
visKWQL, a Visual Renderer for a Semantic
Web Query Language

Andreas Hartl, Klara Weiand, François Bry

Institute for Informatics, University of Munich
Oettingenstr. 67, 80538 München, Germany

http://pms.ifi.lmu.de

Abstract. Querying a Wiki must be simple enough for beginning users,
yet powerful enough to accommodate experienced users. To this end, the
keyword-based KiWi query language (KWQL) supports queries rang-
ing from simple lists of keywords to expressive rules for selecting and
reshaping Wiki (meta-)data. In this demo, we showcase visKWQL, a
visual interface for the KWQL language aimed at supporting users in
the query construction process. visKWQL and its editor are described,
and their functionality is illustrated using example queries. The editor
provides guidance throughout the query construction process through
hints, warnings and highlighting of syntactic errors. The editor enables
round-tripping between the twin languages KWQL and visKWQL, mean-
ing that users can switch freely between the textual and visual form
when constructing or editing a query. It is implemented using HTML,
JavaScript, and CSS, and can thus be used in (almost) any web browser
without any additional software.

1 Introduction

Web query languages like XQuery and SPARQL allow for the precise and tar-
geted selection and transformation of Web data. While these languages are pow-
erful tools, they require their users to be knowledgeable about the language itself
as well as the structure and schema of the queried data. This requirement ex-
cludes a large part of the web’s user base (and thus the potential user base of
the Semantic Web) from the benefits of these languages and the functionality
they provide.

Visual languages have two advantages over textual languages that specifically
benefit beginning users [2]: First, their visual structure can make them easier
to learn and understand than textual languages. Secondly, editors for visual
languages can support users in the creation of valid queries by providing guidance
and preventing editing operations that would result in incorrect queries.

This demonstration presents visKWQL1, a visual query interface for the Se-
mantic Wiki KiWi [4]. visKWQL is not so much a separate query language but

1 A detailed demonstration description as well as a demo of visKWQL are available
at http://www.pms.ifi.lmu.de/visKWQL/

rather a visual rendering of KWQL, the keyword-based KiWi query language.
KWQL [1] is a rule-based query language based on the label-keyword paradigm
that combines a low entry barrier with powerful querying and ease of use of
keyword search with advanced features and capabilities as used in traditional
query languages in order to accommodate users with varying levels of expertise.

visKWQL aims at extending textual KWQL—which itself has been designed
to be easy to use—to achieve two cohesive and tightly integrated querying modi
in the KiWi Wiki and enable user-friendly and powerful querying.

The work described here has been presented before as a demonstration at
the 2010 WWW conference [3].

2 visKWQL

visKWQL provides a visual alternative to textual KWQL. It fully supports
KWQL in that every KWQL query can be expressed as an equivalent visKWQL
query. Further, in order to avoid introducing additional constructs and thus ad-
ditional complexity, visKWQL stays close to the textual language in its visual
representation.

2.1 Visual Formalism

visKWQL uses a form-based approach, in which all KWQL elements are rep-
resented as boxes, and associations between them are represented as nestings
(see Figure 1 for an example). Boxes consist of a label, in which the name of the
represented KWQL element is included, and a body, which can hold child boxes.

This approach stays close to KWQL’s textual structure, making it easier to
learn visKWQL and to translate between the two representations; it also lends
itself well to rendering in HTML.

2.2 Round-tripping

One of the key features of visKWQL is round-tripping, to achieve a tight coupling
between KWQL and visKWQL.

Whenever the user makes a change to the visual query, the change is im-
mediately represented in the textual version. The textual query can further be
edited and parsed by the system to display it in its visual form.

This allows the user to make changes in the representation of his choice at
any time during the query construction process, to import KWQL queries easily
into visKWQL, and has the additional benefit of teaching the user KWQL while
he experiments with the visKWQL editor.

2.3 User Guidance

User support in visKWQL is provided via tooltips, error prevention, and error
and problem display and correction.

Fig. 1. Information hiding and error prevention

Tooltips:A text area below the workspace displays an explanation of the KWQL
element represented by the box currently under the mouse cursor.
Error Prevention: A large number of syntactic errors result from invalid box
nestings, and can be actively prevented by the editor during drag and drop
actions. When a box is being dragged, the system continuously checks the validity
of a child inclusion or a type switch with the box underneath it.

If dropping the box in its current location would result in a syntactic error,
the border of the box underneath it is colored red, and a tooltip informs the user
that he may not drop the box (see Figure 1).
Error Reporting and Correction: Some errors cannot be prevented during
editing. These include variable names or values containing invalid characters,
empty strings, misplaced operators and references to undefined variables.

After every user action, the query is checked for such errors. When an error
is found, the label of the node is colored red and a tooltip indicating the error is
displayed next to it.To make these errors easy to locate within the query, even
if the erroneous node is currently hidden, the labels of all its parent boxes will
also be colored red, and display a tooltip that a child box contains an error.

Errors that are less severe and can be corrected automatically, like empty
boxes, cause the box label to be colored orange. A tooltip and a message below
the workspace inform the user about the source of the problem.

3 Acknowledgements

The research leading to these results is part of the project “KiWi - Knowledge
in a Wiki” and has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement No. 211932.

References

1. F. Bry and K. Weiand. Flavours of KWQL, a keyword query language for a semantic
wiki. In Proceedings of SOFSEM 2010, 2010.

2. T. Catarci, M. Costabile, S. Leviladi, and C. Batini. Visual Query Systems for
Databases: A Survey. Journal of Visual Languages and Computing, 8(2), 1997.

3. A. Hartl, K. A. Weiand, and F. Bry. visKWQL, a visual renderer for a semantic
web query language. In WWW, 2010.

4. S. Schaffert, J. Eder, S. Grünwald, T. Kurz, and M. Radulescu. Kiwi - a platform
for semantic social software. In ESWC, 2009.

Not So Creepy Crawler:
Crawling the Web with XQuery

Franziska von dem Bussche1, Klara Weiand1, Benedikt Linse1, Tim Furche1,2,
François Bry1

1 Institute for Informatics, University of Munich
Oettingenstr. 67, 80538 München, Germany

2 Oxford University Computing Laboratories, Parks Rd, Oxford OX1 3QD, UK

Abstract. Web crawlers are increasingly used for focused tasks such as
the extraction of data from Wikipedia or the analysis of social networks
like last.fm. In these cases, pages are far more uniformly structured than
in the general Web and thus crawlers can use the structure of Web pages
for more precise data extraction and more expressive analysis.
In this demonstration, we present a focused, structure-based crawler gen-
erator, the “Not so Creepy Crawler” (nc2). What sets nc2 apart, is that
all analysis and decision tasks of the crawling process are delegated to
an (arbitrary) XML query engine such as XQuery or Xcerpt. Customizing
crawlers just means writing (declarative) XML queries that can access
the currently crawled document as well as the metadata of the crawl
process. We identify four types of queries that together suffice to realize
a wide variety of focused crawlers.

1 Introduction

In this demonstration, we present the “Not so Creepy Crawler” (nc2), a novel
approach to structure-based crawling that combines crawling with standard Web
query technology for data extraction and aggregation. nc2 differs from previous
approaches to crawling in that it allows for high level of customization through-
out every step in the crawling process. The crawling process is entirely controlled
by a small number of XML queries written in any XML query language: some
queries extract data (to be collected), some links (to be followed later), some
determine when to stop the crawling, and some how to aggregate the collected
data.

