
VALIDATIO� OF K�OWLEDGE-BASED SYSTEMS THROUGH COMMO�KADS

Feras Batarseh

Avelino J. Gonzalez

Rainer Knauf

Intelligent Systems Lab

School of Electrical

Engineering and

Computer Science

University of Central

Florida (UCF)

Intelligent Systems Lab

School of Electrical

Engineering and

Computer Science

University of Central

Florida (UCF)

Ilmenau University of

Technology

Department of Computer

Science and Automation

P.O.Box 100565

Ilmenau, Germany 98684

4000 Central Florida Blvd.

Orlando, FL 32816

4000 Central Florida Blvd.

Orlando, FL 32816

ABSTRACT

This paper defines a method that can be used for

validating knowledge-based systems (KBS)

throughout their entire lifecycle. Method’s name is

MAVERICK. It stands for Method for Automated

Validation Embedded into the Reusable and

Incremental CommonKADS. The lack of suitable,

rigorous and general validation methods has become a

serious obstacle to user acceptance of KBS for critical

applications. In spite of recent significant advances in

validation of KBS, it still remains an open problem.

The ideas presented in this paper are based on the

concept that validation should be performed in a

structured and guided manner, integrated within a

knowledge-based systems’ lifecycle development

method.. We define an incremental validation method

for KBS based on extracting test cases from

CommonKADS. Furthermore, we introduce our

method for reducing the number of test cases and thus

reducing validation’s effort and cost.

Index Terms - Validation, CommonKADS,

Knowledge-based systems, Test case.

1. I�TRODUCTIO�

This paper describes a method that integrates

validation within a life-cycle development method.

The most comprehensive definition of validation was

recently introduced by Gonzalez et al. [1] in the

context of knowledge-based systems: “Validation is

the process of ensuring that the output of the

intelligent system is equivalent to those of human

experts when given the same input.” We adopted this

definition because it is general and because it states

that validation is comparing the system to the real

world. Different methods for the validation of

knowledge bases have been developed such as BKB

[2], VKB [3], KVAT [4], SEEK and SEEK2 [5].

Furthermore, methods for system validation were

developed, such as Bi-directional many-sided

explanation typed multi-step validation, VESA [3],

CORUS [6], CASE VALIDATOR [7], KJ3 [8], VVR

[4] and quasi-exhaustive set validation [9].

Additionally, other multi-purpose validation tools

were developed such as SHIVA, DIVER, EITHER

and EMBODY [10]. None of these methods is fully

incorporated into a life-cycle model.

2. BACKGROU�D

Validation can and should be performed at any

and all levels of the system development stages [1]

[11]. O’Keefe et al. [11] and Lee et al. [12] have

looked into incorporating validation into a conceptual

software development model. However, their success

was limited. After working with different general

validation approaches, O’Keefe et al. [11] concluded

that “We should build validation into the development

cycle”. However, none of the existing methods

perform formal validation across all development

phases. Furthermore, none of the mainstream methods

presented here is completely based on a life-cycle

model for system development. In this paper, we

introduce a formal method towards achieving the goal

of having a guided and incremental validation. This

will be done through CommonKADS. Anderson et al.

[13] conducted a study to measure the benefits of

incremental validation using many systems in many

domains. They came out with the following

conclusions:

1. Rates of uncovering errors early in development

were better.

2. Validation and verification found 2.3 to 5.5 errors

per thousand lines of code.

3. Over 85% of the found errors affect reliability and

maintainability.

4. Early error detection saved 20-28% of validation

costs if validation begins at coding phase.

5. Incremental validation saved 92-100% of

validation costs if validation begins at requirement

phase.

Gilb et al. [14] did a similar study and illustrated their

results. They concluded that when validation is

postponed, costs will grow exponentially. Incremental

validation can prevent this increase in costs.

Incremental validation helps the user in getting

frequent information about the development process

of the system, helps the knowledge engineer in finding

early comprehensive solutions instead of rushing fixes

to meet deadlines and helps the manager in decision-

making and instant feedback.

3. COMMO�KADS SET OF MODELS

CommonKADS (Knowledge Acquisition and

Design Support) is based on KADS. It concentrates on

the conceptual structure of the knowledge and the

system. The most accepted KBS development method

is CommonKADS. It doesn’t currently include

guidelines for validation, verification or testing in any

of its models. The six CommonKADS models are

categorized in three groups [15]:

1. Context Models:

Organization model: Supports the description and the

analysis of the organization.

Task model: Describes the tasks that might be

performed by the system within the organization.

Agent model: Supports the capabilities, constraints

and roles of the agents performing the tasks.

