
Rule Modularization and Inference Solutions – a Synthetic Overview

Krzysztof Kaczor and Szymon Bobek and Grzegorz J. Nalepa

Institute of Automatics,
AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

ABSTRACT

Rule–based expert systems proved to be a successful
AI technology in a number of areas. Building such
systems requires creating a rulebase, as well as pro-
viding an effective inference mechanism that fires rules
appropriate in a given context. The paper briefly dis-
cusses main rule inference algorithms Rete, TREAT
and Gator. Since large rulebases often require identify-
ing certain rule clusters, modern inference algorithms
support inference rule groups. In the paper the case of
the new version of Drools, introducing the RuleFlow
module is presented. These solutions are contrasted
with a custom rule representation method called XTT2.
It introduces explicit structure in the rulebase based on
decision tables linked in an inference network. In this
case, the classic Rete–based solutions cannot be used.
This is why custom inference algorithms are discussed.
In the paper possible integration of the XTT2 approach
with that of RuleFlow is discussed.

1. INTRODUCTION

Rules constitute a cardinal concept of the rule–based
expert systems (RBS for short) [1]. Building such sys-
tems requires creating a knowledge base, which in case
of RBS can be separated into two parts: factbase con-
taining the set of facts and rulebase containing the set of
rules. To make use of this two parts, the inference en-
gine must be provided. The inference engine is respon-
sible for generating findings. This is done according
to the current state of the factbase and with the help of
the rules. In the first task of the inference mechanism
the conditional parts of the rules are checked against
the facts from the factbase. This task is performed by
pattern matching algorithm. The output from the al-
gorithm is the set of rules, which conditional parts are
satisfied. This set of rules is called a conflict set. The
following task of the inference mechanism is the execu-
tion of the rules from the conflict set. There are many
different algorithms for determining an execute order
of the rules, but they are not discussed in this paper.

The main problem discussed in this paper concerns
inference methods in structured rule-bases. A rule-base
can contain thousands or even milions rules. Such large

rule-bases cause many problems: 1) Maintenance of
the large set of rules. 2) Inference inefficiency – the
large number of rules may be unnecessary processed.
The modularization of the rule-base that introduces struc-
ture to the knowledge base can be considered as the
way to avoid these problems. The rules can be grupped
in the modules, what can facilitate the maintenance of
the large set of rules. What is more, the inference algo-
rithm may be integrated with structured rule-base. The
integration can influence the inference performance.

The main focus of this paper is the inference in
the structured rule bases. The Section 2 presents the
well-known expert system shells such as CLIPS [1],
JESS [2] and Drools 5 [3]. It shows how the knowl-
edge base can be structured in these systems and how
the inference algorithm can be used over this structure.
The next Section 3 describes three main pattern match-
ing algorithms such as Rete [4], TREAT and the most
recent and general Gator. In the Section 5 the main
concepts of the XTT method are introduced. The sec-
tion presents the structure of the XTT knowledge base.
It also introduces the inference methods taking the un-
derlying algorithm into consideration. The conclusions
of the paper are included in the Section 6.

2. EXPERT SYSTEMS SHELLS

Expert system shell is a framework that facilitates cre-
ation of complete expert systems. Usually, they have
most of the important functionalities built-in such as:
rule-base, inference algorithm, explanation mechanism,
user interface, knowledge base editor.

Such system must be adopted to the domain-specific
problem solving. This can be done by creation of the
knowledge base. The knowledge engineer must cod-
ify the captured knowledge according to the formalism.
The knowledge can be captured in a several ways, but
this issue is not discussed in this paper.

CLIPS is an expert system tool that is based on
Rete algorithm. It provides its own programming lan-
guage that supports rule-based, procedural and object-
oriented programming [1]. Thanks to this variety of
programming paradigms implemented in CLIPS, there
are three ways to represent knowledge in it:



• rules, which are primarily intended for heuristic
knowledge based on experience,

• deffunctions and generic functions, which are pri-
marily intended for procedural knowledge,

• object-oriented programming, also primarily in-
tended for procedural knowledge. The generally
accepted features of object-oriented programming
are supported. Rules may pattern match on ob-
jects and facts.

The condition in CLIPS is a test if given fact ex-
ists in knowledge database. The right-hand side (RHS)
of rule contains actions such like assert or retract that
modifies facts database or other operations such like
function invocations that does not affect system state.

