

1st Doctoral Symposium
of the

International Conference on Software Language
Engineering (SLE)

Collected research abstracts

Eric Van Wyk and Steffen Zschaler (eds.)
October 11, 2010, Eindhoven, The Netherlands

Table of Contents

Preface . 3

Practical Ambiguity Detection for Context-Free Grammars 5
Bas Basten

Generating Semantic Editors using Reference Attribute Grammars 9
Emma Söderberg

Zipper-based Embedding of Modern Attribute Grammar Extensions 15
Pedro Martins

Automata Based Method for Domain-specific Languages Definition 21
Ulyana Tikhonova

Test Case Generation for Programming Language Metamodels 27
Hao Wu

Lenses for View Synchronization in Metamodel-Based Multi-View
Modeling . 31

Arif Wider

Analyzing Dynamic Models using a Data-flow based Approach 37
Christian Saad

Using SLE for creation of Data Warehouses . 43
Yvette Teiken

Domain-Specific Languages for Digital Forensics . 49
Jeroen van den Bos

Towards Better Support for Pattern-Oriented Software Development 55
Dietrich Travkin

Using Product Lines to Manage Variability in Mobile Context-Aware
Applications . 61

Dean Kramer

Towards Policy-Aware Web-Based Systems . 67
Ekaterina Pek

User-centric Programming Language . 73
Wiktor Nowakowski

1

Preface

The first Doctoral Symposium to be organised by the series of International Con-
ferences on Software Language Engineering (SLE) will be held on October 11, 2010
in Eindhoven, as part of the 3rd instance of SLE. This conference series aims to inte-
grate the different sub-communities of the software-language engineering community
to foster cross-fertilisation and strengthen research overall. The Doctoral Symposium
at SLE 2010 aims to contribute towards these goals by providing a forum for both early
and late-stage Ph.D. students to present their research and get detailed feedback and
advice from researchers both in and out of their particular research area. Consequently,
the main objectives of this event are:

– to give Ph.D. students an opportunity to write about and present their research;
– to provide Ph.D. students with constructive feedback from their peers and from

established researchers in their own and in different SLE sub-communities;
– to build bridges for potential research collaboration; and
– to foster integrated thinking about SLE challenges across sub-communities.

All Ph.D. students participating in the Doctoral Symposium submitted an extended
abstract describing their doctoral research. Based on a good set of submisssions we
were able to accept 13 submissions for participation in the Doctoral Symposium. These
proceedings present final revised versions of these accepted research abstracts. We are
particularly happy to note that submissions to the Doctoral Symposium covered a wide
range of SLE topics drawn from all SLE sub-communities.

In selecting submissions for the Doctoral Symposium, we were supported by the
members of the Doctoral-Symposium Selection Committee (SC), representing senior
researchers from all areas of the SLE community. We would like to thank them for their
substantial effort, without which this Doctoral Symposium would not have been pos-
sible. Throughout, they have provided reviews that go beyond the normal format of a
review being extra careful in pointing out potential areas of improvement of the research
or its presentation. Hopefully, these reviews themselves will already contribute substan-
tially towards the goals of the symposium and help students improve and advance their
work. Furthermore, all submitting students were also asked to provide two reviews for
other submissions. The members of the SC went out of their way to comment on the
quality of these reviews helping students improve their reviewing skills.

We would also like to thank Mark van den Brand, the SLE General Chair, for ask-
ing us to organise this event and for providing invaluable assistance in doing so. Thanks
are also due to the SLE Organizing Committee—Alex Anthony Cleve, Nicholas Kraft,
Arjan van der Meer, and Alexander Serebrenik—for their help in publicising and or-
ganising this event. Finally, we would like to thank the Software Improvement Group
for sponsoring a Best Paper award and the 250 Euro prize.

We are looking forward to a stimulating and enriching first Doctoral Symposium!

Eric Van Wyk and Steffen Zschaler
SLE Doctoral Symposium Co-chairs

Minneapolis and Lancaster, September, 2010

3

Doctoral Symposium Organisation

Doctoral Symposium Co-Chairs

Eric Van Wyk, Steffen Zschaler

Selection Committee

Colin Atkinson, Abraham Bernstein, Jordi Cabot, Tony Clark, Charles Consel,
James Cordy, Dragan Gašević, Jeff Gray, Görel Hedin, Adrian Johnstone, Paul
Klint, Dimitris Kolovos, Ivan Kurtev, Julia Lawall, Ralf Lämmel, Brian Malloy,
Richard Paige, João Saraiva, Steffen Staab, Jurgen Vinju, Jos Warmer, Jon
Whittle, Mark van den Brand

4

Practical Ambiguity Detection
for Context-Free Grammars

Research Abstract

H. J. S. Basten

Centrum Wiskunde & Informatica

Abstract. The use of unconstrained context-free grammars for general-
ized parsing techniques has several advantages over traditional grammar
classes, but comes with the danger of undiscovered ambiguities. The am-
biguity problem for these grammars is undecidable in the general case,
but this does not have to be a problem in practice. Our goal is to find
ambiguity detection techniques that have sufficient precision and perfor-
mance to make them suitable for practical use on realistic grammars.
We give a short overview of related work, and propose new directions for
improvement.

1 Problem Description and Motivation

Generalized parsing techniques allow the use of the entire class of context-free
grammars (CFGs) for the specification of the syntax of programming languages.
This has several advantages. First, it allows for modular syntax definitions, which
simplifies grammar development and enables reuse. Second, it grants total free-
dom in structuring a grammar to best fit its intended use. Grammars do not
have to be squeezed into LL, LALR or LR(k) form for instance.

Unfortunately, using unconstrained context-free grammars comes with the
danger of ambiguities. A grammar is ambiguous if one or more sentences in its
language have multiple parse trees. The semantics of a sentence is usually based
upon the structure of its parse tree, so an ambiguous sentence can have multiple
meanings. This often indicates a grammar bug which should be avoided. How-
ever, in some cases a grammar is intended to contain some degree of ambiguity.
For instance in reverse engineering, where certain legacy languages can only be
disambiguated with type checking after parsing. In both cases it is important
to know the sources of ambiguity in the developed grammar, so they can be
resolved or verified.

Unfortunately, detecting the (un)ambiguity of a grammar is undecidable in
the general case [7, 10, 9]. However, this does not necessarily have to be a problem
in practice. Several Ambiguity Detection Methods (ADMs) exist that approach
the problem from different angles, all with their own strengths and weaknesses.
Because of the undecidability of the problem there is a general tradeoff between
precision and performance/termination. The challenge for all ADMs is to give the
most precise and understandable answer in the time available. The current state

5

of the art is not yet sufficiently advanced to be practical on realistic grammars,
especially the larger ones.

2 Brief Overview of Related Work

Existing ADMs can roughly be divided into two categories: exhaustive methods
and approximative ones. Methods in the first category exhaustively search the
language of a grammar for ambiguous sentences. This so called sentence genera-
tion is applied by [11, 8, 13, 1]. These methods are 100% accurate, but a problem
is that they never terminate if the grammar’s language is of infinite size, which
usually is the case. They do produce the most precise and useful ambiguity
reports, namely ambiguous sentences and their parse trees.

Approximative methods sacrifice accuracy to be able to always finish in finite
time. They search an approximation of the grammar for possible ambiguity. The
methods described in [12, 6] both apply conservative approximation to never
miss ambiguities. The downside of this is that when they do find ambiguities, it
is hard to verify whether or not these are false positives.

In [2] we compared the practical usability of several ADMs on a set of gram-
mars for real world programming languages. It turned out that the exhaustive
sentence generator AMBER [13] was the most practical due to its exact reports
and reasonable performance. However, it was still unsatisfactory to find realistic
ambiguities in longer sentences. The approximative Noncanonical Unambiguity
test [12] had a reasonably high accuracy, but it is only able to assess the ambi-
guity of a grammar as a whole. Its reports might point out sources of individual
ambiguities, but these can be hard to understand.

3 Proposed Solution

The aim of this research is to increase the precision and performance of am-
biguity detection to a practical level. More specifically, the idea is to increase
the performance of exhaustive searching by reducing the search space using ap-
proximative techniques. For instance by identifying harmless production rules
in a grammar. These are rules that are certainly not used in the derivation of
any ambiguous string. Since these rules do not contribute to the ambiguity of
the grammar they can be removed before exhaustive searching is applied, which
reduces the number of sentences to generate.

In [3] we describe a first exploration in this direction. We propose an extension
to the approximative Noncanonical Unambiguity test that enables it to identify
harmless production rules. We implemented this filtering technique into a tool [4],
which we applied on a series of real world programming language grammars
in [5]. It is shown that the performance of the sentence generators AMBER and
CfgAnalyzer is indeed improved by several orders of magnitude, with only a
small filtering overhead.

Further research will be focussed on finding more detailed detection tech-
niques that can identify harmless rules with more precision, as well as faster

6

sentence generation methods. For instance by exploring opportunities for par-
alellisation. Furthermore, we like to extend existing techniques to include com-
monly used disambiguation constructs, like priorities and associativities, longest
match, keyword reservation, etc.

4 Research Method

New techniques will be validated both theoretically and experimentally. Through
formal specification they will be proved correct. Then, to test a technique’s
suitability for practical use, a prototype implementation will be tested on a
series of realistic benchmark grammars. For instance grammars for real world
programming languages, that will be seeded with ambiguities if needed.

5 Conclusion

This abstract proposes research into ambiguity detection for context-free gram-
mars, to make it suitable for practical use. More specifically, it aims at combin-
ing approximative searching with exhaustive searching, to be able to find real
ambiguous sentences in shorter time. First explorations in this direction show
promising results.

References

1. Axelsson, R., Heljanko, K., Lange, M.: Analyzing context-free grammars using an
incremental SAT solver. In: Proceedings of the 35th International Colloquium on
Automata, Languages, and Programming (ICALP 2008). LNCS, vol. 5126 (2008)

2. Basten, H.J.S.: The usability of ambiguity detection methods for context-free gram-
mars. In: Johnstone, A., Vinju, J. (eds.) Proceedings of the Eigth Workshop on
Language Descriptions, Tools and Applications (LDTA 2008). ENTCS, vol. 238
(2009)

3. Basten, H.J.S.: Tracking down the origins of ambiguity in context-free grammars.
In: Proceedings of the Seventh International Colloquium on Theoretical Aspects of
Computing (ICTAC 2010). Springer (2010), To appear, see www.cwi.nl/~basten

for a preliminary version.
4. Basten, H.J.S., van der Storm, T.: AmbiDexter: Practical ambiguity detection, tool

demonstration. In: Proceedings of the Tenth IEEE International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM 2010). IEEE (2010), To
appear, see www.cwi.nl/~basten for a preliminary version.

5. Basten, H.J.S., Vinju, J.J.: Faster ambiguity detection by grammar filtering. In:
Proceedings of the Tenth Workshop on Language Descriptions, Tools and Appli-
cations (LDTA 2010). ACM (2010), To appear, see www.cwi.nl/~basten for a
preliminary version.

6. Brabrand, C., Giegerich, R., Møller, A.: Analyzing ambiguity of context-free gram-
mars. Science of Computer Programming 75(3), 176–191 (2010)

7. Cantor, D.G.: On the ambiguity problem of Backus systems. Journal of the ACM
9(4), 477–479 (1962)

7

8. Cheung, B.S.N., Uzgalis, R.C.: Ambiguity in context-free grammars. In: Proceed-
ings of the 1995 ACM Symposium on Applied Computing (SAC 1995). pp. 272–276.
ACM Press, New York, NY, USA (1995), http://doi.acm.org/10.1145/315891.
315991

9. Chomsky, N., Schützenberger, M.: The algebraic theory of context-free languages.
In: Braffort, P. (ed.) Computer Programming and Formal Systems, pp. 118–161.
North-Holland, Amsterdam (1963)

10. Floyd, R.W.: On ambiguity in phrase structure languages. Communications of the
ACM 5(10), 526–534 (1962)

11. Gorn, S.: Detection of generative ambiguities in context-free mechanical languages.
J. ACM 10(2), 196–208 (1963), http://doi.acm.org/10.1145/321160.321168

12. Schmitz, S.: Conservative ambiguity detection in context-free grammars. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP’07: 34th International
Colloquium on Automata, Languages and Programming. LNCS, vol. 4596 (2007)

13. Schröer, F.W.: AMBER, an ambiguity checker for context-free grammars. Tech.
rep., compilertools.net (2001), see http://accent.compilertools.net/Amber.

html

8

Generating Semantic Editors
using Reference Attribute Grammars

Emma Söderberg

Department of Computer Science, Lund University, Lund, Sweden
emma.soderberg@cs.lth.se

Abstract. In this short research plan we address the problem of generating mod-
ern semantic editors from formal specifications. We aim to tackle this problem
using reference attribute grammars.

1 Problem Description and Motivation

There are a lot of programming languages around and the number keeps increasing.
Most of these languages have small communities with limited resources. As a conse-
quence, a lot of development in these languages is performed in simple text editors,
in lack of better semantic tool support. At the same time, users of languages like Java
with larger communities can choose from a set of high-quality semantic editors, like the
Eclipse JDT, IntelliJ IDEA or NetBeans, with modern semantic services like context-
sensitive name completion and refactorings [18].

Preferably, it should be simple and fast to develop semantic tools with modern ser-
vices like these for languages with smaller communities or less resources. However,
these tools are hand-crafted and developed over several years. One appealing approach
to reduce the development time of semantic tools is to generate them from a formal
specification [17]. This approach has several benefits in that it lets developers describe
behavior on a higher conceptual level. Also, the specification is typically smaller than
its manually implemented counterpart, which makes it easier to overview and easier to
change. Another benefit is the possibility to check the specification for semantic errors,
an activity which would require more cumbersome testing in a hand-coded implemen-
tation.

We can summarize the above need for semantic editors and the benefits of gener-
ation into a problem of generating modern semantic editors from a formal semantic
description. This problem includes technical difficulties such as coping with growing
languages [41] and extensibility, responsiveness and performance of a generated editor,
and flexible descriptions of the views and services of an editor. The rest of this docu-
ment aims to give a coarse overview of a plan for research addressing this problem.

2 Brief Overview of Related Work

There exists several formal means for specifying semantics. For example, attribute
grammars (AGs) by Knuth [26], denotational semantics by Scott and Strachey [39,

9

42], natural semantics by Kahn [21], and algebraic semantics by Bergstra et al. [4]. We
will focus on reference attribute grammars (RAGs) by Hedin [16], an extended form of
AGs. A benefit of RAGs is their ability to explicitly express super-imposed graphs on
top of an abstract syntax tree (AST). Super-imposed graphs like these can be used to de-
scribe for example inheritance and cross-references. RAGs have been shown useful for
describing the semantics of complex languages like Java [13] and Modelica [2]. Some
examples of systems supporting RAGs are JastAdd by Ekman et al. [19, 14], Silver by
van Wyk et al. [44], Kiama by Sloane et al. [40], and Aster by Kats et al.[24].

Examples of earlier systems generating semantic editors from formal specifica-
tions include the PSG system by Bahlke et al. [3] using denotational semantics, the
CENTAUR system by Borras et al. [6] using natural semantics, the ASF+SDF meta-
environment [25] using algebraic semantics, the Synthesizer Generator by Reps et al.
[35] using ordered attribute grammars (OAGs) by Kastens [22], and the Lrc system by
Kuipers et al [28] using higher-order attribute grammars by Vogt et al. [46]. OAGs is a
powerful subset of AGs enabling a static evaluation order.

One important property of a semantic editor is incremental updating of the seman-
tic model. Both the Synthesizer Generator and the Lrc system support incremental up-
dating. The statically known evaluation order of OAGs, supported by these systems,
provide sufficient information for incremental updating of attribute values. RAGs have
also been used in the context of editors, in the APPLAB system by Bjarnason et al. [5],
but not in conjunction with incremental updating. In general, RAGs require dynamic
evaluation and incremental updating of RAGs is an open problem.

In recent years, a number of tool generating systems have emerged which extend the
Eclipse Platform. One example is the Eclipse Modeling Framework (EMF) by Budinsky
et al. [8] which provides means for expressing structured data models (graphs). EMF
can generate a basic graphical editor for these models and supports updating of a model
via manual registration of model observers.

Another example is the IDE Meta-tooling Platform (IMP) by Charles et al. [10]
which has a semi-automatic approach to the development of textual semantic editors.
IMP semi-generates text editors using wizards and generation of code skeletons. De-
velopers manually fill in language-specific behavior in these code skeletons. Parsing
is supported by the LPG parser generator, but this is optional as shown in, for exam-
ple, the Spoofax/IMP system by Kats et al. [23] which extends IMP using a different
parsing technology. Spoofax provides a language workbench which uses strategic term
rewriting [45] to express language semantics.

The EMF project also supports generation of textual editors via the xText project
by Efftinger et al. [12]. In contrast to IMP, xText generates a more complete text ed-
itor based on a custom grammar format, using an EMF-based model and an ANTLR
parser. xText uses a combination of the Object Constraint Language (OCL) [43] and
dependency injection to implement semantics.

These frameworks could possibly be used as the target platform for a generated ed-
itor based on RAGs. A combination of EMF and JastAdd models have been explored
by Bürger et al. in JastEMF [9]. Another example of a system supporting generation of
textual editors is the MontiCore system by Krahn et al. [27]. MontiCore uses a com-

10

bined grammar format for concrete and abstract syntax supporting modular language
extensions. This grammar format uses UML-like associations to describe semantics.

3 Proposed Solution

In order to address the problem posed in Section 1 we need a formal yet flexible way
to describe the semantics of a language, including the abstract syntax. The semantic
descriptions need to be modular in order to accommodate the need for extensibility.
The semantic formalism also needs to be expressive to such a degree that the seman-
tic information needed by the editing services can be computed. Beyond the need for
pure semantic descriptions, we need a framework surrounding the underlying semantic
model of a program and a means to describe services and views. These descriptions of
services and views should seamlessly connect to the semantic descriptions.

We have chosen to use RAGs for semantic descriptions and we aim to construct a
tool JedGen – JastAdd-based semantic editor generator supporting the remaining parts.
These remaining parts include the framework surrounding a generated editor, means for
describing services and views, and the actual generation of editors. We aim to support
all languages that would benefit from static semantic analysis during development. To
meet the demands on semantic development tools of today we have devised a list of
three areas which a generated editor should support to be on par with hand-crafted
modern semantic editors:

– Incremental update This is a highly desirable part of an interactive tool which af-
fects performance and hence responsiveness. Incremental updating of RAG-based
models is an open problem which we plan to address. A solution can possibly be
based on work by Reps [34], by Jones [20], by Hedin [15], by Boyland [7], and by
Acar et al. [1]. A solution to incremental updating of RAGs would be a contribution
of this thesis.

– Multiple views Different development tasks benefit from different views of source
code artifacts. Here, we include all views, editable or non-editable. This includes
textual editors. Multiple views require a general architecture with support for syn-
chronization and updating in a multi-threaded environment. Also, a generator needs
to support a general way to specify the content and visualization of these views.
Some work has been done on visualizing programs using RAGs [29] which we
plan to extend along with a surrounding framework.