2. Concept Models:

Knowledge/Expertise model: Supports the description

of the knowledge invoked in the tasks.

Communication model: Describes the relation

between the agents, their interaction and their

communication.

3. Artifact Models:

Design Model: Supports the design and the structure

of the system.

Figure 1 illustrates the CommonKADS set of models.

These models are presented in worksheets, UML

diagrams, pseudo code and text. All the models are

mapped to implementation to form the system. Tools

were developed to help in implementing

CommonKADS such as Model-K and OMOS [15].

The development of these and other tools reflects the

general acceptance of CommonKADS by the KBS

development community. Conceptual model

languages had been introduced to support

CommonKADS representation formally such as ML
2
,

VITAL and FORKADS [15]. CommonKADS

supports reusability, and offers guidelines for the

developer to achieve high quality systems.

CommonKADS is a knowledge representation

dependent model and was not created independently

from other software models. Rather, other software

models (e.g. object-oriented paradigm) influenced the

definition of CommonKADS. CommonKADS has a

powerful organizational sub-model that can represent

many domains. CommonKADS offers a de facto

standard for building systems and ensures a modular

approach. CommonKADS is the most used

knowledge-based systems lifecycle model and is the

most accepted [15] [16]. Considering all the

advantages of CommonKADS mentioned above, it

should be no surprise that we chose it as our

knowledge-based system development model for our

validation method

In the next three sections, the validation lifecycle, test

cases extraction and reduction are introduced.

4. MAVERICK

Incremental validation is based on the idea that

“prevention is better than cure”. Incremental

validation locates the problem in its early stages. For

example, if there is an error that is created during

knowledge elicitation as a result of miscommunication

between the expert and the knowledge engineer,

incremental validation helps in identifying the error

before it’s absorbed into the design and then the

implementation. The deeper this error is absorbed the

harder it will be to identify it. Therefore, based on the

CommonKADS structure, MAVERICK is performed

at five levels in the following order:

1. Context Test Cases Extraction: This step defines

the test cases that need to be executed after defining

the first three models (the Context models:

Organization, Task and Agent).

2. Analysis Test Cases Extraction: In this step, the

test cases are extracted from the communication and

knowledge models. In CommonKADS, the analysis

phase is done after building five models: organization,

task, agent, communication and knowledge. These

five models represent all the requirements of the

system. After those five models are defined and before

moving into the design model, analysis validation is

performed. Inspection validation starts here, first step

of inspection validation is analysis validation. This

validation checks for conflicting requirements,

missing aspects in the analysis and any ambiguities.

This validation is performed by the experts and the

knowledge engineer manually on all the documents

and diagrams defined so far.

3. Design Test Cases Extraction: This is the last step

for test case extraction where test cases are extracted

from the design model. Inspection validation stops

here, second step of inspection validation is design

validation. It is performed after this step and before

implementation of the knowledge-based system starts.

Validation inspects the Class diagrams for DM1 to

check the initial design. DM1 represents the whole

system.

4. Spiral System Implementation: Implementation of

the system is performed iteratively. While iterating,

system development proceeds and validation is

performed by executing test cases. Test cases are

selected in every iteration by the CBV tool described

later in this dissertation.

5. Spiral System Validation: Validation is performed

spirally, test case selection occurs iteratively and test

cases are executed on the system. The validation

approach is discussed and introduced in greater detail

in section 6. Steps 4 and 5 are indicated to as CBV.

Figure 1 illustrates our general approach towards

performing incremental validation within the

CommonKADS steps. Different validation steps are

performed during the building of the CommonKADS

models and the system.

5. COMMO�KADS TEST CASE EXTRACTIO�

 The test case extraction starts early, while defining

the Organization model. The first worksheet from

which to extract cases from is OM3. OM1, OM2 and

OM4 are used to introduce the knowledge engineer to

the process that needs to be developed into the

knowledge-based system and the assets of the

organization. Nothing from OM1, OM2 and OM4 is

used as a part of the target system. OM3 is the process

break down sheet. All the processes in OM3

breakdown into the Task model for more details. In

this sheet, each task is defined with who is performing

it and what part of knowledge is needed for it. This

worksheet doesn’t involve the essence of the task.

That’s the goal of the Task model. Example: Task1 is

performed by Paul Hewson and for this task

documents 1 and 2 are needed. When the system is

built, a test case would be necessary to check the

availability of the needed documents when this task is

performed by the mentioned employee. The test case

would have the following format:

1. Test case ID: 1.

2. CommonKADS model: Organizational model

(worksheet: OM3 (organization tasks)).

3. Input variables: Paul Hewson’s user name and

password.

4. Test setup values: Logout from all accounts and

close all documents.

