
(INVITED TALK)

AGILITY VS. MODEL-BASED TESTING: A FAIR PLAY?

Baris Güldali, Michael Mlynarski

Software Quality Lab (s-lab), University of Paderborn

Warburger Str. 100, 33098 Paderborn/Germany

{bguldali,mmlynarski}@s-lab.upb.de

ABSTRACT

Agile manifesto defines principles for a light-weight

software development process aiming at an improved

customer satisfaction. Automated testing plays an

important role in fulfilling these principles, because it

enables efficient execution of test scripts for checking

the quality of delivered software. However, the

implementation and the maintenance of the test scripts

can be very tedious and error-prone. In order to deal

with that, model-based testing extends the automated

test execution by test design and test implementation.

Thus, model-based testing can speed up the test

automation and improve the maintenance of test

scripts. Nevertheless, introducing model-based testing

requires some initial and some continual efforts, like

creating test models, buying or developing tools, etc.

In this talk, we will discuss how model-based testing

can support agile development without conflicting

with the principles of agile manifesto.

Index Terms - Agile manifesto, Automated testing,

Model-based Testing

1. INTRODUCTION

As the complexity of software rises, novel software

development techniques are required in order to cope

with the technical and the organizational challenges in

the development process. Model-based software

development (MBSD) proposes using abstract models

for better communication, for maintainable software

specification and for efficient code generation. In this

context, model-based testing (MBT) proposes using

models for automating some of the testing activities,

e.g. test case generation, evaluation of test results,

which are tedious and error-prone tasks if they are

manually done. In order to profit from model-based

techniques in development process, however, some

efforts must be expended, e.g. for introducing tools,

for training developers and testers, for creating and

maintaining models, etc. That is why MBSD is said to

be a “heavyweight” technique for creating better

software.

In contrast, agile manifesto [1] proposes a “light-

weight” development process where (1) individuals

and interactions are favored over processes and tools,

(2) working software is favored over comprehensive

documentation, (3) customer collaboration is favored

over contract negotiation and (4) responding to

change is favored over following a plan [1]. However,

in the practice, these principles are likely to be misin-

terpreted such that developers often neglect docu-

menting customer requirements properly. Frequently,

this leads to chaos in the development process and to

conflicts during the delivery and acceptance. Thus, it

is a challenge to follow the principles of agile mani-

festo and thereby not to lose sight of the proper docu-

mentation and communication of customer needs and

of the efficient and effective development.

We believe that, model-based techniques can help

in dealing with these challenges. In the rest of paper,

we will discuss how agility and model-based paradigm

fits together. Thereby, we will mainly focus on the

integration of model-based testing in agile develop-

ment process as an enabling technology for the prin-

ciples of the agile manifesto.

2. AGILE MANIFESTO

In 2001 seventeen software experts, who have

introduced well-known agile methods (e.g. Scrum,

Test driven Development (TDD), Extreme

Programming (XP) etc.) have defined common

principles for a lightweight development process. The

new development paradigm should be an alternative to

documentation-driven, heavyweight software

development processes. They called these principles

“agile manifesto”. Agile manifesto includes the

following principles (based on [1]):

1. Customer satisfaction: The highest priority in

agile development has the customer satisfaction,

which can be achieved by early and continuous

delivery of valuable software. This principle has

the highest priority in agile manifesto. All other

principles serve to achieve this goal.

2. Fast adaptation: In agile development,

requirements changes of the customer are

welcome, even in the late phases of the

development. The flexibility in agile processes

enables changes in software for assuring the

customer's competitive advantage.

3. Frequent delivery: For customer satisfaction, it is

important to show that the development process

makes progress. For showing this to the customer,

deliver new versions of software frequently.

Define together with the customer what

“frequent” means. The time slots can range from

a couple of weeks to a couple of months. Try to

keep the time slots as short as possible, because

frequent delivery leads to frequent feedback.

4. Close collaboration: For achieving fast

adaptation and frequent delivery, it is important

to understand customer’s business needs and

consider them during the development

continuously. For that, business people and

developers must work together every day

throughout the project.