– Modern semantic services Inspection and modification of source code artifacts, re-
quiring context-sensitive static semantic information. Some examples of services
are code smell detection, context-sensitive metrics [11], cross-referencing, renam-
ing and name completion. Promising work by Schäfer et al. [37, 38, 36] show that
RAGs can be used to support sophisticated services like refactorings, and work
by Nilsson-Nyman et al. [33] show how RAGs can be used to find dead code.
The potential contributions of this work are further explorations of descriptions
of semantic service information and service descriptions seamlessly connecting to
RAG-based semantic descriptions.

11

4 Research Method

Our research method is constructive and experimental. We base our research on the
hypothesis that "RAGs can be used to generate modern semantic editors", which we aim
to demonstrate using a prototype. The development of a RAG-based generator prototype
makes our research constructive.

The plan for the development of JedGen includes two phases – a prototype frame-
work and a prototype generator. The purpose of the first phase is to build the general
framework needed around a generated editor. This work can be separated into three sub-
parts – the development of incremental updating of RAG-based ASTs, the development
of mechanisms for access and updating of the ASTs in a general way and specification
of views and services.

During the first phase the goal is to stepwise develop non-generated editor exten-
sions to existing RAG-based compilers as a means for evaluation of the framework.
Currently, we are working with editor extensions for Java and Modelica. We aim to
evaluate these prototypes experimentally with regard to behavior (e.g., with regard to
correctness), coverage (e.g., the range of errors that a generated editor can locate), effi-
ciency (e.g., the performance of semantic analysis), and effort (e.g., line of code of an
editor specification) The purpose of the second phase is to develop a prototype generator
based on experiences gained in the previous phase. This includes a general description
format for definition of editors based on an abstract syntax.

The JedGen tool is still in its first phase, but an alpha version of the tool supporting
a semantic editing model has been used by Schäfer et al. in their exploration of refac-
torings [37, 38]. JedGen has also been used by several undergraduate students, as a part
of their thesis work [31, 30, 32], and in a graduate course on RAGs.

5 Acknowledgements

A big thanks to all anonymous reviewers for valuable comments on an early version of
this abstract.

References

1. Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming. ACM
Trans. Program. Lang. Syst., 28(6):990–1034, 2006.

2. Johan Åkesson, Torbjörn Ekman, and Görel Hedin. Development of a Modelica compiler
using JastAdd. Science of Computer Programming, 75:21–38, January 2010.

3. Rolf Bahlke and Gregor Snelting. The PSG system: from formal language definitions to
interactive programming environments. ACM Transactions on Programming Langanguages
and Systems (TOPLAS), 8(4):547–576, 1986.

4. Jan A. Bergstra. Algebraic specification. ACM, New York, NY, USA, 1989.
5. Elizabeth Bjarnason, Görel Hedin, and Klas Nilsson. Interactive language development for

embedded systems. Nordic Journal of Computing, 6(1):36–54, 1999.
6. Patrick Borras, Dominique Clément, Th. Despeyroux, Janet Incerpi, Gilles Kahn, Bernard

Lang, and V. Pascual. CENTAUR: The system. In Software Development Environments
(SDE), pages 14–24, 1988.

12

7. John Tang Boyland. Incremental evaluators for remote attribute grammars. In Proceedings
of the Second Workshop on Language Descriptions, Tools and Applications (LDTA 2002),
volume 65 of Electronic Notes in Theoretical Computer Science, pages 9–29. Elsevier B.V.,
July 2002.

8. Frank Budinsky, Stephen A. Brodsky, and Ed Merks. Eclipse Modeling Framework. Pearson
Education, 2003.

9. Christoff Bürger and Sven Karol. JastEMF, 2010. http://code.google.com/p/jastemf [Access
September 2010].

10. Philippe Charles, Robert M. Fuhrer, Stanley M. Sutton, Jr., Evelyn Duesterwald, and Jurgen
Vinju. Accelerating the creation of customized, language-specific ides in eclipse. SIGPLAN
Notices, 44(10):191–206, 2009.

11. Shyam R. Chidamber and Chris F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994.

12. Sven Efftinge and Markus Völter. oAW xText: a framework for textual DSLs. In Eclipse
Summit Europe, Eclipse Modeling Symposium, Esslingen, Germany, October 2006.

13. Torbjörn Ekman and Görel Hedin. The JastAdd extensible Java compiler. In OOPSLA ’07:
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented program-
ming systems and applications, pages 1–18, New York, NY, USA, 2007. ACM.

14. Torbjörn Ekman and Görel Hedin. The JastAdd system – modular extensible compiler con-
struction. Science of Computer Programming, 69(1–3):14–26, December 2007.

15. Görel Hedin. Incremental semantic analysis. PhD thesis, 1992.
16. Görel Hedin. An overview of door attribute grammars. In Peter Fritzson, editor, CC, volume

786 of Lecture Notes in Computer Science, pages 31–51. Springer, 1994.
17. Jan Heering and Paul Klint. Semantics of programming languages: a tool-oriented approach.

SIGPLAN Notices, 35(3):39–48, 2000.
18. Daqing Hou and Yuejiao Wang. An empirical analysis of the evolution of user-visible fea-

tures in an integrated development environment. In CASCON ’09: Proceedings of the 2009
Conference of the Center for Advanced Studies on Collaborative Research, pages 122–135,
New York, NY, USA, 2009. ACM.

19. The JastAdd Team. jastadd.org. http://jastadd.org/ [Access May 2010.
20. Larry G. Jones. Efficient evaluation of circular attribute grammars. ACM Trans. Program.

Lang. Syst., 12(3):429–462, 1990.
21. Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin

Wirsing, editors, STACS, volume 247 of Lecture Notes in Computer Science, pages 22–39.
Springer, 1987.

22. Uwe Kastens. Ordered attributed grammars. Acta Informatica, 13(3):229–256, March 1980.
23. Lennart C. L. Kats, Karl T. Kalleberg, and Eelco Visser. Domain specific languages for

composable editor plugins. In Torbjörn Ekman and Jurgen Vinju, editors, Proceedings of
the Ninth Workshop on Language Descriptions, Tools, and Applications (LDTA 2009), Elec-
tronic Notes in Theoretical Computer Science. Elsevier B. V., 2009.

24. Lennart C. L. Kats, Anthony M. Sloane, and Eelco Visser. Decorated attribute gram-
mars: Attribute evaluation meets strategic programming. In Oege de Moor and Michael I.
Schwartzbach, editors, CC, volume 5501 of Lecture Notes in Computer Science, pages 142–
157. Springer, 2009.

25. Paul Klint. A meta-environment for generating programming environments. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 2(2):176–201, April 1993.

26. Donald E. Knuth. Semantics of context-free languages. Journal Theory of Computing Sys-
tems, 2(2):127–145, June 1968.

27. Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: Modular development
of textual domain specific languages. In Richard F. Paige and Bertrand Meyer, editors,

13

TOOLS (46), volume 11 of Lecture Notes in Business Information Processing, pages 297–
315. Springer, 2008.

28. Matthijs F. Kuiper and João Saraiva. Lrc - a generator for incremental language-oriented
tools. In Kai Koskimies, editor, CC, volume 1383 of Lecture Notes in Computer Science,
pages 298–301. Springer, 1998.

29. Eva Magnusson and Görel Hedin. Program Visualization using Reference Attributed Gram-
mars. volume 7, pages 67–86. Publishing Association Nordic Journal of Computing, 2000.

30. Jesper Mattsson. The JModelica IDE: Developing an IDE reusing a JastAdd compiler. Mas-
ter’s thesis, Lund University, Lund, Sweden, August 2009.

31. Erik Mossberg. Inspector – tool for interactive language development. Master’s thesis, Lund
University, Lund, Sweden, October 2009.

32. Philip Nilsson. Semantic editing compiler extensions using JastAdd. Master’s thesis, Lund
University, Lund, Sweden, June 2010. To be presented.

33. Emma Nilsson-Nyman, Torbjörn Ekman, Görel Hedin, and Eva Magnusson. Declarative
intraprocedural flow analysis of Java source code. In Proceedings of the Eight Workshop on
Language Description, Tools and Applications (LDTA 2008), Electronic Notes in Theoretical
Computer Science. Elsevier B.V., 2008.

34. Thomas Reps. Generating Language-Based Environments. PhD thesis, 1984.
35. Thomas Reps and Tim Teitelbaum. The Synthesizer Generator. In Peter B. Henderson, editor,

Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments, volume 19(5) of SIGSOFT Software Engineering
Notes, pages 42–48, Pittsburgh, Pennsylvania, USA, May 1984. ACM.

36. Max Schäfer, Julian Dolby, Manu Sridharan, Emina Torlak, and Frank Tip. Correct Refac-
toring of Concurrent Java Code. In Theo D’Hondt, editor, 24th European Conference on
Object-Oriented Programming (ECOOP ’10), 2010.

37. Max Schäfer, Torbjörn Ekman, and Oege de Moor. Sound and extensible renaming for Java.
In Gail E. Harris, editor, OOPSLA, pages 277–294. ACM, 2008.

38. Max Schäfer, Mathieu Verbaere, Torbjörn Ekman, and Oege de Moor. Stepping stones over
the refactoring rubicon. In Sophia Drossopoulou, editor, ECOOP, volume 5653 of Lecture
Notes in Computer Science, pages 369–393. Springer, 2009.

39. Dana Scott. Mathematical concepts in programming language semantics. In AFIPS ’72
(Spring): Proceedings of the May 16-18, 1972, spring joint computer conference, pages 225–
234, New York, NY, USA, 1972. ACM.

40. Anthony M. Sloane, Lennart C. L. Kats, and Eelco Visser. A pure object-oriented embedding
of attribute grammars. In T. Ekman and J. Vinju, editors, Proceedings of the Ninth Work-
shop on Language Descriptions, Tools, and Applications (LDTA 2009), Electronic Notes in
Theoretical Computer Science. Elsevier B. V., 2009.

41. Guy L. Steele Jr. Growing a language. Higher-Order and Symbolic Computation, 12(3):221–
236, October 1999.

42. Christopher Strachey. Towards a formal semantics. pages 198–216, 1966.
43. The Object Management Group (OMG). The Object Constraints Language (OCL), 2010.

http://www.omg.org/technology/documents/formal/ocl.htm [Accessed May 2010].
44. Eric van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an extensible attribute

grammar system. In Proceedings of the Seventh Workshop on Language Descriptions, Tools,
and Applications (LDTA 2007), Electronic Notes in Theoretical Computer Science. Elsevier
B. V., 2007.

45. Eelco Visser. Stratego: A language for program transformation based on rewriting strategies.
In RTA ’01: Proceedings of the 12th International Conference on Rewriting Techniques and
Applications, pages 357–362, London, UK, 2001. Springer-Verlag.

46. Harald Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. Higher-order attribute grammars.
In PLDI, pages 131–145, 1989.

14

Zipper-based Embedding of Modern Attribute
Grammar Extensions?

Pedro Martins
Universidade do Minho, Portugal

Abstract. This research abstract describes the research plan for a Ph.D
project. We plan to define a powerful and elegant embedding of modern
extensions to attribute grammars. Attribute grammars are a suitable
formalism to express complex, multiple traversal algorithms. In recent
years there has been a lot of work in attribute grammars, namely by
defining new extensions to the formalism (forwarding and reference at-
tribute grammars, etc), by proposing new attribute evaluation models
(lazy and circular evaluators, etc) and by embedding attribute grammars
(like first class attribute grammars). We will study how to design such
extensions through a zipper-based embedding and we will study efficient
evaluation models for this embedding. Finally, we will express several
attribute grammars in our setting and we will analyse the performance
of our implementation.

1 Problem Description and Motivation

Attribute grammars (AGs) [1] are a convenient formalism not only for specifying
the semantic analysis phase of a compiler but also to model complex multiple
traversal algorithms. Traditional AG systems tailor their own syntax for the def-
inition of AGs. Attribute grammars in concrete syntaxes are then automatically
transformed into efficient implementations in general purpose programming lan-
guages such as Haskell, OCaml and C. LRC [2], UUAG [3] or Silver [4] are
among the AG systems that are designed in this way.

For many applications, it is desirable to design and implement a special
purpose language that is tailored to the characteristics of the problem domain.
Perhaps the most well-known example of such a language is provided by the com-
piler compiler system yacc. In general, however, the design and implementation
of a new programming language from scratch can be costly. For that reason, the
designers of Simula-67 proposed that new languages are implemented through
library interfaces, so the new embedded language inherits all the benefits of its
host language, and the implementation effort is much reduced.

In the context of attribute grammars, this idea has already been explored [5–
7]. Indeed, each of this embeddings benefits from the particular characteristics
of the host language in order to achieve elegant attribute grammar solutions.

? This work has been partially supported by FCT (Portuguese Science Foundation)
project AMADEUS, under grant (POCTI, PTDC/EIA/70271/2006)

15

Recently, an embedding for classic AGs has been developed in a functional lan-
guage [8]. This embedding, of around 100 lines of code, relies on an extremely
simple mechanism based on the notion of functional zippers [9].

With our work we intend to explore this new approach in a systematic way.
Our goal is to fully develop a mature system with advanced AG constructions
embedded in a zipper-based setting, namely circular attributes (fix-point compu-
tation), aspects (aspected oriented programming), higher-order and forwarding
(functional programming), references (imperative programming), multiple inher-
itance (object oriented programming), strategies (strategic programming) and
incremental attribute evaluation (incremental computation).

Once we define how such an embedding can be modeled in a functional
setting, we will study different models of execution for the AGs. Finally, we will
conduct a series of experiments in order to benchmark our system against other
well-established ones.

2 Overview and Related Work

Attribute grammars have proven to be a suitable formalism to the design and im-
plementation of both domain specific and general purpose languages, with pow-
erful systems based on attribute grammars [10–12, 2] been constructed. While,
in the beginning, AG systems were used mainly to specify and derive efficient
(batch) compilers for formal languages, nowadays, AG-based systems are power-
ful tools that not only specify compilers, but also syntax editors [10], program-
ming environments [2], visual languages [13], complex pretty printing algorithms
[14], program animations [15], etc. More recently, new extensions/features have
been defined for attribute grammars, like forwarding attribute grammars [16],
higher-order attribute grammars [17, 15], reference attribute grammars [18], mul-
tiple inheritance [19], aspect oriented attribute grammars [20].

While these extensions can be considered standard in traditional systems,
they have not yet been studied in the context of modern functional AG em-
beddings, such as [5, 7]. Given the simple mechanism of [8], however, we believe
that some extensions should be simple to obtain in that setting, while others,
although probably requiring improvements on the embedding mechanism itself,
still can be achieved elegantly.

With our work, we also propose to make incremental computation available
within our embedded AG system. Reps was the first to use incremental attribute
evaluation in the structured editors produced by the Synthesizer Generator Sys-
tem [10]. The LRC system [2] is a programming environment generator that
uses a strict, purely functional attribute evaluators and incrementality is ob-
tained via function memoisation [21]. The Eli [12] AG systems produce visual
programming environments but it does not support incremental evaluation, yet.
The ASF+SDF is a programming environment generator based on the paradigm
of term re-writing [22]. The action semantics environment was developed with
ASF+SDF [23]. None of these systems use incremental evaluation.

In the context of functional programming, John Hughes was the first to work
on the incremental evaluation of lazy programs [24]. Acar et al [25] presented

16

a general technique for the incrementalisation of functional programs. Magnus
Carlsson modeled this work as a Haskell library [26]. These techniques, however,
do not handle lazy evaluation. In [8], the authors show that within their embed-
ding, incremental computation can be obtained via function memoization. Their
techniques, however, do not require lazy evaluation. This means that if we rely
on lazyness in any of our extensions, this approach to incrementality may break
down and further studies are necessary. Even if this does not occur, the impact
of memoization in the authors’ approach still needs to be evaluated.

3 Research Method

The aim of this project is to embed advanced features of the AG paradigm into
a general purpose, lazy, and purely functional language. This goal builds upon
the definition attribute grammars as a domain-specific embedded language in
Haskell by [8]. That is, attribute grammars become a Haskell library of higher-
order and lazy functions, and we want to model in this library new language
concepts like circular attributes, aspects, higher-ordeness, forwarding, references,
multiple inheritance, strategies, and, finally, incremental evaluation.

We also intend to conduct a systematic performance study of traditional at-
tribute grammar evaluators versus their implementation as a library in Haskell.
We want to verify with realistic examples if a highly optimized functional imple-
mentation of AGs (lazy, strict and deforested evaluators [21]) is really faster than
the simple Haskell library. The outcome of the performance experiments, will al-
low us to to recommend improvements both to existing compilers for Haskell,
attribute grammar based systems, and incremental programming environments.

The phases described below constitute the main work areas for our work:

3.1 Design: For many applications, it is desirable to design and implement a
special purpose language that is tailored to the characteristics of the problem
domain. However, the design and implementation of a new programming lan-
guage from scratch is usually costy. The idea of embedded languages has been
enthusiastically embraced by the functional programming community [14, 7, 8].

The first goal to achieve in this project is to enhance the zipper-based embed-
ding of [8] with advanced AG features such as aspects, higher-order and circular
attributes, references, multiple inheritance and incremental attribute evaluation.
In order to achieve this, we will design and propose different implementations for
each feature, and each proposal will possibly rely on a different advanced feature
of the host language, Haskell. Then, we will conduct several experiments in
order to realize which proposal achieves our goal as elegantly as possible.

3.2 Implementation: One of the uses of AGs today is in the creation of pro-
gramming environments (also called language-based editing environments), that
report on syntactic and semantic errors as the program is being constructed.
In such an environment, it is important that the attribute values are computed
incrementally after each edit action, re-using results of previous computations
where possible. Reps and Teitelbaum were the first to demonstrate the feasibility

17

of the idea [10]. It is partly because of this emphasis on incremental computa-
tion that the embedding of attribute grammars into functional programming was
ignored: it was not clear at all how incremental computation could be achieved.

An important step was made by João Saraiva, who showed how the known
attribute evaluation techniques could all be implemented in a strict, purely func-
tional setting [21, 27]. He was however not able to apply these techniques as part
of an implementation of attribute grammars as a software library in Haskell: a
quite complex preprocessor was still required.

Acar et al. [25] presented a new technique for incremental computation of
functional programs, which is completely general as it can be used to make any
program incremental. Furthermore, it is implemented as a library of functions
in ML. A remarkable property of Acar’s work is that it maintains a dynamic de-
pendency graph, as opposed to the static dependency graph used in all previous
work on attribute grammars. Due to this, it potentially requires few recomputa-
tions after the input has been changed. This theoretical advantage may however
be outweighed in practice by the additional book-keeping required.

With our work we will study different execution models for our extensions. In
particular, we will work on the development of incremental models of execution.

