of Technology, Germany
Bernd-Holger Schlingloff, Humboldt University, Germany
Detlef Streitferdt, ABB Corporate Research, Ladenburg, Germany
Mario Winter, University of Applied Science (FH) Koeln, Germany
Tao Yue, Carleton University, Canada
Justyna Zander, Fraunhofer Fokus, Germany & Harvard University, USA
Steffen Zschaler, Lancaster University, UK

Cooperative Organizations
The workshop was organized in cooperation with the SIG OOSE of the German Computer Society GI and with
ACM/SIGSOFT.

It was held as part of the umbrella conference 55th International Scientific Colloquium (IWK2010), September
13-17, 2010, Ilmenau, Germany.

52

KEYNOTE:

MODEL-BASED SOFTWARE DEVELOPMENT – PERSPECTIVES AND
CHALLENGES

Bernd-Holger Schlingloff

Humboldt University
Kekuléstr. 7, 12489 Berlin, Germany

ABSTRACT

Model-based software development and testing has turned out to be the method of choice for safety-critical em-
bedded systems. An abstract model reflects requirements and environmental conditions for the system. Such a
model can be used in two ways—as a development model in a stepwise refinement process to derive the actual
implementation, or as a testing model in order to derive test cases for some system under test. In this talk we
discuss commonalities and differences between development models and testing models, discuss the formalization
of requirements in models, and show how to automatically evaluate observations about a system with respect to a
model. We illustrate our ideas with examples from aerospace, automation and medical devices. Finally, we discuss
some recent trends and challenges in the area of model-based development and testing.

53

54

(INVITED TALK)

AGILITY VS. MODEL-BASED TESTING: A FAIR PLAY?

Baris Güldali, Michael Mlynarski

Software Quality Lab (s-lab), University of Paderborn

Warburger Str. 100, 33098 Paderborn/Germany

{bguldali,mmlynarski}@s-lab.upb.de

ABSTRACT

Agile manifesto defines principles for a light-weight

software development process aiming at an improved

customer satisfaction. Automated testing plays an

important role in fulfilling these principles, because it

enables efficient execution of test scripts for checking

the quality of delivered software. However, the

implementation and the maintenance of the test scripts

can be very tedious and error-prone. In order to deal

with that, model-based testing extends the automated

test execution by test design and test implementation.

Thus, model-based testing can speed up the test

automation and improve the maintenance of test

scripts. Nevertheless, introducing model-based testing

requires some initial and some continual efforts, like

creating test models, buying or developing tools, etc.

In this talk, we will discuss how model-based testing

can support agile development without conflicting

with the principles of agile manifesto.

Index Terms - Agile manifesto, Automated testing,

Model-based Testing

1. INTRODUCTION

As the complexity of software rises, novel software

development techniques are required in order to cope

with the technical and the organizational challenges in

the development process. Model-based software

development (MBSD) proposes using abstract models

for better communication, for maintainable software

specification and for efficient code generation. In this

context, model-based testing (MBT) proposes using

models for automating some of the testing activities,

e.g. test case generation, evaluation of test results,

which are tedious and error-prone tasks if they are

manually done. In order to profit from model-based

techniques in development process, however, some

efforts must be expended, e.g. for introducing tools,

for training developers and testers, for creating and

maintaining models, etc. That is why MBSD is said to

be a “heavyweight” technique for creating better

software.

In contrast, agile manifesto [1] proposes a “light-

weight” development process where (1) individuals

and interactions are favored over processes and tools,

(2) working software is favored over comprehensive

documentation, (3) customer collaboration is favored

over contract negotiation and (4) responding to

change is favored over following a plan [1]. However,

in the practice, these principles are likely to be misin-

terpreted such that developers often neglect docu-

menting customer requirements properly. Frequently,

this leads to chaos in the development process and to

conflicts during the delivery and acceptance. Thus, it

is a challenge to follow the principles of agile mani-

festo and thereby not to lose sight of the proper docu-

mentation and communication of customer needs and

of the efficient and effective development.

We believe that, model-based techniques can help

in dealing with these challenges. In the rest of paper,

we will discuss how agility and model-based paradigm

fits together. Thereby, we will mainly focus on the

integration of model-based testing in agile develop-

ment process as an enabling technology for the prin-

ciples of the agile manifesto.

2. AGILE MANIFESTO

In 2001 seventeen software experts, who have

introduced well-known agile methods (e.g. Scrum,

Test driven Development (TDD), Extreme

Programming (XP) etc.) have defined common

principles for a lightweight development process. The

new development paradigm should be an alternative to

documentation-driven, heavyweight software

development processes. They called these principles

“agile manifesto”. Agile manifesto includes the

following principles (based on [1]):

1. Customer satisfaction: The highest priority in

agile development has the customer satisfaction,

which can be achieved by early and continuous

delivery of valuable software. This principle has

the highest priority in agile manifesto. All other

principles serve to achieve this goal.

2. Fast adaptation: In agile development,

requirements changes of the customer are

55

welcome, even in the late phases of the

development. The flexibility in agile processes

enables changes in software for assuring the

customer's competitive advantage.

3. Frequent delivery: For customer satisfaction, it is

important to show that the development process

makes progress. For showing this to the customer,

deliver new versions of software frequently.

Define together with the customer what

“frequent” means. The time slots can range from

a couple of weeks to a couple of months. Try to

keep the time slots as short as possible, because

frequent delivery leads to frequent feedback.

4. Close collaboration: For achieving fast

adaptation and frequent delivery, it is important

to understand customer’s business needs and

consider them during the development

continuously. For that, business people and

developers must work together every day

throughout the project.

5. Motivated members: Identify motivated team

members who can push on the project. Provide

them with the resources they need and support

them while getting the job done.

6. Conversation: For achieving fast adaptation and

frequent delivery, besides close collaboration

with the customer, also the efficient

communication between team members is

important. The most efficient and effective

method of exchanging information is face-to-face

conversation.

7. Working software: Supply the customer with

working software which is the main measure of

progress. Delivering working software is

indispensible for customer satisfaction.

8. Sustainable development: Agile processes

promote sustainable development.

9. Constant pace: The customers and developers

should be able to keep a constant pace for the

whole time of project.

10. Good design: Continuous awareness for technical

quality and good design improves agility.

11. Simplicity: Simplicity is crucial, which means that

the amount of work to be done should be kept

minimal.

12. Self-organization: Motivate team members to

organize themselves.

13. Reflection: Motivate team members to reflect

their experiences at regular intervals. Team

members should discuss on how to improve the

effectiveness and the efficiency in team and

should suggest improvements accordingly.

Existing agile methods aim at enabling these prin-

ciples. For example, Scrum promotes the close colla-

boration of customer or product owner at identifying

software functionalities to be implemented in the next

development cycles [4]. TDD advocates continuing

programming until all predefined test cases are passed

[1]. Since test cases are seen as specification, the re-

sulting software is assumed to be correct with respect

to the specification. Test automation plays in impor-

tant role in agile methods supporting an efficient and

effective development process. Having different fo-

cus, agile methods mostly should be combined in or-

der to fulfill all principles of agile manifesto.

3. MODEL-BASED TESTING VS. AGILITY

We believe that model-based techniques can help in

combining the different tasks in agile development by

using abstract models as primary development

artifacts. Models can support communication between

team members and customers, documentation of

customer requirements and design decisions and

automation of code generation and testing. Thus,

model-based techniques can enable an integrated

development throughout the whole project. As next,

we want to focus on how the documentation of

customer requirements and their validation can be

supported by model-based testing while following

principles of agile manifesto.

3.1. Model-based Testing

With the emerging popularity of model-based

software development, the usage of models in

software testing is also desired. There are several

definitions of model-based testing (MBT) in the

literature, but the common understanding is that MBT

is “the automation of test design of black-box tests”

[2]. Therefore, MBT uses abstract models (test

models) of the system under test (SUT) or its

environment as the source for test generation. In

addition to models of SUT and the environment, also

the testware itself can be modeled [3].

There are three main advantages of MBT, which

make this technique interesting: a) enabling high cov-

erage, b) need for lower effort and c) enabling early

testing. Because MBT uses sophisticated algorithms

and tools for automatic test generation, far more test

cases than while manual testing can be generated. This

way a very high coverage of the system specification

and/or requirements can be reached. While test cases

are not designed and implemented manually anymore,

the effort for this task is significantly low. This works

under the assumption that the modeling effort is lower

than the manual test design activity. Last but not least

the early creation of test models supports the valida-

tion of requirements even before the system is imple-

mented.

3.2. MBT as a technical enabler for Agility

Using MBT, the requirements can be captured and

communicated in form of models. Unified Modeling

Language (UML) provides many types of visual

diagrams for describing the desired structure and

behavior of software. Most of the diagrams have a

quite simple syntax and fairly clear semantics such

that customer and developer can easily learn how to

56

express their requirements more precisely, thus

enabling the principle close collaboration. The

changes in requirements can easily be made on the

already created models, thus improving fast

adaptation. Models can also support the conversation

between team members, where the results of a

discussion can be edited into the models immediately.

Also the simplicity principle can be supported by

models by using the abstraction, modularization and

decomposition features of modeling.

There are different scenarios for creating and using

models in MBT [9]. While some scenarios propose

sharing models (one model for test team and devel-

opment team), some scenarios require separated mod-

els (one models for each test and development team

respectively). Using shared models can support close

collaboration, face-to-face conversation and simplici-

ty. However, if same models are used for development

and testing, specification errors cannot be found [9].

Using separate models makes the teams for develop-

ment and test more independent and enables finding

specification errors, thus assuring working software.

Models having a well-defined syntax and semantics

can be handled by computers, which obviously bring

efficiency into the test process. The state-of-the-art

modeling techniques support creating good design.

Depending on the context of development, formal or

semi-formal notations can be used. The more formal

the models are, the better automatable are the test ac-

tivities. Especially the automation of the test design

task, which is the most costly and time consuming part

in testing [5], leads to more efficiency. Test automa-

tion is the key for assuring working software, frequent

delivery, sustainable development and constant pace.

Within MBT several coverage criteria for selecting

test cases can be used. One possibility is to cover the

customer requirements, which directly correlates with

several agile principles. The customer satisfaction and

close collaboration principles are supported by refin-

ing and understanding customer requirements while

modeling them and showing that those requirements

were successfully tested. The usage of different selec-

tion criteria and possibly combining them leads to

higher defect detection rate and therefore facilitates

working software. Due to changeable coverage criteria

and automated test case generation, the test team can

conduct different testing scenarios and gain expe-

rience for further development cycles and projects.

This flexibility and configurability of MBT enables

reflection in agile development.

4. A FAIR PLAY?

As discussed in the last section, MBT can definitely

enable many principles of the agile manifesto. The

main advantage of MBT for the agile world is the

usage of models as primary artifacts and the automa-

tion of several test activities. This way MBT fits very

well with agility!

However, MBT is not for free. Introducing MBT

into the agile development process requires some ini-

tial and continual efforts as discussed in [6] and [7].

These include:

 Training team members for modeling

 Buying or developing modeling tools

 Buying or developing test drivers and test

adapters

 Defining modeling notations and test selection

criteria

 Creating and maintaining models

 Eventually extending generated test cases by

test data

 Eventually evaluation of test results

At first sight, these efforts seem to be not propor-

tional to the lightweight development purposes of

agile manifesto. However, test automation is an indis-

pensible part of agility enabling the efficient and ef-

fective process. Fewster and Graham said in 1999 that

“automating chaos just gives faster chaos”. MBT is an

attempt to make test automation more systematic,

more maintainable.

In this paper, we have discussed how agility and

MBT conceptually fits together. A concrete approach

for combining agility and MBT can be read in [8].

There, we have described a concrete approach includ-

ing tool support for integrating MBT into Scrum.

5. REFERENCES

[1] Beck, K. et al.: Manifesto for Agile Software De-

velopment. Online resource at agilemanifesto.org

(Last visited: 29.07.2010)

[2] Utting, M. and Legeard, B.: Practical Model-

Based Testing: A Tools Approach, Morgan Kauf-

mann, 2007

[3] Baker, P. et al.: Model-Driven Testing: Using the

UML Testing Profile, Springer Verlag, 2008

[4] Schwaber, K., and Beedle, M.: Agile Software

Development with Scrum, Prentice Hall, 2002.

[5] Pol, M. and Koomen, T. and Spillner, A.: Mana-

gement und Optimierung des Testprozesses,

dpunkt.verlag, 2002

[6] Güldali, B. and Jungmayr, S. and Mlynarski, M.

and Neumann, S. and Winter, M.: Starthilfe für mod-

ellbasiertes Testen. OBJEKTspektrum, 2010, 3, 63-69

[7] Güldali, B. and Mlynarski, M. and Sancar, Y.:

Effort Comparison of Model-based Testing Scenarios.

Proc. of Quombat Workshop at ICST, 2010

[8] Löffler, R., Güldali, B., Geisen, S.: Towards Mod-

el-based Acceptance Testing for Scrum. Software-

technik-Trends, GI, 2010 (to be published)

[9] Pretschner, A., Philips, J.: Methodological Issues

in Model-Based Testing. In M. Broy, et.al. (Eds.),

Model-Based Testing of Reactive Systems, LNCS no.