This allows easy, but flexible customization through writing XML queries. By
virtue of the loose coupling between an XML query engine and the crawl loop,
the XML queries can be authored with standard tools, including visual pattern
generators [1]. In contrast to data extraction scenarios, these same tools can be
used in nc2 for authoring queries of any of the four types mentioned above.

A demonstration of nc2, accessible online at http://pms.ifi.lmu.de/ncc,
showcases two applications: The first extracts data about cities from Wikipedia
with a customizable set of attributes for selecting and reporting these cities.
It illustrates the power of nc2 where data extraction from Wiki-style, fairly

http://pms.ifi.lmu.de/ncc

homogeneous knowledge sites is required. The second use case demonstrates
how easy nc2 makes even complex analysis tasks on social networking sites,
exemplified by last.fm.

nc2 has already been presented at the 2010 WWW conference [3].

2 Crawling with XML Queries

“Not So Creepy Crawler”: Architecture. The basic premise of nc2 is easy
to grasp: A crawler where all the analysis and decision tasks of the crawling
process are delegated to an XML query engine. This allows us to leverage the
expressiveness and increasing familiarity of XML query languages and provide a
highly configurable crawler generator, which can be configured entirely through
declarative XML queries.

XML Query Engine (Xcerpt)

Crawl Graph (XML)

Document Retrieval

Crawling Loop

Web

Extract Data

HTML to XML Normalization

Frontier Documents
(XML) Extract Links

Persistent Crawl Graph

fetch next document

Frontier

Extracted Data

Active Web Document
(XML)

update

Data Pattern (XML Query)

Link-Following Pattern
(XML Query)

Stop Crawling?stop crawling

Stop Pattern (XML Query)

Extracted Data (XML)

Crawl History

update

update

Fig. 1. Architecture nc2

To this end, we have identified those
analysis and decision tasks that make up a
focused, structure-based crawler, together
with the data each of these tasks requires.

XML patterns. Central and unique to a
nc2 crawler is uniform access to both ob-
ject data (such as Web documents or data
already extracted from previously crawled
Web pages) and metadata about the crawl-
ing process (such as the time and order
in which pages have been visited, i.e., the
crawl history). Our crawl graph not only
manages the metadata, but also contains
references to data extracted from pages vis-
ited previously. The tight coupling of the
crawling and extraction process allows us
to retain only the relevant data from al-
ready crawled Web documents.

This data is queried in a nc2 crawler by
three types of XML queries (see Figure 1):

(1) Data patterns specify how data is
extracted from the current Web page. A
typical extraction task is “extract all elements representing events if the current
page or a page linking to it is about person X”. To implement such an extrac-
tion task in a data pattern, one has to find an XML query that characterizes
“elements representing events” and “about person X”. As argued above, finding
such queries is fairly easy if we crawl only Web pages from a specific Web site
such as a social network.

(2) Link-following patterns extract all links from the current Web document
that should be visited in future crawling steps (and thus be added to the crawling
frontier). Often these patterns also access the crawl graph, e.g., to limit the

crawling depth or to follow only links in pages directly linked from a Web page
that matches a data pattern.

(3) Stop patterns are boolean queries that determine when the crawling pro-
cess should be halted. Typical stop patterns halt the crawling after a given
amount of time (i.e., if the time stamp of the first crawled page is long enough
in the past), number of visited Web pages, number of extracted data items, or
if a specific Web page is encountered.

There is one more type of pattern, the result pattern, of which there is usually
only a single one: It specifies how the final result document is to be aggregated
from the extracted data. Once a stop pattern matches and the crawling is halted,
the result pattern is evaluated against the crawl graph and the extracted data,
e.g., to further aggregate, order, or group the crawled data into an XML docu-
ment, the result of the crawling.

All four patterns can be implemented with any XML query language. In this
demonstration we use Xcerpt [2] and XQuery.

System components. How are these patterns used to steer the crawling pro-
cess? Crawling in nc2 is an iterative process. In each iteration the three main
components work together to crawl one more Web document (see Figure 1):

(1) The crawling loop initiates and controls the crawling process: It tells the
document retrieval component to fetch the next document from the crawling
frontier (the list of yet to be crawled documents).

(2) The document retrieval component retrieves and normalizes the HTML
document and tells the crawling loop to update the crawl history in the crawl
graph (e.g., to set the document as crawled and to add a crawling timestamp).

(3) The XML query engine (in the demonstrator, Xcerpt) evaluates the stop,
data, and link-following patterns on both the active document and the crawl
graph (containing the information which data patterns matched on previously
crawled pages and the crawl history). Extracted links and data are sent to the
crawling loop which updates the crawl graph.

(4a) If none of the stop patterns matches the iteration is finished and crawling
starts again with the next document in step (1), if there is any.

(4b) If one of the stop patterns matches in step (3), the crawling loop is sig-
nalled to stop the crawling. The XML query engine evaluates the result pattern
on the final crawl graph and the created XML result document is returned to
the user.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction with
Lixto. In VLDB, 2001.

2. F. Bry, T. Furche, B. Linse, A. Pohl, A. Weinzierl, and O. Yestekhina. Four lessons
in versatility or how query languages adapt to the web. In Semantic Techniques for
the Web, The REWERSE Perspective, LNCS 5500. Springer, 2009.

3. F. von dem Bussche, K. A. Weiand, B. Linse, T. Furche, and F. Bry. Not so creepy
crawler: easy crawler generation with standard XML queries. In WWW, 2010.

Linked Open Services:
Update on Implementations and Approaches

to Service Composition

Barry Norton1 and Reto Krummenacher2 and Adrian Marte2

1 AIFB, Karlsruhe Institute of Technology, Germany
2 Semantic Technology Institute, University of Innsbruck, Austria

firstname.lastname@{kit.edu | sti-innsbruck.at}

Abstract. Linked Open Services are a principled attempt to guide the creation
and exposure of online services, in order to enable productive use of, and con-
tribution to, Linked Data. As a technical basis, they communicate RDF directly
via HTTP-based interaction, and their contribution to the consumer’s knowledge,
in terms of Linked Data, is described using SPARQL-based constructs. In this
demo we will show some of our latest results in the production of Linked Open
Services and the applications in which they can be taken up.

1 Overview

In [2], we present the groundwork of an initiative called Linked Open Services (LOS!).
Subsequent work on developing such RDF/SPARQL-driven services at the commu-
nity site http://www.linkedopenservices.org has led to the refinement of
a number of defining principles:

1. Describe services as LOD prosumers with input and output descriptions as SPARQL
graph patterns.

2. Communicate RDF by RESTful content negotiation.
3. Communicate and describe the knowledge contribution resulting from service in-

teraction, including implicit knowledge relating input, output and service provider.

Associated with the last principle, there is an optional fourth one:

4. When wrapping non-LOS services, extend the (lifted, if non-RDF) message to
make explicit the implicit knowledge it contains, and use Linked Data vocabularies
and SPARQL CONSTRUCT queries to derive the constructed knowledge.