3.3 Benchmarks: We will apply the library developed in the previous phases
to realistic examples (Java grammar, Pretty-printing optimal algorithm [28],
etc). Then, we will compare the performance of the obtained implementations
with equivalent implementations obtained by other AG systems. Firstly, we will
compare the performance of our library against other functional AG embeddings,
whenever such a comparison is possible (recall that most of the features we want
to embed in our system are not available in functional embeddings such as [5,
7]). Secondly, we will compare our implementations against the ones derived by
standard AG systems from AG expressed in special purpose languages [2–4].

Research Questions: The following research questions have to be answered in the
project: How can we correctly and elegantly embed advanced attribute grammar
features,e.g., reference, forwarding, higher-orderness, in the embedding of [8]?
What is the impact of memoization in the embedding of [8] and in the extensions
we define for it? If lazyness is necessary for any of our extensions, how can we
restore incremental computation? In other words, how can we combine lazyness
and incremental computation? How does the perfomance of our implementations
compare to well-established others?

4 Conclusions
We propose to develop a mature attribute grammar system, embedded in a
modern functional programming language, and with all advanced AG features
incorporated. Later, a systematic analysis on this system will be conducted.

The beneficiaries of this research are implementors of functional programming
languages [29, 30], attribute grammar-based systems [12, 14, 2] and programming
environments [10, 22, 23, 31], because we provide experimental evidence to guide
further work. The software artifacts we produce in the process will be of use to
a wide audience of functional programmers.

18

References

1. Knuth, D.E.: Semantics of Context-free Languages. Mathematical Systems Theory
2(2) (1968) 127–145 Correction: Math. Systems Theory 5, 1, pp. 95-96 (1971).

2. Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental Language-Oriented
Tools. In Koskimies, K., ed.: 7th International Conference on Compiler Construc-
tion. Volume 1383 of LNCS., Springer-Verlag (1998) 298–301

3. Swierstra, D., Baars, A., Löh, A.: The UU-AG attribute grammar system (2004)
4. Wyk, E.V., Krishnan, L., Bodin, D., Johnson, E., Schwerdfeger, A., Russell, P.:

Tool Demonstration: Silver Extensible Compiler Frameworks and Modular Lan-
guage Extensions for Java and C. In: SCAM. (2006) 161

5. de Moor, O., Backhouse, K., Swierstra, D.: First-Class Attribute Grammars. In
Parigot, D., Mernik, M., eds.: Third Workshop on Attribute Grammars and their
Applications, WAGA’99, Ponte de Lima, Portugal, INRIA Rocquencourt (2000)

6. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of at-
tribute grammars. In Ekman, T., Vinju, J., eds.: Proceedings of the Ninth Work-
shop on Language Descriptions, Tools, and Applications (LDTA 2009). Electronic
Notes in Theoretical Computer Science, Elsevier Science Publishers (2009)

7. Viera, M., Swierstra, D., Swierstra, W.: Attribute Grammars Fly First-class: how
to do Aspect Oriented Programming in Haskell. In: Procs. of the 14th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP’09). (2009) 245–256

8. Fernandes, J., Sloane, A., Saraiva, J., Cunha, J.: A lightweight functional embed-
ding of attribute grammars (in preparation). (2010)

9. Huet, G.: The zipper. Journal of Functional Programming 7(5) (1997) 549–554
10. Reps, T., Teitelbaum, T.: The Synthesizer Generator. Springer (1989)
11. Jourdan, M., Parigot, D., Julié, C., Durin, O., Bellec, C.L.: Design, implementation

and evaluation of the fnc-2 attribute grammar system. In: PLDI ’90: Proceedings
of the ACM SIGPLAN 1990 conference on Programming language design and
implementation, New York, NY, USA, ACM (1990) 209–222

12. Kastens, U., Pfahler, P., Jung, M.T.: The Eli System. In: CC ’98: Procs. of the 7th
Int. Conf. on Compiler Construction, London, UK, Springer-Verlag (1998) 294–297

13. Kastens, U., Schmidt, C.: Vl-eli: A generator for visual languages (2002)
14. Swierstra, D., Azero, P., Saraiva, J.: Designing and Implementing Combinator

Languages. In Swierstra, D., Henriques, P., Oliveira, J., eds.: 3rd Summer School
on Adv. Funct. Programming. Volume 1608 of LNCS Tutorial. (1999) 150–206

15. Saraiva, J.: Component-based programming for higher-order attribute grammars.
In: GPCE ’02: Proceedings of the 1st ACM SIGPLAN/SIGSOFT conference on
Generative Programming and Component Engineering, London, UK, Springer-
Verlag (2002) 268–282

16. Wyk, E.V., Moor, O.d., Backhouse, K., Kwiatkowski, P.: Forwarding in attribute
grammars for modular language design. In: CC ’02: Proceedings of the 11th In-
ternational Conference on Compiler Construction, London, UK, Springer-Verlag
(2002) 128–142

17. Swierstra, D., Vogt, H.: Higher order attribute grammars. In Alblas, H., Melichar,
B., eds.: International Summer School on Attribute Grammars, Applications and
Systems. Volume 545 of LNCS., Springer-Verlag (1991) 48–113

18. Hedin, G.: Reference attributed grammars. In Parigot, D., Mernik, M., eds.: 2nd
Workshop on Attribute Grammars and their Applications. (1999) 153–172

19. Mernik, M., Lenic, M., Avdicausevic, E., Zumer, V.: Multiple attribute grammar
inheritance. In: Informatica. (2000) 319–328

19

20. de Moor, O., Peyton Jones, S., van Wyk, E.: Aspect-oriented compilers. In:
Proceedings of the First International Symposium on Generative and Component-
Based Software Engineering (GCSE ’99). LNCS (1999)

21. Saraiva, J.: Purely Functional Implementation of Attribute Grammars. PhD thesis,
Department of Computer Science, Utrecht University, The Netherlands (1999)

22. van den Brand, M., Klint, P., Olivier, P.: Compilation and Memory Management
for ASF+SDF. In Stefan Jähnichen, ed.: 8th International Conference on Compiler
Construction. Volume 1575 of LNCS., Springer-Verlag (1999) 198–213

23. van den Brand, M., Iversen, J., Mosses, P.D.: An action environment. Sci. Comput.
Program. 61(3) (2006) 245–264

24. Hughes, J.: Lazy memo-functions. In Jouannaud, J.P., ed.: Functional Program-
ming Languages and Computer Architecture. Volume 201 of LNCS., Springer-
Verlag (1985) 129–146

25. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. In:
POPL’02: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, New York, NY, USA, ACM (2002) 247–259

26. Carlsson, M.: Monads for incremental computing. In: ICFP’02: Proceedings of the
seventh ACM SIGPLAN International Conference on Functional Programming,
New York, NY, USA, ACM (2002) 26–35

27. Saraiva, J., Swierstra, D., Kuiper, M.: Functional Incremental Attribute Evalua-
tion. In David Watt, ed.: 9th International Conference on Compiler Construction,
CC/ETAPS’2000. Volume 1781 of LNCS., Springer-Verlag (2000) 279–294

28. Swierstra, D., Chitil, O.: Linear, bounded, functional pretty-printing. Journal of
Functional Programming 19(01) (2009) 1–16

29. Peyton Jones, S., Hughes, J., Augustsson, L., et al.: Report on the programming
language Haskell 98. Technical report (1999)

30. Leroy, X.: The Objective Caml System - Documentation and User’s Manual (1997)
31. Michiel, M.: Proxima : a presentation-oriented editor for structured documents.

PhD thesis, Utrecht University, The Netherlands (2004)

20

Automata Based Method for Domain-specific

Languages Definition

Ulyana Tikhonova,

Supervisor: Fedor Novikov

St. Petersburg State Polytechnical University, Applied Mathematics Dept.,

Politekhnicheskaya 29., 195251 St. Petersburg, Russia

ulyana.tihonova@gmail.com, fedornovikov@rambler.ru

Abstract. We outline a research proposal which goal is to contribute to

methods of new Domain-Specific Languages (DSLs) definition and

implementation. We propose the automata based method for DSLs definition

that allows specifying new languages with various notations in such a way that

the language definition can be treated as a ready-to-use language

implementation already.

The automata based method allows defining language by three components:

language metamodel (which includes an abstract syntax), concrete syntax and

operational semantics. We use Unified Modeling Language (UML) as

description formalism for all three components. Namely, language metamodel

is defined using class diagrams. Concrete syntax is defined as parser using state

machine diagrams. Semantics is defined as metamodel interpreter using state

machine diagrams as well.

Keywords: DSL, metamodel, concrete syntax, operational semantics, UML.

1 Motivation

Domain-specific Languages (DSLs) are considered to be very effective in software

engineering. They raise the level of abstraction, provide common domain notation,

and improve development process therefore. Per se, DSLs allow describing a problem

solution in terms of the field of the problem, rather than in terms of computer. The

most critical part of the whole software development process in the context of

language oriented programming paradigm is definition and implementation of a new

DSL [14]. All approaches to solve this problem could be divided into those, which

use traditional grammars, and those, which are based on modeling in context of

Model Driven Engineering (MDE) [4]. The former approach allows defining

programming language as combination of its structure and textual syntax. The latter

implies definition of language metamodel mostly in terms of MOF and subsequent

usage of the model for code generation, model transformation, etc. In this case,

concrete syntax is usually graphical or even undefined.

However, these two styles of language definition do not differ in essence. As was

noticed in [5] and [3] the program in any DSL is an abstract structure, and for its

21

mailto:ulyana.tihonova@gmail.com
mailto:fedornovikov@rambler.ru

editing, storage and execution various representations might be used: text, diagrams,

tables, formulas, sounds, etc. Therefore, a single method for definition of different

notations is desirable.

Another issue is specification of language semantics. The brief overview of

methods of semantics definition is given in [2]. They vary from complicated formulas

of axiomatic semantics to rewriting rules of translation semantics. We consider that

usage of the same formalism for concrete syntax definition and for semantics

definition would simplify the process of new DSL creation, which is rather

complicated now.

At last, specification of new DSL should be sufficient for receiving its

implementation automatically.

2 Brief Overview of Related Work

A number of language workbenches, which support development of DSLs with not

only textual notation, were worked out recently. One of them is MetaEdit+ tool [8]

that allows creation of graphical DSLs with facility to specify generation of various

sorts of target data from DSL diagrams. MetaEdit+ uses its own model of DSL

abstract syntax – the metamodeling language GOPPRR (Graph-Object-Property-Port-

Role-Relationship).

Another one, AMMA [1], is a model based framework that supports DSL

development with metamodel definition language KM3 [11], language for specifying

textual concrete syntaxes TCS and model transformation language ATL. This project

is based on MOF formalism and supports graphical syntax through class diagrams of

models. The common approach is implemented in MOFLON [10] project. In addition

the latter uses Story Driven Modeling (SDM) paradigm for definition of the dynamic

semantics of a DSL.

We appeal for possibility to define various notations using single technique and for

possibility to define both concrete syntax and semantics using the same specification

(meta)language.

3 Proposed Solution

In this work, we propose just another DSL definition method based on model driven

architecture (MDA) and executable UML approach [6]. Definition of DSL using

MDA approach instead of traditional formal grammars advances software engineering

unification. This approach requires separation of language definition levels, which are

abstract syntax, concrete syntax and semantics. Therefore, the proposed method

consists in correlated definitions of DSL metamodel (which includes abstract syntax),

concrete syntax and operational semantics (Fig. 1). We use UML [12] as description

formalism and investigate definition methods that differ from those listed in part 2 for

all three steps of DSL specification process.

22

Fig. 1. Use case diagram of automata based method for DSL definition

We extend formalism used for language abstract syntax definition to UML class

diagram in comparison with widely spread MOF, as UML class diagram can express

more copious structures. We propose description both of concrete syntax and of

operational semantics as algorithms through UML state machine diagrams. Namely,

concrete syntax is defined as a parsing algorithm, which analyzes source program

representation and constructs abstract program. Operational semantics is defined as an

algorithm of abstract program interpretation.

Fig. 2. Component diagram of concrete syntax automata, abstract program and DSL editor

One of the key features of the proposed method is unified view on different

language notations. Any abstract program representation is considered as chain of

events, which are processed by automata system defined in concrete syntax

specification. Each terminal representation is considered as an event sent by some

source of events. For example, events might be typographical characters in text,

geometrical figures in diagram, controls in dialogue window, cells in spreadsheet, or

sounds of spoken commands. Accordingly, any source of events is acceptable: a

lexical analyzer of text, a graphical editor of diagrams, an editor of formulas or a

dialogue window (Fig. 2).

To achieve automatic receiving of DSL's implementation we use automata based

programming paradigm [7, 13]. According to this paradigm, every algorithm

23

described through UML state machine diagrams can be executed by an automata

programming virtual machine (Fig. 1).

4 Research Method

We have developed an initial candidate DSL meta-metamodel – the abstract syntax of

the proposed method (Fig. 3). This meta-metamodel accumulates expressiveness both

of grammar formalism and of UML class diagram. We are going to investigate it and

compare it with formal grammars to find out the kind of languages that could be

defined as instances of this meta-metamodel. Moreover, mapping between DSL meta-

metamodel and formal grammars could be useful for the reuse of already defined

languages. This mapping could be also useful for development of the algorithm of

generation of concrete syntax automata system from DSL metamodel.

name : String

Language
concept

1..*alternative

*

component

Taxonomy

1

1
root1..*

*
classification

specific

Relation

Clause

name : String

Definition

**
cross-

referenceconcepts

*

axiom
1

name : String

DSL
Metamodel

Static
semantics

condition : bool

Constraint

multiplicity: Num
role: String

Occurance
Abstract
Symbol

Fig. 3. Class diagram of DSL meta-metamodel

We have devised the automata model being used as formalism for definition of

both concrete syntax and semantics. Two little DSLs have been specified using this

model: nonlinear and graphical language of the chess position and the mini language

for manipulations with sets. Further, the automata programming virtual machine

should be developed to execute these specifications of DSLs. Definition of the

automata programming virtual machine with the means of the proposed method

would be the best use case. In other words, we are going to apply the idea of

bootstrapping.

The proposed method for DSL definition allows defining different languages with

various concrete representations. DSL definition can be used as its software

implementation in terms of the automata based virtual machine.

24

References

1. Bézivin, J., Jouault, F., Kurtev, I., Valduriez, P.: Model-Based DSL Frameworks. In: 21st

ACM SIGPLAN symposium on Object-oriented programming systems, languages, and

applications, pp. 602-616. ACM, New York (2006)

2. Combemale, B., Crégut, X., Garoche, P.-L., Thirioux, X.: Essay on Semantics Definition in

MDE - An Instrumented Approach for Model. In: Journal of Software, Vol 4, No 9, pp. 943-

958 (2009)

3. Dmitriev, S.: Language Oriented Programming: The Next Programming Paradigm,

http://www.onboard.jetbrains.com/is1/articles/04/10/lop/index.html (2005)

4. Estublier, J., Vega, G., Ionita, A.D.: Composing Domain-Specific Languages for Wide-

Scope Software Engineering Applications. In: Briand, L., Williams, C. (Eds.) International

Conference on Model Driven Engineering Languages and Systems (MoDELS). LNCS

vol. 3713, pp. 69-83. Springer-Verlag, Berlin Heidelberg (2005)

5. Fowler, M.: Language Workbenches: The Killer-App for Domain Specific Languages?,

http://www.martinfowler.com/articles/languageWorkbench.html (2005)

6. Frankel, D.S.: Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley

Publishing, Inc., Indianapolis, Indiana (2003).

7. Gurov, V. S., Mazin, M. A., Narvsky, A. S., Shalyto, A. A.: Tools for Support of Automata-

Based Programming. J. Programming and Computer Software, Vol. 33, No. 6, pp. 343–355

(2007), http://is.ifmo.ru/articles_en/_ProCom6_07GurovLO.pdf

8. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling. IEEE Computer Society

Publications, New Jersey (2008)

9. Meta Programming System, http://www.jetbrains.com/mps/

10. MOFLON project, http://www.moflon.org/

11. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-oriented meta-

languages. In: Briand, L., Williams, C. (Eds.) International Conference on Model Driven

Engineering Languages and Systems (MoDELS), LNCS vol. 3713, pp. 264–278. Springer-

Verlag, Berlin Heidelberg (2005)

12. OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.2 (2009),

http://www.uml.org

13. Paraschenko, D., Shalyto, A., Tsarev, F.: Modeling Technology for One Class of Multi-

Agent Systems with Automata Based Programming. In: IEEE International Conference on

Computational Intelligence for Measurement Systems and Applications, pp. 15-20. IEEE

Xplore, La Coruna (2006)

14. Ward, M.: Language Oriented Programming. In: Software - Concepts and Tools, Springer

Berlin / Heidelberg, Vol.15, No.4, pp. 147-161 (1994)

25

http://is.ifmo.ru/articles_en/_ProCom6_07GurovLO.pdf
http://www.jetbrains.com/mps/
http://www.moflon.org/
http://www.uml.org/

Test Case Generation for Programming
Language Metamodels

Abstract for Software Language Engineering 2010
Doctoral Symposium

Hao Wu?

Supervisors: Rosemary Monahan and James F. Power

Department of Computer Science, National University of Ireland, Maynooth
{haowu,rosemary,jpower}@cs.nuim.ie

1 Problem Description and Motivation

One of the central themes in software language engineering is the specification
of programming languages, and domain-specific languages, using a metamodel.
This metamodel provides a greater degree of abstraction than a context-free
grammar, since it can ignore syntactic details. However, its main benefit is in
providing for the specification of the abstract syntax graph of a language, and
this can then be used for the construction or generation of language processing
tools.

One problem associated with the use of programming language metamodels,
and metamodels in general, is determining whether or not they are correct. Of
course, one approach is to forward engineer code and test this, but it should
also be possible to test the metamodel directly. In this context, the question
addressed by our research is: given a programming language metamodel, how
can we generate an appropriate test suite to show that it is valid?

Being able to generate such a test suite would have two main benefits. First,
examining the automatically-generated test cases would help to develop the mod-
eller’s understanding of the metamodel, and help to increase confidence in its
validity. Second, since the metamodel specifies a programming language, the
generated test cases should be valid programs from that language, and these can
be used as test inputs for tools that process the language.

2 Related work

Testing a programming language specifications, at least at the syntactic level,
has a long history, dating back at least to the work of Purdom on generating test
cases from grammars [1]. However, a naive application of Purdom’s approach to
a programming language grammar produces programs that may not be syntac-
tically correct (since the grammar may under-specify), and is certainly unlikely
to produce semantically valid (let alone meaningful) programs [2].

? This work is supported by a John & Pat Hume Scholarship from NUI Maynooth.

27

Incorporating at least a language’s static semantics into test suite generation
must go beyond simple context-free grammars. One possible approach is to use
attribute grammars, and to seek to exploit the attribute equations to constrain
or even direct the generation of test cases [3, 4]. Despite this research, it is still
not a trivial task to directly extend this work to a metamodelling environment
that uses, for example, OCL-like constraints for describing the static semantics.