3472, Springer-Verlag, 2005, pp. 281-291.

[10] Beck, K. Test-Driven Development: By Exam-

ple. Addison-Wesley Longman, 2003

57

58

A TEST CASE GENERATION TECHNIQUE AND PROCESS

Nicha Kosindrdecha and Jirapun Daengdej

Autonomous System Research Laboratory
Faculty of Science and Technology
Assumption University, Thailand

p4919741@au.edu, jirapun@scitech.au.edu

ABSTRACT

It has been proven that the software testing phase is
one of the most critical and important phases in the
software development life cycle. In general, the
software testing phase takes around 40-70% of the
effort, time, and cost. This area is well researched
over a long period of time. Unfortunately, while many
researchers have found methods of reducing time and
cost during the testing process, there are still a
number of important related issues that need to be
researched. This paper introduces a new high level
test case generation process with a requirement
prioritization method to resolve the following
research problems: unable to identify suitable test
cases with limited resources, lack of an ability to
identify critical domain requirements in the test case
generation process and ignore a number of generated
test cases. Also, this paper proposes a practical test
case generation technique derived from use case
diagram.

Index Terms - test generation, testing and quality,
test case generation, test generation technique and
generate tests

1. INTRODUCTION

Software testing is known as a key critical phase in the
software development life cycle, which account for a
large part of the development effort. A way of
reducing testing effort, while ensuring its
effectiveness, is to generate test cases automatically
from artifacts used in the early phases of software
development. Many test case generation techniques
have been proposed [2], [4], [10], [11], [12], [15],
[21], [22], [42], [47], [50], mainly random, path-
oriented, goal-oriented and model-based approaches.
Random techniques determine a set of test cases based
on assumptions concerning fault distribution. Path-
oriented techniques generally use control flow graph to
identify paths to be covered and generate the
appropriate test cases for those paths. Goal-oriented
techniques identify test cases covering a selected goal
such as a statement or branch, irrespective of the path
taken. There are many researchers and practitioners
who have been working in generating a set of test
cases based on the specifications. Modeling languages
are used to get the specification and generate test

cases. Since Unified Modeling Language (UML) is the
most widely used language, many researchers are
using UML diagrams such as state diagrams, use-case
diagrams and sequence diagrams to generate test cases
and this has led to model-based test case generation
techniques. In this paper, an approach with additional
requirement prioritization step is proposed toward test
cases generation from requirements captured as use
cases [23], [24], [33]. A use case is the specification of
interconnected sequences of actions that a system can
perform, interacting with actors of the system. Use
cases have become one of the favorite approaches for
requirements capture. Test cases derived from use
cases can ensure compliance of an application with its
functional requirements. However, one difficulty is
that there are a large number of functional
requirements and use cases. A second research
challenge is to ensure that test cases are able to
preserve and identify critical domain requirements [5].
Finally, a third problem is to minimize a number of
test cases while preserving an ability to reveal faults.
For example, there are a lot of functional requirements
in the large software development. Software test
engineers may not be able to design test cases to cover
important requirements and generate a minimum set of
test cases. Therefore, test cases derived from large
requirements or use cases are not effective in the
practical large system. This paper presents an
approach with additional requirement prioritization
process for automated generation of abstract
presentation of test purposes called test scenarios. This
paper also introduces a new test case generation
process to support and resolve the above research
challenges. We overcome the problem of large
numbers of requirements and use cases. This allows
software testing engineer to prioritize critical
requirements and reasonably design test cases for
them. Also, this allows us to be able to identify a high
percentage of each test case’s critical domain
coverage.

The rest of the paper is organized as follow. Section 2
discusses the comprehensive set of test case
generation techniques. Section 3 proposes the
outstanding research challenges that motivated this
study. Section 4 introduces a new test generation
process and technique. Section 5 describes an
experiment, measurement metrics and results. Section
6 provides the conclusion and research directions in

59

the test case generation field. The last section
represents all source references used in this paper.

2. LITERATURE REVIEW

Model-based techniques are popular and most
researchers have proposed several techniques. One of
the reasons why those model-based techniques are
popular is that wrong interpretations of complex
software from non-formal specification can result in
incorrect implementations leading to testing them for
conformance to its specification standard [43]. A
major advantage of model-based V&V is that it can be
easily automated, saving time and resources. Other
advantages are shifting the testing activities to an
earlier part of the software development process and
generating test cases that are independent of any
particular implementation of the design [7]. The
model-based techniques are method to generate test
cases from model diagrams like UML Use Case
diagram [23], [24], [33], UML Sequence diagram [7]
and UML State diagram [5], [43], [22], [2], [21], [15],
[32], [4]. There are many researchers who investigated
in generating test cases from those diagrams. The
following paragraphs show examples of model-based
test generation techniques that have been proposed for
a long time.

Heumann [23] presented how using use cases to
generate test cases can help launch the testing process
early in the development lifecycle and also help with
testing methodology. In a software development
project, use cases define system software
requirements. Use case development begins early on,
so real use cases for key product functionality are
available in early iterations. According to the Rational
Unified Process (RUP), a use case is used to describe
fully a sequence of actions performed by a system to
provide an observable result of value to a person or
another system using the product under development."
Use cases tell the customer what to expect, the
developer what to code, the technical writer what to
document, and the tester what to test. He proposed
three-step process to generate test cases from a fully
detailed use case: (a) for each use case, generate a full
set of use-case scenarios (b) for each scenario, identify
at least one test case and the conditions that will make
it execute and (c) for each test case, identify the data
values with which to test. Ryser [24] raised the
practical problems in software testing as follows: (1)
Lack in planning/time and cost pressure, (2) Lacking
test documentation, (3) Lacking tool support, (4)
Formal language/specific testing languages required,
(5) Lacking measures, measurements and data to
quantify testing and evaluate test quality and (6)
Insufficient test quality. They proposed their approach
to resolve the above problems. Their approach is to
derive test case from scenario / UML use case and
state diagram. In their work, the generation of test
cases is done in three processes: (a) preliminary test
case definition and test preparation during scenario
creation (b) test case generation from Statechart and
from dependency charts and (c) test set refinement by
application dependent strategies.

3. RESEARCH CHALLENGES

This section discusses the details of research issues
related to test case generation techniques and research
problems, which are motivated this study. Every test
case generation technique has weak and strong points,
as addressed in the literature survey. In general,
referring to the literature review, the following lists
major outstanding research challenges. The first
research problem is that existing test case generation
methods are lack of ability to identify domain specific
requirements. The study [5] shows that domain
specific requirements are some of the most critical
requirements required to be captured for
implementation and testing, such as constraints
requirements and database specific requirements.
Existing approaches ignore an ability to address
domain specific requirements. Consequently, software
testing engineers may ignore the critical functionality
related to the critical domain specific requirements.
Thus, this paper introduces an approach to priority
those specific requirements and generates an effective
test case. The second problem is that existing test case
generation techniques aim to generate test cases which
maximize cover for each scenario. Sometimes, they
generate a huge number of test cases which are
impossible to execute given limited time and
resources. As a result, those unexecuted test cases are
useless. The last problem is to unable to identify
suitable test cases in case that there are limited
resources (e.g. time, effort and cost). The study reveals
that existing techniques aim to maximum and generate
all possible test cases. This can lead to unable to select
necessary test cases to be executed during software
testing activities, in case that there are limited
resources.

4. PROPOSED METHOD

This section presents a new high-level process to
generate a set of test cases introduced by using the
above comprehensive literature review and previous
works [43].

Figure 1 A Proposed Process to Generate Test Cases

60

 From the above figure, the left-hand side process
is a general waterfall process. We propose to add two
additional processes: (a) requirement prioritization
and (b) test case generation.
 The requirement prioritization process aims to be
able to effectively handle with a large number of
requirements. The objective of this process is to
prioritize and organize requirements in an appropriate
way in order to effectively design and prepare test
cases [16], [25], [37]. There are two sub-processes:
(a) classify requirements and (b) prioritize
requirements.
 The classify requirement process primarily
divides and classifies requirements into four groups
[30]: (a) “Must-Have” (b) “Should-Have” (c) “Could-
Have” and (d) “Wish”. The “Must-Have”
requirements are mandatory requirements that need to
be implemented in the system. The “Should-Have”
requirements are requirements that should be
implemented if there are available resources. The
“Could-Have” requirements are additional
requirements that are able to be implemented if there
are adequate resources. The “Wish” requirements are
“would like to have in the future” requirements that
may be ignored if there are inadequate resources. This
paper introduces five factors to classify the above
requirements, as follows:

Table 1 Requirement Classification

Group Time Cost People Scope Success
Must have Y Y Y N Y
Should
have Y Y Y N N
Could have N N Y Y N
Wish N N N Y N

 From the above table, the following shortly
describes a meaning of the above factors:
• Time – The requirement must be implemented in

the current version or release of software.
• Cost – There is an available of budget or fund to

implement the requirement.
• People – There is an available of human

resources to develop and test the requirement.
• Scope – The requirement can be removed out of

the current version or release of software.
• Success – The success of system development

rely on the requirement.
 In addition, this paper secondary divides those
requirements into two groups: (a) functional and (b)
non-functional. The functional requirements can be
categorized into two groups: (a) domain specific
requirements and (b) non- domain specific
requirements. The domain specific requirements are
able to identify as database specific and constraints
requirements. For example, database connection
specific requirements and requirements for an
interface with other systems. The non-functional
requirements can be vary, such as performance,

security, operability and maintainability requirements.
The following displays the classify requirement tree:

Figure 2 A Classify Requirement Tree

 From the above figure, we propose a ranking
number for each requirement. This paper prioritizes
“Must-Have” requirements as top three ranking and
“Wish” requirements as last three ranking. The study
[5] reveals that domain specific requirements should
have higher priority than both of behavioral and non-
functional requirements.
 However, when the requirement is already
classified, the next process is to prioritize those
requirements. In the requirement prioritization
process, this paper proposes to use a cost-value
approach to weight and prioritize requirements. This
paper also proposes to use the following formula:
P(Req) = (Cost * CP) (1)
Where:
• P is a prioritization value.
• Req is a requirement required to be prioritized.
• Cost is a total estimated cost of coding and

testing for each requirement.
• CP is an user-defined customer priority value.

This value is in the range between 1 and 10. 10 is
the highest priority and 1 is the lowest priority.
This value aims to allow customers to identify
how important of each requirement is from their
perspective.

To compute the above cost for coding and testing, this
paper proposes to apply the following formula:
Cost= (ECode*CostCode)+(ETest*CostTest) (2)
Where:
• Cost is a total estimated cost.
• ECode is an estimated effort of coding for each

requirement. The unit is man-hours.
• CostCode is a cost of coding that is charged to

customers. This paper applies the cost-value
approach to identify the cost of coding for each
requirement group (e.g. “Must-Have”, “Should-
Have”, “Could-Have” and “Wish”). The unit is
US dollar.

• ETest is an estimated effort of testing for each
requirement. The unit is man-hours.

• CostTest is a cost of testing that is charged to
customers. The approach to identify this value is

61

similar to CostCode’s approach. The unit is US
dollar.

In this paper, we assumed the following in order to
calculate CostCode and CostTest. Also, this paper
assumes that a standard cost for both activities is $100
per man-hours.
• A value is 1.5 of (“Must-Have”, “Should-Have”)

– this means that “Must-Have” requirements
have one and half times cost value than “Should-
Have” requirements.

• A value is 3 of (“Must-Have”, “Could-Have”) –
this means that “Must-Have” requirements have
three times cost value than “Could-Have”
requirements.

• A value is 2 of (“Should-Have”, “Could-Have”)
– this means that “Should-Have” requirements
have two times cost value than “Could-Have”
requirements.

• A value is approximately 3 of (“Could-Have”,
“Wish”) – this means that “Could-Have”
requirements have three times cost value than
“Wish” requirements.

 Therefore, the procedure of requirement
prioritization process can be shortly described below:
1. Provide estimated efforts of coding and testing

for each requirement.
2. Assign cost value for each requirement group

based on the previous requirement classification
(e.g. “Must-Have”, “Should-Have”, “Could-
Have” and “Wish”).

3. Calculate a total estimated cost for coding and
testing, by using the formula (2).

4. Define a customer priority for each requirement.
5. Compute a priority value for each requirement by

using the formula (1).
6. Prioritize requirements based on the higher

priority value.
 Once the requirements are prioritized, the next
proposed step is to generate test scenario and prepare
test case.
 This section presents an automated test scenario
generation derived from UML Use Case diagram. Our
approach is built based on Heumann’s algorithm [23].
The limitation of our approach is to ensure that all use
cases are fully dressed. The fully dressed use case is a
use case with the comprehensive of information, as
follows: use case name, use case number, purpose,
summary, pre-condition, post-condition, actors,
stakeholders, basic events, alternative events, business
rules, notes, version, author and date.
 The proposed method contains four steps, as
follows: (a) extract use case diagram (b) generate test
scenario (c) prepare test data and prepare other test
elements. These steps can be shortly described as
follows:

1. The first step is to extract the following
information from fully dressed use cases: (a)
use case number (b) purpose (c) summary (d)
pre-condition (e) post-condition (f) basic
event and (g) alternative events. This

information is called use case scenario in this
paper. The example fully dressed use cases of
ATM withdraw functionality can be found as
follows:

Table 2 Example Fully Dressed Use Case

Use
Case Id

Use
Case
Name

Summary Basic Event Alternativ
e Events

Business
Rules

UC-001 Withd
raw

To allow
bank's
customers
to
withdraw
money
from ATM
machines
anywhere
in
Thailand.