5. Test execution steps: Run task 1 by clicking on the

“start task” button, log in as Paul Hewson and click

on ”get documents 1 and 2”

6. Expected solution: Two PDF files opening on your

computer with documents 1 and 2.

7. System’s solution: Document 1 opened but

document 2 didn’t.

8. Local Importance: 2.5.

9. Number of execution times: 1.

10. Informal description: Paul Hewson needs access to

documents 1 and 2 with task 1.

OM2 has a “culture and power” part in the worksheet

that deals with social issues, political constraints and

rules of thumbs at the organization. This part doesn’t

apply to many organizations, but in case it’s

necessary, then for every point in this part of the

worksheet there should be test cases to cover it.

Figure 1 MAVERICK

An important part where test cases are to be

extracted is the worksheet TM1. TM2 deals with

making the knowledge engineer familiar with

assigning tasks to knowledge. It won’t be used for test

case extraction. In worksheet TM1 however, each task

is likely to need a number of test cases, where the

inputs of the test case come from the dependency and

flow section. In this section, the input objects and the

output objects are defined, which are then transformed

to the input variables and the test setup values of the

test case. In the expected output part of the test case

format, the quality and performance part are used. The

quality and performance part in the worksheet deals

with expected outcome of the task; this would be the

criteria for the test case failure or success.

Furthermore, in TM1, one part discusses the

preconditions and the post conditions of the task. For

each condition a set of test cases should be defined.

Worksheet AM1 defines the agents’ access to the

system. Test cases extracted from this worksheet are

related to security, roles and accesses. As previously

introduced in test case 1 example, Paul Hewson

needed access to task 1. Similar test cases are

extracted from AM1. The Knowledge model is a

critical model in CommonKADS as it is transformed

to represent the knowledge base. In CommonKADS,

the inference structure and the domain schemas

provide the set of test cases to validate the knowledge.

The inferences and the transfer functions are parts of

the inference structure, each instance of them is

presented in a test case. KM1 is a central worksheet

for test case extraction as it defines important parts of

the knowledge. The knowledge engineer might need to

present some domain requirements in the domain

schemas of the Knowledge model, as every object in

the domain schema is presented by a test case (refer to

test case 2 for an example). In KM1, an important part

is the “scenarios” section where any scenario related

to a certain part of the knowledge is introduced. Other

parts in this worksheet include a glossary of terms, the

elicitation material and other sections that will not be

transformed into a knowledge-based system. An

example of a scenario and a test case: scenario (The

employee Dave Evans needs knowledge about credit

cards overdraft fees to answer a bank’s client). A test

case for this scenario would be:

1. Test case ID: 2.

2. CommonKADS model: Knowledge model

(worksheet: KM1).

3. Input variables: Dave Evans user name and

password.

4. Test setup values: Run the credit card sub-system.

5. Test execution steps: log in as Dave Evans, enter a

clients name and account number, click on ”Display

credit cards fees rules”

6. Expected solution: Correct overdraft fees list of

rules should display to employee Dave Evans.

7. System’s solution: Correct overdraft fees list of

rules displayed to employee Dave Evans.

8. Local Importance: 1.75.

9. Number of execution times: 1.

10. Informal description: Overdraft fees rules display

when required by the employee.

The Communication model defines the

interaction between the tasks, the agents and the

system. CM1 and CM2 are used for test case

extraction as both of these worksheets components are

built into the targeted knowledge-based system. In

CM1 the constraints section is used to extract test

cases and the agents involved in this test case.

CM2 defines the contents of the communication

messages and the control over the messages, each

transaction needs to be tested using at least one test

case. In the Communication model, all the information

exchange, message sending and processes between

agents are represented in a pseudo code defined

specifically for CommonKADS.

For each pseudo construct, a set of test cases

should be defined. For example, a message for a new

loan is to be sent from the teller Adam Clayton to the

management department employee Larry Mullen

indicating that a new loan is granted to a client ahs the

following construct: SE;D tramsaction1(loan

granted) from teller to RECEIVE management.

The dialogue diagram in the Communication model is

used to test the sequence of the tasks performed by the

system and the agents. The Design model in

CommonKADS represents the initial design of the

targeted system. DM2, DM3 and DM4 are worksheets

that help the knowledge engineer to select the

hardware platform, software platform and all technical

issues related with building the system, but the real

system design is found in DM1. DM1 defines all the

subsystems. Test case extraction from this worksheet

targets the issue of the integration of those subsystems.