It is possible to borrow some ideas from software modelling, and there is a
great deal of existing research dealing with model-based testing strategies [5,
6]. However, much of this work focuses on the behavioural elements of software
models (such as state machines), rather than the structural aspects which might
be more relevant to metamodelling.

In the context of testing structural models, two tools strike us as being par-
ticularly noteworthy:
– USE (a UML-Based Specification Environment) which allows the user to

specify a UML (Unified Modeling Language) class diagram with OCL con-
straints [7]. From these we can manually generate corresponding object di-
agrams, and the USE environment will check that these are valid instances,
satisfying the relevant class invariants.

– Alloy which has its own logical specification language, corresponding roughly
to the elements found in a class diagram, and automatically generates object
diagrams that correspond to this specification [8]. One of the useful aspects
of the Alloy tool is that it is designed to work with a number of different
SAT solvers in order to test constraints and generate counter-examples.
As part of an earlier project, we have previously exploited the close rela-

tionship between the Alloy notation and UML class diagrams to generate in-
stances of a metamodel for software metrics [9]. One of the drawbacks of this
earlier approach is that it did not control the strategy used to generate instances.
Faced with the impossibility of manually validating several hundred thousand
instances, we exploited test-suite reduction techniques to narrow the set of test
cases.

3 Proposed Solution

It is clearly inefficient to generate test cases that are not used, and an ideal
solution would be to generate an appropriate set of test cases in the first place. Of
course, this immediately raises two questions: what do we mean by an appropriate
set of test cases, and how do we generate these test cases?

One way of measuring the adequacy of a set of test cases for a piece of
software is to use coverage criteria. Typically, a test suite can be judged in terms
of the percentage of statements, decisions, branches etc. in the source code that
are executed when the software is run. It seems natural therefore to attempt to
seek to assemble a test suite for a metamodel along similar lines, i.e. to form a
set of models that cover the features of the metamodel. In terms of programming
language metamodels, this would involve creating a set of programs that exercise
the features of the language.

28

Since most metamodels, including programming language metamodels, are
described using UML, it is possible to use UML techniques to compute their
coverage. Many coverage criteria for the various UML diagrams have been pro-
posed [10–13]. However, we restrict our attention to UML structural diagrams,
since metamodels are often presented in the form of UML class diagrams.

Our recent work has focused on coverage criteria for UML class diagrams
initially proposed by Andrews et al. [14], specifically:
– Generalisation coverage which describes how to measure inheritance rela-

tionships.
– Association-end multiplicity coverage which measures association relation-

ships defined between classes.
– Class attribute coverage which measures the set of representative attribute

value combinations in each instance of class.
It is unlikely that these alone will provide sufficient granularity to determine

the adequacy of a test suite, and previous work has already determined that
there is a poor correlation between coverage of syntactic and semantic features
[15]. However, our immediate work has centred on constructing an extensible,
modular system that can at least measure these levels of coverage, and which
can be used as a basis for further studies.

4 Research Method

Our research can be broken down into three phases:
Phase I: calculating coverage measures for programming language metamodels,
Phase II: generating valid models that satisfy coverage criteria,
Phase III: generating models satisfying criteria not based on coverage.

In our work to date we have constructed a tool-chain which, when given a
UML class diagram and a set of UML object diagrams, will calculate the three
coverage measures described above [16]. The tool chain uses the USE tool as
a parser and validator for the class and object diagrams, and uses the Eclipse
Modeling Framework (EMF) to represent these as instances of the UML meta-
model. To represent the output we have built a coverage metamodel in EMF
which is essentially an extension of an existing metrics metamodel [17]. Finally,
we have written a transformation to calculate the coverage measures using ATL
(ATLAS Transformation Language).

In order to complete the first phase we intend to extend the coverage measures
for class diagrams to deal with the associated OCL constraints. We intend to
use (OCL) decision coverage as our initial measure, and to extend our tool chain
to implement this coverage.

In the next phase, we hope to generate valid models that satisfy coverage
criteria for at least one programming language metamodel. We are currently
studying Alloy’s approach as a model of exploiting third-party SAT solvers to
control model generation.

At the final phase of our research we hope to expand this approach to other
language-based criteria. To do this, we intend to use OCL-based queries across

29

the metamodel to specify the kind of model to be generated. Ideally, this would
allow a user to specify the kind of programs that would be generated in the test
suite for a given language metamodel.

References

1. Purdom, P.: A sentence generator for testing parsers. BIT 12(3) (1972) 366–375
2. Malloy, B.A., Power, J.F.: An interpretation of Purdom’s algorithm for automatic

generation of test cases. In: 1st Annual International Conference on Computer and
Information Science, Orlando, Florida, USA (October 3-5 2001)

3. Lämmel, R.: Grammar testing. In: Fundamental Approaches to Software Engineer-
ing. Volume 2029 of Lecture Notes in Computer Science., Springer Verlag (2001)
201–216

4. Lämmel, R., Schulte, W.: Controllable combinatorial coverage in grammar-based
testing. In: 18th IFIP TC6/WG6.1 International Conference on Testing of Com-
municating Systems, New York, NY (May 2006) 19–38

5. Pilskalnsa, O., Andrews, A., Knight, A., Ghosh, S., France, R.: Testing UML
designs. Information and Software Technology 49(8) (August 2007) 892–912

6. Utting, M., Legeard, B., eds.: Practical Model-Based Testing. Elsevier (2007)
7. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification environ-

ment for validating UML and OCL. Sci. Comp. Prog. 69(1-3) (2007) 27–34
8. Jackson, D.: Software Abstractions. MIT Press (2006)
9. McQuillan, J.A., Power, J.F.: A metamodel for the measurement of object-oriented

systems: An analysis using Alloy. In: IEEE International Conference on Software
Testing Verification and Validation, Lillehammer, Norway (April 9-11 2008) 288–
297

10. McQuillan, J., Power, J.: A survey of UML-based coverage criteria for software
testing. Technical Report NUIM-CS-TR-2005-08, NUI Maynooth (2005)

11. Dinh-Trong, T.T., Ghosh, S., France, R.B.: A systematic approach to generate
inputs to test UML design models. In: 17th International Symposium on Software
Reliability Engineering, Raleigh, NC (2006) 95–104

12. Mahdian, A., Andrews, A.A., Pilskalns, O.: Regression testing with UML software
designs: a survey. J. of Software Maintenance and Evolution: Research and Practice
21(4) (July/August 2009) 253–286

13. Briand, L., Labiche, Y., Lin, Q.: Improving the coverage criteria of UML state
machines using data flow analysis. Soft. Test. Verif. & Reliability 20 (2010)

14. Andrews, A., France, R., Ghosh, S., Craig, G.: Test adequacy criteria for UML
design models. Soft. Test. Verif. & Reliability 13(2) (April/June 2003) 95–127

15. Hennessy, M., Power, J.F.: Analysing the effectiveness of rule-coverage as a re-
duction criterion for test suites of grammar-based software. Empirical Software
Engineering 13(4) (August 2008) 343–368

16. Wu, H., Monahan, R., Power, J.F.: Using ATL in a tool-chain to calculate cov-
erage data for UML class diagrams. In: 2nd International Workshop on Model
Transformation with ATL, Malaga, Spain (June 2010)

17. Vépa, E.: ATL transformation example: UML2 to Measure. Available on-line
as http://www.eclipse.org/m2m/atl/atlTransformations/#UML22Measure (Au-
gust 30 2007)

30

Lenses for View Synchronization in
Metamodel-Based Multi-View Modeling

Arif Wider

Humboldt-Universität zu Berlin
Unter den Linden 6, D-10099 Berlin, Germany

wider@informatik.hu-berlin.de

Abstract. When using multiple views to describe a system, the underly-
ing models of these views have to be kept consistent, which is called model
synchronization. Manually implemented model synchronizations that are
not simple bijections are hard to maintain and to reason about. Special
languages for expressing bidirectional transformations can help in this re-
spect, but existing languages applicable in model-driven engineering are
often restricted to bijections or complex to use. I adapt lenses, a promis-
ing term-rewriting-based approach to bidirectional transformations, to
model synchronization. This allows for flexible view synchronization that
can be integrated with existing metamodel-based technologies.

Introduction

Modeling a system using multiple views is a common means nowadays to break
down the complexity of the system description. A prominent example for that
is the architecture of the UML, providing multiple diagram types which serve
as aspect-specific views on a system. Using multiple views to describe a system
imposes the problem of inter-view consistency.

In model-driven engineering (MDE) different views on a system can be im-
plemented as different domain-specific languages (DSLs). This way, the system
description consists of an ensemble of models described using these languages.
This is called multi-view modeling or domain-specific multimodeling [11, 10]. In
multimodeling inter-view consistency is achieved by synchronizing these models.

Naively implemented model synchronizations, i.e., pairs of forward and back-
ward transformations described in a general-purpose language, can be hard to
maintain and to reason about because consistency of forward and backward
transformations has to be ensured and transformations can be arbitrarily com-
plex. Special languages for describing bidirectional transformations provide no-
tations to describe consistency relations between models. From this notation a
forward and a backward transformation can be automatically inferred so that
the consistency of these transformations is ensured by construction. This is easy
if the relation is a bijection but gets hard if it is neither surjective nor injec-
tive. Unfortunately, as the idea of a view is to hide information which is not
aspect-specific, bijections hardly occur in a multi-view setting.

Bidirectional transformations are researched for a long time, e.g, in the graph
transformation community using Triple Graph Grammars (TGGs) [18, 6]. With

31

QVT Relational1, there is even a standard by the OMG for describing bidirec-
tional transformations of metamodel-based models. Nevertheless, languages for
describing bidirectional model transformations are still not widely used in MDE.
Concerning QVT, Stevens points out semantic issues that could be one reason
for this limited acceptance [19]. Another practical issue could be the weak sit-
uation regarding tool support for QVT Relations: Although QVT specification
was completed in 2008, there are only few implementations and even those are
not maintained regularly.

Lenses [8, 7] is a combinator-based approach to bidirectional transformations:
Foster et al. provide small, well-unterstood bidirectional transformations (called
lenses) and a set of combinators that allow more complex transformations to
be composed from those smaller ones. This greatly improves extensibility and
comprehensibility. Furthermore, a type system guarantees that composed lenses
preserve certain properties of their sub-lenses. This combinator-based approach
is possible because lenses are restricted to the asymmetric case where one of the
two models to be synchronized is an abstraction of the other, i.e., the relation
is at least surjective. This way, the problem of model synchronization resembles
the view update problem that has been studied in the database community for
decades [4].

In contrast to less restricted symmetric approaches like TGGs and QVT that
were designed for transformations of graphs and models, respectively, lenses were
designed for synchronization of tree-like data and were mainly implemented for
string transformations [3], e.g., synchronization of XML-data. This poses some
conceptual challenges, when attempting to use lenses for model synchronization
in a metamodel-based setting.

Related Work

There are several approaches using bidirectional transformations in the con-
text of MDE, but most of them use symmetric bidirectional transformations
and therefore lack the combinator-based nature that can be achieved using an
asymmetric approach (e.g., the AToM3 Framework [1]). Among them are also
some, that integrate with existing metamodel-based technologies, e.g., the Tefkat
transformation engine [16] that is closely connected with QVT and integrates
with the Eclipse Modeling Framework (EMF)2. Recently, Hettel et al. presented
an asymmetric approach for using the SQL-like Tefkat language for round-trip
engineering [12].

An approach quite similar to lenses which is also used for view synchroniza-
tion is the work of Hu et al. [14, 17]. Somehow similar to my approach, Garcia
proposed to use their work in a metamodel-based context [9]. However, in their
approach, changes in a model have to be explicitly marked to be synchronized.
This prevents agnostic integration with existing metamodel-based technologies.

1 http://www.omg.org/spec/QVT/1.0/
2 http://www.eclipse.org/modeling/emf/

32

Furthermore, there are some approaches to bidirectional transformations that
are heavily inspired by lenses or extend lenses, but are not used for view synchro-
nization: Hidaka combines lenses with a query language but not in a metamodel-
based context [13].

Probably closest to my work is the work of Xiong [22, 21, 5], who integrated
concepts of lenses into his work on bidirectional transformations of metamodel-
based models, but he proposes an update-based approach in contrast to the
state-based approach of lenses and his work does not focus on integration with
existing metamodel-based technologies.

Approach

My approach is to use lenses for view synchronization in metamodel-based multi-
view modeling environments. In order to achieve this, I want to show that

1. the advantages of lenses, especially their composability, can be leveraged
when describing bidirectional transformations of metamodel-based models,

2. that in conjunction with a synchronization architecture that incorporates a
common model, lenses can be beneficially used for view synchronization and

3. that this approach allows for straightforward integration with existing meta-
model-based technologies.

Lenses for Bidirectional Model Transformations In order to use lenses
for model synchronization, the concepts of lenses have to be bridged from the
grammarware technological space that lenses originate from to the modelware
technological space [20]. For this, the following challenges are to be solved:

– Typing: In the original lens framework typing is mainly used for ensuring
that certain lens properties are preserved when composing lenses. In MDE,
transformations usually transform models conforming to one metamodel so
that they conform to another metamodel. Therefore, typing of input and
output data of lenses is highly desirable for model transformations.

– Ordered data: Originally, lenses work either on unordered tree-like data
or certain keys have to be defined to be able to synchronize changes regard-
ing order. With metamodel-based models, i.e., in an object-oriented setting,
there is the object identity as an implicit key. This can be used to propagate
changes in order and other complicated changes back to the original model.

– References: Models in general are graphs because they can contain ref-
erences, whereas lenses were designed for synchronizing tree-like data. A
pragmatic solution could be to make use of the containment hierarchy that
is provided by many metamodeling frameworks anyway.

A Lens-Based Model Synchronization Architecture While the restric-
tion to asymmetric synchronization does not seem to be flexible enough for the
general MDE setting, it fits well to view synchronization: Lenses can be used to

33

asymmetrically synchronize view-models with a common model. This common
model can be a shared abstraction, i.e., it only contains those information that
is represented in more than one view. In the database community, this approach
to view synchronization was already proposed by Atzeni & Torlone in 1996 [2].
Another approach is to synchronize views with a shared complete model of the
system containing the information of all models to be synchronized. In both cases
the changes made in one view-model are propagated to the other view-models
through the common model.

Technological Integration As stated before, it is my goal to provide a so-
lution that can be integrated with existing metamodel-based technologies, in
particular, with the Eclipse Modeling Framework (EMF). As EMF is a Java-
based framework, I decided to implement lenses for model transformations as an
internal DSL in the Scala3 programming language. Scala code compiles to JVM
bytecode and Scala provides great interoperability with Java-based frameworks.
Moreover, Scala combines functional and object-oriented concepts, which fits to
the task of adapting lenses that come from a functional background to be used in
a metamodel-based, i.e., object-oriented setting. Finally, Scala has static typing
and it is my goal to achieve compile-time type checking for transformations in
as many situations as possible. Therefore, I make use of heterogeneously typed
lists [15], that were originally developed for the Haskell programming language.
My solution will be deliverable as a Scala library. As a consequence, no further
tools than the Scala compiler and a Scala IDE plug-in should be needed to inte-
grate the solution into existing projects and tool chains. Hopefully, this results
in higher user acceptance compared to solutions like QVT that always depend
on up-to-date tool support.

Evaluation and Expected Contributions

The evaluation of my approach is tightly coupled with the ongoing development
of a domain-specific workbench for the development of optical nanostructures,
which is subject of a cooperation with a group of physicists. This workbench
provides different DSLs for describing different aspects of experiments in nanos-
tructure development and is being implemented with EMF-based technologies.
This project serves as a comprehensive case study for my solution. In particular,
it has to be evaluated if a reasonably sized set of basic lenses and lens combina-
tors can be provided that enable to accomplish common view synchronization
tasks in a concise way.

As a result of my work, the following contributions can be expected:

– An extended formal lens framework, adapted for an object-oriented setting.
– A language for bidirectional model transformations implemented as an in-

ternal DSL in Scala, deliverable as a Scala library.
– A lens-based view synchronization architecture that integrates with EMF-

based technologies and can be used in multi-view modeling environments.

3 http://www.scala-lang.org

34

References

1. Francisco Pérez Andrés, Juan de Lara, and Esther Guerra. Domain specific lan-
guages with graphical and textual views. In Andy Schürr, Manfred Nagl, and
Albert Zündorf, editors, AGTIVE, volume 5088 of Lecture Notes in Computer Sci-
ence, pages 82–97. Springer, 2007.

2. Paolo Atzeni and Riccardo Torlone. Management of multiple models in an ex-
tensible database design tool. In Advances in Database Technology - EDBT’96,
5th International Conference on Extending Database Technology, Avignon, France,
March 25-29, 1996, Proceedings, volume 1057 of Lecture Notes in Computer Sci-
ence, pages 79–95. Springer, 1996.

3. Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and
Alan Schmitt. Boomerang: Resourceful lenses for string data. In ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (POPL), San Fran-
cisco, CA, pages 407–419, January 2008.

4. U. Dayal and P.A. Bernstein. On the correct translation of update operations on
relational views. ACM Transactions on Database Systems (TODS), 7(3):381–416,
1982.

5. Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. From state- to delta-based
bidirectional model transformations. In Theory and Practice of Model Transforma-
tions, Third International Conference, ICMT 2010, Malaga, Spain, June 28-July
2, 2010. Proceedings, volume 6142 of Lecture Notes in Computer Science, pages
61–76. Springer, 2010.

6. H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Information preserv-
ing bidirectional model transformations. In Fundamental Approaches to Software
Engineering, 10th International Conference, FASE 2007, volume 4422, page 72.
Springer, 2007.

7. J.N. Foster. Bidirectional Programming Languages. PhD thesis, University of
Pennsylvania, 2009.

8. J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt. Combina-
tors for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems (TOPLAS),
29(3):17, 2007.

9. Miguel Garcia. Bidirectional synchronization of multiple views of software models.
In Dirk Fahland, Daniel A. Sadilek, Markus Scheidgen, and Stephan Weißleder,
editors, Proceedings of the Workshop on Domain-Specific Modeling Languages
(DSML-2008), volume 324 of CEUR-WS, pages 7–19, 2008.

10. Anders Hessellund, Krzysztof Czarnecki, and Andrzej Wasowski. Guided develop-
ment with multiple domain-specific languages. In MoDELS, pages 46–60, 2007.

11. Anders Hesselund. Domain-specific Multimodeling. PhD thesis, IT University of
Copenhagen, 2009.

12. T. Hettel, M. Lawley, and K. Raymond. Towards model round-trip engineering:
an abductive approach. Theory and Practice of Model Transformations, pages
100–115, 2009.

13. Soichiro Hidaka, Zhenjiang Hu, Hiroyuki Kato, and Keisuke Nakano. A composi-
tional approach to bidirectional model transformation. In ICSE Companion, pages
235–238, 2009.