1. Insert
Card
2. Input PIN
3. Select
Withdraw
4. Select
A/C Type
5. Input
Balance
6. Get
Money
7. Get Card

1. Select
Inquiry
2. Select
A/C Type
3. Check
Balance

(a) Input
amount
<=
Outstandi
ng
Balance
(b) Fee
charge if
using
different
ATM
machines

UC-002 Trans
fer

To allow
users to
transfer
money to
other
banks in
Thailand
from all
ATM
machines

1. Insert
Card
2. Input PIN
3. Select
Transfer
4. Select
bank
5. Select
"To"
account
6. Select
A/C Type
7. Input
Amount
8. Get
Receipt
9. Get Card

1. Select
Inquiry
2. Select
A/C Type
3. Check
Balance

Amount
<=
50,000
baht

 The above use cases can be extracted into the
following use case scenarios:

Table 3 Extracted Use Case Scenarios

Scenario Id Summary Basic Scenario

Scenario-001 To allow bank's
customers to
withdraw money
from ATM
machines
anywhere in
Thailand.

1. Insert Card
2. Input PIN
3. Select Withdraw
4. Select A/C Type
5. Input Balance
6. Get Money
7. Get Card

Scenario-002 To allow bank's
customers to
withdraw money
from ATM
machines
anywhere in
Thailand.

1. Insert Card
2. Input PIN
3. Select Inquiry
4. Select A/C Type
5. Check Balance
6. Select Withdraw
7. Select A/C Type
8. Input Balance
9. Get Money
10. Get Card

62

Scenario-003 To allow users to
transfer money to
other banks in
Thailand from all
ATM machines

1. Insert Card
2. Input PIN
3. Select Transfer
4. Select bank
5. Select "To" account
6. Select A/C Type
7. Input Amount
8. Get Receipt
9. Get Card

Scenario-004 To allow users to
transfer money to
other banks in
Thailand from all
ATM machines

1. Insert Card
2. Input PIN
3. Select Inquiry
4. Select A/C Type
5. Check Balance
6. Select Transfer
7. Select bank
8. Select "To" account
9. Select A/C Type
10. Input Amount
11. Get Receipt
12. Get Card

2. The second step is to automatically generate

test scenarios from the previous use case
scenarios [23]. From the above table, we
automatically generate the following test
scenarios:

Table 4 Generated Test Scenarios

Test Scenario Id Summary Basic Scenario

TS-001 To allow bank's
customers to
withdraw
money from
ATM machines
anywhere in
Thailand.

1. Insert Card
2. Input PIN
3. Select Withdraw
4. Select A/C Type
5. Input Balance
6. Get Money
7. Get Card

TS-002 To allow bank's
customers to
withdraw
money from
ATM machines
anywhere in
Thailand.

1. Insert Card
2. Input PIN
3. Select Inquiry
4. Select A/C Type
5. Check Balance
6. Select Withdraw
7. Select A/C Type
8. Input Balance
9. Get Money
10. Get Card

TS-003 To allow users
to transfer
money to other
banks in
Thailand from
all ATM
machines

1. Insert Card
2. Input PIN
3. Select Transfer
4. Select bank
5. Select "To" account
6. Select A/C Type
7. Input Amount
8. Get Receipt
9. Get Card

TS-004 To allow users
to transfer
money to other
banks in
Thailand from
all ATM
machines

1. Insert Card
2. Input PIN
3. Select Inquiry
4. Select A/C Type
5. Check Balance
6. Select Transfer
7. Select bank
8. Select "To" account
9. Select A/C Type
10. Input Amount
11. Get Receipt
12. Get Card

3. The next step is to prepare test data. This step

allows to manually prepare an input data for
each scenarios.

The last step is to prepare other test elements, such
as expected output, actual output and pass / fail status.

5. EVALUATION

The section describes the experiments design,
measurement metrics and results.

5.1. Experiments Design
A comparative evaluation method has proposed in this
experiment design. The high-level overview of this
experiment design can be found as follows:
1. Prepare Experiment Data. Before evaluating

the proposed methods and other methods,
preparing experiment data is required. In this
step, 50 requirements and 50 use case scenarios
are randomly generated.

2. Generate Test Scenario and Test Case. A
comparative evaluation method has been made
among the proposed test generation algorithm,
Heumann’s technique Jim [23], Ryser’s method
[24], Nilawar’s algorithm [33] and the proposed
method presented in the previous section.

3. Evaluate Results. In this step, the comparative
generation methods are executed by using 50
requirements and 50 use case scenarios. These
methods are also executed for 10 times in order
to find out the average percentage of critical
domain requirement coverage, a size of test cases
and total generation time. In total, there are 500
requirements and 500 use case scenarios executed
in this experiment.

The following tables present how to randomly
generate data for requirements and use case scenarios
respectively.

Table 5 Generate Random Requirements

Attribute Approach
Requirement ID Randomly generated from the following

combination: Req + Sequence Number.

For example, Req1, Req2, Req3, …,
ReqN.

Type of
Requirement

Randomly selected from the following
values: Functional AND Non-

63

Functional.
MoSCoW
Criteria

Randomly selected from the following
values: Must Have (M), Should Have
(S), Could Have (C) and Won’t Have
(W)

Is it a critical
requirement
(Y/N)?

Randomly selected from the following
values: True (Y) and False (N)

Table 6 Generate Random Use Case Scenario

Attribute Approach
Use case ID Randomly generated from the

following combination: uCase +
Sequence Number. For example,
uCase1, uCase2, …, uCasen.

Purpose Randomly generated from the
following combination: Pur +
Sequence Number same as Use case
ID. For example, Pur1, Pur2, …,
Purn.

Basic Scenario Randomly generated from the
following combination: uCase +
Sequence Number. For example,
basic1, basic2, …, basicn.

5.2. Measurement Metrics
The section lists the measurement metrics used in the
experiment. This paper proposes to use three metrics,
which are: (a) size of test cases (b) total time and (c)
percentage of critical domain requirement coverage.
The following describe the measurement in details.
1. A Number of Test Cases: This is the total

number of generated test cases, expressed as a
percentage, as follows:

% Size = (# Size / # of Total Size)*100 (3)
Where:
• % Size is a percentage of the number of test

cases.
• # of Size is a number of test cases.
• # of Total Size is the maximum number of test

cases in the experiment, which is assigned 1,000.
2. A Domain Specific Requirement Coverage:

This is an indicator to identify the number of
requirements covered in the system, particularly
critical requirements, and critical domain
requirements [5]. Due to the fact that one of the
goals of software testing is to verify and validate
requirements covered by the system, this metric
is a must. Therefore, a high percentage of critical
requirement coverage is desirable.

It can be calculated using the following formula:
% CRC = (# of Critical / # of Total)*100 (4)

Where:
• % CRC is the percentage of critical requirement

coverage.
• # of Critical is the number of critical

requirements covered.
• # of Total is the total number of requirements.
3. Total Time: This is the total number of times the

generation methods are run in the experiment.
This metric is related to the time used during the
testing development phase (e.g. design test

scenario and produce test case). Therefore, less
time is desirable.

It can be calculated using the following formula:
Total = PTime + CTime + RTime (5)

Where:
• Total is the total amount of times consumed by

running generation methods.
• PTime is the total amount of time consumed by

preparation before generating test cases.
• CTime is the time to compile source code / binary

code in order to execute the program.
• RTime is the total time to run the program under

this experiment.

5.3. Results and Discussion
This section discusses an evaluation result of the
above experiment. This section presents a graph that
compares the above proposed method to other three
existing test case generation techniques, based on the
following measurements: (a) size of test cases (b)
critical domain coverage and (c) total time. Those
three techniques are: (a) Heumman’s method (b)
Ryser’s work and (c) Nilawar’s approach. There are
two dimensions in the following graph: (a) horizontal
and (b) vertical axis. The horizontal represents three
measurements whereas the vertical axis represents the
percentage value.

Figure 3 An Evaluation Result

The above graph shows that the above proposed
method generates the smallest set of test cases. It is
calculated as 80.80% where as the other techniques is
computed over 97%. Those techniques generated a
bigger set of test cases, than a set generated by the
proposed method. The literature review reveals that
the smaller set of test cases is desirable. Also, the
graph shows that the proposed method consumes the
least total time during a generation process,
comparing to other techniques. It used only 30.20%,
which is slightly less than others. Finally, the graph

64

presents that the proposed method is the best
techniques to coverage critical domains. Its
percentage is much greater than other techniques’
percentage, over 30%.

6. CONCLUSION

This paper concentrates on resolving the following
research problems: (a) an inefficient test case
generation method with limited resources (b) a lack of
ability to identify and coverage the critical domain
requirements and (c) an ignorance of a size of test
cases. Furthermore, this paper proposes an effective
test case generation process by adding additional
prioritization process. The new process aims to
improve the ability to: (a) generate test cases with
limited resources (b) include more critical domain
specific requirements and (c) minimize a number of
test cases. Also, this paper introduces an automated
test scenario generation technique to address critical
domain specific requirements. This paper proposes to
compare to other three test case generation
techniques, which are: Heummann’s work, Ryser’s
method and Nilawar’s technique. As a result, this
study found that the proposed method is the most
recommended method to generate the smallest size of
test cases with the maximum of critical domain
specific requirement coverage and the least time
consumed in the test case generation process.

7. REFERENCES

[1] Ahl, V., “An Experimental Comparison of Five
Prioritization Methods”, Master's Thesis, School of
Engineering, Blekinge Institute of Technology, Ronneby,
Sweden, 2005.
[2] Alessandra Cavarra, Charles Crichton, Jim Davies, Alan
Hartman, Thierry Jeron and Laurent Mounier, “Using UML
for Automatic Test Generation”, Oxford University
Computing Laboratory, Tools and Algorithms for the
Construction and Analysis of Systems, TACAS'2000, 2000.
[3] Amaral, “A.S.M.S. Test case generation of systems
specified in Statecharts”, M.S. thesis – Laboratory of
Computing and Applied Mathematics, INPE, Brazil, 2006.
[4] Annelises A. Andrews, Jeff Offutt and Roger T.
Alexander, “Testing Web Applications”, Software and
Systems Modeling, 2004.
[5] Avik Sinha, Ph.D and Dr. Carol S. Smidts, “Domain
Specific Test Case Generation Using Higher Ordered Typed
Languages fro Specification” Ph. D. Dissertation, 2005.
[6] A. Bertolino, “Software Testing Research and Practice”,
10th International Workshop on Abstract State Machines
(ASM'2003), Taormina, Italy, 2003.
[7] A.Z. Javed, P.A. Strooper and G.N. Watson.
“Automated Generation of Test Cases Using Model-Driven
Architecture”, Second International Workshop on
Automation of Software Test (AST’07), 2007.
[8] Beck, K. & Andres, C., “Extreme Programming
Explained: Embrace Change”, 2nd ed. Boston, MA:
Addison-Wesley, 2004.
[9] Boehm, B. & Ross, R.. “Theory-W Software Project
Management: Principles and Examples”, IEEE Transactions
on Software Engineering 15, 4: 902-916, 1989.