CLIPS has been written in C language. This makes
the tool very efficient and platform independent. How-
ever, the integration with other existing systems is not
as easy as it is in case JESS.

JESS is a rule engine and scripting environment
written entirely in Sun’s Java language by Ernest
Friedman-Hill [2] that derives form CLIPS.

Jess uses a very efficient method known as the Rete
algorithm. In the Rete algorithm, inefficiency of the
combinatoric explosion of rules analysis is alleviated
by remembering the past test results across the itera-
tions of a rule loop. Only new facts are tested against
each rule conditional part, but still all rules must be
taken into consideration.

Jess supports both forward-chaining and backward
chaining. The default is forward-chaining. As the knowl-
edge representation JESS uses rules as well as XML-
based language called JessML. JESS uses LISP-like
syntax, which is the same as in CLIPS. The JessML is
not convenient to read by human. It contains more de-
tails, what makes this representation suitable for parsers.

Drools 5 introduces the Business Logic integration
Platform which provides a unified and integrated plat-
form for Rules, Workflow and Event Processing. Drools
is now split up into 4 main sub projects: 1) Drools Gu-
vnor (BRMS/BPMS) – centralised repository for Drools
Knowledge Bases. 2) Drools Expert (rule engine). 3)
Drools Flow (process/workflow) provides workflow or
(business) process capabilities to the Drools platform.
4) Drools Fusion (event processing/temporal reason-
ing) – the module responsible for enabling event pro-
cessing capabilities. Drools Expert is a rule engine ded-
icated for the Drools 5 rule format.

Drools 5 implements only forward-chaining engine,
using a Rete-based algorithm – ReteOO. In the future,
Drools 5 is promised to support a backward-chaining.

3. RULE INFERENCE ALGHORITHMS

This section discusses three the most important pattern
matching algorithms. The descriptions of these algo-
rithms introduce specific nomenclature.

A rule base in the RBS consists of a collection of
rules called productions. The interpreter operates on
the productions in the global memory called working
memory (WM for short). Each object is related to a
number of attribute–value pairs. The set of pairs re-
lated to the object and object itself constitute a single
working element.

By convention, the conditional part (IF part) of
a rule is called LHS (left–hand side), whereas the con-
clusion part is known as RHS. The inference algorithm
performs the following operations: 1) Match – checks
LHSs of rules to determine which are satisfied accord-
ing to the current content of the working memory. 2) Con-
flict set resolution – selects production(s) (instantia-
tion(s)) that has satisfied LHS. 3) Action – Perform
the actions in the RHS of the selected production(s).
4) Goto 1. The first step is a bottleneck of inference
process. The algorithms, which are presented in this
section, try to alleviate this problem.

The Rete algorithm [4] is an efficient pattern match-
ing algorithm for implementing production rule sys-
tems. It computes the conflict set. The naive implemen-
tation of the pattern matching algorithm might check
each production against each working element. The
main advantage of the Rete algorithm is that it tries to
avoid iterating over production and working memory.

Rete can avoid iterating over working memory by
storing the information between cycles. Each pattern
stores the list of the elements that it matches. Due to
this fact, when working memory is changed only the
changes are analysed.

Rete also can avoid iterating over production set.
This is done by forming a tree-like structure (network)
that is compiled from the patterns. The network com-
prise of two types of nodes: intra–elements that involve
only one working element and inter–elements that in-
volve more than one working element. At first, the
pattern compiler builds a linear sequence of the intra-
elements. This part of the network is called alpha mem-
ory and contains only the one-input nodes. After that,
the compiler builds the beta memory from the inter-
elements. The beta memory consists of the two-input
nodes. Each two-input node (except the first one) joins
one two-input node and one one-input node. The first
two-input node joins two one-input nodes.

R1(a > 17, d(X)),
R2(d(X), e(Y ), g(Z)),
R3(c = on, g(Z)),
R4(e(Y ), f(W )),
R5(b = Friday, f(W ))

(1)

When the working memory is changed, the working el-
ements, that has been changed, are let int to the net-
work. Each node of the network tries to match the given
working element. If it matches, then the copy of the el-
ement is passed to all the successors of the node. The



R1 R2 R3 R4 R5

R2R1

R2 R5R1 R3 R4

R2R1 R3

R2R1 R3 R4

Fig. 1. A general schema of the Rete network.

two-input nodes joins the elements from the two differ-
ent paths of the network into bigger one. The last two-
input element (terminal element) is the output from the
algorithm and contains the information about changes,
which must be applied to the conflict set.
Rete algorithm has been invented by Charles L. Forgy
of Carnegie Mellon University. At first, Rete has been
assumed as the most efficient algorithm for this prob-
lem. The literature did not contain any comparative
analysis of the Rete with any other algorithm. Nowa-
days, other algorithms such as Treat, A-Treat, Gator are
known. Some of them are discussed in this paper.