14. Z. Hu, S.C. Mu, and M. Takeichi. A programmable editor for developing structured
documents based on bidirectional transformations. Higher-Order and Symbolic
Computation, 21(1):89–118, 2008.

35

15. Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous
collections. In Haskell ’04: Proceedings of the ACM SIGPLAN workshop on Haskell,
pages 96–107. ACM Press, 2004.

16. M. Lawley and J. Steel. Practical declarative model transformation with Tefkat. In
Satellite Events at the MoDELS 2005 Conference, pages 139–150. Springer, 2006.

17. K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization
transformation based on automatic derivation of view complement functions. In
Proceedings of the 12th ACM SIGPLAN international conference on Functional
programming, page 58. ACM, 2007.

18. Andy Schürr and Felix Klar. 15 years of triple graph grammars. In ICGT, pages
411–425, 2008.

19. P. Stevens. Bidirectional model transformations in QVT: Semantic issues and open
questions. In Proc. of the 10 Int. Conf. on Model Driven Engineering Languages
and Systems, Lecture Notes in Computer Science, pages 1–14. Springer, 2007.

20. M. Wimmer and G. Kramler. Bridging grammarware and modelware. In Satel-
lite Events at the MoDELS 2005 Conference, volume 3844 of Lecture Notes in
Computer Science, pages 159–168. Springer, 2005.

21. Yingfei Xiong. A Language-based Approach to Model Synchronization in Software
Engineering. PhD thesis, Department of Mathematical Informatics, University of
Tokyo, September 2009.

22. Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato Takeichi, and Hong
Mei. Towards automatic model synchronization from model transformations. In
ASE, pages 164–173, 2007.

36

Analyzing Dynamic Models using
a Data-flow based Approach

Christian Saad, Bernhard Bauer (Supervisor)
christian.saad@informatik.uni-augsburg.de

University of Augsburg

Abstract. Meta modeling as a method allows to devise languages suited
for specific application domains, e.g. for describing the structural or be-
havioral aspects of software systems. As meta models constitute an ab-
stract syntax (often enriched with static semantics) there exist obvious
similarities to the area of formal languages. The research effort described
in this paper is intended to examine to what extent and to what benefit
compiler construction concepts, namely the data-flow analysis method,
can be transferred to the modeling domain in order to validate static
semantics and perform abstract interpretations on models.

1 Motivation

In the last decade, the use of meta models has evolved from a scientific approach
to a widely used technique in areas like software development and business pro-
cess modeling (BPM). This advancement has been greatly endorsed by industry
standards like the OMG’s Meta-Object Facility (MOF) framework that forms
the basis for several prominent modeling languages like the the Unified Model-
ing Language or the Business Process Modeling Notation (BPMN) and even a
model-centric development approach called Model-driven Architecture (MDA)1.

Nevertheless, when compared to formal languages, an inherent flaw of the
modeling technique becomes obvious: The restrictions on a language’s structure
which are given by its abstract syntax, i.e. a context-free grammar (CFG) or
a meta model, are often not enough to ensure correct expressions - a check of
the static semantics is also in order. For this purpose, CFGs are often extended
with attributes, forming attribute grammars (AG), which enable compilers to
validate statements based on the context in which they appear (cf. [1]).

A limited amount of static analysis can be performed using the OMG’s Ob-
ject Constraint Language (OCL, [7]) which enables to phrase constraints on the
structure of MOF and UML-based meta models. However, it has several draw-
backs: Through navigation statements, OCL constraints are tightly tied to the
structure of the meta model. This can lead to difficulties if constraints require
the consideration of a model element’s context, e.g. the position of an action
in an UML activity diagram relative to its preceeding/succeeding actions. As a

1 http://www.omg.org/technology/documents/modeling_spec_catalog.htm

37

language which is mainly intended to be used to validate constraints by perform-
ing static queries on a model’s elements, OCL does not contain semantics which
would enable a fixed-point analysis since, in the case of cyclic dependencies this
would require a continuous reevaluation the DFA’s equation system. Finally,
complex navigation statements make OCL rules very prone to be invalidated if
the structure of the underlying meta model changes, often requiring extensive
adjustments.

Since models comprise a graph structure, defining and calculating informa-
tion flow enables an advanced analysis of a model’s properties. These may either
be properties of the graph structure itself, e.g. strongly connected component
regions, or semantic attributes, e.g. the availability of a resource created at one
point in a control-flow model in some other part of the model, This research is
dedicated to adapting the data-flow analysis (DFA) approach commonly used in
compiler construction for deriving optimizations from a program’s control-flow
graph, to modeling, thus enabling a fixed-point analysis on (meta) models.

2 Related Work

Since the definition of static semantics is a vital step when developing formal
languages, many different techniques have been considered for this purpose.

The OCL can be considered a comparatively simple language for require-
ments exceeding syntactic expressiveness and by design is very well-integrated
into the modeling domain. A critical evaluation of its expressive power can be
found in [5], with emphasis on difficulties in calculating transitive closures.

Approaches considering the use of formal semantics include graph transfor-
mations, abstract state machines or first order logic (cf. [8] [6] [3]).

Several authors use DFA-based methods to derive information from models.
In [9], a fixed-point calculation is used on executable models to derive def/use
relationships between actions while the authors of [2] propose the use of control-
flow information to improve software testing.

The focus in these cases is, however, directed towards implementing a specific
case study. To the best of our knowledge, there is no other research effort with the
goal of applying the concept of a fixed-point based DFA calculation to models.

3 Approach for Model-based Data-flow Analysis

Both meta models and (context-free) grammars operate on different layers of
abstraction. For grammars, these usually consist of EBNF, CFGs and language
expressions. In the widely-used MOF one distinguishes between meta-meta (M3),
meta (M2) and model (M1) layer. Because of conceptual similarity, both tech-
niques can be aligned according to their levels of abstraction. This alignment
requires that data-flow equations are attached to language artefacts (i.e. M2
meta classes) and instantiated/executed for expressions, i.e. M1 objects.

Since attribute grammars are a well-proven extension of this design, it was
decided that this strategy will also be employed in the definition of data-flow

38

equations: An attribute definition consisting of an identifier and a data-type can
be bound to several meta model classes through the use of attribute occurrences.
Semantic rules (corresponding to data-flow equations) are assigned to attribute
definitions and attribute occurrences to calculate initialization and iteration val-
ues, respectively. Data-flow between attributes occurs if a semantic rule requests
the value of another attribute as input.

(a) Data-flow analysis meta model (b) Calculate predecessors

Fig. 1. Model-based DFA definition in the notion of attribute grammars

To stay consistent with the notion of modeling and to minimize frictional
losses between different techniques, it is desirable to represent DFAs themselves
as models, i.e. to provide a meta model which in the described alignment hier-
archy acts as an extension of the M3 layer (cf. Figure 1(a)).

To calculate a DFA for a given model, attribute occurrences assigned to meta
classes need to be instantiated for model elements derived from these classes.
While the instantiation process is straightforward, it has to be noted that this
must happen in compliance with principles like generalization, i.e. if defined for
a super class, attributes must be inherited by instances of sub classes.

An example is shown in Figure 1(b) which calculates the transitive closure
of predecessor nodes in a simple control-flow graph. The class node has an as-
signed attribute occurrence of the type all predecessors. The associated rule,
which is repeatedly executed for all nodes, recursively creates the union of direct
predecessors and the value of all predecessors at preceding nodes.

The fixed-point calculation significant differs from traditional DFA tech-
niques: Since semantic rules may request the value of arbitrary attributes as
input when they are executed, there exists neither an inherent flow direction nor
any prior knowledge about output relationships between attribute instances.
Since the commonly used worklist algorithm depends on this information, it is
not applicable in this context. To accomodate for this, an algorithm has been
developed that dynamically records input/output relationships by executing the
rules recursively to create a dependency graph which can then be used as a basis
to derive a nearly optimal execution order, thus minimizing the amount of rule
executions.

39

4 Research

The research effort described in this abstract has to cover the following issues:

Definition and Alignment To transfer the method of DFA to the modeling
domain, similarities and differences between both application areas must be
identified and a new definition language has to be devised and aligned with
the modeling techniques.

DFA Algorithms Suitable algorithms for calculating DFA equation systems
have to be devised and proven to be correct.

Complexity and Performance The practical and theoretical performance of
different DFA solving algorithms has to be evaluated.

Tooling and Use Cases To prove the feasability of this approach, a tooling
environment has to be provided alongside the implementation of several use
cases which need to be evaluated against implementations based on alterna-
tive theoretical foundations.

While efforts for DFA definition and integration into modeling are well ad-
vanced (as described in the previous section), a formalization of these results is
still in order. The same goes for the DFA solving algorithm which has proven
to perform very well in comparison to adaptions of conventional algorithms like
the work list method.

The Model Analysis Framework (MAF2) is a fully functional prototype pro-
viding tooling support for the described concepts. It is built upon Eclipse model-
ing techniques, namely the Eclipse Modeling Framework (EMF), an implemen-
tation of the MOF standard. Once all artefacts required for an analysis (i.e.
meta models, models and attributions based on the meta model shown in Fig-
ure 1(a)) are loaded into the respective repositories, the defined attributes are
instantiated for the model’s elements and handed to the selected evaluation al-
gorithm. First experiments have shown that the developed algorithm preforms
much better in calculating the result values than a traditional worklist algorithm
that has been enhanced with the ability to handle dynamically discovered output
dependencies.

Currently implemented case studies (which are available from the code repos-
itory) include: Calculating properties of control-flow graphs like transitive prede-
cessor/successor sets and strongly connected components (SCC), definition/use
relationships in workflows and the hierarchical subdivision of control-flows into
its Single-Entry-Single-Exit (SESE) components using a token-flow algorithm
(cf. [4]) which has been reimplemented using DFA. In the future, additional ap-
plications areas are planned like clone detection, validating modeling guidelines
and generating test models for model-based testing approaches.

2 http://code.google.com/p/model-analysis-framework/

40

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison Wesley (August 2006), http://www.amazon.ca/
exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/0321486811

2. Garousi, V., Bri, L., Labiche, Y.: Control Flow Analysis of UML 2.0 Sequence
Diagrams (2005)

3. Georg, G., Bieman, J., France, R.: Using Alloy and UML/OCL to specify run-time
configuration management: a case study. Practical UML-Based Rigorous Develop-
ment Methods-Countering or Integrating the eXtremists 7 (2001)

4. Götz, M., Roser, S., Lautenbacher, F., Bauer, B.: Token Analysis of Graph-Oriented
Process Models. New Zealand Second International Workshop on Dynamic and
Declarative Business Processes (DDBP), in conjunction with the 13th IEEE In-
ternational EDOC Conference (EDOC 2009) (September 2009)

5. Mandel, L., Cengarle, M.: On the expressive power of the Object Con-
straint Language OCL. Available on the World Wide Web: http://www. fast.
de/projeckte/forsoft/ocl (1999)

6. Ober, I.: An ASM Semantics of UML Derived from the Meta-Model and Incorpo-
rating Actions pp. 356–371 (2003)

7. Object Management Group: Object Constraint Language.
http://www.omg.org/spec/OCL/2.0/ (Mai 2006)

8. Varró, D.: A formal semantics of UML Statecharts by model transition systems.
Graph Transformation pp. 378–392 (2002)

9. Waheed, T., Iqbal, M., Malik, Z.: Data Flow Analysis of UML Action Semantics for
Executable Models. Lecture Notes in Computer Science 5095, 79–93 (2008)

41

Using SLE for creation of Data Warehouses

Yvette Teiken

OFFIS, Institute for Information Technology, Germany
teiken@offis.de

Abstract. This paper describes how software language engineering is
applied to the process of data warehouse creation. The creation of a data
warehouse is a complex process and therefore costly. My approach decom-
poses the data warehouse creation process into different aspects. These
aspects are described with different languages which are integrated by a
metamodel. Based on this metamodel, large parts of the data warehouse
creation process can be generated. With my approach data warehouses
are created more comfortable in less time.

1 Problem Description and Motivation

Health Reporting describes the preparation and presentation of health relevant
issues relating to population. It is used to give information to stakeholders in the
health care system, politicians and interested non-professionals. Furthermore,
risks are identified and appropriate warnings issued. In the Federal State of North
Rhine-Westphalia this task is carried out by the government agency for public
health called LIGA (Landesinstitut für Gesundheit und Arbeit). LIGA provides
a variety of different reports and is able to answer ad hoc questions. The reports
are based on data from different sources and different systems with different
formats. These sources are e.g. data from different public health departments
or insurances. To fulfill these requirements, software support is needed. This
means data has to be integrated into one dataset so that different sources can be
related. Support is also needed for transforming data on regular basis into the
integrated dataset. Also frontend and report generation has to be developed.

One software system providing this support is the MUSTANG platform de-
veloped at OFFIS. MUSTANG is used at LIGA. The base of each MUSTANG
instance is an integrated dataset, this is also called data warehouse (DWH). In
an integrated dataset all relevant organizational knowledge is stored for com-
plex analysis. For fast data navigation and analysis, Online Analytical Process-
ing (OLAP) [4] is often used. OLAP is an approach that allows navigation and
querying data more comfortable than using exact queries like SQL. For OLAP
a multidimensional data model is needed. The initial build-up of a DWH with
a multidimensional integrated dataset is a complex task [8]. During the initial
build-up of DWH the following analyzing and design steps have to be performed:

Analysis of organizational data: To find data that can be used in the
resulting DWH, existing data sources have to be analyzed. This analysis in-
cludes the content, format and the accessibility of the data. This kind of data is

43

called fact data. In a DWH this fact data is extracted and integrated into the
so called integrated dataset. Define information demand: Define what infor-
mation should be provided by the DWH. This can be simple figures or complex
computations. Data source transformation: Fact data has to be transformed
in the data format of the integrated dataset. Therefore, for every data source a
transformation has to be designed that translates data into the format of the in-
tegrated data set and stores it there. Define multidimensional data model:
Defines how fact data can be described multidimensionally and grouped together
in hierarchies. Data quality: Based on DWH, analysis decisions are made so it
is important to define data quality standards and how to identify invalid data.

To perform these steps no standardized process exists. Documentation of
these steps is usually done with a large number of documents. A problem with
this kind of documentation is missing, distributed or inconsistent information.
Another aspect is that during realization a lot schematic work has to be done.
For example, a multidimensional schema has to be designed and realized in the
OLAP system, the integrated dataset, and at the frontend software.

2 Related Work

Data Warehouse analysis and design as described in [1] consists of different
phases. For these different phases of the DWH creation, languages and tools have
been developed. In case of multidimensional modeling, languages like Application
Design for Analytical Processing Technologies (ADAPT) by [3] exist. There are
also languages that describe mapping for relational databases like R2D [2] or
languages that describe data quality issues like InDaQu [15].

Another field of related work is automated creation of DWHs. The feasibility
to connect MDA with the DWH process has been shown in [12]. They also devel-
oped a MDA framework for DWH. It covers data integration, data sources, and
multidimensional models. The authors show the application of their approach
through a case study. However, their main focus are models and not languages.

More related to SLE is the work of Rizzi. His group deals with modeling differ-
ent aspects of DWHs. For example in [13] modeling technique for data cubes and
data flows are suggested and in [9] a UML based approach for what if -analysis
is provided. Another work that deals with SLE and aspects of DWH creation is
[7]. They use modeling languages to generate multidimensional schemas.

All these approaches only deal with a certain aspect of DWH creation, not
with the whole process with language support. In my thesis, I will develop an
approach with languages that cover the whole process of DWH creation. These
languages are integrated through a common metamodel and can deal with mul-
tidimensional structures. Based on the metamodel I will create transformations
that allow generating large parts of the resulting DWH. With these transforma-
tions, schematic work in the step of realization is reduced. Furthermore, I will
create a process model that orders the steps described in combination with the
developed languages to improve documentation. With the process model, the
different aspects are connected and refined.

44

3 Proposed Solution

Data warehouses, as describes here, are very complex systems with different
views, aspects, and levels of detail. To create a single language, these systems
are difficult and not easy to use and maintain. Therefore, it is necessary to
decompose a DWH creation into different aspects and create languages for each.
The different languages will be used by different roles and provide a different
level of detail. A first result is that the process can be decomposed in six aspects:

Data Sources Schemas: Describes all relevant or available data stored in
its operational system of an organization. This aspect contains the subject, the
representation, and technical accessibility. The advantage is that all relevant
sources are described together with their formats and accessibility at one place.
For this aspect the development of an own language may not be necessary but
a meta model will be sufficient.

Data Source Transformation: Describes how data from the sources have
to be transformed to match the analysis schema. Such a description makes it pos-
sible to abstract from the concrete target system and some automatic matching
process can be applied.

Analysis Schema: This aspect describes the multidimensional schema of
the resulting DWH. The multidimensional schema consists of cubes and dimen-
sions. In a cube, fact data is stored. Each cell represents fact data that is numer-
ical and can be aggregated. They are described by dimensional metadata. In a
cube with a time dimension, fact data is stored for dates so monthly and yearly
values are computed by aggregation. The language is based on ADAPT. With
such a language it is possible to reduce schematic work in the realization phase,
as shown in [17], and it can be used to communicate with domain experts.

Measures: Describes what kind of information is intended to be stored in the
DWH. This can be simple fact data like infections. It also includes the designated
granularity of information. For example, to predict an epidemic infect, data
should be available for every date. Measures link fact data with mathematical
operations. In Health Reporting, these are mostly crude rates, interest, and
average. Measures are usually defined by domain experts, in case of LIGA by
epidemiologists. Measures are refined in the analysis schema. With a language
for measures the definition can be used in the realization process and does not
need to be reimplemented.

Hierarchy: The hierarchy aspect is a central one in my thesis because all
other aspects use this directly or indirectly. This aspect describes how data is ag-
gregated. In most cases hierarchies have many members and a complex structure
and they are used in the multidimensional model. For example, imagine a geo-
graphical dimension that contains countries and cities. Using an own language,
these structures can be modeled appropriate. It can help to build a repository
that can be reused in a different DWH. The concrete syntax of the hierarchy
language is based on ADAPT. However, it only allows to model hierarchies con-
ceptually. To model hierarchies logically a tabular extension was created. To
create parent-child relationships a query language was also integrated.

45

Data Quality: In a DWH it is important to ensure that certain quality
issues are met. Naturally, data quality is an aspect of the data sources but when
integrating different systems it would be very costly to deal with quality at the
sources because many different systems have to be considered and changing these
systems is rarely possible. Data quality is a large research field. In my approach,
I want to integrate existing approaches to show how data quality issues can be
integrated. InDaQu [15] is integrated to deal with data consistency.

The languages for the described aspects are developed independently. Each
language is developed with SLE techniques [6] and based on tools like EMF [14]
and MS DSL Tools [5]. To generate a DWH, the different languages and their
metamodels have to be integrated into one metamodel because the different
aspects are very strongly related. Furthermore, to be able to cover the whole
process refering elements from other aspects is necessary.