[10] B.M. Subraya, S.V. Subrahmanya, “Object driven
performance testing in Web applications”, in: Proceedings
of the First Asia-Pacific Conference on Quality Software
(APAQS'00), pp. 17-26, Hong Kong, China, 2000.
[11] Chien-Hung Liu, David C. Kung, Pei Hsia and Chih-
Tung Hsu, “Object-Based Data Flow Testing of Web
Applications”, Proceedings of the First Asia-Pacific
Conference on Quality Software (APAQS'00), pp. 7-16,
Hong Kong, China, 2000.
[12] C.H. Liu, D.C. Kung, P. Hsia, C.T. Hsu, “Structural
testing of Web applications”, in: Proceedings of 11th
International Symposium on Software Reliability
Engineering (ISSRE 2000), pp. 84-96, 2000.
[13] Davis, A., “The Art of Requirements Triage”, IEEE
Computer 36, 3 p: 42-49, 2003.
[14] Davis, A., “Just Enough Requirements Management:
Where Software Development Meets Marketing”, New
York: Dorset House (ISBN 0-932633-64-1), 2005.
[15] David C. Kung, Chien-Hung Liu and Pei Hsia, “An
Object-Oriented Web Test Model for Testing Web
Applications”, In Proceedings of the First Asia-Pacific
Conference on Quality Software (APAQS’00), page 111,
Los Alamitos, CA, 2000.
[16] Donald Firesmith, “Prioritizing Requirements”,
Journal of Object Technology, Vol.3, No8, 2004.
[17] D. Harel, “On visual formalisms”, Communications of
the ACM, vol. 31, no. 5, pp. 514-530, 1988.
[18] D. Harel, “Statecharts: A Visual Formulation for
Complex System”, Sci.Comput. Program. 8(3):232-274,
1987.
[19] Flippo Ricca and Paolo Tonella, “Analysis and Testing
of Web Applications”, Proc. of the 23rd International
Conference on Software Engineering, Toronto, Ontario,
Canada. pp.25-34, 2001.
[20] Harel, D., “Statecharts: a visual formalism for complex
system”, Science of Computer Programming, v. 8, p. 231-
274, 1987.
[21] Hassan Reza, Kirk Ogaard and Amarnath Malge, “A
Model Based Testing Technique to Test Web Applications
Using Statecharts”, Fifth International Conference on
Information Technology, 2008.
[22] Ibrahim K. El-Far and James A. Whittaker, “Model-
based Software Testing”, 2001.
[23] Jim Heumann., “Generating Test Cases From Use
Cases”, Rational Software, 2001.
[24] Johannes Ryser and Martin Glinz, “SCENT: A Method
Employing Scenarios to Systematically Derive Test Cases
for System Test”, 2000.
[25] Karl E. Wiegers, “First Things First: Prioritizing
Requirements”, Published in Software Development, 1999.
[26] Karlsson, J., “Software Requirements Prioritizing”,
Proceedings of the Second International Conference on
Requirements Engineering (ICRE'96). Colorado Springs,
CO, April 15-18, 1996. Los Alamitos, CA: IEEE Computer
Society, p 110-116, 1996.
[27] Karlsson, J., “Towards a Strategy for Software
Requirements Selection. Licentiate”, Thesis 513, Linköping
University, 1995.
[28] Karlsson, J. & Ryan, K., “A Cost-Value Approach for
Prioritizing Requirements”, IEEE Software
September/October, p67-75, 1997.
[29] Leffingwell, D. & Widrig, D., “Managing Software
Requirements: A Use Case Approach”, 2nd ed. Boston,
MA: Addison-Wesley, 2003.
[30] Leslie M. Tierstein, “Managing a Designer / 2000
Project”, NYOUG Fall’97 Conference, 1997.

65

[31] L. Brim, I. Cerna, P. Varekova, and B. Zimmerova,
“Component-interaction automata as a verification oriented
component-based system specification”, In: Proceedings
(SAVCBS'05), pp. 31-38, Lisbon, Portugal, 2005.
[32] Mahnaz Shams, Diwakar Krishnamurthy and Behrouz
Far, “A Model-Based Approach for Testing the
Performance of Web Applications”, Proceedings of the
Third International Workshop on Software Quality
Assurance (SOQUA’06), 2006.
[33] Manish Nilawar and Dr. Sergiu Dascalu, “A UML-
Based Approach for Testing Web Applications”, Master of
Science with major in Computer Science, University of
Nevada, Reno, 2003.
[34] Moisiadis, F., “Prioritising Scenario Evolution”,
International Conference on Requirements Engineering
(ICRE 2000), 2000.
[35] Moisiadis, F., “A Requirements Prioritisation Tool”,
6th Australian Workshop on Requirements Engineering
(AWRE 2001). Sydney, Australia, 2001.
[36] M. Prasanna S.N. Sivanandam R.Venkatesan
R.Sundarrajan, “A Survey on Automatic Test Case
Generation”, Academic Open Internet Journal, 2005.
[37] Nancy R. Mead, “Requirements Prioritization
Introduction”, Software Engineering Institute, Carnegie
Mellon University, 2008.
[38] Park, J.; Port, D.; & Boehm B., “Supporting
Distributed Collaborative Prioritization for Win-Win
Requirements Capture and Negotiation 578-584”,
Proceedings of the International Third World Multi-
conference on Systemics, Cybernetics and Informatics
(SCI'99) Vol. 2. Orlando, FL, July 31-August 4, 1999.
Orlando, FL: International Institute of Informatics and
Systemic (IIIS), 1999.
[39] Rajib, “Software Test Metric”, QCON, 2006.
[40] Robert Nilsson, Jeff Offutt and Jonas Mellin, “Test
Case Generation for Mutation-based Testing of
Timeliness”, 2006.
[41] Saaty, T. L., “The Analytic Hierarchy Process”, New
York, NY: McGraw-Hill, 1980.
[42] Shengbo Chen, Huaikou Miao, Zhongsheng Qian,
“Automatic Generating Test Cases for Testing Web
Applications”, International Conference on Computational
Intelligence and Security Workshops, 2007.
[43] Valdivino Santiago, Ana Silvia Martins do Amaral,
N.L. Vijaykumar, Maria de Fatima, Mattiello-Francisco,
Eliane Martins and Odnei Cuesta Lopes, “A Practical
Approach for Automated Test Case Generation using
Statecharts”, 2006.
[44] Vijaykumar, N. L.; Carvalho, S. V.; Abdurahiman, V.,
“On proposing Statecharts to specify performance models”,
International Transactions in Operational Research, 9, 321-
336, 2002.
[45] Wiegers, K., “E. Software Requirements”, 2nd ed.
Redmond, WA: Microsoft Press, 2003.
[46] Xiaoping Jia, Hongming Liu and Lizhang Qin,
“Formal Structured Specification for Web Application
Testing”. Proc. of the 2003 Midwest Software Engineering
Conference (MSEC'03). Chicago, IL, USA. pp.88-97, 2003.
[47] Yang, J.T., Huang, J.L., Wang, F.J. and Chu, W.C.,
“Constructing an object-oriented architecture for Web
application testing”, Journal of Information Science and
Engineering 18, 59-84, 2002.
[48] Ye Wu and Jeff Offutt, “Modeling and Testing Web-
based Applications”, 2002.
[49] Ye Wu, Jeff Offutt and Xiaochen, “Modeling and
Testing of Dynamic Aspects of Web Applications,

Submitted for publication. Technical Report ISE-TR-04-01,
www.ise.gmu.edu/techreps/, 2004.
[50] Zhu, H., Hall, P., May, J., “Software Unit Test
Coverage and Adequacy”, ACM Comp. Survey 29(4), pp
366~427, 1997.

66

FROM NATURAL LANGUAGE REQUIREMENTS TO A CONCEPTUAL MODEL

Christian Kop, Günther Fliedl, Heinrich C. Mayr

Alpen-Adria Universität Klagenfurt

Applied Informatics/Application Engineering

Universitätsstasse 65 – 67, 9020 Klagenfurt

(chris | guenther | heinrich)@ifit.uni-klu.ac.at

ABSTRACT

In literature it is described in great detail how class

diagrams and ER diagrams or UML class diagrams

are derived from natural language sentences. It is

normally assumed, that there is a direct

correspondence between natural language elements

(e.g., words) and conceptual model elements. We do

not strictly follow this assumption because of the

complexity of natural language with its ambiguities

and ellipsis. Hence in this paper a stepwise generation

of a conceptual model out of natural language

requirements sentences is proposed. According to the

ideas of MDA we assume that automatic

transformation steps from the source model (in our

case natural language) to the target conceptual model

(e.g., UML class diagram) make sense. In addition to

that we suggest that the designer should play an

important part during transformation. It is furthermore

proposed to introduce an interlingua which helps to

detect defects and provides traceability between

sentences and the model elements.

Index Terms – natural language processing,

interlingua, conceptual modeling, defect detection

1. INTRODUCTION

In most cases the requirements are presented on two

levels: the level of end user needs and the level of

developers or requirements engineers models. End

user requirements usually are expressed via natural

language; requirements handled by engineers are

usually expressed through formal, conceptual models.

In many cases this diverging way of representing

knowledge is the main reason for misunderstandings

between users and engineers concerning initial

requirements. The discrepancy disables the possibility

of validating requirements, which is an important step

in the process of requirements engineering.

To handle such problems we proposed an intermediate

level for requirements representation, an interlingua

connecting the natural language level of the end user

and conceptual model level produced by engineers.

The approach provides instruments for the

representation of intermediate results and the

traceability between intermediate results and the

original sentences. It supports automated mapping

from natural language requirements to interlingua

specifications and automated mapping from the

interlingua representation to the conceptual models.

The linguistic processing step focuses on the transfer

of written textual requirements to an interlingua, the

so called Pre-design Model. The “Klagenfurt

Conceptual Pre-design Model (KCPM)” [6] provides

a glossary and a graphical representation and it is used

as a basis for the mapping to the conceptual model

(e.g., UML). We propose that the basic notions

introduced in this interlingua should correspond to

hypothetical basic linguistic categories like nouns,

verbs, etc. Thus, the goal of the whole process which

is called NIBA (“Natürlichsprachliche

Informationsbedarfsanalyse”) is to automate the

process of producing pre-design models by extracting

their entries from the end-user’s natural language

requirements statements.

To enhance the mapping process a specific framework

for annotating natural language descriptions on

different layers was developed.

The paper is structured as follows. In the next section

the related work is described. The linguistic

processing step is introduced in Section 3. Section 4

explains the interpretation step. Section 5 focuses on

the interlingua and their possibilities. Section 6 gives

an overview of the mapping to the conceptual model.

The paper is summarized in Section 7.

2. RELATED WORK

The interpretation of natural language has a long

tradition. In earlier approaches heuristics were

proposed. Some of these approaches were described

in [3] [1] [8] [7]. Chen presented 11 rules to generate

conceptual model elements (entity types and

relationship types) from structured sentence. Excerpts

of these rules can be found in the next listing [3].

67

 (Rule 1) A common noun in English

corresponds to an entity type.

 (Rule 2) A transitive verb in English

corresponds to a relationship type in an ER

diagram.

 (Rule 3) An adjective in English corresponds to

an attribute of an entity in an ER diagram.

 (Rule 4) An adverb in English corresponds to an

attribute of a relationship in an ER diagram.

 (Rule 5) If the sentence has the form: „There

are … X in Y“ then we can convert it into the

equivalent form „Y has … X “.

 (Rule 7) If the sentence has the form „The X of

Y is Z“ and if Z is not a proper noun, we may

treat X as an attribute of Y.

Abbot [1] used heuristics for the generation of

program specifications. Parsing techniques were

introduced in [2] and [11]. NL-OOPS [14] uses the

LOLITA [15] natural language processing toolkit with

an internal knowledge base to generate first cut

conceptual models. Meanwhile tagging and chunking

is the state of the art for the linguistic step. In [13] an

approach is described which uses part of speech

tagging and morphological analysis for the generation

of conceptual model element candidates. Additionally

an ontology (world model) was used to refine the

candidates for the project specific conceptual model

(discourse model).

3. LINGUISTIC PROCESSING

The system solves the task of Natural Language

Processing of English requirements texts by producing

chunked and semantically annotated text, which is

made ready for the KCPM modeling notions

extraction in the interpretation stage of the project. In

a first stage it accepts the tagged sentences which are

produced by QTag [16]. This output is refined and

certain structures are chunked together. Figure 1 in the

appendix shows such a chunk tree representing the

syntactic structure including phrasal, feature inheriting

nodes.

This chunking output was processed by a modular

system of linguistic subsystems including the

following functions:

 The identification of compound nouns. We

suppose that unclear compound boundaries are

very often motivated through ambiguity of

complex terms, e.g., the implicit structure of

compounds or other groups of words.

 The extraction and generation of inflectional

word forms.

 Extraction of derivational morphological

information.

 The identification of multi-words units and

idiomatic expression identification. This is made

possible by dynamically extending linguistic

knowledge inside the lexicon component.

 Verb subclass identification. The filtered verb

classes are based on the NTMS-system

(“Natürlichkeitstheoretische Morphosyntax”) [4]

included in the NIBA framework.

4. INTERPRETATION

4.1 General guidelines for interpretation

Following the different approaches mentioned in the

related work section, the following can be learned for

the interpretation of natural language sentences:

 Common (individual) nouns are candidates for

classes and attributes.

 An adjective and a noun together are candidates

for specialized classes.

 Proper nouns are candidates for instance labels.

 A transitive verb is a candidate for a relationship

type.

 The nouns related to the verbs are the involved

classes of the relationship type.

 Also prepositions can be candidates for

relationship types.

In other words, given a source language (e.g., natural

language) and a “meta model” (i.e., the grammar

description of the sentence) as well as a target

language (e.g., a conceptual model and its meta

model), certain instances of the source language can

be mapped to instances of the target language. This is

achieved by defining equivalences between syntactic

structures of the source model and syntactic structures

of the target model.

These general rules must be adopted for the certain

situation (i.e., the annotated natural language). In our

case the NTMS was used for annotating the natural

language sentences with syntactic grammar

information. Since the NTMS defines N0 as a noun

and N3 as a noun phrase, a class can be derived from

a noun (N0) or noun phrase (N3) respectively. If we

find a verb (V0) together with two noun phrases then

a relationship can be derived from such a pattern.

Figure 1 in the appendix shows such an example.

Although these and other heuristics are commonly

used they cannot really support the interpretation. The

next section will explain some difficulties of

interpretation.