In our demo we present LOS implementations, applications and first results towards
the use of Linked Open Services in processes and service compositions. In Linked Open
Services, we see an approach to linked data mash-ups with real world side-effects. It
is in the nature of the work, and the call to which we respond, that this will be of ‘late
breaking nature’. We have already taken forward particularly the challenge of geospatial
services; both in the development of novel services according to these principles, and
in wrapping existing services from http://www.geonames.org.1

1 http://www.linkedopenservices.org/services/geo/

2

J J J J J J J – J J J J J J J J J J J J J J J J J J J – J J J J J J J X
X X X X X X – X – X X X X – – X X
– R – – – – – – –

as
te

rg
de

m
ch

ild
re

n
ci

tie
s

co
un

try
C

od
e

co
un

try
In

fo
co

un
try

Su
bd

iv
is

io
n

ea
rth

qu
ak

es
ex

te
nd

ed
Fi

nd
N

ea
rb

y
fin

dN
ea

rb
y

fin
dN

ea
rb

yP
la

ce
N

am
e

fin
dN

ea
rb

yP
os

ta
lC

od
es

fin
dN

ea
rb

yS
tre

et
s

fin
dN

ea
rb

yS
tre

et
sO

SM
fin

dN
ea

rB
yW

ea
th

er
fin

dN
ea

rb
yW

ik
ip

ed
ia

fin
dN

ea
re

st
A

dd
re

ss
fin

dN
ea

re
st

In
te

rs
ec

tio
n

fin
dN

ea
re

st
In

te
rs

ec
tio

nO
SM

ge
t

gt
op

o3
0

hi
er

ar
ch

y
ne

ig
hb

ou
rh

oo
d

ne
ig

hb
ou

rs
oc

ea
n

po
st

al
C

od
eC

ou
nt

ry
In

fo
po

st
al

C
od

eL
oo

ku
p

po
st

al
C

od
eS

ea
rc

h
rs

sT
oG

eo
se

ar
ch

si
bl

in
gs

sr
tm

3
tim

ez
on

e
w

ea
th

er
w

ea
th

er
Ic

ao
w

ik
ip

ed
ia

B
ou

nd
in

gB
ox

w
ik

ip
ed

ia
Se

ar
ch

Fig. 1. The current services offered over the geonames Linked Data set (J=JSON,X=XML,R=RDF)

2 Geospatial Services

While geonames.org is rightly regarded as one of the key components of the Linked
Data cloud (cf. www.linkeddata.org), for the services that offer functionality over
this data the use of semantics is much less encouraging, as shown in Figure 1. In fact,
while all but one service are capable of using JSON (marked with a ‘J’), rapidly re-
placing XML (‘X’) as the de facto language for service communication, only one is
currently enabled to directly communicate RDF (‘R’).

A number of Linked Open Services are therefore dedicated to re-exposing these
services in a form where they can communicate RDF. In order to do so we employ a
library we have developed, and will demonstrate, named JSON2RDF. The point of this
library is not to directly produce usable RDF, but rather to automatically produce some
kind of RDF that can then be transformed into a useful form simply using SPARQL
CONSTRUCT queries, as per Principle 4.

Table 1. Automatic JSON2RDF Lifting of GeoNames Weather Service

GeoNames output JSON:

{"weatherObservations": [
{ "clouds": "few clouds",
"windDirection": 20,
"ICAO": "CYOW",
"lng": 41.7,
"temperature": "35",
...

Generic RDF after lifting:

[json2rdf:weatherObservations [
json2rdf:clouds "few clouds" ;
json2rdf:windDirection "20"ˆˆxsd:short ;
json2rdf:ICAO airports:CYOW ;
json2rdf:lng "41.7"ˆˆxsd:double ;
json2rdf:temperature "35" ;
...

3

Table 1 shows the result of applying JSON2RDF to a GeoNames weather service,
while Table 2 sketches the CONSTRUCT query that is subsequently applied. Note that
this is not only the opportunity to introduce the use of standard Linked Data vocabular-
ies, but also of provenance information, which is increasingly becoming a ‘hot topic’ in
the Linked Data community; cf. [1] for example.

Table 2. CONSTRUCT Query over GeoNames Weather Service

CONSTRUCT { [met:weatherObservation [
weather:hasStationID ?icao ;
...
wgs84:long ?longitude ; wgs84:lat ?altitude ; ...]] .

}
WHERE { [json2rdf:weatherObservations _:a] .
_:b json2rdf:ICAO ?icao ;

json2rdf:lng ?longitude ; json2rdf:lat ?latitude ; ...
}

In our work with geospatial services we have also capitalised on the cross-fertilisation
of Linked Data and RESTful service principles followed in Linked Open Services.
Not only is the vocabulary for the airports that are used in weather reporting in geon-
ames services missing, but the chance to view service calls as operations against the
concerned resources, rather than as disembodied ‘RPC calls’, is missing. In response,
Linked Open Services have been provided that openly manage spatial resources, such
as those in the geonames dataset, and airports have been included so that the ‘weatherI-
CAO’ service (where ICAO is a code identifying airports) is offered as an HTTP POST
operation against a URI version of the ICAO code. The demo will also show how REST
frameworks like JAX-RS can be used in developing such services in combination with
semantic technologies.

3 Summary

In the demo we demonstrate our latest work on service development in the context of
Linked Open Services [2]. The applications and services to be showcased focus fore-
most on our work with GeoNames data and services, and include demonstrations of our
inclusion of provenance data and provision of resource-oriented services. We would
also hope to present services related to the telecoms domain and demos supporting also
the composition of Linked Open Services in the form of process.

References

1. Hartig, O., Zhao, J.: Publishing and Consuming Provenance Metadata on the Web of Linked
Data. In: 3rd Int’l Provenance and Annotation Workshop (June 2010)

2. Krummenacher, R., Norton, B., Marte, A.: Towards Linked Open Services and Processes. In:
3rd Future Internet Symposium (September 2010)

ERP B3: Service Level Driven Management of
On-Demand Business Support Systems. !

Ulrich Winkler 1, Daniel Playfair1, and Wolfgang Theilmann2

SAP Research, SAP AG,
1The Concourse, Queen’s Road, Belfast BT3 9DT, United Kingdom

2Vincent-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
{ulrich.winkler,daniel.playfair,wolfgang.theilmann}@sap.com

http://www.sap.com/research

Abstract. ERP B3 is a SLA@SOI framework based solution for Ser-
vice Level Agreement driven, on demand and dynamic provisioned ERP
systems. In this demonstration we want to show SLA management for
hosted ERP systems from three perspectives; the customer, the sales,
and IT administrator perspective. Aspects of the negotiation, planning
and provisioning workflow, which involves all stakeholders, are outlined.

1 Introduction

Business support systems, such as Enterprise Resource Planning (ERP) sys-
tems are well established in large organisations and hosted on customer premise.
However, the uptake for small and medium enterprises is still low due to high-
complexity and high initial-costs of setup and maintenance. To offer ERP func-
tionality as a Software-as-a-Service (SaaS) offering could be a solution. As ERP
systems are business critical systems, customers should be enabled to specific Ser-
vice Level Agreements (SLAs) which details penalties in case the EPR provider
is not able to deliver ERP functionality as demanded.

The SLA@SOI project researches and develops a framework for SLA aware
SaaS solutions [1, 2]. This framework provides (1) comprehensive support for
holistic and transparent SLA management, SLA translation and SLA negotia-
tion, (2) a means to predict service quality characteristics, (3) an automated
service deployment apparatus and (4) mechanisms to monitor and to enforce
service quality at runtime.

Lessons learned from utilising the SLA@SOI framework to provide on-demand
business applications are discussed in [3]. The authors elaborate on details how
the SLA@SOI framework is used to plan, translate and negotiate SLAs at dif-
ferent layers and explain technical and scientific particulars. However, the best
way to illustrate this lengthy end-to-end planning, translation and negotiation
workflow is with a demonstration.
! The research leading to these results is partially supported by the European Com-

munity’s Seventh Framework Programme (FP7/2001-2013) under grant agreement
no.216556.