TREAT algorithm. State saving mechanism im-
plemented in Rete is not very efficient. The structure
of the Rete network often stores redundant information
and number of elements stored in beta-memory nodes
may be combinatorially explosive. Moreover cost of
join operation in beta-memory are very expensive when
many addition and deletion operations are preformed.
To address these problems new version of Rete algo-
rithm called TREAT was proposed.

Rete algorithm is based on two concepts: Mem-
ory support that creates and maintains alpha–memory
and Condition relationship that join operations in beta–
memory. TREAT also uses Memory support, but does
not use Condition relationship. Instead Conflict set sup-
port and Condition membership are used. Absence of
Condition relationship implies fact that in TREAT net-
work structure there is no beta memory. Hence, the
structure of TREAT network is flat.

R1 R2 R3 R4 R5

R2 R5R1 R3 R4

Fig. 2. TREAT network for rule 1

The main idea of the TREAT algorithm is to ex-
ploit the conflict set support for temporarily redundant
systems. The conflict set is explicitly retain across pro-
duction system cycles which allows for the following
advancements comparing to Rete [5]:

• in case of addition of WM element, conflict set
remains the same, and constrained search for new
instantiation of only those rules that contain newly
added WM element is performed.

• deletion from WM triggers direct conflict set ex-

amination for rules to remove. No matching is
required to process deletion since any instanti-
ation of the rule containing removed element is
simply deleted.

Condition membership introduces new property for
each rule called rule-active that determines weather each
of the rule condition elements is partially matched. The
match algorithm ignores then rules that are non-active
during production system cycles.

Gator algorithm. Both Rete and TREAT offer static
networks, which structures are defined arbitrary by the
design engineer (Rete) and looks mostly the same for
all kinds of knowledge databases (Rete and TREAT).
This very often leads to the creation of networks that
are not optimal for some knowledge bases.

To address this problem a new discrimination net-
work algorithm called Gator was proposed. It is based
on Rete, but additionally implements mechanisms for
optimizing network structure according to specific kno-
wledge base characteristic. It can be said that Rete and
TREAT are special cases of Gator and as reported in [6]
it outperforms TREAT and Rete in most cases.

Every rule in production system can be represented
by a condition graph with nodes for rule condition ele-
ments and edges for join conditions.

Gator networks are general tree structures. They
consist of alpha–memory elements (leaves), optional
beta-memory elements (internal nodes, that can have
multiple inputs) and a P–node which is a root of the
tree representing a complete RHS of the rule.

R1 R2 R3 R4 R5

R2 R5R1 R3 R4

R2 R5R1 R3 R4

Fig. 3. Gator network for rule 1

The optimizing algorithm is iterative. It starts form
networks of size one (which are basically alpha–memory
elements) and combine them into larger optimal net-
works. There is a constraint which states that every
newly created network have to be optimal. That en-
sures that the final network would also be optimal.

The network is built and optimize according to the
following rules:

• Connectivity Heuristic – do not combine two
Gator networks unless there is an explicit con-
nection between them in connectivity graph.

• Disjointness constraint – do not combine net-
works unless their respective sets of rule condi-
tion elements do not overlap.

• Lowest Cost Heuristic – if there is already a net-
work that covers the same set of condition as the



new network, and the existing network cost (ac-
cording to the cost function) no more than the
new one, discard new network.

More detailed information about cost functions and
rules for combining Gator networks can be found in [6].

4. KNOWLEDGE MODULARIZATION

Most of the well–known expert systems have a flat knowl-
edge base. In such case, the inference mechanism have
to check each rule against each fact. When the knowl-
edge base contains a large number of rules and facts
this process becomes inefficient. This problem can be
solved by providing a structure in the knowledge base
that allows for checking only a subset of rules. This
Section describes the three well–known expert system
shells CLIPS, JESS and Drools and knowledge base or-
ganisation implementen in them.