68

4.2 Problems of Interpretation

The problems of interpretation arise since the same

syntactic structure of a phrase can be interpreted

differently. A typical example of this problem is that

the combination of an adjective and a noun can be

seen as a specialization of that noun. It is also possible

that the adjective together with the noun is the needed

concept. Another problem: It is not always possible to

distinguish between a class and an attribute just by

analyzing one single sentence. In literature [11] the

subject-predicate-object structure with the predicate

“has” (e.g., X has Y) is interpreted as follows. The

subject X is a class and the object Y is an attribute.

However in [9] it was shown that the verb “has” is

very ambiguous.

Since mainly syntactic structures are analyzed and

mapped to elements of the conceptual model there is

no guarantee that all the extracted elements are

relevant for the target model. There is no guarantee

that the model assembled only with the extracted

elements will be complete or consistent. Even worse if

an arbitrary text is taken for analyzing and

interpretation there is no guarantee that the intention

of the customer fits with the intentions of the designer.

3.4 Solution

As one possible solution it is necessary to give the

designer the freedom to select those extracted model

elements which seem to be necessary for the target

model. Furthermore it is necessary to introduce an

interlingua. This interlingua presents the designer the

result of the extraction process and the designer can

maintain and refine the results. Hence the model

presented in the interlingua does not represent the

final result or final conceptual model. It represents a

intermediate result that must be discussed, refined and

improved. A tool was implemented with which the

designer can select necessary model elements and

manage the elements in the model of the interlingua.

This also includes a tool feature for the mapping from

the interlingua to the conceptual model.

5. INTERLINGUA

5.1 Overview

According to the underlying paradigm of how a

stakeholder perceives the “world”, two types of

conceptual modeling approaches can be distinguished:

 Entity type and object oriented approaches.

 Fact oriented approaches.

In the first paradigm the “world” is seen as a world of

objects which have properties. Therefore a clear

distinction is made between object and object types

respectively and their properties. Representatives of

this paradigm are the classical ER approach and

UML. Fact oriented approaches on the other hand see

the “world” as a world of facts. Facts describe objects

and their roles within a relationship. No distinction is

made between objects and their properties. Every

concept is treated equally in a first step.

Representatives of this kind of paradigm are NIAM

[7] and its successor ORM [5]. Both approaches have

pros and cons. Object oriented approaches look very

compact. In a typical object oriented class diagram

attributes are embedded in the class representation.

No additional connections between classes and

attributes are necessary which would expand the

diagram. On the other hand, many revisions must be

made if such a diagram is used too early in the design

phase. Due to information that is collected, classes

might become attributes and attributes might become

classes. According to [5] this is a reason why fact

oriented approaches are better suited to be used as an

interlingua.

Since the interlingua is placed before the conceptual

model during an early phase of design the fact

oriented paradigm was preferred. Nevertheless there

must also be the necessity to provide an easy

transformation from the interlingua to a conceptual

model like UML since it is actually the standard for

conceptual modeling. Hence the interlingua for

conceptual modeling of structural aspects of an

information system consists of the following basic

notions:

 Thing type: Any notion which is important in a

certain universe of discourse is treated as a thing

type. Since attributes are not defined also notions

like person name, course id etc. are seen as thing

types.

 Connection type: Connection types relate thing

types to each other. Special connection types like

generalization or aggregation can be defined.

The aim of the interlingua is also to be a support for

all kinds of stakeholders (designers and end users).

Therefore a graphical and glossary based

representation was used for the collection of

requirements (see Figure 3 in the appendix for the

graphical representation – the glossary representation

is hidden).

5.2 Defect detection support

Beside the purpose to provide a communication

platform between stakeholders, the interlingua can

also support the detection of structural inconsistencies

and incompleteness. The simplest one can be detected

if the designer takes a look at the cardinality

definitions of the connection types. As it can be easily

seen, all of these cardinality descriptions have a

“?..?”. This means that cardinalities could not be

extracted from the textual description.

Another possibility is to count the number of

connection types of a thing type. This is described in

detail in [12]. With this strategy, centered thing types

69

can be detected (see Figure 4 in the appendix). The

more connection types a thing type has, the more

centered or important it is. Such centered thing types

appear with a bigger rectangular and in another color

(e.g., green) than other thing types which seem to be

less important. However, this must not necessarily

reflect the end users intention. Therefore this strategy

is used to confront the end user with the result and to

discuss the result with him. For instance if the end

user wonders why certain thing types like course and

professor are not so important (they appear in white

color and the rectangular is not so big as the

rectangular for assistant or employee) then this can be

the hint for a defect in the original specification.

If a mapping preview is made, then orphan classes

[10] can be detected. The Figure 5 shows such a case

for the university example. In this case thing types like

university, faculty, department, assistant, employee,

professor, budget, ut8 and ut3 were detected to be

class candidates. All the thing types which appear in

white color are currently candidates for attributes.

Once again this is not the final result but a starting

point for communication, discussion and refinement.

As can be seen in Figure 5, professor, budget, faculty

and university do not have any related attributes.

Hence the mapping preview gives also hints for

defects.

5.3 Traceability

Sentences from which thing types and connection

types can be extracted are also stored as “Sources” in

the interlingua model. If a thing type was extracted

from the sentence, then a relation between the thing

type and the sentence exists. The same holds for

connection types.

6. MAPPING TO THE CONCEPTUAL MODEL

In order to guarantee the mapping to a conceptual

model rules are applied. These rules can be classified

into

 Laws vs. proposals.

 Direct vs. indirect rules.

Laws are much stricter than proposals. If a mapping

rule is a law than a mapping to a certain target concept

(e.g., class) cannot be ignored otherwise the syntax of

the conceptual target model will be incorrect.

Proposals on the other hand only give hints. The

syntax of the target model will not be wrong if these

hints are ignored.

An indirect rule not only uses the semantic

relationship to decide about the mapping but also

information about previous mappings. For example, if

a concept X is already mapped to an attribute and a

concept Y is related to that attribute X then an indirect

rule for Y detects a mapping possibility (Y will

become a class).

This mapping approach also applies meta-rules to

resolve conflicting situations between the rules. An

example of a meta rule is: “Laws overrule proposals”.

7. CONCLUSION AND FUTURE WORK

In this paper an overview of a mapping process

from natural language descriptions to a conceptual

model was given. It was also described that such a

process is not straight forward. Instead the designer

must handle problems. As one possible solution the

interlingua (KCPM) was introduced. This model gives

the designer an overview of the output of natural

language processing and provides him with some help

to improve it. Without generating the UML target

model, he is able to revise it. Different presentation

techniques (e.g., graphical view and glossary view)

make it possible to communicate with the end user.

In future, it is planned to find more possibilities to

detect defects. These defect detection strategies

should then be applied on the notions which were

extracted from English or from German requirements

sentences.

8. REFERENCES

[1] R.J. Abbot, “Program Design by Informal English

Descriptions,” Communication of the ACM, Vol. 26

No. 11, pp. 882 – 894, 1983.

[2] E. Buchholz, H. Cyriaks, A. Düsterhöft, H.

Mehlan, B. Thalheim, B.. “Applying a Natural

Language Dialogue Tool for Designing Databases,”.

International Workshop on Applications of Natural

Language to Databases (NLDB’95), pp. 119 – 133,

1995.

[3] P. Chen “English Sentence Structure and Entity

Relationship Diagrams,” International Journal of

Information Siences, Vol. 29., pp. 127-149, 1983

[4] G. Fliedl, Natürlichkeitstheoretische Morpho-

syntax – Aspekte der Theorie und Implementierung,

Gunter Narr Verlag Tübingen, 1999.

[5] T. Halpin, “UML Data Models from an ORM

Perspective Part 1,” Journal of Conceptual Modeling

1998.

[6] H.C. Mayr, Ch. Kop, “A User Centered Approach

to Requirements Modeling, Proceedings

Modelierung,” Lecture Notes in Informatics LNI, p-

12, GI-Edition, pp. 75-86, 2002.

[7] G.M. Nijssen, T.A Halpin, Conceptual Schema

and Relational Database Design – A fact oriented

approach. Prentice Hall Publishing Company, 1989.

70

[8] M. Saeki, H. Horai, H. Enomoto, “Software

Development from Natural Language Specification,”

Proceedings of the 11th International Conference on

Software Engineering, pp. 64 – 73, 1989.

[9] V.C. Storey, “Understanding Semantic

Relationships,” VLDB Journal, Vol. 2, pp. 455 –

488., 1993.

[10] B. Tauzovich, “An Expert System for Conceptual

Data Modeling,” Proceedings of the 8th International

Conference on Entity Relationship Approach, North

Holland Publ. Company, pp. 205 – 220, 1989.

[11] A.M. Tjoa, A.M.; L. Berger, “Transformation of

Requirement Specification Expressed in Natural

Language into an EER Model, ” Proceedings of the

12th International Conference on Entity Realtionship

Approach, Springer Verlag, New York, pp. 127-149,

1993.

[12] Ch. Kop, “Visualizing Concetual Schemas with

their Sources and Progress,” International Journal on

Advances in Software, Vol. 2. u. 3., pp. 245 – 258,

2009.

[13] H. M. Harmain, R. Gaizauskas, “CM-Builder: An

Automated NL-based Case Tool,” 15th IEEE

International Confernce on Automated Software

Engineering (ASE’00), pp. 45 – 54, 2000.

[14] L. Mich, J. Mylopoulos, N. Zeni, “Improving the

Quality of Conceptual Models with NLP Tools: An

Experiment,” Technical Report DIT-02-0047, Dept.

of Information and Communication Technology,

Univ. of Trento, 2002.

[15] R. Garigliano, R. Morgan, M. Smith, “The

LOLITA System as a Contents Scanning Tool,”

Proceedings of the 13th International Conference

Artificial Intelligence, Expert Systems, and Natural

Language Processing, 1993.

[16] D. Tufis, O. Mason, “Tagging Romanian Texts:

a Case Study for QTAG, a Language Independent

Probabilistic Tagger,” Proceedings of the First

International Conference on Language Resources &

Evaluation (LREC), Granada (Spain), p.589-596,

1998.

APPENDIX

Fig. 1. Tagged sentence with chunk tree

71

Customer

Product

customer no

name

address

buys product id

name

price
Class diagram ORM diagram

Customer

Product

Name

buys

is bought by

… …

…

…
has

Customer

Product

customer no

name

address

buys product id

name

price
Class diagram ORM diagram

Customer

Product

Name

buys

is bought by

… …

…

…
has

Fig. 2. Class diagram versus ORM diagram

Fig. 3. Graphical representation of the interlingua (university example)

72

Fig. 4. Visualization of centered thing types

Fig. 5. Mapping preview

73

74

TEST CASE REDUCTION METHODS BY USING CBR

Siripong Roongruangsuwan and Jirapun Daengdej

Autonomous System Research Laboratory
Faculty of Science and Technology
Assumption University, Thailand

p4919742@au.edu, jirapun@scitech.au.edu

ABSTRACT

It has been proven that software testing usually
consumes over 50% of the costs associated with the
development of commercial software systems.
Particularly, regression testing activities has been
shown to be a critically important phase of software
testing. Many reduction techniques have been
proposed to reduce costs. Unfortunately, the cost is
usually over budget and those methods are failed to
reasonably control costs. The primarily outstanding
issue is non-effective methods to remove redundancy
tests while a bigger size of tests and a significant
amount of time are still remaining. To resolve the
issue, this paper proposes an artificial intelligent
concept of case-based reasoning (CBR). CBR has an
uncontrollable costs issue as same as testing. There
are many effective algorithms researched over a long
period of time. This study introduces three methods
combined between CBR’s deletion algorithm and
testing activities. Those methods aim to minimize size
of tests and time, while preserving fault detection.

Index Terms - test case reduction, test reduction,
test reduction CBR, CBR for testing and test
reduction techniques

1. INTRODUCTION

Software Testing is an empirical investigation
conducted to provide stakeholders with information
about the quality of the product or service under test
[7], with respect to the context in which it is intended
to operate. Software Testing also provides an
objective, independent view of the software to allow
the business to appreciate and understand the risks of
implementation of the software. Test techniques
include the process of executing a program or
application with the intent of finding software bugs. It
can also be stated as the process of validating and
verifying that software meets the business and
technical requirements that guided its design and
development, so that it works as expected. Software
Testing can be implemented at any time in the
development process; however, the most test effort is
employed after the requirements have been defined
and coding process has been completed.