2 Ulrich Winkler et al

2 ERP B3’s SLA Negotiation and Translation Workflow

We anticipate three stakeholders in the negotiation and planning workflow; which
are the customer, the sales officer and the IT administrator. For every stakeholder
ERP B3 offers a tailored user front-end, called portal. The customer portal al-
lows a customer to browse product offerings. The customer can initiate a quo-
tation process and specify service level requirements. The sales portal provides
functionality to manage customer requests, to plan business service level agree-
ments and to perform price calculations. The IT administrator portal supports
IT landscape planning and provide monitoring and adjustment functionality.

Fig. 1. The negotiation, planing and provisioning workflow.

ERP B3 3

The end-to-end negotiation, planning and provisioning workflow is depicted
in Figure 1 and briefly discussed here:

The customer [steps 1-5.1] browses the product catalogue and select a product
of interest. For every product the customer can choose from various pre-defined
SLA templates, configures the selected template according to his business needs,
and issues a request for quotation to the sales office.

The sales officer [steps 5.1.1-7] examines quotation request details and prop-
agates the IT relevant parts to the IT administrator as an application service
request.

The IT administrator [steps 7.1-9] receives the application service request
and triggers the IT planning wizard [step 9 ff]. This wizard translates appli-
cation service requests into a set of IT landscape plans, including middleware
and infrastructure requirements. The IT administrator [steps 10-10.1] selects the
most appropriate landscape plan. Once an IT landscape plan has been selected
the sales officer can finalises the quote for the customer, i.e. she determines a
final price.

The customer [step 13] accepts the quote. This triggers an automated pro-
visioning process for the complete service hierarchy. The sales officer and IT
administrator are notified accordingly.

3 Conclusions

Server virtualisation and cloud computing enable new kinds of service provi-
sioning and management methodologies. The SLA@SOI framework supplements
these methodologies with SLA management, which is required in a business
context. ERP B3 makes use of this framework to provide service level aware
on-demand business applications. In this paper we have shown the end-to-end
negotiation, planning and provisioning workflow, which co-ordinates SLA man-
agement activities among various stakeholders.

References

1. SLA@SOI project: IST- 216556; Empowering the Service Economy with SLA-aware
Infrastructures, http://www.sla-at-soi.eu/

2. Theilmann, W., Happe, J., Kotsokalis, C., Edmonds, A., Kearney. K.: A Reference
Architecture for Multi-Level SLA Management. Journal of Internet Engineering,
2010 (to appear)

3. Wolfgang Theilmann, Ulrich Winkler, Jens Happe, and Ildefons Magrans de Abril:
Managing on-demand business applications with hierarchical service level agree-
ments. 3rd Future Internet Symposium (FIS 2010), Berlin, September 20-22, 2010

Nature Inspired Self-Organizing Semantic Storage

Robert Tolksdorf, Hannes Mühleisen, Kia Teymourian, Marco Harasic, Anne
Augustin

Freie Universität Berlin
Department of Computer Science - AG Networked Information Systems

Königin-Luise-Str. 24/26, 14195 Berlin, Germany
tolk@ag-nbi.de, {muehleis,kia,harasic,aagusti}@inf.fu-berlin.de

http://www.ag-nbi.de

Abstract. Traditional approaches for semantic storage and analysis are facing
their limits on the handling of enormous data amounts of today’s applications.
We believe that a more radical departure from contemporary architectures of
stores is necessary to satisfy that central scalability requirement. One of the most
promising new schools of thought in system design are swarm intelligent and
swarm-based approaches for data distribution and organization. In this paper, we
describe our current work on a swarm-based storage service for Semantic Web
data.

1 Introduction and Related Work

Semantic applications share the need for an efficient and scalable storage ser-
vice which can handle huge amounts of semantic data. The performance and
scalability level of the storage services will be defined by use case scenarios,
e.g. the future Semantic Web applications need to scale to the size of the Web
and the Internet network, respectively.

Conventional approaches for distributed storage services are facing complex
problems in scaling and their adaptivity to changes in network infrastructure,
both requirements for large-scale semantic applications. Thus new concepts and
architectures for distributed storage have to be developed, and a more radical
departure from contemporary architectures of storage might be the key to the
realization of scalable storage systems. One of the most promising approaches
for data distribution are swarm intelligent and swarm-based algorithms.

While some central storage systems support replication of their stored data,
they rely on a central instance orchestrating the execution of storage and query
requests. Distributed storage systems on the other hand should not rely on cen-
tral nodes, as they pose single points. In contrast, distributed semantic storage
systems have been proposed such as RDFPeers [1] or GridVine [3].

2 Robert Tolksdorf, Hannes Mühleisen, Kia Teymourian, Marco Harasic, Anne Augustin

2 The Self-Organized Semantic Storage Service

In SwarmLinda [4], a distributed coordination system based on swarm algo-
rithms was proposed. This coordination model makes use of a global tuple
space. In SwarmLinda this tuple space is distributed to a network of nodes. The
different operations are realized by using swarm algorithms to reach a high level
of scalability and adaptivity to network changes which are both important prop-
erties for open distributed systems. SwarmLinda clusters tuples that match the
same template and trails of virtual pheromones are left in the system to make
these clusters traceable. Our SwarmLinda implementation has been extended
in [5] adopting ant colony algorithms to realize a distributed storage for RDF
triples. Both approaches aimed at clustering semantically related RDF triples.

Our concept is to build a Self-Organized Semantic Storage Service (S4)
which uses swarm-based algorithms to store the user provided semantic data
into diverse clusters potentially spanning multiple nodes. This structures can
later be exploited for efficient data retrieval. We have adapted the SwarmLinda
concept and its basic algorithms in order to enable it to store Semantic Web
meta data in the data model RDF. Consistent with SwarmLinda, virtual ants
move over a landscape consisting of a number of nodes (servers) which are
interconnected.

One of the basic requirements of the ant algorithms is a similarity metric
used to calculate the relative similarity between triples. Previous approaches
have for example either employed string-based distance measures or more com-
plex metrics based on ontologies. Any metric is required to yield a relative value
for any pair of triples, thus making data organization and efficient clustering
possible. However, our approach was deliberately designed to allow an easy
replacement of the similarity metric, so this specific challenge is not detailed
further.

The S4 concept based on the described algorithms offers a wide range of
benefits compared to other approaches: Swarming individuals (ants) are con-
trolled by simple algorithms, they do not require a complex rule set to perform
well, additionally, all decisions can be made using only a local view. Still, indi-
viduals are able to dynamically adapt to their possibly changing environment.
Network organization thus is decentralized and robust to changes in the net-
work topology. In contrast to hash-based approaches such as DHT or B-Tree
our approach does not require costly network reconstruction (achieved through
communication) in the case of an error. Every node has sufficient information
in the form of present scents to execute every possible query on its own, hence
further eliminating single points of failure. Feasible solutions exist for issues
like over-clustering, where a skewed data distribution leads unfair distribution

Nature Inspired Self-Organizing Semantic Storage 3

of data storage [2]. The same is true for hot point avoidance: if a node stores
triples used in a large number of requests, it can simply move parts of them to
another node or reject storage of similar triples in the future.

3 Conclusion and Outlook

We have described our motivation to extend the current state of storage sys-
tems for Semantic Web applications. The differences between centralized and
distributed semantic storage services have been shown, as well as the current
research in storage systems. We have outlined our design of a Self-Organized
Semantic Storage Service (S4), and advantages over conventional data distribu-
tion algorithms.