Relation between the subsystems is reflected by

communication between the subsystems and the tasks

sequencing among subsystems. In all the subsystems,

the domain specifications are introduced in the

Organizational, Task and Agent models. The

functional specifications are presented in the

Knowledge and Communication models. Using the

test case extraction step defined in this section, all the

aspects of the knowledge-base are covered and test

cases are generated from all the entities included in

the targeted system.

6. TEST CASE REDUCTIO� (CO�TEXT

BASED VALIDATIO�)

In our method, Knowledge-based system

development and validation are performed using the

spiral model. At any iteration of development,

variables’ values need to be modified and the system

undergoes refinement. This work reduces the number

of test cases based on the user’s needs and the context

of validation. This is where the term context-based

validation (CBV) came from. In problem solving, the

context would inherently contain much knowledge

about the situation’s context in which the problem is to

be solved or the problem’s environment [17]. In the

case of test case reduction, testing is intensified for the

model that failed the most in the previous testing

cycle. To reduce the number of test cases, the

knowledge engineer chooses what test cases to

remove. This is not performed manually; it is

performed spirally by the knowledge engineer and

based on the CommonKADS models.

Before the knowledge engineer starts with system

implementation, it is necessary to define a number of

control variables that are used to select what test cases

to be used in every cycle. These variables are:

1. Local Importance (LI): Each test case is assigned a

local importance variable that falls between 1 and 5.

Local importance = Average of (dependency +

domain importance + criticality + occurrence). Local

importance is a factor of dependency (Value assigned

from 1-5), domain importance (Value assigned from

1-5), criticality (Value assigned from 1-5) and

occurrence (Value assigned from 1-5). All the values

are defined by the knowledge engineer and the expert.

Additionally, the frequency of the task is indicated in

TM2, this is the basis for defining the occurrence

factor. Dependency is in the nature of

CommonKADS, the Design model depends on the

Knowledge and Communication models, which

depend on defining the task and the Agent models

which are both based on the Organization model

which is defined based on the knowledge elicitation.

The Organization model has the lowest dependency

rate (1) and the Design model has the highest

dependency rate (5).

2. Model Weight (MW): Every CommonKADS

model is assigned a weight after any iteration of

development. Initially all the models have the same

importance (MW is set to 5), but when the

development starts, model weights will constantly

change based on the outcomes of the test cases. The

model weight values fall between one and ten. Model

weight reflects the assurance level in testing for the

CommonKADS models. When the assurance of all

models reaches 10 and implementation is done,

validation stops.

3. N: Represents the number of test cases to be

selected in any iteration.

4. Global Importance (GI): This variable is used to

decide what test cases to select in any iteration.

Global Importance = Local Importance * Model

Weight.

Approaches to test case reduction have varied between

random, formal and informal. Using a well established

model like CommonKADS provides a solid ground

and an assurance that all the aspects of the system are

covered, and that the test cases extracted using this

method make sure that the system is well covered for

tests. The steps of CBV presented in figure 2 are:

1. Extract test cases from the worksheets and

diagrams. Set all the parameters defined previously.

Assign each test case to a CommonKADS model

2. Assign local importance for each test case.

3. Set the size of test case subset: ;, initially all the

test cases that have global importance more than 20

(LI*MW = 4*5 = 20). All test cases with local

importance of 4 or 5 needs to be selected, cases with

1, 2 and 3 importance are less important.

4. Set all models’ weights/assurance to 5

5. Calculate global importance = local importance *

model weight. Sort test cases according to global

importance

6. Start implementation using the spiral model

7. At the end of the first iteration, select N number of

test cases. From the ordered list pick test cases 1 to n.

8. Execute the test cases on the system, and record

the results

9. Based on results for each CommonKADS model

test cases, re calculate assurance for each model.

Example: if 30% of test cases of a certain model went

wrong, that model’s assurance will be 7 using the

following formula: 100 - (percentage of successful test

case)/10

10. Recalculate global importance of test cases and

reorder

11. Refine system; go to next iteration (Manual)

12. Flag test cases with a positive outcome (not to be

picked again unless a change to their status was

made), flag test cases with unexpected outcomes (this

is used to make sure that the test case is reselected

before end of validation), select different test cases

every next iteration

13. Stop when assurance of all models is equal to 10.

Assurance of all models = average of all models

assurances.

Figure 2 CBV

Test case reduction steps are illustrated in Figure 2.

A Java tool was developed to select, sort and

recommend test cases for the knowledge engineer

from the universal set of test cases using the method

presented in this paper. Figure 3 is a screen shot that

represents one panel from the seven panels in the tool.

This tool updates the test cases instantly and sorts all

the test cases in real time for selection of N test cases.