Many researchers [10], [11], [12], [13], [14], [15],
[23], [24], [25], [26], [29], [36], [37], [39] have proven
that these test case reduction methods can reserve the
fault detection capability. There are many outstanding
research issues in this area. In this paper, the research
issues are: redundancy test cases are still remained, an
uncontrollable growth of test cases and existing
reduction methods consume a great deal of time and
cost during a reduction process. The literature review
[16] shows that there are many techniques to resolve
those three issues. One of effective approaches is to
apply the concept of artificial intelligent. There are
many artificial intelligent concepts, such as neutral
network, fuzzy logic, learning algorithms and case-
based reasoning (CBR). CBR is one of the most
popular and actively researched areas in the past. The
researches [4], [8], [16], [26] show that CBR has
identical problems as same as software testing topic. In
software testing field, particularly during regression
testing activities, the key research issues are: (a) too
many redundancy test cases after reduction process (b)
a decrease of test cases’ ability to reveal faults and (c)
uncontrollable grow of test cases. Meanwhile, the key
research issues in CBR field are: (a) there are too
many redundancy cases in the CBR system (b) a size
of CBR system is continuously growing all the time
and (c) existing CBR deletion algorithms take longer
time to remove all redundancy cases in the CBR
system. Those issues in CBR field can be elaborated as
follows: Fundamentally, there are four steps in the
CBR system, which are: retrieve, reuse, revise and
retain. These steps can lead to a serious problem of
uncontrollably growing cases in the system. However,
the study shows that there are many proposed
techniques in order to control a number of cases in the
CBR system, such as add algorithms, deletion
algorithms and maintenance approaches. CBR have
been investigated by CBR researchers in order to
ensure that only small amounts of efficient cases are
stored in the case base. The previous work [28] shows
that deletion algorithms are the most popular and
effective approaches to maintain a size of the CBR
system. There are many researchers have proposed
several deletion algorithms [4], [8], [31], such as
random method, utility approach and footprint
algorithm. These algorithms aim to: (a) remove all
redundancy or unnecessary cases (b) minimize size of
system and reduction time and (c) preserve the ability
of solving problems. Nevertheless, each technique has
strength and weakness. Some methods are suitable for

75

removing cases. Some methods are perfectly suitable
for reducing time. Some may be used for reserving the
problem solving capability. Eventually, the previous
work [28] discovered several effective methods (e.g.
confidential case filtering method, coverage value
algorithm and confidential coverage approach) to
remove those cases, minimize size of CBR and reduce
amount of time, while preserving the ability of CBR
system’s problem solving skill. Therefore, this paper
applies those effective deletion techniques to resolve
the problems of software testing. In the light of
software testing, the proposed techniques focus on
how to maintain the test case or test data while the
ability to reveal faults is still preserved. It is assumed
that test cases or test data in this paper are treated as
cases in the CBR system. Also, there is an assumption
that a given set of test cases are generated by a path-
oriented test case generation technique. The path-
oriented technique is widely used for a white-box
testing, which this paper does not address how to
generate test cases with path-oriented methods.

Section 2 discusses an overview of test case
reduction techniques and processes. Also, section 2
discusses a concept of CBR. Section 3 provides a
definition of terminologies used in this paper. Section
4 lists the outstanding research issues motivated this
study. Section 5 proposes three new test case
reduction methods. Section 6 describes an evaluation
method and discusses a result. The last section
represents all source references used in this paper.

2. LITERATURE REVIEW

This section describes an overview of test case
reduction techniques and the concept of CBR. The
following describes those two areas in details.

2.1. Test Case Reduction Techniques
This section discusses and organizes test case
reduction (or TCR) techniques researched in 1995-
2006. This study shows that there are many
researchers who proposed a method to reduce
unnecessary test cases (also known as redundancy test
cases), like Offutt [5], Rothermel [12], McMaster [24]
and Sampth [27]. These techniques aim to remove and
minimize a size of test cases while maintaining the
ability to detect faults. The literature review [1], [10],
[11], [12], [13], [14], [15], [24], [25], [36], [37], [39]
shows that there are two types of reduction
techniques, which are: (a) pre-process and (b) post-
process. First, the pre-process is a process that
immediately reduces a size of test cases after
generating. Typically, it is occurred before regression
testing phase. Second, the post-process is a process
that maintains and removes unnecessary test cases,
after running the first regression testing activities.
Although these techniques can reduce the size of test
cases, but the ability to reveal faults seems slightly to
be dropped. However, Jefferson Offutt [5] and
Rothermel [10], [11], [12], [13], [14], [15], [30], [31],
[33] has proven that these test case reduction

techniques have many benefits, particularly during the
regression testing phase, and most of reduction
techniques can maintain an acceptable rate of fault
detection. The advantages of these techniques are: (a)
to spend less time in executing test cases, particularly
during the regression testing phase (b) to significantly
reduce time and cost of manually comparing test
results and (c) to effectively manage the test data
associated with test cases. This study proposes a new
“2C” classification of test case reduction techniques,
classified based on their characteristics, as follows:
(a) coverage-based techniques and (b) concept
analysis-based techniques.

2.2. Case-Based Reasoning (CBR)
Over the time, CBR is growing. When the
uncontrollable case-based growth is occurred, the
performance of CBR is decreasing. Therefore, the
maintenance process is required in order to preserve
or improve the performance of the system. The
process of maintaining CBR is called CBM. David C.
Wilson [8] presented the overall concepts of CBR and
case based maintenance. This paper focused on the
case based maintenance (CBM) approach in term of
the framework. In other words, this paper described
the type of data collection and how the case based
maintenance works. There were so many policies for
CBM, for example, addition, deletion, and retain.
“CBM was defined as the process of refining a CBR
system’s case-base to improve the system’s
performance. It implements policies for revising the
organization or contents (representation, domain
content, accounting information, or implementation)
of the case-base in order to facilitate future reasoning
for a particular set of performance objectives.”

These studies [4], [5], [6], [8], [19], [20], [28]
reveal that several deletion algorithms have been
proposed. For example, a random approach (RD),
utility deletion algorithm (UD), footprint deletion
algorithm (FD), footprint utility deletion algorithm
(FUD) and iterative case filtering algorithm (ICF).

RD is the simplest approach, which removes the
case randomly. UD deletes the case that has minimum
utility value. Footprint algorithm uses the competence
model and removes the auxiliary case from the
system. FUD is a hybrid approach between Utility
algorithm and Footprint algorithm, and is concerned
with the competence model and the utility value.
Finally, ICF focuses on the case, which the
reachability set is greater than the coverage set [19],
[28].

3. DEFINITION

This section describes a definition of terminologies.
Definition 1: Barry [4] defined the CBR, case base,
auxiliary case and pivotal case as follows:
“Case-Based Reasoning is one of the Artificial
Intelligence-based algorithms, which solve the
problems by searching through the case storage for

76

the most similar cases. CBR has to store their solved
cases back to their memory or storage in order to
learn from their experience.”
 “Case Base is a collection of cases in CBR, which
can be defined as the following: Given a case - base C
= {c1... cn}, for c ε C whereas C = CBR, c = case”
Definition 2: “Auxiliary Case is a case that does not
have a direct effect on the competence of a system
when it is deleted. The definition of auxiliary case can
be described as follows:
Auxiliary cases do not affect competence at all. Their
deletion only reduces the efficiency of the system. A
case is an auxiliary case if the coverage it provides is
subsumed by the coverage of one of its reachable
cases.”
Definition 3: “Pivotal Case is the case that does
have a direct effect on the competence of a system if it
is deleted.
A case is a pivotal case if its deletion directly reduces
the competence of a system (irrespective of the other
cases in the case-base) [2], [3]. Using the above
estimates of coverage and reachability a case is
pivotal if it is reachable by no other case but itself.”

4. RESEARCH CHALLENGES

This section discusses the details of research issues
motivated this study. The literature review reveals
that [7], [22], [24], [25], [27], [38] those research
issues are: (a) too many redundancy test cases after
reduction process (b) a decrease of test cases’ ability
to reveal faults and (c) uncontrollable grow of test
cases. These research issues can be elaborated in
details as follows: First, the literature review shows
that redundancy test cases are test cases tested by
multiple test cases. Many test cases that are designed
to test the same things (e.g. same functions, same line
of code or same requirements) are duplicated. Those
duplicated tests are typically occurred during testing
activities, particularly during regression testing
activities [7], [22], [24], [25], [27], [38]. Those
duplicated tests can be eventually removed in order to
minimize time and cost to execute tests. The study
shows that there are many proposed methods to delete
those duplicated test cases such as McMaster's work
[24] [25], Jeff's method [7] and Khan's approach [22].
Also, the study shows that one of the most interesting
research issues is to minimize those duplicated tests
and reduce cost of executing tests. Although there are
many proposed methods to resolve that issue, that
issue is still remaining. Thus, it is a challenge for
researchers to continuously improve the ability to
remove duplicated tests. Second, test cases are
designed to reveal faults during software testing
phase. The empirical studies [10], [11], [12], [23],
[30], [31], [33], [39] describe that reducing test cases
may impact to the ability of detect faults. Many
reduction methods decrease a capability of testing and
reveal those faults. Therefore, one of outstanding
research challenges for researchers is to remove tests

while preserving the ability to defect faults. Last, this
paper shows that uncontrollable grow of test cases can
be typically occurred during software testing process
and evolution. Even if there are many reduction
methods proposed to control and limit growth of tests,
unfortunately it appears that a number of test cases is
still large. Obviously, the greater size of test cases
takes longer time and cost to execute.

5. PROPOSED METHODS

For evolving software, test cases are growing
dramatically. The more test cases software test
engineers have, the more time and cost software test
engineers consume. The literature review shows that
regression testing activities consume a significant
amount of time and cost. Although, a comprehensive
set of regression selection techniques [10], [11], [12],
[13] has been proposed to minimize time and cost,
there is an available room to minimize size of tests
and clean up all unnecessary test cases. Thus,
removing all redundancy test cases is desirable. There
are many approaches to reduce redundancy test cases
and applying an artificial intelligent concept in the
test case reduction process is an innovated approach.
The literature review [16], [28] shows that there are
many areas of artificial intelligent concept, such as
artificial neutral network, fuzzy logic, learning
algorithms and CBR concept. Also, it reveals that
CBR has a same research issue as software testing
has. The issue is that cases in the CBR system will be
consistency growing bigger and larger all the time.
There are four steps in CBR that can uncontrollably
grow a size of the system: retrieve, reuse, revise and
retain. Therefore, many CBR papers aim to reduce all
redundancy cases, known as “deletion algorithms”.
The smaller size of CBR system is better and
desirable. Due to the fact that CBR has the same
problem as software testing and this paper focuses on
reduction methods, therefore, this paper proposes to
apply CBR deletion algorithms to the test case
reduction techniques. This paper introduces three
reduction methods that apply CBR deletion
algorithms: TCCF, TCIF and PCF methods. Those
techniques aim to reduce a number of test cases
generated by path-oriented test case generation
technique. This technique is used for white-box
testing only. However, the generation methods are out
of the scope of this paper.

5.1. Example of Test Cases
Given a set of test cases generated, this study
discusses the use of a number of case maintenance
techniques, which have been investigated by CBR
researchers in ensuring that only small amount of
cases are stored in the case base, thereby reducing
number of test cases should be used in software
testing. Similar to what happen to software testing, a
number of CBR researchers have focused on finding
approaches especially for reducing cases in the CBR

77

systems’ storages. This paper proposes to use the path
coverage criteria in order to reduce redundancy test
cases. This is because path coverage has a huge
benefit of required very thorough testing activities.
The following describes in details of the above path
coverage using in the software testing field. Let S =
{s1, s2, s3, s4, s5} to be a set of stage in the control
flow graph. The control flow graph can be derived
from the source-code or program. It is a white-box
testing. Thus, each state represents a block of code.
The techniques that aim to generate and derive test
cases from the control flow graph are well-known as
path-oriented test case generation techniques. These
techniques are widely used to generate test cases.
There are many research papers on this area.
However, the test case generation techniques are out
of scope in this paper.

Figure 1 An Example of Control Flow Graph

From the above figure, this paper assumes that

each state can reveal a fault. Thus, an ability to reveal
faults of five states is equal to 5. Also, it is assumed
that every single transaction must be tested. This
example is used in the rest of paper.

Let TCn = {s1, s2, …,sn} where TC is a test case
and sn is a stage or node in the path-oriented graph
that is used to be tested. From the above figure, a set
of test cases can be derived as follows:
TC1 = {s1, s2}
TC2 = {s1, s3}
TC3 = {s1, s4}
TC4 = {s1, s2, s3}
TC5 = {s1, s3, s5}
TC6 = {s1, s4, s3}

TC7 = {s1, s2, s3, s5}
TC8 = {s1, s4, s3, s5}
TC9 = {s2, s3}
TC10 = {s2, s3, s5}
TC11 = {s3, s5}
TC12 = {s4, s3}
TC13 = {s4, s3, s5}

The following describes the proposed methods
that apply the concept of CBR in details:

5.2. Test Case Complexity for Filtering (TCCF)
A complexity of test case is the significant criteria in
this proposed method [2], [19]. In this paper, the
complexity of test case measures a number of states
included in each test case.

Let Cplx(TC) = {High, Medium, Low} where
Cplx is a complexity of test case, TC is a test case and
the complexity value can be measured as:
• High when a number of states are greater than an

average number of states in the test suite.
• Medium when a number of states are equal to an

average number of states in test suites.
• Low when a number of states are less than an

average number of states in the test suites.

The procedures of this method can be described
briefly in the following steps.