5. Motivated members: Identify motivated team

members who can push on the project. Provide

them with the resources they need and support

them while getting the job done.

6. Conversation: For achieving fast adaptation and

frequent delivery, besides close collaboration

with the customer, also the efficient

communication between team members is

important. The most efficient and effective

method of exchanging information is face-to-face

conversation.

7. Working software: Supply the customer with

working software which is the main measure of

progress. Delivering working software is

indispensible for customer satisfaction.

8. Sustainable development: Agile processes

promote sustainable development.

9. Constant pace: The customers and developers

should be able to keep a constant pace for the

whole time of project.

10. Good design: Continuous awareness for technical

quality and good design improves agility.

11. Simplicity: Simplicity is crucial, which means that

the amount of work to be done should be kept

minimal.

12. Self-organization: Motivate team members to

organize themselves.

13. Reflection: Motivate team members to reflect

their experiences at regular intervals. Team

members should discuss on how to improve the

effectiveness and the efficiency in team and

should suggest improvements accordingly.

Existing agile methods aim at enabling these prin-

ciples. For example, Scrum promotes the close colla-

boration of customer or product owner at identifying

software functionalities to be implemented in the next

development cycles [4]. TDD advocates continuing

programming until all predefined test cases are passed

[1]. Since test cases are seen as specification, the re-

sulting software is assumed to be correct with respect

to the specification. Test automation plays in impor-

tant role in agile methods supporting an efficient and

effective development process. Having different fo-

cus, agile methods mostly should be combined in or-

der to fulfill all principles of agile manifesto.

3. MODEL-BASED TESTING VS. AGILITY

We believe that model-based techniques can help in

combining the different tasks in agile development by

using abstract models as primary development

artifacts. Models can support communication between

team members and customers, documentation of

customer requirements and design decisions and

automation of code generation and testing. Thus,

model-based techniques can enable an integrated

development throughout the whole project. As next,

we want to focus on how the documentation of

customer requirements and their validation can be

supported by model-based testing while following

principles of agile manifesto.

3.1. Model-based Testing

With the emerging popularity of model-based

software development, the usage of models in

software testing is also desired. There are several

definitions of model-based testing (MBT) in the

literature, but the common understanding is that MBT

is “the automation of test design of black-box tests”

[2]. Therefore, MBT uses abstract models (test

models) of the system under test (SUT) or its

environment as the source for test generation. In

addition to models of SUT and the environment, also

the testware itself can be modeled [3].

There are three main advantages of MBT, which

make this technique interesting: a) enabling high cov-

erage, b) need for lower effort and c) enabling early

testing. Because MBT uses sophisticated algorithms

and tools for automatic test generation, far more test

cases than while manual testing can be generated. This

way a very high coverage of the system specification

and/or requirements can be reached. While test cases

are not designed and implemented manually anymore,

the effort for this task is significantly low. This works

under the assumption that the modeling effort is lower

than the manual test design activity. Last but not least

the early creation of test models supports the valida-

tion of requirements even before the system is imple-

mented.

3.2. MBT as a technical enabler for Agility

Using MBT, the requirements can be captured and

communicated in form of models. Unified Modeling

Language (UML) provides many types of visual

diagrams for describing the desired structure and

behavior of software. Most of the diagrams have a

quite simple syntax and fairly clear semantics such

that customer and developer can easily learn how to

express their requirements more precisely, thus

enabling the principle close collaboration. The

changes in requirements can easily be made on the

already created models, thus improving fast

adaptation. Models can also support the conversation

between team members, where the results of a

discussion can be edited into the models immediately.

Also the simplicity principle can be supported by

models by using the abstraction, modularization and

decomposition features of modeling.

There are different scenarios for creating and using

models in MBT [9]. While some scenarios propose

sharing models (one model for test team and devel-

opment team), some scenarios require separated mod-

els (one models for each test and development team

respectively). Using shared models can support close

collaboration, face-to-face conversation and simplici-

ty. However, if same models are used for development

and testing, specification errors cannot be found [9].