The integrated metamodel covers all aspects of a DWH at one place. A com-
mon metamodel is a standardized documentation of the whole DWH system.
Other possiblities of an integrated metamodel have been shown in [16]. To inte-
grate a metamodel, [10] suggests two ways, via transformation and via common
elements. I decided to use integration via unidirectional transformation for inte-
gration into metamodel. I created my DSLs with MS DSL Tools but for better
analysis and transformation I move the models to EMF. The common meta-
model consists of different separated metamodels. These are kept in different
files, as suggested in [11]. The different metamodels are integrated via common
elements and the instances via soft references.

The advantage of using SLE for the creation of DWHs is that experts can
design and analyze all aspects of the DWH independently in adequate domain
specific languages. Using the integrated metamodel the generation of a DWH is
easier because all information and transformations are in that single model.

4 Research Method

My hypothesis will be validated via implementation. I will implement the de-
scribed languages, metamodels, and transformations on basis of the MUSTANG
platform. My prototype will be able to generate a configuration for a DWH. I
will regenerate parts of the LIGA DWH that was developed by OFFIS. I will
compare the steps taken. When using my approach these steps will be reduced.

5 Conclusion

Currently I have developed three languages for hierarchies, analysis schema, and
data quality. I integrated them in a common metamodel. Based on this, transfor-
mations for generating multidimensional schemas in databases and integration
interface with consistency were built. The next action is to develop languages
for data sources and data integration as well as the extension of the common
metamodel. The current state of my thesis shows that modeling and generation
of data warehouses can be possible and reasonable with SLE.

46

References

1. Bauer, A., Günzel, H.: Data-Warehouse-Systeme. Architektur, Entwicklung, An-
wendung. Dpunkt Verlag (2008)

2. Bizer, C.: D2R MAP - a database to rdf mapping language. In: WWW (Posters)
(2003)

3. Bulos, D.: OLAP database design: A new dimension. Database Program-
ming&Design Vol. 9(6) (1996)

4. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP to User-Analysts: An IT
mandate. White paper, E.F. Codd Associates (1993)

5. Cook, S., Jones, G., Kent, S.: Domain Specific Development with Visual Studio
DSL Tools (Microsoft .net Development). Addison-Wesley Longman, Amsterdam
(2007)

6. Favre, J.M., Gasevic, D., Lämmel, R., Winter, A.: Editorial - software language
engineering. IET Software 2(3), 161–164 (2008)

7. Gluchowski, P., Kurze, C., Schieder, C.: A modeling tool for multidimensional data
using the adapt notation. In: HICSS. pp. 1–10. IEEE Computer Society (2009)

8. Golfarelli, M.: Data Warehousing Design and Advanced Engineering Applications:
Methods for Complex Construction, chap. From User Requirements to Conceptual
Design in Data Warehouse Design - a Survey. Information Science Reference (2009)

9. Golfarelli, M., Rizzi, S.: UML-Based modeling for What-If Analysis. In: DaWaK
’08: Proceedings of the 10th international conference on Data Warehousing and
Knowledge DiscoveryMazon. pp. 1–12. Springer-Verlag, Berlin, Heidelberg (2008)

10. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. John Wiley & Sons (2008)

11. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Longman (2008)

12. Mazon, J.N., Trujillo, J., Serrano, M., Piattini, M.: Applying MDA to the devel-
opment of data warehouses. In: DOLAP ’05: Proceedings of the 8th ACM inter-
national workshop on Data warehousing and OLAP. pp. 57–66. ACM, New York,
NY, USA (2005)

13. Pardillo, J., Golfarelli, M., Rizzi, S., Trujillo, J.: Visual modelling of Data Ware-
housing Flows with UML profiles. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M.
(eds.) DaWaK. Lecture Notes in Computer Science, vol. 5691, pp. 36–47. Springer
(2009)

14. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley Longman (2008)

15. Teiken, Y., Brüggemann, S., Appelrath, H.J.: Interchangeable consistency con-
straints for public health care systems. In: Shin, S.Y., Ossowski, S., Schumacher,
M., Palakal, M.J., Hung, C.C. (eds.) SAC. pp. 1411–1416. ACM (2010)

16. Teiken, Y., Flöring, S.: A common meta-model for data analysis based on dsm. In:
The 8th OOPSLA workshop on domain-specific modeling (2008)

17. Teiken, Y., Rohde, M., Appelrath, H.J.: Model-driven ad hoc data integration in
the context of a Population-based Cancer Registry. In: ICSOFT 2010 (2010)

47

Domain-Specific Languages for Digital Forensics

Jeroen van den Bos

Centrum Wiskunde & Informatica
Nederlands Forensisch Instituut

jeroen@infuse.org

Abstract. Due to strict deadlines, custom requirements for nearly every case
and the scale of digital forensic investigations, forensic software needs to be ex-
tremely flexible. There is a clear separation between different types of knowledge
in the domain, making domain-specific languages (DSLs) a possible solution for
these applications. To determine their effectiveness, DSL-based systems must be
implemented and compared to the original systems. Furthermore, existing sys-
tems must be migrated to these DSL-based systems to preserve the knowledge
that has been encoded in them over the years. Finally, a cost analysis must be
made to determine whether these DSL-based systems are a good investment.

1 Problem Description and Motivation

Digital forensic investigations are nearly exclusively performed using software, but
high pressure in the form of strict deadlines combined with case-specific requirements
severely complicates its use. The problems associated with constantly changing soft-
ware are well-known [11]. This research attempts to address this problem by introduc-
ing and migrating to DSL-based systems.

The use of software in digital forensics is the result of constantly increasing storage
device sizes (a gigabyte halves in price every fourteen months [10]), increasing connec-
tivity (the amount of households having a broadband connection has more than doubled
in the past five years [4]) and the pervasiveness of digital devices (currently there are
more active mobile phones in The Netherlands than there are citizens [4]).

This explosion in connectivity and storage capacity has many advantages, but also
drawbacks, one of them being the increased use of these capabilities by criminals. This
in turn has caused both the amount and scale of digital forensic investigations to ex-
plode. Extensive automation appears to be the only feasible approach to deal with these
increases, as manual inspection of even a single gigabyte for possible evidence could
take years to complete.

Some things haven’t changed however, including legal requirements around (pre-
charge) detainment of suspects. This means that forensic investigations nearly always
have very strict deadlines. Additionally, the variety of devices, applications and com-
munication channels ensures that digital forensic investigations typically require custom
tools.

Application-specific knowledge, in the form of communication protocols, storage
device layouts and embedded systems implementation details are often case-specific
while the software used to recover data are tools implementing general algorithms.

49

The algorithms rarely have to change (although new ones regularly emerge), but the
specifications they are working with constantly change.

Solutions exist that employ methods of software reuse and abstraction to reduce
modification time, but in practice it turns out that these still require software engineers
to actually make the changes. In a situation where a large amount of changes to software
must be made within a couple of days, the process of transferring knowledge to software
engineers who then make the actual changes is time-consuming, error-prone and hard
to trace.

2 Brief Overview of Related Work

Extensible digital forensic applications exist, such as TULP2G [2] for analyzing em-
bedded devices and ReviveIt [14] and Scalpel [16] for recovering lost and hidden files
from storage devices. They all have similar limitations however in that they tangle
implementation of application-specific knowledge (e.g. file formats and memory lay-
outs) and recovery algorithms. In TULP2G, the application-specific knowledge in the
form of communication protocols must be defined in an imperative language along with
the recovery algorithms. Both ReviveIt and Scalpel use an external notation to specify
application-specific knowledge in the form of file format specifications, but their no-
tation is heavily based on the actual recovery algorithms used, making it difficult to
develop new algorithms without changing the search patterns.

There is a lot of research in interpreting structured data. Parsing techniques [7] us-
ing grammar formalisms such as ANTLR [15] and SDF2 [18] are targeted at textual
programming languages however and lack features to support complex data dependen-
cies between elements in a protocol, file format or memory structure. Data-dependent
grammars extend traditional parsing technology to allow the definition of such depen-
dencies [8]. These grammars are used to derive parsers for Data Description Languages
(DDLs) [6]. PADS/ML [12], DataScript [1] and Zebu [3] are all examples of a such
DDLs. These DDLs are typically positioned as productivity-enhancing tools for pro-
grammers, making them less suitable for use in forensic investigations where users are
often reverse engineering data structures instead of developing them from scratch.

There is extensive work in the area of developing DSLs [5] [17] [13] [9], however
some open questions remain such as how to use knowledge from existing systems in
their design.

3 Proposed Solution

Our proposed solution is to develop one or more DSLs to meet the challenges posed by
digital forensics. Model-driven engineering in general and DSLs in particular may be a
good fit for digital forensic software.

3.1 General Approach

An analysis of both literature and practice shows that digital forensic investigations
often have multiple concerns that may be valuable in applying a model-driven approach:

50

Application-specific knowledge Information that is application-specific refers to knowl-
edge about devices, formats and protocols that are specific to a certain brand,
type, standard or version of something. For example, when analyzing communica-
tion streams, this includes the protocols and compression and encryption methods.
When analyzing a digital storage device (e.g., a hard drive), this includes the disk
layout, file systems and file formats. When analyzing an embedded system (e.g., a
mobile phone), this includes the memory layout.

Recovery algorithms Methods that belong to this category are techniques that take
application-specific knowledge and use algorithms to recover data from the actual
stream, storage or embedded device. They are often specific for a certain area of
digital forensics, such as reassembly and identification algorithms for recovering
deleted or hidden files from a confiscated hard drive. Although specific for a certain
area, they are independent of specific changes to a format or version.

The proposed solution to increase usability and modifiability is to create one or sev-
eral DSLs for forensic investigators. This will allow them to express application-specific
knowledge that they obtain during their investigations in a language that is appropri-
ate to them and abstract away all implementation details such as recovery algorithms.
These in turn will be implemented in general-purpose languages and be maintained by
software engineers.

However, to be able to do this several research questions must be addressed, such
as:

1. How can qualities such as flexibility and adaptability be compared between an ex-
isting system and a DSL-based system?

2. How can the difference in development and maintenance costs between an existing
system and a DSL-based system be measured?

3. How should the form of a DSL be determined?
4. How can the knowledge encoded in an existing system be used in the design of a

DSL?
5. How can a DSL be developed so that it can be maintained by general developers?

3.2 Example Application

An example application of the general approach discussed is a file carver. File carving
is the process of recovering deleted or damaged files from data storage devices (e.g.
hard drives). The implementation of file systems allows deleted files to often be recov-
erable, although the contents of these files may be spread out across different sections
of a device. To undo this so-called fragmentation, file carving algorithms use heuris-
tics, operating system implementation details and file format recognizers to attempt to
recover complete files.

If these recognizers are implemented using a general-purpose language, their method
of recognizing file types is typically hard-coded in each instance. Furthermore, they
may become tangled with the implementation of the recovery algorithms. A result is
that changing a recovery algorithm or adding a new file format requires a significant
software engineering effort.

51

However, using a data description language to define file formats along with a code
generator to transform these declarative descriptions into recognizer implementations
may reduce the required effort significantly. Furthermore, separating definition of file
formats from the implementation of recovery algorithms may make it easier to modify
or add new algorithms afterwards. Finally, a code generator may perform additional
optimizations that would be difficult to perform manually (such as take several file
format definitions and generate a single recognizer, improving scalability by reducing
reads).

4 Research Method

To validate our hypothesis and answer the research questions, the following steps will
be undertaken:

DSL Development Experiments will be performed by implementing one or several
DSLs in the digital forensic domain. This will require experiments in the area of
domain analysis as well.

DSL Validation The implemented DSL-based systems will be validated by comparing
them in general use to existing digital forensic software, to determine whether the
approach is viable in areas such as functionality, runtime performance and flexibil-
ity.

Automated Analysis Several techniques will be employed to aid DSL development:

– Automated model extraction to assist DSL design.
– Automated comparison between the existing systems and the DSL-based sys-

tems, to find implementation differences and preserve knowledge.

5 Conclusion

To keep up with the size of storage devices, speeds of network connections and amount
of digital devices in use, digital forensic investigations rely heavily on custom software
applications to perform large parts of analyses. However, the continuous introduction of
new consumer applications and devices requires forensic software to be exceptionally
flexible and adaptable.

To realize these requirements, using domain-specific languages to raise the level
of abstraction and separate different concerns in the domain may be a viable approach.
However, this requires analysis, design and implementation of systems employing these
techniques as well as evaluation to compare existing systems to these alternative solu-
tions.

This research will perform these steps by implementing one or several DSL-based
systems, comparing them to existing systems to determine their relative performance
and employ automated analysis techniques to aid in the design and preserve knowledge.

52

References

1. Back, G.: DataScript—a specification and scripting language for binary data. In: Proceedings
of the 1st ACM SIGPLAN/SIGSOFT conference on Generative Programming and Compo-
nent Engineering (GPCE’02). LNCS, vol. 2487, pp. 66–77. Springer (2002)

2. van den Bos, J., van der Knijff, R.: An Open Source Forensic Software Framework for Ac-
quiring and Decoding Data Stored in Electronic Devices. International Journal of Digital
Evidence 4(2) (2005)

3. Burgy, L., Reveillere, L., Lawall, J.L., Muller, G.: A language-based approach for improving
the robustness of network application protocol implementations. In: Proceedings of the 26th
IEEE International Symposium on Reliable Distributed Systems (SRDS’07). pp. 149–160
(2007)

4. Centraal Bureau voor de Statistiek: De Digitale Economie. CBS (2009)
5. van Deursen, A., Klint, P., Visser, J.: Domain-Specific Languages: An Annotated Bibliogra-

phy. SIGPLAN Notices 35(6), 26–36 (2000)
6. Fisher, K., Mandelbaum, Y., Walker, D.: The Next 700 Data Description Languages. Journal

of the ACM 57(2), 1–51 (2010)
7. Grune, D., Jacobs, C.: Parsing Techniques—A Practical Guide. Springer (2008)
8. Jim, T., Mandelbaum, Y., Walker, D.: Semantics and Algorithms for Data-Dependent Gram-

mars. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL’10). pp. 417–430. ACM (2010)

9. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Generation. Wiley-
IEEE Computer Society Press (2008)

10. Komorowski, M.: A History of Storage Cost (2009), http://www.mkomo.com/
cost-per-gigabyte

11. Lehman, M.: Programs, life cycles, and laws of software evolution. Proceedings of the IEEE
68(9), 1060 – 1076 (1980)

12. Mandelbaum, Y., Fisher, K., Walker, D., Fernandez, M., Gleyzer, A.: PADS/ML: A Func-
tional Data Description Language. In: Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’07). pp. 77–83. ACM
(2007)

13. Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop Domain-Specific Lan-
guages. ACM Comput. Surv. 37(4), 316–344 (2005)

14. Metz, J.: ReviveIt 2007, http://sourceforge.net/projects/revit/
15. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages. Pragmatic

Bookshelf (2007)
16. Richard, III, G.G., Roussev, V.: Scalpel: A Frugal, High Performance File Carver. In: Refer-

eed Proceedings of the 5th Annual Digital Forensic Research Workshop (DFRWS’05) (2005)
17. Spinellis, D.: Notable design patterns for domain-specific languages. Journal of Systems and

Software 56(1), 91–99 (2001)
18. Visser, E.: Syntax Definition for Language Prototyping. Ph.D. thesis, University of Amster-

dam (1997)

53

Towards Better Support for Pattern-Oriented
Software Development

Dietrich Travkin

Software Engineering Research Group,
Heinz Nixdorf Institute & Department of Computer Science,

University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany,

travkin@upb.de

Abstract. Design patterns document approved solutions for recurring
design problems. Due to their vague description such patterns are widely
applicable, but their application is error-prone. Since pattern applications
are rarely documented, the originally intended design tends to deviate
during software evolution. With my research I aim at explicitly modeling
and validating pattern applications in design models in order to maintain
an up-to-date documentation and reduce design deviation.

1 Introduction

When developing or adapting software, developers have to solve similar design
problems over and over again. In order to reuse good solutions for common design
problems, experts have documented approved solutions as software patterns. One
of the most famous summaries of software patterns are Design Patterns described
by Gamma et al. [7]. A design pattern has a unique name and consists of a
problem description, the intent, a general description of the design that solves
the problem, and consequences.

For the purpose of making such solutions reusable in many cases, they are
described informally and in a very general way. Instead of documenting a con-
crete design, only the main idea is described. Unfortunately, this results in a lot
of work and complicated decisions that are necessary to transfer a solution to
and refine it for a concrete software design. The same holds for other software
pattern descriptions, too [3, 2, 10, 8, 1].

Any pattern’s exemplary design described in literature has to be manually
adapted to the existing software design, i.e. a developer has to identify design
parts that are to be added or adapted. The resulting design changes are usu-
ally performed manually. Furthermore, once a software pattern is applied, it is
rarely documented or the current design deviates from its documentation due to
subsequent design changes. This may result in design erosion [12] and the loss
of the original developer’s intent (e.g. to decouple certain software parts, make
them replaceable and thus make the software more flexible).

55

My research aims at the development of methods and tools for model-driven
software development that support software engineers in formally specifying soft-
ware patterns, flexibly applying such patterns to an existing software design mo-
del, documenting the pattern applications, and validating the design in case of
changes affecting the pattern applications.

2 Related Work

Since the introduction of software patterns, esp. design patterns [7], about 15
years ago, several researchers tried to formally specify patterns [11], e.g. in order
to develop tools that automatically or interactively apply a pattern to an existing
design or check whether the design conforms to a pattern. Most of them use sets
of logic formulas to describe a pattern. But in many cases formulas are less
comprehensible dable than graphical design description languages like UML,
where relations are clearly visualized.

An example for a graphical and yet formal pattern specification language is
the LePUS language [9, 11]. The proposed approach enables developers to check
if a pattern implemention complies with its formal LePUS specification. A major
drawback is the need for extensive user interaction before a conformance check
can be performed.

There are also some approaches where patterns are specified in UML or
UML-like languages. One of them uses specialized class and sequence diagrams
as well as OCL [6, 11]. However, currently there is no tool support for validation
of applied patterns.

Furthermore, none of the approaches mentioned so far [11] provides support
for application of patterns in an existing design and applied patterns cannot be
documented in design models.

An early research result [5] enables developers to specify their own patterns,
to apply patterns in an existing Smalltalk application, and to check previously
specified constraints in order to ensure that the implementation complies with
the pattern. Nevertheless, the pattern application and validation operations have
to be implemented manually, which complicates the specification of new patterns.
Furthermore, they are applied to code, not to design models which are preferred
in a model-driven software development process.

Commercial tools like IBM Rational Software Architect1, Sparx Enterprise
Architect2, and Borland Together 3also use UML to specify software patterns.
In the Rational Software Architect, pattern applications are explicitly modeled
and thus documented in UML models. Applying a pattern modifies a UML mo-
del and creates classes, methods, etc. But for each new pattern an expert has
to manually implement the pattern application operations. Enterprise Archi-
tect and Together only save exemplary design parts in order to re-instantiate
them later. Enterpise Architect in addition provides rudimentary functionality

1 http://www-01.ibm.com/software/awdtools/swarchitect/websphere
2 http://www.sparxsystems.de
3 http://www.borland.com/us/products/together/index.html

56

to merge such an example model with an existing design. Besides, neither of
these tools supports validation of applied patterns.