The first step is to determine a coverage set. From
figure 1, each coverage set can be identified as
follows:
Coverage (1) = {TC1}
Coverage (2) = {TC2}
Coverage (3) = {TC3}
Coverage (4) = {TC1,
TC4, TC9}
Coverage (5) = {TC2,
TC5, TC11}
Coverage (6) = {TC3,
TC6, TC12}

Coverage (7) = {TC1, TC4, TC7,
TC9, TC10, TC11}
Coverage (8) = {TC3, TC6, TC8,
TC11, TC12, TC13}
Coverage (9) = {TC9}
Coverage (10) = {TC9, TC10,
TC11}
Coverage (11) = {TC11}
Coverage (12) = {TC12}
Coverage (13) = {TC11, TC12,
TC13}

The second step is also to determine a reachability
set. The reachability set can be figured out from the
above coverage set, based on the given definition in
this paper. Therefore, the reachability set can be
identified as follows:
Reachability (TC1) = {1, 4,
7}
Reachability (TC2) = {2, 5}
Reachability (TC3) = {3, 6,
8}
Reachability (TC4) = {4, 7}
Reachability (TC5) = {5}
Reachability (TC6) = {6, 8}

Reachability (TC7) = {7}
Reachability (TC8) = {8}
Reachability (TC9) = {4, 7,
9, 10}
Reachability (TC10) = {7,
10}
Reachability (TC11) = {5, 7,
8, 10, 11, 13}
Reachability (TC12) = {6, 8,
12, 13}
Reachability (TC13) = {8,
13}

Next, the step is to define an auxiliary set. The
given definition of auxiliary set is to find a test case
that does not have a direct effect on the ability to
reveal faults when it is removed. From figure 1,
therefore, the auxiliary set can be identified as
follows:

Auxiliary set = {TC1, TC2, TC3, TC4, TC5, TC6, TC9,
TC10, TC11, TC12, TC13}

Afterward, the method computes a complexity
value for all test cases in the above auxiliary set. From
figure 1 and test suites that contain 13 test cases, the
average number of states is equal to 3. Therefore, the
complexity value for each test case can be computed
as follows:

Cplx(TC1) = Low, Cplx(TC2) = Low, Cplx(TC3) =
Low, Cplx(TC4) = Medium, Cplx(TC5) = Medium,

Cplx(TC6) = Medium, Cplx(TC9) = Low, Cplx(TC10) =
Medium, Cplx(TC11) = Low, Cplx(TC12) = Low and

Cplx(TC13) = Medium
Finally, the last step removes test cases with

minimum of complexity value from the auxiliary set.
Thus, TC1, TC2, TC3, TC9, TC11 and TC12 are
removed.

5.3. Test Case Impact for Filtering (TCIF)
The study [21] shows that software is error-ridden in
part because of its growing complexity. Software is
growing more complex every day. The size of

78

software products is no longer measured in thousands
of lines of code, but it measures in millions. Software
developers already spend approximately 80 percent of
development costs [21] on identifying and correcting
defects, and yet few products of any type other than
software are shipped with such high levels of errors.
Other factors contributing to quality problems include
marketing strategies, limited liability by software
vendors, and decreasing returns on testing and
debugging, according to the study. At the core of
these issues is difficulty in defining and measuring
software quality. Due to the fact that defining and
measuring a quality of software is important and
difficult, the impact of inadequate testing must not be
ignorance. The impact of inadequate testing could be
lead to the problem of poor quality, expensive costs
and huge time-to-market. In conclusion, software
testing engineers require identifying the impact of
each test case in order to acknowledge and understand
clearly the impact of ignoring some test cases. In this
paper, an impact value is an impact of test cases in
term of the ability to detect faults if those test cases
are removed and not be tested.

Let Imp(TC) = {High, Medium, Low} where Imp
is an impact if a test case is removed, TC is a test case
and the impact value can be measured as:
• High when the test case has revealed at least one

fault for many times.
• Medium when the test case has revealed faults for

only one time.
• Low when the test case has never revealed faults.

The procedure of this method is similar to the
previous method. The only different is that this
method aims to use an impact value instead of
complexity value. Therefore, the fire three steps are
to: identify coverage set, define reachability set and
determine an auxiliary set. Afterward, the next step is
to compute and assign an impact value. The method
computes the impact value for all test cases in the
above auxiliary set. From figure 1, the impact value
for each test case can be computed as follows:

Imp(TC1) = Low, Imp(TC2) = High, Imp(TC3) =
Medium, Imp(TC4) = Low, Imp(TC5) = High,

Imp(TC6) = Medium, Imp(TC9) = Low, Imp(TC10) =
Low, Imp(TC11) = Low, Imp(TC12) = Low and

Imp(TC13) = Low
Finally, the last step removes test cases with

minimum of impact value from the auxiliary set.
Thus, TC1, TC4, TC7, TC9, TC10, TC11, TC12 and TC13
are removed.

5.4. Path Coverage for Filtering (PCF) Method
Code coverage analysis is a structural testing
technique (also known as white box testing).
Structural testing compares test program behaviour
against the apparent intention of the source code. This
contrasts with functional testing (also referred to
black-box testing), which compares test program
behaviour against a requirements specification.
Structural testing examines how the program works,

taking into account possible pitfalls in the structure
and logic. Functional testing examines what the
program accomplishes, without regard to how it
works internally. Structural testing is also called path
testing since you choose test cases that cause paths to
be taken through the structure of the program. The
advantage of path cover is that it takes responsible for
all statements as well as branches across a method. It
requires very thorough testing. This is an effective
substitute of other coverage criteria. The path
coverage is used as coverage value in this technique.
The Coverage value is combined into the addition
policy for adding significant case [17]. Within the
adding algorithm along with the coverage weight
value stated in the review, the concept of deletion
algorithm and the coverage have been proposed. The
coverage value can specify how many nodes that the
test case can cover. In other words, the coverage value
is an indicator to measure that each test case covers
nodes. It means that the higher coverage value is, the
more nodes can be contained and covered in the test
case. Let Cov(n) = value where Cov is a coverage
value, value is a number of test cases in each coverage
group and n is a coverage relationship.

The procedure of this method can be elaborated
briefly as the following steps. From figure 1, the first
step is to identify a coverage set, which has been
already identified in the previous method. The next
step is to calculate a coverage value. This paper
proposes to calculate a coverage value based on a
number of test cases in each coverage group.
Therefore, the coverage value can be computed as
follows:
Cov(1) = 1, Cov(2) = 1, Cov(3) = 3, Cov(4) = 3,
Cov(5) = 3, Cov(6) = 4, Cov(7) = 6, Cov(8) = 6,
Cov(9) = 1, Cov(10) = 3, Cov(11) = 1, Cov(12) = 1
and Cov(13) = 3.

The last step removes all test cases with minimum
coverage value, in the potential removal set.
Therefore, TC1, TC2, TC9, TC11 and TC12 are removed.

6. EVALUATION

This section describes an experiments design,
measurement metrics and results. This paragraph
designs an experiment used to evaluate and determine
the best reduction methods. This paper proposes the
following three steps. First, the experiment proposes
to randomly generate 2,000 test data used in the
telecommunication industry. In this experiment, the
test data is represented as test case. Second, the
experiment executes reduction methods with the
generated test cases and compares among the
following reduction methods: RD, UD, FD, FUD, ICF
and three proposed methods (e.g. TCCF, TCIF and
PCF). This step randomly simulates defects for each
test case in order to determine an ability to reveal
faults. Third, the experiment aims to run the above
methods for 10 times in order to calculate the average
value for each metric. The metrics used in this

79

experiment are described in details in next section.
Afterward, the experiment compares the values and
evaluates a result by generating a comparison graph in
order to determine the most recommended reduction
approach.

The following table lists the description of each
test data that need to be generated randomly.

Table 1 An Example Form of Test Cases

Attribu
te

Description Data Type

Test Id A unique index to reference
test data. The value is a
sequence number, starting at
1.

Numeric

Full
Name

A first and last name who
own the mobile phone.

String

Name A mobile brand name. The
value is a range of iPhone,
BlackBerry, Nokia, LG, Sony
Ericsson and Samsung.

String

Covera
ge
Value

A value of Coverage set,
which is defined by the user.

Numeric

Impact
Value

An impact value of each case,
in this work. This can be
matched to the impact value.

Numeric

wCover
ageVal
ue

The weight value for coverage
set

Numeric

A set of
states

A set of states that required to
be tested. State is directly
derived from control flow
graph. The control flow graph
is a result of path-oriented test
case generation techniques.

Array

Comple
xity

An indicator to represent a
complexity of test case. The
complexity of test cases
represents how difficult to
execute each test case.

Numeric

Impact An indicator to represent an
impact value in case that test
case is ignored.

Numeric

Covera
ge

An indicator to represent how
many states each test case
cover.

Numeric

Status An indicator to represent that
test case can reveal faults or
not. The status can be only
either pass or fail. If the status
is fail, it mean that fault is
detected.

Boolean

The following table describes an approach to

generate random data using the above attributes
respectively.

Table 2 Approach to Generate Random Test Case
Attribute Approach
Test Id Generate randomly from the following

combination: t + Sequence Number. For
example, t1, t2, t3, …, tn.

Name Random from the following values: iPhone,
BlackBerry, Nokia, LG, Sony and Samsung.

ImpValue Set as a zero (0) at the beginning
wCoverag
eValue

Set as a one (1) at the beginning

A set of
states

There are two elements needed to be
randomly generated: (a) a number of states
that needed to be tested by each test case and
be generated between 1 and 100. (b) states
themselves that described as follows:
Generate randomly from the following
combination: s + Sequence Number. For
example, s1, s2, s3, …, sn.

Cplx Random from the following values: 1-100
Impact Random from the following values: 1-100
Coverage Compute a number of states from “a set of

states” field

The paragraph lists the measurement metrics used

in the experiment. The first measurement is a number
of test cases. The large number of test cases consumes
time, effort and cost more than the smaller size of test
cases. Many reduction or minimization approaches
[1], [10], [11], [12], [13], [14], [15], [24], [25], [36],
[37], [39] have been proposed to minimize size of test
cases. This has proven that size is one of important
metrics in software testing area. The second is an
ability to reveal faults. It aims to measure the
percentage of faults detection. One of the goals of test
case with a set of data is to find defects. Thus, this
metric is important criteria to measure and determine
which reduction methods can preserve the high ability
to reveal faults. The last measurement is a total of
reduction time: It is the total number of times running
the reduction methods in the experiment. This metric
is related to time used during execution time and
maintenance time of test case reduction methods.
Therefore, less time is desirable. This paragraph
discusses an evaluation result of the above
experiment. This section presents the reduction
methods results in term of: (a) a number of test cases
(b) ability to reveal faults and (c) total reduction time.
The comparative methods are: RD, UD, FD, FUD,
ICF, TCCF, TCIF and PCF. Additionally, this section
shows a graph format. There are two dimensions in
the following graph: (a) horizontal and (b) vertical
axis. The horizontal represents three measurements
whereas the vertical axis represents the percentage
value.

80

Figure 2 A Graph Comparison of Deletion Methods

The above graph presents that both of FD and PCF

minimize a number of test cases by far better than
other reductions methods, approximately over 15%.
Meanwhile, both of them are the worst methods for
preserving an ability to reveal faults. FUD, TCCF and
TCIF are best top three methods to reserve a
capability to detect faults. They are greater than other
methods over 22%. Unfortunately, they are also the
worst three methods that require a lot of time during a
reduction process. In the mean time, both of RD and
PCF take the least total reduction time among other
methods. The evaluation result suggests that FD and
PCF is perfectly suitable for a scenario that does not
directly concern about an ability to reveal faults and
total reduction time. Both of FD and PCF are two of
the most excellent methods to minimize a number of
test cases. Meanwhile, FUD, TCCF and TCIF are the
most recommended methods to delete tests while
preserving the ability to detect faults. In addition, both
of RD and PCF are excellent in case that total time is
matter.

7. CONCLUSION

This paper reveals that there are many research
challenges and gaps in the test case reduction area.
Those challenges and gaps can give the research
direction in this field. However, the research issues
that motivated this study are: (a) too many
redundancy test cases after reduction process (b) a
decrease of test cases’ ability to reveal faults and (c)
uncontrollable grow of test cases. This paper
combines the concept of software testing and CBR.
Those two concepts could be used together on
practical software development scenarios. The
proposed maintenance algorithms are significant
approaches for removing unnecessary test cases and
are used for controlling the growth of test cases.
Those approaches are aimed at maintaining the large
test cases by minimizing the time consumed by
execution & maintenance and reducing the size of the
test cases along with preserving the ability to reveal
faults as much as possible. Also, the evaluation
reveals that they have been achieved by removing a
number of test cases, minimizing time for executing
& maintenance and preserving the fault-detection
ability with sample of 2,000 test cases. However, the
primarily limitation of those approaches is about the

path coverage. The path coverage may be not an
effective coverage factor for a huge system that
contains million lines of code. This is because it
requires an exhaustive time and cost of identify
coverage from a huge amount of codes. Thus, one of
the future works is to apply other coverage factors for
those approaches. Finally, this paper recommends
researchers to improve the ability to reduce duplicated
or unnecessary test cases from multiple test suites,
enhance the capability to reduce test cases in the large
commercial system and develop a systematic
approach to identify an impact and complexity of
tests.