While reasoning on central storage systems can be performed using logic en-
gines, distributed reasoning is far more complex. As a general approach, achiev-
ing reasoning completeness is sacrificed in favor of scalability for distributed
reasoning. Consequently, the next level for S4 is to design and implement a
concept for a simple reasoning during retrieval along an is-a hierarchy and with
best-effort guarantees. We then plan to add application-specific reasoning capa-
bilities. We will continue working on the refinement and implementation of our
S4 concept within our current joint research project “DigiPolis”, where this sys-
tem will form the basis for a indoor navigation system possibly covering entire
cities. Example use cases include a semantic search for points of interest in a
vicinity, in house routing with semantic restrictions, and semantic annotation of
map entries.

Acknowledgments This work has been supported by the German Federal Min-
istry of Education and Research under grant number 03WKP07B.

References

1. Min Cai and Martin Frank. RDFPeers: A scalable distributed RDF repository, February 27
2004.

2. Matteo Casadei, Ronaldo Menezes, Robert Tolksdorf, and Mirko Viroli. On the problem of
over-clustering in tuple-based coordination systems. In SASO, pages 303–306. IEEE Com-
puter Society, 2007.

3. Philippe Cudré-Mauroux, Suchit Agarwal, and Karl Aberer. GridVine: An infrastructure for
peer information management. IEEE Internet Computing, 11(5):36–44, 2007.

4. Ronaldo Menezes and Robert Tolksdorf. A new approach to scalable linda-systems based on
swarms. In Proceedings of ACM SAC 2003, pages 375–379, 2003.

5. Robert Tolksdorf and Anne Augustin. Selforganisation in a storage for semantic information.
Journal of Software, 4, 2009.

Behaviour of
Maximum-Throughput Dynamic

Routing in Loopy Networks!

Venkataramana Badarla and Douglas J. Leith

Hamilton Institute, NUI Maynooth, Ireland

Abstract. Maximizing network throughput via back-pressure routing
is the subject of a considerable body of literature. However, the associ-
ated optimal throughput guarantees come at the cost of excessively high
delays. Though there exists some proposals in literature for improving
the delay performance, the impact of these proposals on the delay per-
formance is very little in loopy networks (i.e., networks with routing
loops). In this demonstration, with series of experiments over different
topologies, we show that the basic back-pressure algorithm and two of its
variants for improving delay performance induce extensive routing loops
with associated high packet delay even in simple network topologies.

1 Introduction

Throughput maximization is an important issue in current Internet and it would
continue to be an issue in future Internet. Using dynamic multi-path routing,
the state of art back-pressure routing[1] offers considerable gains in throughput
over conventional single-path routing algorithms. Indeed, it guarantees to achieve
the network capacity and so its throughput performance cannot be bettered by
any algorithm. While maximizing network throughput, back-pressure routing
comes with no guarantee on network delay. Indeed certain features of the back-
pressure routing algorithm suggest that long delays will be common. Firstly,
back-pressure routing uses queue buildup at nodes to create a “gradient” within
the network that guides routing. However, this may come at the cost of increased
queuing delay. Secondly, back-pressure routing tends to explore all paths in a
network, including paths with loops and “dead-end” paths that cannot lead to
the desired destination. Hence, packets generally may not take the shortest path
to their destination, thereby leading to additional delay.

The basic back-pressure algorithm is detailed in Algorithm 1. Each forward-
ing node in the network uses per flow FIFO queuing and we let qf

n(t) denote
the number of packets queued for flow f at node n at time t. Roughly speaking,

! This material is based upon works supported by the Science Foundation Ireland
under Grant No. 07/IN.1/I901.

whenever it has a transmission opportunity each node n forwards a packet from
the flow f∗ to the next hop m∗(f∗) that jointly maximizes the utility

Uf
n,m(t) =

(

qf
n(t) − qf

m(t)
)

Rn,m

where Rn,m is the mean transmit rate of the link from node n to node m. Observe

Algorithm 1 Basic back-pressure algorithm

1: For each flow f and neighbor node m, node n computes utility Uf
n,m(t) =

“

qf
n(t) − qf

m(t)
”

Rn,m,

m∗(f) = arg maxm Uf
n,m, f∗ = arg maxf

“

Uf

n,m∗(f)

”

(ties broken arbitrarily).

2: If Uf∗

n,m∗(f∗) > 0, then node n schedules flow f∗ and forwards min(qf∗

n (t), Rn,m∗(f∗)) packets

to neighbor m∗(f∗).
3: Otherwise node n takes no action at time t.

that this back-pressure algorithm tends to transmit packets to the neighbor(s)
with the smallest queue and highest link rate and intuitively the queue back-
logs provide a “gradient” down which packets are routed. However, it commonly
occurs that qf

n(t) and qf
m(t) differ by only a small amount. The routing “gra-

dient” is then both small and rapidly fluctuating, in which case routing loops
can readily be induced. Furthermore, observe that even when a neighbor has
no connectivity to the destination of a flow, packets will still be forwarded to
this neighbor until such time as a sufficiently large queue backlog has developed
to prevent further packets stop being forwarded in that direction. However, the
packets already sent in that direction will never reach the flow destination.

Back-pressure With Distance Weighting: In [2] it is noted that the utility
function Uf

n,m can by modified by summing with a finite constant without affect-
ing the stability properties of the basic back-pressure routing, and in particular,
that selecting a constant based on the shortest-path distances from nodes n
and m to the destination of flow f is a possible choice. We therefore consider a
modified utility function of the form

Uf
n,m(t) =

(

qf
n(t) − qf

m(t)
)

Rn,m +
M

Df
m

where the intuition is that since the utility is inversely proportional to the dis-
tance Df

m, shortest paths are favored when making forwarding decisions. The
design parameter M allows the relative weight of the distance term to be ad-
justed. We refer to use of this utility function as distance aided routing.

2 Implementation, Demo Setup and Snapshot of Results

We implemented the back-pressure algorithms as a DynamicRouter element
within the Click router framework in Linux. The Click router framework provides
a modular architecture that lies within the Linux queuing layer (i.e, between the

network layer and the device driver layer) and interacts with the network layer
and the interface device driver via the Click elements ToHost/FromHost and
ToDevice/FromDevice, respectively.

4

6

SRC

DEST

44

4

(b)

1

4

4

44 4

44

11 11

4 8

DEST

SRC

8

1

10

(a)

2

1

3

5

8
7

3

8

5

2

Fig. 1. Network Topologies.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

0.3 0.5 0.7 0.9 1
 0
 0.1
 0.2
 0.3
 0.4
 0.5

De
la

y
in

 s
ec

on
ds

De
la

y
in

 s
ec

on
ds

Arrival rate (λ) in Mbps

BP
Shadow queues with ε = 3%

Min resource with M=5
Dist aided with M=500 on y2-axes

Shortest path routing on y2-axes

Fig. 2. Delay performance over the topol-
ogy in Fig. 1(a).

Table 1. Demonstration setup for the Demo Session

Item Description

Soekris computers
(quantity 10)

Single-board computers with 433MHz CPU,
256MB RAM and four 100Mbps ethernet ports

N/w topologies Shown in Figure 1
Performance met-
rics

a) packet delay b) throughput c) Buffer size at in-
termediate nodes d) reassembly buffer at receiver

Traffic type a) TCP using iperf and scp b) UDP using mgen

Details of the demonstration setup, such as type of computers will be used,
network topologies will be considered etc are given in Table 1. Fig 2 presents
snapshot of the experimental results conducted over the topology in Fig 1(a).
In Fig. 2(a), which shows measured delay performance, we can observe that
the delay for back-pressure algorithm and its variants (shadow-queue and min-
resource algorithms [3]) is excessively high (ranges from 3s to 45s) at all offered
loads. Also can be observed that the proposed distance aided approach shows
the lowest delays which are at par with the shortest path routing. More detailed
results over the second topology will be shown during the live demonstration
session at the conference venue.

