
Access Control for RDF: Experimental Results

Giorgos Flouris1, Irini Fundulaki1, Maria Michou1, and Grigoris Antoniou1,2

1 Institute of Computer Science, FORTH, Greece
2 Computer Science Department, University of Crete, Greece

{fgeo, fundul, michou, antoniou}@ics.forth.gr

Abstract. One of the current barriers towards realizing the huge poten-
tial of Future Internet is the protection of sensitive information, i.e., the
ability to selectively expose (or hide) information to (from) users depend-
ing on their access privileges. In this work we discuss the experiments
conducted with our repository independent, portable across platforms
system that supports fine-grained enforcement of RDF access control.

1 Introduction

The potential of RDF as a data representation standard for the Future Internet
is undermined by the lack of an effective mechanism for controlling access to
RDF data. In light of the potentially sensitive nature of RDF information, the
issue of securing RDF content and ensuring the selective exposure of information
to different classes of users depending on their access privileges is an important
issue. The building blocks of an access control system are the specification lan-
guage, that allows the expression of access control permissions and policies, and
the enforcement mechanism, responsible for applying the latter to the data, by
denying access to data that the policy has deemed as non-accessible.

In this work, we enforce access control by proposing a solution which is
repository independent, portable across platforms, and in which fine-grained
access control (protection at the level of RDF triple) is enforced by a component
built on top of the RDF repository. In this poster we report on experiments
performed with our system; the full description and formal semantics of our
language, as well as more details on the approach can be found in [6].

2 RDF Access Control Framework

We concentrate on fine-grained RDF access control for read-only queries. An
access control permission is used to explicitly grant or deny to/from a given
user the ability to access an RDF triple, or a set of RDF triples, and can be
viewed as a query whose evaluation over an RDF graph results in a set of triples
which are accordingly granted or denied access. Access control permissions are
expressed using SPARQL [7] triple patterns and value constraints, and are of the
form: R = include/exclude (x, p, y) where T P, C with (x, p, y) a triple pattern,
T P a conjunction of triple patterns and C a conjunction of value constraints on
the variables appearing in the triple patterns. Explicit access rights are not set
for all triples in an RDF graph, and permissions are not always unambiguous
(i.e., a triple could be marked as both accessible and inaccessible). To determine
whether such triples should be accessible, we use the notion of access control
policy, which includes a set of positive and a set of negative permissions, as well



as two boolean flags (default semantics and conflict resolution – ds, cs resp.),
which determine whether triples with missing (resp. ambiguous) permissions are
accessible or not. A full description of the formal semantics of access control
permissions and policies can be found in [6].

3 Implementation and Experiments

Architecture: We implemented a main memory platform which serves as an
additional access control layer on top of an arbitrary RDF repository. Our goal
was for our system to be portable across platforms, so it was designed in a
repository-independent way. The system’s architecture is shown in Fig. 1. It is
comprised of the following modules, all implemented in Java: the RDF Dataset
Loader, responsible for loading the complete RDF dataset in the underlying
repositories, the RDF Access Control Policy Manager that loads in memory the
access control policies and the RDF Access Control Enforcement Module, which
translates the access control policies into the appropriate programs that compute
the accessible triples of an RDF dataset and annotates accordingly the data in
the repositories with accessibility information.

Jena
A Semantic Web Framework

for Java

RDF Dataset Loader

RDF Access Control 
Policy Manager

RDF Access Control 
Enforcement Module

RDF triples RDF triples
relational

representation 
of RDF triples

RDF access control
policies

policy

SPARQL Query

Serql Query
SPARQL Update SQL query

RDF 
dataset

Fig. 1. System Architecture

To enforce an access con-
trol policy we produce a
query which implements the
semantics of the policy and
is expressed in the language
supported by the underlying
repository. The triples in the
result of the evaluation of this
query on the RDF graph are
exactly the accessible triples
which are then annotated as
such. Conceptually, annota-
tions can be represented by
adding a fourth column to an
RDF triple (hence obtaining a
quadruple), denoting whether
the triple is accessible or not;
if several different user roles