8. REFERENCES

[1] A. Jefferson Offutt, Jie Pan and Jeffery M. Voas,
“Procedures for Reducing the Size of Coverage-based Test
Sets”, 1995.
[2] Barry Smyth & Keane. “Remembering To Forget: A
Competence Preserving Deletion Policy for Case-Based
Reasoning Systems” In Proceedings of the 14th
International Joint Conference on Artificial Intelligence,
377-382. Morgan-Kaufman, 1995.
[3] Barry Smyth Ph.D. Thesis. “Case Based Design”
Department of Computer Science, Trinity College, Dublin
Ireland, 1996.
[4] Barry W. Boehm, “A Spiral Model of Software
Development and Enhancement”, TRW Defense Systems
Group, 1998.
[5] Boris Beizer, “Software Testing Techniques, Van
Nostrand Reinhold”, Inc, New York NY, 2nd edition. ISBN
0-442-20672-0, 1990.
[6] Bo Qu, Changhai Nie, Baowen Xu and Xiaofang Zhang,
“Test Case Prioritization for Black Box Testing”, 31st
Annual International Computer Software and Applications
Conference (COMPSAC 2007), 2007.
[7] Cem Kaner, “Exploratory Testing”, Florida Institute of
Technology, Quality Assurance Institute Worldwide Annual
Software Testing Conference, Orlando, FL, 2006.
[8] David C. Wilson. Ph.D. Thesis “A Case-Based
Maintenance: The husbandry of experiences.” Department
of Computer Science, Indiana University, 2001.
[9] E. Lehmann and J. Wegener, “Test case design by
means of the CTE XL”, In Proc. of the 8th European
International Conf. on Software Testing, Analysis &
Review (EuroSTAR 2000), 2000.
[10] Gregg Rothermel, Roland H. Untch, Chengyun Chu
and Mary Jean Harrold, “Prioritizing Test Cases for
Regression Testing”, IEEE Transactions on Software
Engineering, 2001.
[11] Gregg Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold, “Test case prioritization: An empirical study”, In
Proceedings of the IEEE International Conference on
Software Maintenance, pages 179-188, Oxford, England,
UK, 1999.
[12] Gregg Rothermel, Mary Jean Harrold, Jeffery Ostrin
and Christie Hong, “An Empirical Study of the Effects of
Minimization on the Fault Detection Capabilities of Test
Suites”, In Proceedings of IEEE International Test
Conference on Software Maintenance (ITCSM'98),
Washington D.C., pp. 34-43, 1998.
[13] Gregg Rothermel, Mary Jean Harrold, Jeffery von
Ronne and Christie Hong, “Empirical Studies of Test-Suite

81

Reduction”, In Journal of Software Testing, Verification,
and Reliability, Vol. 12, No. 4, 2002.
[14] Gregg Rothermel and Mary Jean Harrold, “A Safe,
Efficient Regression Test Selection Technique”, ACM
Transactions on Softw. Eng. And Methodology, 6(2): 173-
210, 1997.
[15] Gregg Rothermel and Mary Jean Harrold, “Analyzing
Regression Test Selection Techniques”, IEEE Transactions
on Software Engineering, 22(8):529-551, 1996.
[16] Jirapun Daengdej, Ph.D. Thesis, “Adaptable Case Base
Reasoning Techniques for Dealing with Highly Noise
Cases” The University of New England, Australia, 1998.
[17] Jun Zhu and Quiang Yang. “Remembering To Add
Competence-preserving Case Addition Policies for Case
Base Maintenance.” In Proceedings of the 16th International
Joint Conference in Artificial Intelligence, 234-241.
Morgan-Kaufmann, 1999
[18] Mary Jean Harrold, Rajiv Gupta and Mary Lou Soffa,
“A Methodology for Controlling the Size of A Test Suite”,
ACM Transactions on Software Engineering and
Methodology, 2(3):270-285, 1993.
[19] Nicha Kosindrdecha and Jirapun Daengdej, “A
Deletion Algorithm for Case-Based Maintenance Based on
Accuracy and Competence”, Assumption University,
Thailand, 2003
[20] Nicha Kosindrdecha and Siripong Roongruangsuwan,
“Reducing Test Case Created by Path Oriented Test Case
Generation”, AIAA 2007 Conference and Exhibition,
Rohnert Park, California, USA, 2007.
[21] NIST, “The economic impacts of inadequate
infrastructure for software testing”, 2002.
[22] Saif-ur-Rebman Khan and Aamer Nadeem, “TestFilter:
A Statement-Coverage Based Test Case Reduction
Technique”, 2006.
[23] Sara Sprenkle, Sreedevi Sampath and Amie Souter,
“An Empirical Comparison of Test Suite Reduction
Techniques for User-session-based Testing of Web
Applications”, Journal of Software. Testing, Verification,
and Reliability, 4(2), 2002.
[24] Scott McMaster and Atif Memon, “Call Stack
Coverage for Test Suite Reduction”, Proceedings of the
21st IEEE International Conference on Software
Maintenance (ICSM’05), pages 539-548, Budapest,
Hungary, 2005.
[25] Scott McMaster and Atif Memon, “Call Stack
Coverage for GUI Test-Suite Reduction”, Proceedings of
the 17th IEEE International Symposium on Software
Reliability Engineering (ISSRE 2006), NC, USA, 2006.
[26] Scott McMaster and Atif Memon, “Fault Detection
Probability Analysis for Coverage-Based Test Suite
Reduction”, IEEE, 2007.
[27] Sreedevi Sampath, Sara Sprenkle, Emily Gibson and
Lori Pollock, “Web Application Testing with Customized
Test Requirements – An Experimental Comparison Study”,
17th International Symposium on Software Reliability
Engineering (ISSRE’06), 2006.
[28] Siripong Roongruangsuwan and Jirapun Daengdej,
“Techniques for improving case-based maintenance”,
Assumption University, Thailand, 2003
[29] Siripong Roongruangsuwan and Jirapun Daengdej,
“Test Case Reduction”, Technical Report 25521.
Assumption University, Thailand, 2009.
[30] S. Elbaum, A. Malishevsky, and G. Rothermel, “Test
Case Prioritization: A Family of Empirical Studies”, IEEE
Trans. on Software Engineering, vol. 28, 2002.
[31] S. Elbaum, A. G. Malishevsky and G. Rothermel,
“Prioritizing Test Cases for Regression Testing”, In

Proceedings of the International Symposium on Software
Testing and Analysis, pages 102-112, 2000.
[32] S. Elbaum, P. Kallakuri, A. G. Malishevsky, G.
Rothermel, and S. Kanduri, “Understanding the effects of
changes on the cost-effectiveness of regression testing
techniques”, Journal of Software Testing, Verification, and
Reliability, 13(2):65-83, 2003.
[33] Todd L. Graves, Mary Jean Harrold, Jung-Min Kim,
Adam Porter and Gregg Rothermel, “An Empirical Study of
Regression Test Selection Techniques”, 2000.
[34] W. Eric Wong, J. R. Horgan, Saul London and Hira
Agrawal, “A Study of Effective Regression Testing in
Practice”, 8th IEEE International Symposium on Software
Reliability Engineering (ISSRE’97), 1997.
[35] W. Eric Wong, Joseph R. Horgan, Saul London and
Aditya P. Mathur, “Effect of Test Set Minimization on the
Fault Detection Effectiveness of the All-Uses Criterion”, In
Proceedings of the 17th International Conference on
Software Engineering, pages 41-50, 1995.
[36] Xiaofang Zhang, Baowen Xu, Changhai Nie and Liang
Shi, “An Approach for Optimizing Test Suite Based on
Testing Requirement Reduction”, Journal of Software (in
Chinese), 18(4): 821-831, 2007.
[37] Xiaofang Zhang, Baowen Xu, Changhai Nie and Liang
Shi, “Test Suite Optimization Based on Testing
Requirements Reduction”, International Journal of
Electronics & Computer Science, 7(1): 9-15, 2005.
[38] Xue-ying MA, Bin-kui Sheng, Zhen-feng HE and
Cheng-qing YE, “A Genetic Algorithm for Test-Suite
Reduction”, IEEE, China, 2006.
[39] Yanbing Yu, James A. Jones and Mary Jean Harrold,
“An Empirical Study of the Effects of Test-Suite Reduction
on Fault Localization”, Proceedings of ICSE’08, Germany,
2008.

82

EVOLUTION SUPPORT FOR MODEL-BASED DEVELOPMENT AND TESTING
SUMMARY

Stephan Bode, Qurat-Ul-Ann Farooq, Matthias Riebisch

{stephan.bode | qurat-ul-ann.farooq | matthias.riebisch}@tu-ilmenau.de

Ilmenau University of Technology, Ilmenau, Germany

1. INTRODUCTION

The First International Workshop on Evolution
Support for Model-Based Development and Testing
(EMDT2010) was held on September 16, 2010 in
Ilmenau, Germany. After a keynote and several paper
presentations a workshop discussion was held.

2. GOALS OF THE DISCUSSION

The goal of the workshop discussion was to identify
the key challenges, research questions and ideas for
the support of evolution in software development and
testing. Initiated by keynote and presentations, the
participants from industry and academia should
exchange their experiences and ideas.

3. DISCUSSION OF THE TERM SOFTWARE
EVOLUTION

3.1. Key aspects of the term Evolution
Unfortunately, a clear definition of the term evolution
is missing. According to Lehman and Ramil (chapter
1 of [1]), the term evolution reflects "a process of
progressive, for example beneficial, change in the
attributes of the evolving entity or that of one or more
of its constituent elements. What is accepted as
progressive must be determined in each context. It is
also appropriate to apply the term evolution when
long-term change trends are beneficial even though
isolated or short sequences of changes may appear
degenerative. For example, an entity or collection of
entities may be said to be evolving if their value or
fitness is increasing over time. Individually or
collectively they are becoming more meaningful,
more complete or more adapted to a changing
environment. "

Our understanding of the term related to the
workshop theme covers the following key aspects:
• Modification, change, progress, extension over

time
• State of an artefact at different points of time
• Models change: dynamic versus static

• Evolution versus revolution while revolution
means the replacement of an existing system by a
new one

Two examples for evolution shall illustrate the change
of the states:
• A change of natural language requirements leads to

a change of the conceptual model, which in turn
leads to a change of the class diagram as vertical
evolution. This chain has to be traceable
backwards.

• A change of the initial requirements (e.g. use
cases) leads to a change of the functional
specification, e.g. expressed by a visual contract:
with pre and post conditions.

3.2. Levels and dimensions of evolution
Evolution of models in a stepwise incremental
development in two dimensions:

Horizontal: to add one part after the other, leading
to an increased functionality:
• V1 views PDF files,
• V2 views PDF and JPG files

Vertical: to develop parts to detailed level, leading
to further refinement:
• From abstract specification to components and to

code
• To achieve horizontal evolution, some vertical

evolution steps may be necessary.
Evolution results in a traceable sequence of parts.

4. ASPECTS OF SEMANTICS TO BE
EXPRESSED IN MODELS

A formal definition of semantics is important for
transformability. The following aspects have to be
expressed in such a way:
• Structure
• Class diagrams, component diagrams
• Behaviour
• State Charts, Petri Nets
• Conceptual models
• Ontology
• Functional specification
• Visual contracts [2], Java Modeling Language

JML: pre and post conditions

83

5. IDENTIFIED RESEARCH CHALLENGES

The participants identified a set of research challenges
• Mastering complexity: modularization vs.

comprehension
• Appropriate level of detail
• Appropriate models (views) for different types of

tests
• Appropriate models (notations) for different

domains
• Models to cover the relevant aspects of real world
• Decision on separate models for specification, for

testing and development as an overhead or
necessity

• Expression of semantics of data transformation /
functionality

• Dependency relations between models
• Means to bridge the gaps / to overcome the walls

between the stages of development
• Usage of ontologies to bridge the gap between

informal requirements and design models
• Identification of generalized change types

according to their consequences for different
development activities

• Tool integration: establishing appropriate meta
models and interfaces for:

o Model creation
o Code generation
o Test case generation

• Impact analysis for evolution support: how to
identify artefacts affected by changes

• Analysis of the impact of evolution on generated
artefacts

• Reuse of the development artefacts during
evolution, including test cases

• Software product lines – planned reuse vs.
evolution

• Definition of formal criteria for evolution: legal
issues for example regarding copyright

From the discussion we can conclude that all
mentioned issues are related to the questions:
• Which models are necessary
• How to express the relevant aspects in models
• How to evaluate and to utilize models

6. ACKNOWLEDGEMENTS

We want to thank the contributors of the discussion
for their input and their statements: Sven Biegler,
Ilmenau University of Technology, Germany; Jirapun
Daengdej, Assumption University, Thailand; Stefan
Groß, Ilmenau University of Technology Germany;
Baris Güldali, University Paderborn, Germany;
Christian Kop, University Klagenfurt, Austria; Bernd-
Holger Schlingloff, Humboldt University, Germany.

7. REFERENCES

[1] Meir Lehman and Juan C. Fernández-Ramil:
Software Evolution. In: Nazim H. Madhavji, Juan C.
Fernández-Ramil and Dewayne E. Perry: Software
Evolution and Feedback: Theory and Practice, Wiley,
2006, pp 7-40.
[2] Mark Lohmann, Stefan Sauer, Gregor Engels:
Executable visual contracts. In: 2005 IEEE
Symposium on Visual Languages and Human-Centric
Computing, pp. 63-70, IEEE CS Press, 2005.

84