References

1. A. L. Stolyar, “Maximizing Queueing Network Utility subject to Stability: Greedy-
Primal Dual Algorithm,” Queueing Systems, vol. 50, no.4, pp. 401-457, 2005.

2. L. Georgiadis et al, Resource Allocation and Cross Layer Control in Wireless Net-
works 2006.

3. L. Bui et al, “Novel Architectures and Algorithms for Delay Reduction in Back-
pressure Scheduling and Routing”, in Proc. IEEE Infocom Mini-Conference 2009.

Poster: Persistent Content-based
Publish/Subscribe Service On Top Of DHT

Yan Shvartzshnaider1, Maximilian Ott2, and David Levy1

1 School of Electrical and Information Engineering
The University of Sydney, Australia

yshv6985@uni.sydney.edu.au

david.levy@sydney.edu.au
2 National ICT Australia (NICTA)

max.ott@nicta.com.au

Approach

We propose design for a distributed and persistent content-based publish/subscribe
service based on the Rete algorithm. Rete [1] has been designed to support pat-
tern matching in production rule systems. In particular, Rete is able to manage,
interpret and evaluate a set of rules against a large persistent dataset. The
matching process relies on a loosely coupled dataflow matching network which
makes the Rete algorithm a suitable candidate for implementation in distributed
settings, such as with DHTs. In our approach we make the following key con-
tributions to the previous work: efficient information filtering, persistence of
subscriptions and publications, scalability, query expressiveness.

Fig. 1. An extremely simplified illustration of our implementation approach.

Rete generates a dataflow network from a given set of rules. This dataflow
network consists of loosely coupled alpha memory (AM), beta memory (BM)

and join nodes. The alpha memories act as predicates on the dataset. With each
new matched tuple right activation is triggered. The beta memories store the
intermediate results from previous join node (note, these results can be shared
by different subscriptions at the node). The join nodes perform variable binding
tests between sets of tuples in the BM and data tuples in the AM, and outputs
binds as variable tuples to the next BM. This process is called left activation. In
other words, Rete’s matching process is a chain of successively triggered right and
left activations with the final result stored in the last node in the chained beta-
memory, also called production node. The activations allow Rete dynamically to
adjust its results to any incremental changes in the data.

Our approach. Similarly to Rete, our system treats tuples as primitives. Pub-
lished events are tuples and subscription is essentially a set of bindings by vari-
ables rule tuples. Intuitively, we propose to follow the rendezvous model to dis-
tribute Rete’s alpha-memories over the DHT nodes to arrange a meeting between
each AM and matching to it published tuples. Each node in the network has the
ability to subscribe to and publish content. All subscriptions at the subscrib-
ing node are managed locally by a single Rete network. As Figure 1 shows, our
DHT’s nodes store the subscription’s rules and forward every matched tuple to
appropriate subscriber nodes where on arrival the tuples are distributed among
the alpha memories, triggering the matching process.

Contributions and Future work

We have presented a design for a distributed and persistent content-based pub-
lish/subscribe system on top of DHT. Our main contributions compared to other
related work are: (1) Persistence – our system stores both subscriptions and
published events. Hence a query can also return previously published, match-
ing events. (2) Subscription expressiveness – subscriptions are defined as a set
of conditions (rules) bound by variables. (3) Efficient information filtering due
to the efficiency in pattern matching of the Rete algorithm. In our future work
we plan to improve the current design to mitigate any potential load balancing
problems due to non-uniform distribution of published events’ attributes. We
will analyse system’s performance, and in particular, will compare the current
push-based design against alternative pull- based approaches. Finally, our ulti-
mate goal is to create a persistent and content-based pub/sub facility that can
be used as a building block by distributed Internet application and services.

References

[1] Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match
problem. Artificial Intelligence 19(1) (1982) 17–37

2

Access Control for RDF: Experimental Results

Giorgos Flouris1, Irini Fundulaki1, Maria Michou1, and Grigoris Antoniou1,2

1 Institute of Computer Science, FORTH, Greece
2 Computer Science Department, University of Crete, Greece

{fgeo, fundul, michou, antoniou}@ics.forth.gr

Abstract. One of the current barriers towards realizing the huge poten-
tial of Future Internet is the protection of sensitive information, i.e., the
ability to selectively expose (or hide) information to (from) users depend-
ing on their access privileges. In this work we discuss the experiments
conducted with our repository independent, portable across platforms
system that supports fine-grained enforcement of RDF access control.

1 Introduction

The potential of RDF as a data representation standard for the Future Internet
is undermined by the lack of an effective mechanism for controlling access to
RDF data. In light of the potentially sensitive nature of RDF information, the
issue of securing RDF content and ensuring the selective exposure of information
to different classes of users depending on their access privileges is an important
issue. The building blocks of an access control system are the specification lan-
guage, that allows the expression of access control permissions and policies, and
the enforcement mechanism, responsible for applying the latter to the data, by
denying access to data that the policy has deemed as non-accessible.

In this work, we enforce access control by proposing a solution which is
repository independent, portable across platforms, and in which fine-grained
access control (protection at the level of RDF triple) is enforced by a component
built on top of the RDF repository. In this poster we report on experiments
performed with our system; the full description and formal semantics of our
language, as well as more details on the approach can be found in [6].

2 RDF Access Control Framework

We concentrate on fine-grained RDF access control for read-only queries. An
access control permission is used to explicitly grant or deny to/from a given
user the ability to access an RDF triple, or a set of RDF triples, and can be
viewed as a query whose evaluation over an RDF graph results in a set of triples
which are accordingly granted or denied access. Access control permissions are
expressed using SPARQL [7] triple patterns and value constraints, and are of the
form: R = include/exclude (x, p, y) where T P, C with (x, p, y) a triple pattern,
T P a conjunction of triple patterns and C a conjunction of value constraints on
the variables appearing in the triple patterns. Explicit access rights are not set
for all triples in an RDF graph, and permissions are not always unambiguous
(i.e., a triple could be marked as both accessible and inaccessible). To determine
whether such triples should be accessible, we use the notion of access control
policy, which includes a set of positive and a set of negative permissions, as well

as two boolean flags (default semantics and conflict resolution – ds, cs resp.),
which determine whether triples with missing (resp. ambiguous) permissions are
accessible or not. A full description of the formal semantics of access control
permissions and policies can be found in [6].

3 Implementation and Experiments

Architecture: We implemented a main memory platform which serves as an
additional access control layer on top of an arbitrary RDF repository. Our goal
was for our system to be portable across platforms, so it was designed in a
repository-independent way. The system’s architecture is shown in Fig. 1. It is
comprised of the following modules, all implemented in Java: the RDF Dataset
Loader, responsible for loading the complete RDF dataset in the underlying
repositories, the RDF Access Control Policy Manager that loads in memory the
access control policies and the RDF Access Control Enforcement Module, which
translates the access control policies into the appropriate programs that compute
the accessible triples of an RDF dataset and annotates accordingly the data in
the repositories with accessibility information.