Using separate models makes the teams for develop-

ment and test more independent and enables finding

specification errors, thus assuring working software.

Models having a well-defined syntax and semantics

can be handled by computers, which obviously bring

efficiency into the test process. The state-of-the-art

modeling techniques support creating good design.

Depending on the context of development, formal or

semi-formal notations can be used. The more formal

the models are, the better automatable are the test ac-

tivities. Especially the automation of the test design

task, which is the most costly and time consuming part

in testing [5], leads to more efficiency. Test automa-

tion is the key for assuring working software, frequent

delivery, sustainable development and constant pace.

Within MBT several coverage criteria for selecting

test cases can be used. One possibility is to cover the

customer requirements, which directly correlates with

several agile principles. The customer satisfaction and

close collaboration principles are supported by refin-

ing and understanding customer requirements while

modeling them and showing that those requirements

were successfully tested. The usage of different selec-

tion criteria and possibly combining them leads to

higher defect detection rate and therefore facilitates

working software. Due to changeable coverage criteria

and automated test case generation, the test team can

conduct different testing scenarios and gain expe-

rience for further development cycles and projects.

This flexibility and configurability of MBT enables

reflection in agile development.

4. A FAIR PLAY?

As discussed in the last section, MBT can definitely

enable many principles of the agile manifesto. The

main advantage of MBT for the agile world is the

usage of models as primary artifacts and the automa-

tion of several test activities. This way MBT fits very

well with agility!

However, MBT is not for free. Introducing MBT

into the agile development process requires some ini-

tial and continual efforts as discussed in [6] and [7].

These include:

 Training team members for modeling

 Buying or developing modeling tools

 Buying or developing test drivers and test

adapters

 Defining modeling notations and test selection

criteria

 Creating and maintaining models

 Eventually extending generated test cases by

test data

 Eventually evaluation of test results

At first sight, these efforts seem to be not propor-

tional to the lightweight development purposes of

agile manifesto. However, test automation is an indis-

pensible part of agility enabling the efficient and ef-

fective process. Fewster and Graham said in 1999 that

“automating chaos just gives faster chaos”. MBT is an

attempt to make test automation more systematic,

more maintainable.

In this paper, we have discussed how agility and

MBT conceptually fits together. A concrete approach

for combining agility and MBT can be read in [8].

There, we have described a concrete approach includ-

ing tool support for integrating MBT into Scrum.

5. REFERENCES

[1] Beck, K. et al.: Manifesto for Agile Software De-

velopment. Online resource at agilemanifesto.org

(Last visited: 29.07.2010)

[2] Utting, M. and Legeard, B.: Practical Model-

Based Testing: A Tools Approach, Morgan Kauf-

mann, 2007

[3] Baker, P. et al.: Model-Driven Testing: Using the

UML Testing Profile, Springer Verlag, 2008

[4] Schwaber, K., and Beedle, M.: Agile Software

Development with Scrum, Prentice Hall, 2002.

[5] Pol, M. and Koomen, T. and Spillner, A.: Mana-

gement und Optimierung des Testprozesses,

dpunkt.verlag, 2002

[6] Güldali, B. and Jungmayr, S. and Mlynarski, M.

and Neumann, S. and Winter, M.: Starthilfe für mod-

ellbasiertes Testen. OBJEKTspektrum, 2010, 3, 63-69

[7] Güldali, B. and Mlynarski, M. and Sancar, Y.:

Effort Comparison of Model-based Testing Scenarios.

Proc. of Quombat Workshop at ICST, 2010

[8] Löffler, R., Güldali, B., Geisen, S.: Towards Mod-

el-based Acceptance Testing for Scrum. Software-

technik-Trends, GI, 2010 (to be published)

[9] Pretschner, A., Philips, J.: Methodological Issues

in Model-Based Testing. In M. Broy, et.al. (Eds.),

Model-Based Testing of Reactive Systems, LNCS no.

3472, Springer-Verlag, 2005, pp. 281-291.

[10] Beck, K. Test-Driven Development: By Exam-

ple. Addison-Wesley Longman, 2003