Figure 3 Test execution Java panel

7. CO�CLUSIO�S

The approach presented in this paper requires some

manual work from the knowledge engineer or any

other person performing validation but it has many

advantages. Advantages of this approach are:

1. Flexibility: the weights and the models could be

changed to any other values. This gives the knowledge

engineer full control.

2. Usage-oriented: this approach is based on the user

needs and a real time testing feedback. It is not a static

function, rather a resilient one.

3. It’s based on a comprehensive, well defined and

well structured model: This function is based on

CommonKADS, which as discussed previously, has

many advantages.

4. Effort and time reduction: reducing the number of

test cases reduces effort and time.

In this paper, we introduced a validation method based

on a lifecycle model called CommonKADS; we

introduced the validation lifecycle, extracting test

cases from the six CommonKADS models and

reducing the number of executed test cases and thus

reduce time, manpower and expenses.

8. REFERE�CES

[1] A.J. Gonzalez, and V. Barr, ”Validation and

Verification of Intelligent Systems – what are they and

how are they different” Proceedings of the Journal of

Experimental &Theoretical Artificial Intelligence,

pp.407-420, 2000

[2] E. Santos Jr., and H. Dinh, “Consistency of Test

Case in Validation of Bayesian Knowledge Bases”,

Proceedings of the 16th IEEE International

Conference on Tools with Artificial Intelligence –

ICTAI 2004.

[3] R. Knauf, S. Tsuruta, and A.J Gonzalez, “Towards

Reducing Human Involvement in Validation of

Knowledge- Based Systems”, Proceedings of the

IEEE transaction on Systems, Man and Cybernetics,

Volume 37, pp.120-131, January 2007

[4] N. Zlatareva and A. Preece, “State of the Art in

Automated Validation of Knowledge-Based Systems”,

Proceedings of the journal of Expert Systems with

Applications, pp.151-168, 1994

[5] A. Ginsberg. S. Weiss, and P. Politakis, “SEEK2:

A Generalized Approach to Automatic Knowledge-

base Refinement” Proceedings of International Joint

Conference on Artificial Intelligence (IJCAI), pp.

367-374, 1985

[6] K. Abdallah, T. Mohammad, and F. Louis,

“Validation of Intelligent Systems: a Critical Study

and a tool, Corus”, Proceedings of the International

Journal of Soft Computing, pp.191-198, 2007.

[7] S. Smith and A. Kandel, “Validation of Expert

Systems” Proceedings of the Third Florida Artificial

Intelligence Research Symposium (FLAIRS), pp.197-

201, 1990

[8] Wu, C. and Lee, S. “KJ3- a tool assisting formal

validation of knowledge-based systems”, Proceedings

of the Int. J. Human-Computer Studies, pp. 495-525,

2002.

[9] J. Herrmann, K. Jantke, and R. Knauf, “Using

Structural Knowledge for System Validation”

Proceedings of the 10th FALIRS Conference, pp. 82-

86, 1997.

[10] S. Lockwood, and Z. Chen, “Knowledge

Validation of Engineering Expert Systems”

Proceedings of the Journal of Advances in Software

Engineering, pp. 97-104, 1995.

[11] R. O’Keefe, R. Balci, and E. Smith, “Validating

Expert System Performance” IEEE, Proceedings of

the IEEE Expert, Volume 2, pp.81-90, 1987

[12] S. Lee, and R. O’Keefe, “Developing a Strategy

for Expert System Validation and Verification” ,

IEEE, Proceedings of the IEEE Transaction on

systems, Man and Cybernetics, Volume 24, pp.643-

655, 1994.

[13] C. Anderson, T. Thelin, P. Runeson,N.

Dzamashvili, “An Experimental Evaluation of

Inspection and testing for Detection of Design Faults”,

Proceedings of the International Symposium on

Empirical Software Engineering – ISESE 2003

[14] T. Gilb, and D. Graham “Software Inspection”

Published by Addison Wesley 1993

[15] G. Shreiber, H. Akkermans, A. Anjewierden, R.

De Hoog, N. Shadbolt, W. Van De Velde, and B.

Wielinga,. “Knowledge Engineering and

Management-The CommonKADS Methodology”

published by The MIT Press 2000

[16] A. Al Korany, K. Shaalan, H. Baraka, and A.

Rafea, “An Approach for Automating the Verification

of KADS-Based Expert Systems” Proceedings of the

7th International Conference on Applied Informatics

and Communications- (WSEAS), pp. 1-22, 2007

[17] A.J Gonzalez, B. Stensrud, and G. Barret,

“Formalizing context-based reasoning: A modeling

paradigm for representing tactical human behavior”,

Proceedings of the International Journal of Intelligent

Systems, pp. 822-847, 2008