CLIPS Modules. CLIPS offers functionality for
organising rules into so called modules. Modules al-
lows for restriction of access to their elements from
other modules, and can be compared to global and local
scoping in other programming languages. Modulariza-
tion of knowledge base helps managing rules, and im-
proves efficiency of rule-based system execution. Mod-
ules in CLIPS are defined with defmodule command.
In CLIPS each module has its own pattern-matching
network for its rules and its own agenda. When a run
command is given, the agenda of the module which is
the current focus is executed. Rule execution contin-
ues until another module becomes the current focus, no
rules are left on the agenda, or the return function is
used from the RHS of a rule. Whenever a module that
was focused on runs out of rules on its agenda, the cur-
rent focus is removed from the focus stack and the next
module on the focus stack becomes the current focus.
Before a rule executes, the current module is changed
to the module in which the executing rule is defined
(the current focus). The current focus can be dynami-
cally switched in RHS of the rule with focus command.

JESS Modules. Jess provides modules mechanism
that helps to manage large numbers of rules. Rules
modularisation can be considered as the structure of the
rulebase. Modules also provide a control mechanism:
the rules in a module will fire only when that module
has the focus, and only one module can be in focus at
a time. Jess makes the modules defining possible with
the help of defmodule command. The module name can
be considered as a namespace for rules. This means
that two different modules can each contain a rule with
a the same name without conflicting. Modules can also
be used to control execution. In general, although any
Jess rule can be activated at any time, only rules in the
focus module will fire. It is possible to manually move
the focus to another module using the focus function.

Each rule can decide which module should be focused
as the next one. To accomplish that, the operation of
the focus changing should be included in the rule con-
clusion part. This leads to the structured rulebase, but
still all rules are checked against the facts. In terms of
efficiency the modules mechanism does not influence
on the performance of the conflict set creation.

Drools RuleFlow. It is a workflow and process en-
gine that allows advanced integration of processes and
rules. It provides a graphical interface for processes
and rules modelling. Drools have built-in a function-
ality to define the structure of the rulebase which can
determine the order of the rules evaluation and exe-
cution. The rules can be gruped in a ruleflow–groups
which defines the subset of rules that are evaluated and
executed. The ruleflow–groups have a graphical rep-
resentation as the nodes on the ruleflow diagram. The
ruleflow–groups are connected with the links what de-
termines the order of its evaluation. A ruleflow diagram
is a graphical description of a sequence of steps that the
rule engine needs to take, where the order is important.

Rules grouping in Drools 5 contributes to the effi-
ciency of the ReteOO algorithm, because only a subset
of rules are evaluated and executed. However there is
no policy which determines when a rule can be added
to the ruleflow-group. Due to this fact, the rules grup-
ping can provide a muddle in the rule base especially
in case of large rulebases.

5. XTT–BASED EXPERT SYSTEMS

Knowledge bases in expert system shells described in
Section 2 are flat and do not have any internal structure.
To create a conflict set the entire knowledge base have
to be searched, and an intelligent inference control in
such unstructuralised system is very difficult. Knowl-
edge representation languages are not formal neither in
Drools, Jess, nor in CLIPS and as a consequence there
are not formalized methods for verifying and analysing
systems designed with those tools. To solve these prob-
lems a new knowledge representation method called
XTT2 (Extended Tabular Trees) was proposed which
is part of the HeKatE [7] methodology for designing,
implementing and verifying production systems.

5.1. Knowledge representation

Main goals of XTT2 knowledge representation was 1)
to provide an expressive formal logical calculus for rules,
2) allow for advanced inference control and formal anal-
ysis of the production systems, 3) provide structural
and visual knowledge representation. XTT2 incorpo-
rates extended attributive table format, where similar
rules are grouped within separated tables, and the sys-
tem is split into such tables linked by arrows represent-
ing the control strategy. Each table consist of two parts
representing condition and decision part of the rule.



To help creating the XTT2 network, ARD+ dia-
grams provide the conceptual design. This stage is sup-
ported by VARDA tool that generates XML file (called
HML in HeKatE methodology) with specification of
types, domains, attributes and dependencies between
them. Based on this file a XTT2 skeleton is created in
HQEd editor, and the tables are filled with rules [8].

Rules representation in XTT2 is based on attribu-
tive logic called ALSV(FD) [7]. Each rule in XTT table
is of the form:

(A1 ∝1 V1) ∧ . . . ∧ (An ∝n Vn) −→ RHS (2)

where the logical formula on the left describes the rule
condition, and RHS is the right-hand side of the rule
covering conclusions (see [7] for more details).