need to be supported, one column per role should be added. Annotations can
be stored using the named graphs mechanism of RDF repositories [5], or, in the
case of a relational backend, by extending the triple table that stores the RDF
triples with a fourth column.
Experiments: Our experiments measured the time required to annotate the
set of RDF triples, using the above methodology, in state-of-the-art RDF repos-
itories (Sesame [3], Jena [1]) or relational backends (Postgres [2]). We used the
SP2Bench [8] data generator to obtain the input RDF graphs. We implemented
our approach on top of Jena v2.6.2, Sesame v2.3.1 and Postgresql v8.4. For
Jena we tested the SparqlJenaModule and SparqlJenaSDBModule (processing
SPARQL queries) as well as the SPARULModule (processing SPARQL Update



queries) modules. SparqlJenaModule and SPARULModule load the datasets
into main memory whereas the SparqlJenaSDBModule stores the datasets to
a Postgresql database. For Sesame we used the SeRQLModule, which processes
SPARQL [7] and SeRQL [4] queries in memory.

0

2

4

6

8

10

12

14

0,5 1 1,5 2 2,5 3 3,5 4

Ti
m
e!
(s
ec
)

Document!size!(MB)

SeRQL

SparqlJena

SparUL

SparqlJenaSDB

!

(a) gp = 2,ps = 80

0
2
4
6
8
10
12
14
16
18
20

10 20 40 80 100

Ti
m
e!
(s
ec
)

Policies

SeRQL

SparqlJena

SparUL

SparqlJenaSDB

!

(b) gp = 2,doc = 4MB

0

10

20

30

40

50

60

70

80

2 5 10

Ti
m

e 
(s

ec
)

Graph Patterns complexity

SeRQL

SparqlJena

SparUL

SparqlJenaSDB

(c) ps = 80, doc = 4MB

Fig. 2. Experiments

We measured the time required for the annotation as a function of four
different parameters: (i) document size (doc), i.e., the size of the input RDF
graph (size ranging between 500KB-4MB with a 500KB increase); (ii) policy size
(ps), i.e., the number of permissions in the access control policy (for sizes of 10,
20, 40, 80 and 100, with an equal share of positive/negative permissions in each
case); (iii) permission size (gp), i.e., the number of triple patterns and constraints
in the where clause of each access control permission (values considered: 2, 5,
10); and (iv) policy parameters, i.e., the values of the ds, cr parameters of the
input policy (all 4 combinations considered).
Evaluation: Fig. 2 shows a subset of the results of our experiments: we run each
experiment 5 times, and took the average time. In each graph, the annotation
time is presented as a function of one of the parameters (i)-(iv), for fixed values
for the other parameters. We report here on policies with “deny” as default
semantics (ds) and conflict resolution policy (cr) because it is the most common
one. The results show that our approach scales along the considered parameters.
All the platforms that we ran our experiments on demonstrated a linear behavior
as document, policy sizes and permission complexity increased (except the Jena
SPARUL and SPARQL Modules).

References

1. Jena A Semantic Web Framework for Java. http://jena.sourceforge.net/.
2. PostgreSQL. http://www.postgresql.org/.
3. Sesame: RDF Schema Querying and Storage. http://www.openrdf.org/.
4. J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query Lan-

guage. In Workshop on Semantic Web Storage and Retrieval, 2003.
5. J. J. Carroll, C. Bizer, P. J. Hayes, and P. Stickler. Named Graphs. JWS, 3(4),

2005.
6. G. Flouris, I. Fundulaki, M. Michou, and G. Antoniou. Controlling Access to RDF

Graphs. In FIS, 2010.
7. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. www.w3.

org/TR/rdf-sparql-query, January 2008.
8. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Per-

formance Benchmark. Technical report, arXiv:0806.4627v1 cs.DB, 2008.