Jena

A Semantic Web Framework

for Java

RDF Dataset Loader

RDF Access Control

Policy Manager

RDF Access Control

Enforcement Module

RDF triples RDF triples
relational

representation

of RDF triples

RDF access control

policies

policy

SPARQL Query

Serql Query
SPARQL Update SQL query

RDF

dataset

Fig. 1. System Architecture

To enforce an access con-
trol policy we produce a
query which implements the
semantics of the policy and
is expressed in the language
supported by the underlying
repository. The triples in the
result of the evaluation of this
query on the RDF graph are
exactly the accessible triples
which are then annotated as
such. Conceptually, annota-
tions can be represented by
adding a fourth column to an
RDF triple (hence obtaining a
quadruple), denoting whether
the triple is accessible or not;
if several different user roles

need to be supported, one column per role should be added. Annotations can
be stored using the named graphs mechanism of RDF repositories [5], or, in the
case of a relational backend, by extending the triple table that stores the RDF
triples with a fourth column.
Experiments: Our experiments measured the time required to annotate the
set of RDF triples, using the above methodology, in state-of-the-art RDF repos-
itories (Sesame [3], Jena [1]) or relational backends (Postgres [2]). We used the
SP2Bench [8] data generator to obtain the input RDF graphs. We implemented
our approach on top of Jena v2.6.2, Sesame v2.3.1 and Postgresql v8.4. For
Jena we tested the SparqlJenaModule and SparqlJenaSDBModule (processing
SPARQL queries) as well as the SPARULModule (processing SPARQL Update

queries) modules. SparqlJenaModule and SPARULModule load the datasets
into main memory whereas the SparqlJenaSDBModule stores the datasets to
a Postgresql database. For Sesame we used the SeRQLModule, which processes
SPARQL [7] and SeRQL [4] queries in memory.

!

"

#

$

%

&!

&"

&#

!'(& &'(" "'())'(#

!
"#

$
!%
&$
'(

)*'+#$,-!&".$!%/0(

*+,-.

*/01234+50

*/016.

*/01234+50*78

!

(a) gp = 2,ps = 80

!

"

#

$

%

&!

&"

&#

&$

&%

"!

&! "! #! %! &!!

!
"#

$
!%
&$
'(

)*+"'"$&

'()*+

',-./01(2-

',-.3+

',-./01(2-'45

!

(b) gp = 2,doc = 4MB

!

"!

#!

$!

%!

&!

'!

(!

)!

& "!

!
"#

$
%&
'$
()

*+,-.%/,00$+1'%(2#-3$4"05

*+,-.

*/01234+50

*/016.

*/01234+50*78

(c) ps = 80, doc = 4MB

Fig. 2. Experiments

We measured the time required for the annotation as a function of four
different parameters: (i) document size (doc), i.e., the size of the input RDF
graph (size ranging between 500KB-4MB with a 500KB increase); (ii) policy size
(ps), i.e., the number of permissions in the access control policy (for sizes of 10,
20, 40, 80 and 100, with an equal share of positive/negative permissions in each
case); (iii) permission size (gp), i.e., the number of triple patterns and constraints
in the where clause of each access control permission (values considered: 2, 5,
10); and (iv) policy parameters, i.e., the values of the ds, cr parameters of the
input policy (all 4 combinations considered).
Evaluation: Fig. 2 shows a subset of the results of our experiments: we run each
experiment 5 times, and took the average time. In each graph, the annotation
time is presented as a function of one of the parameters (i)-(iv), for fixed values
for the other parameters. We report here on policies with “deny” as default
semantics (ds) and conflict resolution policy (cr) because it is the most common
one. The results show that our approach scales along the considered parameters.
All the platforms that we ran our experiments on demonstrated a linear behavior
as document, policy sizes and permission complexity increased (except the Jena
SPARUL and SPARQL Modules).

References

1. Jena A Semantic Web Framework for Java. http://jena.sourceforge.net/.
2. PostgreSQL. http://www.postgresql.org/.
3. Sesame: RDF Schema Querying and Storage. http://www.openrdf.org/.
4. J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query Lan-

guage. In Workshop on Semantic Web Storage and Retrieval, 2003.
5. J. J. Carroll, C. Bizer, P. J. Hayes, and P. Stickler. Named Graphs. JWS, 3(4),

2005.
6. G. Flouris, I. Fundulaki, M. Michou, and G. Antoniou. Controlling Access to RDF

Graphs. In FIS, 2010.
7. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. www.w3.

org/TR/rdf-sparql-query, January 2008.
8. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Per-

formance Benchmark. Technical report, arXiv:0806.4627v1 cs.DB, 2008.












        
      
         

         





      


 


           
          

         
           


 

        
            
          

       

            


           

         


 

         
        




          








           
          
           
            


 

       

         
          
 
         








 


           

    




              


 


         


 


 
         


 
   

         


 NoTube: Making Television More Personal

The NoTube project consortium1

Abstract. The NoTube European project looks at creating the future of TV, in which
the TV user will be placed back in the driver’s seat by having a personalized TV
experience with rich interaction possibilities. For this, new technologies like Linked
Data, Semantic Web and Social Web data analysis are applied to the TV domain.

The ultimate goal of the EU project NoTube is to develop an adaptive end-to-end

architecture, based on semantic technologies, for personalized creation, distribution
and consumption of TV content. The project takes a user-centric approach to
investigate fundamental aspects of consumers' content-customization needs,
interaction requirements and entertainment wishes, which will shape the future of the
"TV" in all its new forms. To achieve all that NoTube is working on the following
challenges:

 Integration of TV & Web with help of semantics: Currently there are many

practical software and hardware hurdles for users to handle such integration.
NoTube is using semantics (e.g. linked open data) to open and interlink TV
content in a Web fashion.

 Putting the user back in the driving seat: Personalized services are now
common, but the user data is still under the control of separate applications,
and the users are faced with multitude of distributed personal data, hidden in
tons of inaccessible cookies

 TV is not bound to one device: We currently witness multiple device usage
scenarios, e.g. use of computer as TV & vice versa and use of mobile device
as remote control. In this context, NoTube architecture aims to support
device independence.

The main challenges in the television domain are the scale of the content available
and the need for filtering and personalization of the content. These challenges are
explored from different content and user perspectives within three representative
scenarios for future television enabled by semantic technology:

1 http://www.notube.tv/project/partners

http://www.notube.tv/project/partners

Figure 1. RAI demonstrator for personalized news

 Personalised News [1]. This demonstrator (Figure 1), using archival content

from RAI, shows how news programs can be enriched with concepts
(people, places, themes) that allow easy browsing to additional information.
The screenshot shows (above) an alert, which allows the user to be informed
when a important news story enters in his home ambient.

Figure 2. Stoneroos demonstrator of a personalized TV guide.

 iFanzy2 Personalised TV Guide. The iFanzy demonstrator (Figure 2),

developed by Stoneroos, enables the user to build in a simple fashion a
profile which can be used to generate different types of recommendations for
personal EPG. This screen shot (above) shows iFanzy in action with Dutch
programs and Dutch EPG data.

2 http://www.ifanzy.nl

http://www.ifanzy.nl/

Figure 3. BBC demonstrator of TV programme recommendations

 TV and the Social Web [2] . This demonstrator (Figure 3), driven by BBC use
cases and content, shows how TV watching can be personalised using Social
Web data and facilitating a personalised TV experience without an intrusive
user profiling process. It illustrates how TV can be linked to your own or you
friend’s social-web data, such as bookmarks and Facebook profiles. The
screen shot shows a recommendation based on such data using a MythTV3
front end.