The logical rule representation is mapped to the HMR
language (Hekate Meta Representation) which is an in-
ternal rule language for XTT. Following example shows
HMR the notation and its pseudocode representation.

xrule tab_4/1: [today eq workday,
hour in [9 to 17]] ==>

[operation set bizhours].
xrule tab_4/4: [today eq workday,

hour gt 17] ==>
[operation set not_bizhours].

Pseudocode representation:

IF today=workday AND hour>=9 AND hour<=17 THEN
operation := bizhours

IF today = workday AND hour > 17 THEN
operation := not_bizhours

This formal, logical representation of the rules al-
lows for formal analysis and verification of the system.

5.2. Intelligent inference controll

Described in section 5.1 XTT2 knowledge representa-
tion allows for more efficient inference control during
rule-based system execution. The inference control is
assured thanks to firing only rules necessary for achiev-
ing the goal. It is achieved by selecting the desired
output tables and identifying the tables necessary to be
fired first. The links between tables representing the
partial order assure that when passing from a table to
another one, the latter can be fired since the former one
prepares an appropriate context knowledge. There are
four algorithms based on XTT2 notation that control
the inference. They were successfully implemented in
HeaRT (HeKatE RunTime) inference engine [9].

[FOI] The simplest algorithm consists of a hard-
coded order of inference, in such way that every table
is assigned an integer number; all the numbers are dif-
ferent from one another. The tables are fired in order
from the lowest number to the highest one. This infer-
ence algorithm is usefull when a reasoning path is well
defined and does not change over rule-based system cy-
cles. [DDI] A data-driven inference algorithm iden-
tifies start tables, and put all tables that are linked to

the initial ones in the XTT network into a FIFO queue.
When there is no more tables to be added to the queue,
algorithm fires selected tables in order they are poped
from the queue. This inference mode s especially use-
ful for diagnosis systems, where a lot of symptoms
are given as an input that can lead to multiple diagno-
sis. Choosing apropriate reasoning path by the system
saves time and memory. [GDI] A goal-driven approach
works backwards with respect to selecting the tables
necessary for a specific task, and then fires the tables
forwards so as to achieve the goal. One or more out-
put tables are identified as the ones that can generate
the desired goal values and are put in LIFO queue. As
a consequence only those tables that leads to desired
solution are fired, and no rules are fired without pur-
pose. This inference algorithm works best in hypotesis-
proving systems, where value of attribute from partic-
ular table is wanted. [TDI] This approach is based on
monitoring the partial order of inference defined by the
network structure with tokens assigned to tables. A
table can be fired only when there is a token at each
input. A token at the input is a kind of a flag sig-
nalling that the necessary data generated by the preced-
ing table is ready for use. This inference mode was de-
signed to support systems where a lot of dependencies
between tables and rules are denoted that would require
many redundant conditions XTT tables. Tokens allow
to omit those unnecessary conditions, which saves time
and memory and makes the system more readable.

The highly modularised knowledge representation
that is used in XTT2 was one of the reasons why in-
ference engine – HeaRT – implemented for XTT2 ap-
proach does not use matching algorithm based on Rete.
Due to the fact that HeaRT was implemented entirely
in Prolog, fast and efficient unification algorithm that
is implemented in Prolog interpreter was used instead.

5.3. Structure of the Knowledge Base

Considering the differences between the XTT2 approach
and the classic Rete-based solutions, at least two mean-
ings of the notion „structure of the rule base” can be
given. The first one is related the previously discussed
modules in classic expert system shells. There a physi-
cal structure of the rule base is introduced using mod-
ules. The global set of rules is partitioned by the system
designer into several parts in an arbitrary way. This is
a technical solution, similar to source code partitioning
methods such as packages is programming languages.
Practically, these partitions are often merged during the
inference process. Therefore, the partitioning process
itself does not support in optimizing the design and in-
ference. The second one is realized in the XTT2 rep-
resentation. Here rules working in the same context,
i.e. having the same conditional attributes are grouped
into tables (forming simple rule sets) during the design
process. This forms a logical structure of the rule base.



This structure is considered during the inference pro-
cess – only necessary rules are considered, an possibly
fired. Therefore, the modularization process does sup-
port optimization of both the design and inference.