3 Proposed Approach

With my research I focus on model-driven software development. I assume that
there is a design model that is created by a developer and used for code genera-
tion. Software patterns will be applied on such a model and will be documented
and checked in such a model.

In order to formally specify software patterns, I propose a language that
is capable of describing the pattern structure and most of the corresponding
behavior as well as constraints that define the properties to be preserved after
a pattern application. In order to base my language on concepts such as types,
attributes, operations, type relations like associations and inheritance, as well as
behavioral aspects like read or write access, delegation, etc., I restrict the design
models to object-oriented models like the UML. In addition, I plan to support
compositions of pattern specifications in order to increase reuse and to simplify
the specification of complex patterns.

I am currently developing a meta-model and a graphical syntax for the pat-
tern specification language that defines all language constructs. A first draft of
a pattern specification based on this language is illustrated in Figure 1.

1

«type»

Subject

«type»

Observer

«operation»

notify

«operation»

update

«feature»

state
delegate

read

*

callee

objects

{

set subjects

«type»

ConcreteSubject

set observers

«type»

ConcreteObserver

«operation»

concreteUpdate

write

call

callee

featurefeature

subject

observers

Fig. 1. Sketch of an Observer pattern specification

As an example, I specified the Observer pattern [7]. Between the types Sub-
ject and Observer a reference observers with cardinality * is specified. The sub-
ject’s notify operation delegates its functionality to an observer’s update op-
eration, which is illustrated by a delegate node and corresponding arrows. In
contrast to other approaches, it is also specified on which objects the update
operation is to be called: in this case on each Observer object (denoted as {∀})
referenced by the observers reference. Moreover, control flow can be specified as
well. For example, a write access to the state feature (this can be an attribute or
a reference) is followed by a call of the notify operation (denoted as solid arrow

57

between the nodes write and call). Set fragments (rectangles labelled with set)
specify groups of elements that as a whole can be created multiple times in the
target design model, e.g. a concrete observer type with a corresponding concrete
update operation can be created several times.

I plan to provide tool support for the specification of patterns as well as their
semi-automated application. In order to apply a pattern in an existing design
model (e.g. a model of classes), a developer first specifies which parts of the design
he would like to reuse. For that purpose, the developer maps existing design
model elements (e.g. existing classes) to the pattern roles (nodes in Figure 1)
that are to be played. In a next step, the tool will automatically adapt the design
model by creating new model elements for each role that is not mapped. This
way, the pattern application remains flexible and the developer decides in each
situation what is going to be re-used or created anew.

The actual pattern application will be performed by means of a model trans-
formation which is generated based on the selected pattern and the selected
design model elements to be re-used. Due to their formal semantics, available
tool support, and our research group’s expertise, I plan to use so-called story di-
agrams [4] to specify the transformations. Story diagrams are specialized UML
activity diagrams where the actions are graphically specified as graph grammar
rules. These rules describe the object structures to be found and corresponding
structure modifications.

Pattern applications will be documented as first-class constructs in the target
modeling language so that developers do not loose track of applied patterns. This
can be done by annotating the original design model (e.g. a class diagram) and
visualizing the elements involved in a pattern application as well as the roles they
are playing. For this purpose, I will provide an adequate notation and annotation
mechanism.

If the design model is changed after a pattern application, the affected design
elements are to be checked if they still comply with the pattern specification.
For example, it can be checked if once created model elements still exist and if
the specified constraints are satisfied, e.g. the design complies to specified access
restrictions.

4 Summary and Evaluation Idea

Tool support as described above can significantly ease software development. By
applying patterns, design solutions can be re-used on a high level of abstrac-
tion, the pattern applications are automatically documented in the model, and
corresponding constraints are automatically checked after design modifications
so that the original intent is preserved. The major goals of this approach are
improved comprehendability of design models and reduced design deviation.

I plan to provide a prototype and to apply my development methodology to a
realistically-sized software project in order to assess the benefits and drawbacks
of my approach. Furthermore, I plan to compare traditional and the proposed
pattern-oriented software development in an experimental setting.

58

References

1. Deepak Alur, John Crupi, and Dan Malks. Core J2EE Patterns – Best Practices
and Design Strategies. Core Design Series. Prentice Hall, Sun Microsystems Press,
2 edition, 2003.

2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture – A System of Patterns, volume 1 of
Software Design Patterns. John Wiley and Sons, Ltd, 1996.

3. James O. Coplien and Douglas C. Schmidt, editors. Pattern Languages of Program
Design, volume 1 of Software Patterns Series. Addison-Wesley, 1995.

4. Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story Dia-
grams: A New Graph Rewrite Language Based on the Unified Modeling Language
and Java. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz
Rozenberg, editors, Theory and Application of Graph Transformations (TAGT’98),
volume 1764 of Lecture Notes in Computer Science, pages 296–309. Springer, 1998.

5. Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool Support for Object-
Oriented Patterns. In ECOOP’97 – Object-Oriented Programming, volume
1241/1997 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
1997.

6. Robert B. France, Dae-Kyoo Kim, Sudipto Ghosh, and Eunjee Song. A UML-Based
Pattern Specification Technique. IEEE Transactions on Software Engineering,
30(3):193–206, 2004.

7. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley, 1995.

8. Robert S. Hanmer. Patterns for Fault Tolerant Software. Software Design Patterns.
John Wiley and Sons, Ltd, 2007.

9. Jonathan Nicholson, Epameinondas Gasparis, Amnon H. Eden, and Rick Kazman.
Automated Verification of Design Patterns with LePUS3. In 1st NASA Formal
Methods Symposium, Moffett Field, California, April 2009.

10. Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture – Patterns for Concurrent and Networked Objects,
volume 2 of Software Design Patterns. John Wiley and Sons, Ltd, 2000.

11. Toufik Taibi, editor. Design Pattern Formalization Techniques. IGI Publishing,
Hershey, PA, USA, 2007.

12. Jilles van Gurp and Jan Bosch. Design erosion: problems and causes. The Journal
of Systems and Software, 61(2):105–119, 2002.

59

Using Product Lines to Manage Variability in
Mobile Context-Aware Applications

Dean Kramer

School of Computing and Technology
Thames Valley University, London, UK, W5 5RF

dean.kramer@tvu.ac.uk

1 Introduction and Motivation

Today, the penetration of modern smart phones is vastly increasing with over
172 million smart phones shipped worldwide in 2009 [5]. It is quickly becoming
predictable that these smart phones will contain sensors such as Global Position-
ing System (GPS) receivers, accelerometers, close proximity sensors and digital
compasses. These components make smart phones a good candidate for perva-
sive computing and context-awareness. Context-awareness can be described as
a systems ability to adapt and alter its behavior based on the situation it is
current aware of [9]. Pervasive computing and context-awareness are becoming a
highly interested area as it allows for applications to become more intelligent and
more usable, unlike traditional software applications which would only respond
to direct user input [6].

People and clients using software systems are becoming increasingly demand-
ing regarding configuration and system features, thus requiring customization.
In software development, re-developing software from scratch for each difference
is purely uneconomical. This can be solved using Software Product Lines (SPL),
creating many similar products from a single set of core assets [12]. Systems
can be customized using variation points within its design, thus allowing for
variants to shape the final product based on the configuration. This variability
can be modeled using commonly used feature-modeling, which can help express
different required features and variations of features. Because of the fragmen-
tation of hardware/firmware, firmware/hardware constrained features should be
modeled identifying this dependency which currently is not supported in feature
modeling.

Though a SPL approach offers a viable approach to handling variability,
deriving products from SPLs can be a challenging task. To compliment SPLs,
the use of Model-Driven Development (MDD) and Domain Specific Languages
can help allow for model transformations.

Domain Specific Languages (DSL) allow the developer to raise abstraction
away from the software implementation making development easier. DSLs can
be used within SPL engineering [14], and used to help provide model transfor-
mations. These transformations include horizontal (model to model), and more
importantly in my case, vertical (model to code).

61

In this research, I propose to help integrate the modeling of context, features
and their dependencies on hardware and firmware platforms. To compliment this,
a DSL will be defined as method of expressing the model, which can then provide
model-code transformations providing large amounts of application structure
and features based on the domain feature implementations and variations.

2 Related Work

Developing for mobile platforms vastly differs to desktop and larger systems.
Firstly, there are many different constraints that need to be considered. These
constraints include lack of screen size, processing power, memory, and power
consumption [8]. Though this idea may look out-dated, the expediential growth
in software complexities and sizes causes this to remain true. Furthermore single
application development is becoming increasing rare, with the trend more on a
set of similar applications. Because of this, and increasing software complexities,
the management of this re-usable software needs to be made simpler. The use of
product lines is already evident in mobile gaming [10].

2.1 Context-Awareness

Much work in the past for aiding the production of context-ware applications
has been through the developments of frameworks. The Java Context-Aware
Framework [1] is a lightweight Java-based framework for creating context-aware
applications. The feasibility of using this framework is help backed by its use in
medical scenarios [2]. An issue with using this approach is the dependence on
an external context-service, which for smart phone applications is not a desired
method and can also bring security issues when transmitting sensitive data.
Context-reasoning and challenges of mobility have been addressed with the use
of a sentient object model [3].

MDA approaches have been proposed for context-aware software develop-
ment. CAMEL (Context Awareness Modeling Language) [13], a DSL design for
the initial stage of software development provides a method for modeling context
dependent behaviors. Authors pointed out that currently the language does not
handle model transformations to executable code.

2.2 Software Product Lines

UbiFEX [7] has been presented as a feature model notation to context-aware
SPLs. This notation allows for context rule specific product configuration, but
does not complete the need for modeling the complete system combining features
and contexts.

Modeling context and its adaptation requires modelling within a product
line, to help indicate how it relates to each feature. Parra et al. [11] creates
a composition of assets binding context adaptation to features. This was later

62

used with the FraSCAti platform1, an open source implementation of the Ser-
vice Component Architecture standard. This approach is similar to my plans,
but there is a lack of concern for issues relating to how hardware/firmware may
constrict different contexts being monitored and how features within the appli-
cation may/may not be compatible with differing requirements. Furthermore,
though the use of dynamic product line derivation is a useful approach for larger
systems, because of different issues relating to mobile development a less dy-
namic derivation may prove more suitable. Firstly if a high amount of variation
is in the application, this may ’bloat’ the application unnecessarily, taking up
already limited space on the device.

Despite the research being carried out into making product lines easier to
implement, the use of SPLs for asset re-use is still having low adoption rates.
This is because it affects the whole software life cycle, compared to other meth-
ods including Model Driven Development and Service Oriented Architecture [4].
Reasons for the lack of adoption include hardware/software integration issues,
unpredictability caused by the recession and lack of SPL experts and low cost
training.

3 Proposed Research

The primary aim of this research is to experiement and explore with a DSL
to help support product derivation in context-aware mobile software product
lines. This product-derivation will need to handle platform version differences,
hardware differences and context differences. The proposed research will be a
combination of action research and case-study based research. Within the re-
search, two case studies will be developed, creating differing product-lines. The
first of these case studies will be on a sports application, with the second more
focusing on a mobile enterprise application.

3.1 Research Objectives

1. Investigate how you express the context aware environment and it’s im-
pact on application development. Modeling and defining the contexts for the
product line and how it relates to the main application logic will be required.
Metamodels for context, platform and application will be developed which
will form the basis for the DSL.

2. Research into how to manage variability with the different contexts that will
be supported within the application. Also, variability will need to be mapped
and modeled to deal with different smart-phone hardware components and
firmware versions.

3. Acquirement and analysis of DSL requirements, primarly driven through the
development of two software product lines.

1 http://frascati.ow2.org

63

4. Define and develop a DSL to help enable model-code transformations using
Domain Specific Modelling (DSM) and implement over several iterations to
suit case studies.

5. Use or develop an analysis framework for validating the proposed DSL. This
validation will help ensure that the language meets all the requirements of
a language.

3.2 Product Line Approach

The approach I propose for the product line is shown in Figure 1. This approach
is made up of a product line (PL) meta model, and the DSL to specialise and
deviate products into specialised applications (App). To help gain requirements
of the DSL, meta-models will be developed including:

– Context Metamodel, a model indicating the different conditions that will
constitute a context including user and environmental conditions.

– Platform Metamodel, a model showing the similarities and variability within
the platforms. This will include hardware and software differences.

– Application Metamodel, a model describing the application. This will in-
clude different components and features included, with emphasis on core
and additional/alternative parts of the application.

Fig. 1. Proposed Product Deviation Approach

For code generation, the PL will have software assets produced by MDD
using a mix of Aspect-Oriented Programming (AOP) and Component-Oriented
Programming (COP). Using aspects can easily seperate application concerns, in
this case different platforms and/or contexts. These assets are then specialised
using the DSL to produce partial application specific code, to which further
implementation can be added.

64

References

1. Bardram, J.E.: The java context awareness framework (jcaf) - a service infrastruc-
ture and programming framework for context-aware applications. In: Pervasive
Computing. 2005: Munchen. pp. 98–115 (2005)

2. Bardram, J.E., Nørskov, N.: A context-aware patient safety system for the oper-
ating room. In: UbiComp ’08: Proceedings of the 10th international conference on
Ubiquitous computing. pp. 272–281. ACM, New York, NY, USA (2008)

3. Biegel, G., Cahill, V.: A framework for developing mobile, context-aware applica-
tions. In: PERCOM ’04: Proceedings of the Second IEEE International Conference
on Pervasive Computing and Communications (PerCom’04). p. 361. IEEE Com-
puter Society, Washington, DC, USA (2004)

4. Catal, C.: Barriers to the adoption of software product line engineering. SIGSOFT
Softw. Eng. Notes 34(6), 1–4 (2009)

5. De La Vergne, H.J., Milanesi, C., Zimmermann, A., Cozza, R., Nguyen, T.H.,
Gupta, A., Lu, C.: Competitive landscape: Mobile devices, worldwide, 4q09 and
2009. Tech. rep., Gartner (2010)

6. Du, W., Wang, L.: Context-aware application programming for mobile devices. In:
C3S2E ’08: Proceedings of the 2008 C3S2E conference. pp. 215–227. ACM, New
York, NY, USA (2008)

7. Fernandes, P., Werner, C., Murta, L.: Feature modeling for context-aware software
product lines. In: SEKE. pp. 758–768 (2008)

8. Gaedke, M., Beigl, M., Gellersen, H.W., Segor, C.: Web content delivery to het-
erogeneous mobile platforms. In: ER ’98: Proceedings of the Workshops on Data
Warehousing and Data Mining. pp. 205–217. Springer-Verlag, London, UK (1999)

9. Häkkilä, J., Schmidt, A., Mäntyjärvi, J., Sahami, A., Åkerman, P., Dey, A.K.:
Context-aware mobile media and social networks. In: MobileHCI ’09: Proceedings
of the 11th International Conference on Human-Computer Interaction with Mobile
Devices and Services. pp. 1–3. ACM, New York, NY, USA (2009)

10. Nascimento, L.M., Almeida, E.S.d., Meira, S.R.d.L.: A case study in software prod-
uct lines - the case of the mobile game domain. In: SEAA ’08: Proceedings of the
2008 34th Euromicro Conference Software Engineering and Advanced Applications.
pp. 43–50. IEEE Computer Society, Washington, DC, USA (2008)

11. Parra, C., Blanc, X., Duchien, L.: Context awareness for dynamic service-oriented
product lines. In: SPLC ’09: Proceedings of the 13th International Software Prod-
uct Line Conference. pp. 131–140. Carnegie Mellon University, Pittsburgh, PA,
USA (2009)

12. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles, and Techniques. Springer (2005)

13. Sindico, A., Grassi, V.: Model driven development of context aware software sys-
tems. In: COP ’09: International Workshop on Context-Oriented Programming.
pp. 1–5. ACM, New York, NY, USA (2009)

14. Voelter, M.: Using domain specific languages for product line engineering. In: SPLC
’09: Proceedings of the 13th International Software Product Line Conference. pp.
329–329. Carnegie Mellon University, Pittsburgh, PA, USA (2009)

65

Towards Privacy Policy-Aware
Web-Based Systems

Ekaterina Pek
pek@uni-koblenz.de

ADAPT Lab,
Universität Koblenz-Landau,

Koblenz, Germany

1 Problem Description and Motivation

The Web provides different ways to communicate and perform activities that
vary from simple to sophisticated: using forums on websites, online shopping,
orchestrating Web Services. All of them involve processing data about the user,
be it technical (e.g., the version of the user’s browser or the IP address) or
personal information (name, address, gender, credit card number, etc.). In order
to give the user control over their data on the Web, P3P, the Platform for
Privacy Preferences, [5] was officially recommended by the World Wide Web
Consortium in 2002. P3P is a language and a protocol allowing websites to
describe data practices: what data is collected, what for, how long it will be
stored and what parts of the data are exposed to other parties. These policies
are declarative and non-executable, which leads to the topic of presented work:
How to make Web-based systems comply with declared policies? How to make
systems policy-aware?

2 Overview of Related Work

2.1 Previous Attempts at P3P Enforcement

Agrawal et al. [6] proposed translating a P3P policy into a set of restrictions in
relational database management system (RDBMS) on the level of columns, rows
or cells, provided that a user query would contain information about purpose
and recipient. This approach requires the support from database producers, since
it proposes new language constructs and implementation design for fine-grained
access control.

Ashley [7] suggested implementation of an external policy framework that has
integration points (Privacy Monitors) between the Privacy Server that contains
policies and the application environment. This approach uses Reference Monitors
(see below).

IBM developed Tivoli Privacy Manager [1] and related technologies: the
Declarative Policy Monitoring [8] and Reference Monitor [12], but the Privacy
Manager was withdrawn from marketing in 2009 [2] and corresponding technolo-
gies have been retired.

67

In the work of Hayati and Abadi [10] the authors develop a language-based
approach for modeling and verifying aspects of privacy policies. They use the
programming language Jif [4], an extension of Java with information-flow types,
to show how to prevent leaks of the data from the system and how to implement
P3P notions of purposes and retentions. However, this work does not cover all
aspects of the P3P language, e.g., base/custom data schemes.

2.2 P3P as an Intermediate Representation

Karjoth et al. [13] proposed the Platform for Enterprise Privacy Practices (E-
P3P), which uses P3P to present a coarser-grained privacy policy to the cus-
tomer, while for internal enforcement a new language is suggested.

In the work of Salim et al. [17], P3P policies are used as an intermediate
level between the extended Digital Rights Management model and the user,
because P3P preferences are more abstract than a license and it’s easier for data
owners to specify the purposes for which data is to be collected. In the end, P3P
preferences are transformed into MPEG REL (Moving Picture Expert Group
Rights Expression Language) licenses that can be enforced by the framework.