To enable this vision, sets of services are developed for users, metadata and TV

content, which are described semantically and mediated by a broker. Specific
applications are also developed to make use of those services to provide the desired
functionalities, e.g. user activity capture, content recommendation. This open TV and
Web infrastructure is illustrated in Figure 4. Major features in the NoTube service
architecture are:

 User, Metadata and Content oriented services: the complete content
selection, adaptation and delivery process from content provider to home
ambient is supported.

 Service brokering: Automated configuration of services based on explicit
semantic descriptions of the services, which are gathered in the repository.

 Multiple devices: Functionality of NoTube should not be limited to single
devices. The demonstrators run on a TV with a setup box, on computers and
on mobile devices, as well as one combinations of these (e.g. mobile device
as remote control showing recommendations).

3 http://www.mythtv.org/

http://www.mythtv.org/

Figure 4. NoTube high level architecture.

For more information about the future of television, please refer to the project

Website http://www.notube.tv and follow the project blog http://blog.notu.be

References

[1] "Personalised Semantic News: combining Semantics and Television", Robert
Borgotallo, Roberto del Pero, Alberto Messina, Fulvio Negro, Luca Vignaroli, Lora
Aroyo, Chris van Aart and Alex Conconi at the 1st International ICST Conference on
User­centric Media ­ UCMedia 2009. Dec 2009.
[2] "Linking TV And Web Using Semantics, A NoTube Application", Balthasar
Schopman, Davide Palmisano, Ronald Siebes, Chris van Aart, Véronique Malaise,
Michele Minno and Lora Aroyo. In 1st NoTube workshop on Future Television, in
the Adjunct Proc. EuroITV 2010. Jun 2010.

http://blog.notu.be/
http://www.notube.tv/

The Information Workbench
Interacting with the Web of Data

Peter Haase1, Andreas Eberhart1, Sebastian Godelet1, Tobias Mathäß1,
Thanh Tran2, Günter Ladwig2, Andreas Wagner2

1fluid Operations GmbH, Walldorf, Germany
{firstname.lastname}@fluidops.com

2Institute AIFB, University of Karlsruhe, Germany
{gla,dtr,awa}@aifb.uni-karlsruhe.de

Abstract. We present the Information Workbench, an application for
interacting with the Web of data. The Information Workbench man-
ages large amounts of structured and unstructured information, which
may be imported and integrated from existing sources, but also allows
end users to annotate, complete and update information in a collabora-
tive way. New paradigms for accessing information include hybrid search
across the structured and unstructured data, keyword search combined
with facetted search, as well as semantic query completion and interpre-
tation, which assists the user in expressing complex information needs
by an automated translation of keyword queries into hybrid queries. A
Living UI based on widgets for the interaction with the data enables a
homogeneous, seamless, continuous and personal experience.

1 Main Features

In recent years, we have observed a tremendous success of the paradigms of the
Web 2.0 in Web applications. The Web has developed from a platform in which
information is published by few providers to an interactive and collaborative
medium for producing, consuming and sharing information. As the most promi-
nent example, Wikipedia has grown to one of the central knowledge sources.

At the same time, the amount of structured data available on the (Semantic)
Web has been increasing rapidly. Currently, there are billions of triples pub-
lished and connected in web data sources of different domains. The benefits of
this linked data are obvious (at least to our community), but there are still
very few applications that actually make use of it. In particular, the potential
of applications complementing the Web of data with the characteristics of the
Web 2.0 has been largely unrealized: Existing applications are mainly limited to
generic linked data browsers, they typically assume that the data is published
by data providers – and thus read only – as apposed to user generated content.
In other words, the means for the interaction with the Web of data are still in
its 1.0 state.

The Information Workbench provides the means to fill this gap – as an in-
frastructure for building applications for the interaction with the Web of data,
combining Web 2.0 features such as collaboration with those of semantic tech-
nologies. The key features of the Information Workbench include:

– the ability to manage large amounts of structured and unstructured content,
which may be imported and integrated from existing sources, but also may be
generated by end users, who can annotate, complete and update the content,

– new paradigms for accessing information, including hybrid search across the
structured and unstructured data, keyword search combined with facetted
search, and semantic query completion and interpretation, automatically
translating keywords into hybrid queries corresponding to the user intent,

– a Living UI to enable a homogeneous, seamless and personal experience,
despite heterogeneous and dynamic data. Knowing what, when, and where to
show is realized through an automated and customizable selection of widgets,
which implement various paradigms for interacting with the data.

The technology of the Information Workbench is generic in the sense that it is
independent of particular domain or data set, or application. In fact, the strength
lies in the ease of building concrete applications. To demonstrate this, we have
setup an instance of the Information Workbench to interact with a Semantic
Wikipedia, publicly accessible at http://iwb.fluidops.com/. To bootstrap the
system, we have taken the English Wikipedia and enriched it with structured
data from the Open Linked Data Initiative, including the DBpedia data set.

While the data in the demonstrator spans many domains (in fact it covers a
large fraction of the world knowledge) and thus potential applications are just
as manifold, we further illustrate the benefits in a small application scenario.

2 An Application Scenario

Sebastian is a hobby astronomer, who is familiar with using computers, expe-
rienced in using Web 2.0 style wikis and forum software for managing pictures
and observation reports. Especially in the domain of astronomy, information is
abundant. For example, Wikipedia contains vast amounts of knowledge about
astronomy. Most of this knowledge is available in unstructured form, but increas-
ingly, structured data is published. As one example, DBpedia already contains
some structured knowledge about astronomic entities extracted from Wikipedia.
Using the Information Workbench, Sebastian is able to access and interact with
the data aggregated from the various available sources. The data is presented in
a resource-centric way, with a single page per resource. One such page may be
that of the solar system (c.f. Figure 1). For displaying the Information, the ap-
plication automatically selects appropriate widgets based on the data available.
For example, cosmic objects might be associated with coordinates. Based on
them, these objects are displayed using Google Sky. At the same time, Sebastian
would like to personalize the interface to his preferences: Sebastian may want to
have a Twitter feed included that displays live news about a particular resource,
while some other user may prefer to see videos associated with that resource.

An important means of interacting for Sebastian is the ability to enrich the
existing data, in the form of photographs, text, and also, more structured data.
In a simple case, he may want to annotate the unstructured information within
the Wikipedia. Simple annotations such as making the relationship between
two entities explicit (e.g. stating [[location::Solar System]] for a planet)

Fig. 1. Screenshot of the Demonstrator

lead to immediate benefits: Promptly, Sebastian will be able to perform an ad-
hoc structured query, e.g. asking for the mass and planets in the solar system
arranged in the order of the distance from the sun. The Information Workbench
will assist in formulating complex information needs by automatically translating
the query from keywords into structured queries and making suggestions for
completing and refining the query. Results are displayed using an appropriate
visualization, e.g. in the form a bar diagram type.

Figure 1 shows a screenshot the Information Workbench in our scenario.
The screen shows the page of the solar system, integrating information from
the original Wikipedia page, the DBpedia data set, various external sources and
the annotations added by Sebastian. The upper left widget shows a wiki-based
interface to the resource, the widget below shows the associated structured as
a graph. On the right side, we see external content in the form of video from
YouTube and a Twitter news feed. The upper right widget shows the results of a
structured query associated with the page, displaying the density of the planets
in the solar system.

For more details on the search concepts implemented by the Information
Workbench, we refer the reader to [1].

References

1. Thanh Tran, Peter Haase, and Rudi Studer. Semantic search - using graph-
structured semantic models for supporting the search process. In ICCS, pages 48–65,
2009.