6. CONCLUDING REMARKS

All of the common expert system shells described in
this paper use Rete or its variants as a matching algo-
rithm. This is so, because Rete algorithm is very effi-
cient on flat and not structured knowledge base. Once
knowledge base becomes modularized, Rete loses its
assets. Although idea of modules as sets of not related
in any way rules was introduced in CLIPS, the core in-
ference algorithm – Rete – remained the same. Such
partial modularisation slightly increases performance
of the system, but still did not solve efficient design
and verification problems. Most of solutions presented
in CLIPS or Jess are just modifications of existing ap-
proaches that have their own historical drawbacks.

To address these problems a new knowledge rep-
resentation called XTT2 was proposed that is a part
of newly designed methodology for designing, imple-
menting and verifying expert systems, called HeKatE.
It provides visual representation of the knowledge base,
formal verification of the rule–based systems and in-
telligent inference control. XTT2 knowledge base are
highly modularized and hence its internal structure al-
lows for more advanced reasoning. Modularisation in
XTT is not partial as in CLIPS. XTT tables are not only
a mechanism for managing large knowledge bases, but
they also allow for context reasoning, due to the fact
that each XTT table groups rules that belongs to the
same context (have similar LHS and RHS). Moreover,
rules in XTT2 are based on attributive logic which al-
lows for formal verification of knowledge base. Table 1
contains the comparison of the expert system shells de-
scribed in this paper and XTT2 approach.

Table 1. Comparison of expert system shells

Feature XTT CLIPS Jess Drools
Knowledge modulari-
sation

Yes Yes Partial Yes

Knowledge visualisa-
tion

Yes No No Yes

Formal rules repre-
sentation

Yes No No No

Knowledge base veri-
fication

Yes No No No

Inferences strategies DDI,
GDI,
TDI, FOI

DDI DDI,
GDI,

DDI

Inference algorithm HeaRT +
Unification

Rete Rete Rete

Allows for modelling
dynamic processes

No No No Yes

The idea of integrating XTT2 approach with Drools-

Flow will allow to combine business processes with
formal, modular knowledge representation. Since Drools-
Flow diagrams may contain other DroolsFlow diagrams,
relations between XTT tables would not be limited to
relation table to table, but may also be considered as
realtion system to system. Integrating DroolsFlow and
XTT can be done by invoking HeaRT from within Drools-
Flow blocks directly, using the SWI JPL package for
Java integration, or via TCP/IP protocol.

Acknowledgements

Paper is supported by the BIMLOQ Project funded from
2010–12 resources for science as a research project.

7. REFERENCES

[1] Joseph C. Giarratano and Gary D. Riley, Expert
Systems, Thomson, 2005.

[2] E. Friedman-Hill, Jess in Action, Rule Based Sys-
tems in Java, Manning, 2003.

[3] Paul Browne, JBoss Drools Business Rules, Packt
Publishing, 2009.

[4] Charles Forgy, “Rete: A fast algorithm for the
many patterns/many objects match problem,” Artif.
Intell., vol. 19, no. 1, pp. 17–37, 1982.

[5] Daniel P. Miranker, “TREAT: A Better Match
Algorithm for AI Production Systems; Long Ver-
sion,” Tech. Rep. 87-58, University of Texas, July
1987.

[6] Eric N. Hanson and Mohammed S. Hasan, “Gator:
An Optimized Discrimination Network for Active
Database Rule Condition Testing,” Tech. Rep. 93-
036, CIS Department University of Florida, De-
cember 1993.

[7] Grzegorz J. Nalepa and Antoni Ligęza, “HeKatE
methodology, hybrid engineering of intelligent
systems,” International Journal of Applied Mathe-
matics and Computer Science, 2010, accepted for
publication.

[8] Grzegorz J. Nalepa, Antoni Ligęza, Krzysztof Kac-
zor, and Weronika T. Furmańska, “HeKatE rule
runtime and design framework,” in Proceedings
of the 3rd East European Workshop on Rule-Based
Applications (RuleApps 2009) Cottbus, Germany,
September 21, 2009, Gerd Wagner Adrian Giurca,
Grzegorz J. Nalepa, Ed., Cottbus, Germany, 2009,
pp. 21–30.

[9] G. J. Nalepa, S. Bobek, M. Gawędzki, and
A. Ligęza, “HeaRT Hybrid XTT2 rule engine
design and implementation,” Tech. Rep. CSLTR
4/2009, AGH University of Science and Technol-
ogy, 2009.