2.3 General Solutions to Policy Enforcement

He and Antón [11] propose a framework to bridge the gap between high-level
privacy requirements and low-level access control policies by modeling privacy
requirements in the role engineering process. The framework provides a basis for
enforcing privacy requirements with RBAC (role-based access control) model.
The work does not address any high-level privacy requirements language in par-
ticular, though, uses P3P elements (e.g., purpose) as an example of standard
privacy policy entities.

Mont et al. [15] introduce a notion of “sticky policy” in order to prevent
leaking of personal information. The proposed privacy model involves Tracing
Authorities as a main point to log and audit the disclosures of confidential data
as well as to notify the owner of the data. Such a model requires a request to the
Tracing Authority each time when a service wants to transfer the data outside.

Ringelstein and Staab [16] introduce a notion of “sticky logging” in order to
collect different kinds of data usage (create, copy, read, update, transfer, delete)
in distributed environments. This allows to reconstruct the execution afterwards,
which might be useful, if the customer requests the report about data usage.
This work does not directly address any kind of compliance of a reconstructed
execution with existing privacy policies of a system.

3 Proposed Solution

The relation between the system and the policy can be twofold.
One case is that a P3P policy is created for the existing system by analyzing

the behaviour of the system and translating it into the P3P language. This means

68

that a P3P policy can be seen as a by-product of the system and ideally could
be generated from the system.

The second case is that a P3P policy exists before the system. This means
that a P3P policy can be seen as a specification of the system or as additional
constraints at the modelling phase of the system.

While these scenarios are polar, we hope to bridge them in practical ex-
periments (for more details see Section 4). In the end, we aim to develop lan-
guage support for describing policies as part of the programming effort: that is,
a policy-aware programming language supporting idioms for expressing policy-
related constraints. We see this language as a simplified, idealized language or
calculus, similar to other language design efforts that use Featherweight or Clas-
sic Java.There may be the following language constructs for privacy awareness:
annotations of the data model with the privacy-related categories; annotations
of persistence actions with duration or access information; annotations of service
calls so that sharing of data is classified.

4 Research Method

We started our research with an empirical study of P3P policies in the wild [14].
We believe that an empirical study of the language at hand is an important
stage of working with the language. While one can start from the specification
of the language and try to devise a solution top-down, it can be the case that
some combinations of language elements/constructs are seldom or never used,
inadequate in practice, or even contradictory [18, 14].

For example, we’ve found out, that even with low P3P usage – for the seed
of 1,450,660 URLs, we were able to download only 4,158 XML files with P3P
policies1– the coverage of the base data schema proposed in P3P specification is
76%. In other words, the language is used to its full extent and there can be no
short-cuts in our effort.

Now that we know the shape of P3P policies, we can start with a realistic
and interesting case study to guide the development of a prototype system. This
is our plan of attack:

– First, we consider a typical lightweight architecture for a Web-based sys-
tem: persistence layer, domain-specific logic, presentation layer and, option-
ally, Web Services. At this point we have decided to dedicate ourselves to
Java Pet Store [3], a sample Web application, designed to run on the Java
Enterprise Edition 5 platform. While this application has all technical as-
pects highlighted above, it also suggests non-trivial information flow issues
(see Fig. 4). We intend to put some developing efforts into the system in
order to make it complete w.r.t. those issues.

1 Please, note, that this low usage is partially because our approach used one seed of
URLs (Google Directory). Cranor et al. [9] found that P3P had been deployed on
10% of the sites returned in the top-20 results of typical searches, and on 21% of the
sites returned in the top-20 results of e-commerce searches.

69

buy an item

buyer's payment

through paypal

mark item in the catalog

as reserved

pet store receives

payment email

unmark item in the catalog
 [payment denied]

 [payment accepted]

marked the item in the

catalog as sold

send email to seller

with meeting point

send email to buyer

with meeting point

meet all parties

at meeting point

seller hands out the

item to buyer

pet store hands out

the money

(a) The scenario

• Does PayPal get the buyer’s contact information?
• Does PayPal get the seller’s contact information?
• Does the seller get the buyer’s contact information?
• Does the buyer get the seller’s contact information?
• Is the contact information deleted upon purchase

completion?

(b) Interesting questions about information flow

<STATEMENT>

<PURPOSE><current/></PURPOSE>

<RECIPIENT><ours/></RECIPIENT>

<RETENTION><indefinitely/></RETENTION>

<DATA-GROUP>

<DATA ref="#user.name"/>

<DATA ref="#user.home-info.online.email"/>

<DATA ref="#user.home-info.postal"/>

</DATA-GROUP>

</STATEMENT>

(c) A P3P policy (excerpt) for the seller

Fig. 4: Privacy concerns in a Web purchase scenario

– Then we write a P3P policy for the system, capturing the system’s behaviour
in the P3P language. Once we have the policy and the system, which is
unaware of it, we try to map system’s parts to policy’s parts – to understand
the system in policy terms. To this extent we intend to use some sort of a
dynamic, run-time analysis so that to see the flow of customer-related data.

– After that we experiment with different ways to achieve policy-awareness,
using such mechanisms as annotations, aspects, assertions, etc. From these
experiments we expect insights essential to suggest a development method-
ology for policy-aware systems.

References

1. IBM Tivoli Privacy Manager Solution Design and Best Practices. IBM Press (2003)

70

2. IBM Tivoli Privacy Manager info page. http://www-01.ibm.com/software/

tivoli/products/privacy-mgr-e-bus/ (Jul 2010)
3. The Java Pet Store 2.0 Reference Application. http://java.sun.com/developer/

releases/petstore/ (Sep 2010)
4. Jif home page. http://www.cs.cornell.edu/jif/ (Sep 2010)
5. W3C, the platform for privacy preferences 1.1 (P3P1.1) specification. http://www.

w3.org/TR/P3P11/ (Jul 2010)
6. Agrawal, R., Bird, P., Grandison, T., Kiernan, J., Logan, S., Rjaibi, W.: Extending

relational database systems to automatically enforce privacy policies. In: ICDE ’05:
Proceedings of the 21st International Conference on Data Engineering. pp. 1013–
1022. IEEE Computer Society (2005)

7. Ashley, P.: Enforcement of a P3P privacy policy. In: Proceedings of the 2nd Aus-
tralian Information Security Management Conference, Securing the Future. pp. 11–
26. School of Computer and Information Science, Edith Cowan University, Western
Australia (2004)

8. Bohrer, K., Hada, S., Miller, J., Powers, C., Wu, H.f.: Declarative Privacy Monitor-
ing for Tivoli Privacy Manager. http://www.alphaworks.ibm.com/tech/dpm (Jul
2010)

9. Cranor, L.F., Egelman, S., Sheng, S., McDonald, A.M., Chowdhury, A.: P3P de-
ployment on websites. Electronic Commerce Research and Applications 7(3), 274–
293 (2008)

10. Hayati, K., Abadi, M.: Language-based enforcement of privacy policies. In: Pro-
ceedings of Privacy Enhancing Technologies Workshop (PET). Springer-Verlag
(2004)

11. He, Q., Antón, A.I.: A framework for modeling privacy requirements in role en-
gineering. In: Proceedings of the 9th International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ’03) (2003)

12. Hill, R.K., Fritz, P.: Reference Monitor for Tivoli Privacy Manager. http://www.
alphaworks.ibm.com/tech/refmon (Jul 2010)

13. Karjoth, G., Schunter, M., Waidner, M.: Platform for enterprise privacy practices:
privacy-enabled management of customer data. In: PET’02: Proceedings of the 2nd
international conference on Privacy enhancing technologies. pp. 69–84. Springer-
Verlag (2003)

14. Lämmel, R., Pek, E.: Vivisection of a non-executable, domain-specific language;
Understanding (the usage of) the P3P language. In: Proceedings of ICPC 2010.
IEEE (2010)

15. Mont, M.C., Pearson, S., Bramhall, P.: Towards accountable management of iden-
tity and privacy: Sticky policies and enforceable tracing services. In: DEXA ’03:
Proceedings of the 14th International Workshop on Database and Expert Systems
Applications. p. 377. IEEE Computer Society (2003)

16. Ringelstein, C., Staab, S.: DIALOG: Distributed auditing logs. In: ICWS-2009 -
7th IEEE Int. Conference on Web Services. Los Angeles, CA, USA (2009)

17. Salim, F., Sheppard, N.P., Safavi-Naini, R.: Enforcing P3P policies using a digi-
tal rights management system. In: PET’07: Proceedings of the 7th international
conference on Privacy enhancing technologies. pp. 200–217. Springer-Verlag (2007)

18. Yu, T., Li, N., Antón, A.I.: A formal semantics for P3P. In: SWS ’04: Proceedings
of the 2004 workshop on Secure web service. pp. 1–8. ACM (2004)

71

User-centric Programming Language

Wiktor Nowakowski

Warsaw University of Technology, Warsaw, Poland
nowakoww@iem.pw.edu.pl

Abstract. Ambiguously formulated and constantly changing require-
ments for software systems make it hard to translate them into working
code. To overcome these problem, we propose an approach that consoli-
dates the requirements specification level with the design and implemen-
tation levels in order to shorten the path from initial requirements to the
final code. The end-user of the system will be able to specify requirements
in a precise, semantically rich and domain independent User-centric Pro-
gramming Language (UcPL), which will allow for direct transformation
into application logic code.

1 Problem Description and Motivation

Typical software development lifecycles comprise activities that lead from the
initial requirements to the final working system. These activities produce various
artifacts at different level of abstraction: design models and code. The level of
technical complexity makes these artifacts inaccessible to the end-users of the
system. However, end-users can discuss the logic (functionality) of the system
that abstracts away all the technical details of the software system. This should
be done in a language understandable to them. The logic of the problem is
usually expressed within the user requirements specifications.

Considering this two main problems arise. The first problem pertains to the
process of transition from end-user needs into design and implementation. This
includes problems with requirements elicitation and translating the functional
requirements into the logic of the system. Attempts to solve these problems
are mainly based on the introduction of formal and semi-formal requirements
specification languages and automation of transformation between requirements
and certain technical artifacts.

The second problem is that the path from requirements to code makes it
difficult to maintain appropriate traceability links. This is especially an issue
in projects that face high changeability of the requirements. Attempts to solve
these problems include rapid application development environments, certain ag-
ile methodologies, which try to shorten the path from requirements to code and
certain generative approaches where the traces are generated automatically.

Despite shifting the level of abstraction through the introduction of the
object-oriented paradigm, still, the existing approaches necessitate a significant
level of technical expertise to develop a working system. Thus, there is a rising
need to bring the end-user closer to the software developers. The idea here is to

73

let the end-users write some significant portions of software systems. The Gartner
Group, in its 2008 study predicts significant growth in end-user software devel-
opment. In 2010 an average of 34% of companies are expected to conduct more
than 20% of application development outside of IT. Unfortunately, there are no
approaches to allow the users to construct software through writing the problem
logic at the level of requirements. The traditional way of producing software sys-
tems is to shift from requirements to code in a generally manual process. More
modern approaches try to utilize dedicated tools to automate that process. This
necessitates formalizing requirements and constraining the natural language in
which they are normally written.

2 Related Work

Requirements engineering has been established in the industry as a method for
flawless transition from the early system vision over the design, implementation
up to the validation and tests. The current practice in this area is more focused
on requirements management [1] and requirements interchange [2] than require-
ments specification. There are also approaches where requirements are specified
more formally, like the Four Variable Model [3], [4]. In UML [5] or in its profiles
like SysML [6] or MARTE [7], requirements can be handled through creating
semi-formally defined visual models. In RSL [8], requirements are specified in
constrained natural language with a well defined grammar.

Few of the above mentioned general purpose requirements languages can ex-
ecute the requirements specification written in it, or can be transformed directly
into complete working code. On the other hand, in recent years there has been
a drive towards developing executable domain specific languages (DSL) [9]. The
idea is that it is more efficient to create a simple language and the corresponding
code generators than to apply general purpose languages. The questions are how
simple the language has to be and how frequent the language must change to
cope with rising demands by its users.

3 Proposed Solution

To go further in resolving mentioned problems, we propose to allow the end-users
actively participate in writing software while retaining their role of “requirements
specifiers”. They would specify the system logic in the language understandable
for them and then automatically transform such specifications directly into code.
This would certainly lead to significant gains in productivity.

We aim at delivering a framework consisting of three main elements: the User-
centric Programming Language (UcPL), the design time environment and the
transformation engine along with appropriate transformation algorithms. Figure
1 shows an overview of the UcPL approach. In UcPL we will substitute procedu-
ral or object-oriented programming with, so called, user-centric programming.
The user-centric language constructs would just allow to specify the logic of the
problem. This means that the user-centric programs could be written and read

74

Fig. 1. Overview of UcPL approach

by end-users with no software development background. Most of the design and
technological decisions will be hidden by the language platform.

A scenario of developing software application with UcPL is very straightfor-
ward. End-users creates requirements specification in the form of user-centric
program. Then they choose the desired transformation algorithm. Precision re-
quired in order to apply automatic transformation, necessitates extensive mech-
anism for validation and correction of the UcPL language constructs. Valida-
tion should precede the transformation step. The transformation engine takes
complete requirements specification in the form of user-centric program as an
input and produces complete code of the application logic (or controller in MVC
model). The output code lacks implementation of the application’s business
model – only class stubs with appropriate methods are generated. The appli-
cation logic code contains calls to these business entities. The same pertains to
the user interface elements like windows, buttons, messages, etc. However, the
generated code constitutes the application framework which can be compiled
and executed, what significantly shorten the time needed to develop the whole
system.

In order to generate code of a full system, appropriate extension of UcPL for
specifying business logic and user interface would be needed. This is, though,
outside the scope of this work.

A programming language (Java, C++, etc.) and all technological details (e.g.
use of a specific user interface technology or specific application framework)
of the generated code will depend on the transformation algorithm used. The
transformation engine built into the UcPL framework will be able to run any
transformation algorithm specified in appropriate transformation language.

In order to ensure end-user comprehension, the UcPL language will be based
on use case scenarios written in natural language with simple imperative sen-
tences (e.g. ”User enters login data“ or ”System calculates exchange rate“) and

75

control sentences expressing conditions, loops, etc. (e.g. ”exchange rate greater
than previous exchange rate“).

The language will clearly separate description of the user-system interaction
from the description of the domain (see Figure 1). Scenarios will be hyperlinked
with appropriate notions defined in a separate vocabulary. Such hyperlinks could
be then transformed into operation calls from application logic to business logic
and user interface layer.

The syntax of the language will be precisely defined as a meta-model in MOF
in order to enable automatic handling of user-centric programs.

4 Research Method

As we mentioned UcPL will need to combine informality with necessary pre-
cision, that the end-users would be able to comprehend and write user-centric
programs, as well as they are able to understand and write common-prose re-
quirements. The language that addresses most of mentioned issues is the RSL
language [10] which was recently developed as a part of the ReDSeeDS project
[11]. RSL allows for transformation from requirements specification into draft
model of system’s architecture. UcPL will be based on the RSL which will be
additionally formalized by specifying precise semantics for all the language con-
structs.

Also an appropriate set of transformation algorithms will be implemented in
the model transformation language MOLA [12]. Though there are many transfor-
mation languages like QVT [13] or ATL [14], MOLA is preferred for its readabil-
ity. MOLA is a graphical transformation language where an advanced pattern
mechanism is combined with simple traditional control structures. Moreover,
MOLA offers comprehensive transformation engine.

An important part of the solution is the design time environment for writing
user-centric programs and performing transformations to code. It will be imple-
mented as an extension to the existing ReDSeeDS tool which offers appropriate
infrastructure that can be utilized by using plug-in mechanism.

This will enable us to build a system that allows for developing software
applications by the end-users by direct transformation from requirements to
application logic code. Preliminary studies shows that the proposed approach is
possible through skilful extension and combination of the existing technologies.

This goal of retaining end-user comprehensibility of the UcPL as well as use-
ability and effectiveness of the whole framework will be assured and validated
through extensive experimental studies. These studies will be mainly carried out
by students during software engineering courses. The students will be divided
into two subgroups. One group will be developing a system using UcPL approach
while the second group will be developing the same or similar system in a tradi-
tional way. The results will be compared and analyzed taking into account such
factors as time needed to develop the final system and quality of the system
measured as the degree of initial user requirements fulfillment.

76

References

1. Leffingwell, D., Widrig, D.: Managing Software Requirements: A Use Case Ap-
proach, Second Edition. Addison-Wesley (2003)

2. ProSTEP: Requirements interchange format (rif). Technical Report PSI 6 Version
1.2, ProSTEP iViP (2009)

3. Parnas, D.: Systematic documentation of requirements. Requirements Engineering,
IEEE International Conference on 0 (2001) 0248

4. Heitmeyer, C., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for constructing
requirements specifications: The scr toolset at the age of ten. Computer System
Science and Engineering Journal vol. 1 (2005) 19 – 35

5. Object Management Group: Unified Modeling Language: Superstructure, version
2.2, formal/09-02-02. (2009)

6. OMG: Sysml -omg systems modeling language. Technical report (2008)
7. OMG: Marte - uml profile for modeling and analysis of real-time and embedded

systems. Technical report (2008)
8. Śmia lek, M., Ambroziewicz, A., Bojarski, J., Nowakowski, W., Straszak, T.: Intro-

ducing a unified requirements specification language. In Madeyski, L., Ochodek,
M., Weiss, D., Zendulka, J., eds.: Proc. CEE-SET’2007, Software Engineering in
Progress, Nakom (2007) 172–183

9. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. John Wiley & Sons, Inc. (2008)

10. Kaindl, H., Śmia lek, M., et al.: Requirements specification language definition.
Project Deliverable D2.4.1, ReDSeeDS Project (2007) www.redseeds.eu.

11. Śmia lek, M., Kalnins, A., Ambroziewicz, A., Straszak, T., Wolter, K.: Comprehen-
sive system for systematic case-driven software reuse. Lecture Notes in Computer
Science 5901 (2010) 697–708 SOFSEM’10.

12. Kalnins, A., Barzdins, J., Celms, E.: Model transformation language MOLA. Lec-
ture Notes in Computer Science 3599 (2004) 14–28

13. Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, version 1.0, formal/08-04-03. (2008)

14. Jouault, F., Kurtev, I.: Transforming models with the ATL. Lecture Notes in
Computer Science 3844 (2005) 128–138

77

Author Index

Basten, Bas . 5

Kramer, Dean .61

Martins, Pedro . 15

Nowakowski, Wiktor 73

Pek, Ekaterina . 67

Saad, Christian 37
Söderberg, Emma 9

Teiken, Yvette . 43
Tikhonova, Ulyana 21
Travkin, Dietrich 55

van den Bos, Jeroen 49

Wider, Arif . 31
Wu, Hao . 27

78

	Kramer.pdf
	Using Product Lines to Manage Variability in Mobile Context-Aware Applications

