
User-centric Programming Language

Wiktor Nowakowski

Warsaw University of Technology, Warsaw, Poland
nowakoww@iem.pw.edu.pl

Abstract. Ambiguously formulated and constantly changing require-
ments for software systems make it hard to translate them into working
code. To overcome these problem, we propose an approach that consoli-
dates the requirements specification level with the design and implemen-
tation levels in order to shorten the path from initial requirements to the
final code. The end-user of the system will be able to specify requirements
in a precise, semantically rich and domain independent User-centric Pro-
gramming Language (UcPL), which will allow for direct transformation
into application logic code.

1 Problem Description and Motivation

Typical software development lifecycles comprise activities that lead from the
initial requirements to the final working system. These activities produce various
artifacts at different level of abstraction: design models and code. The level of
technical complexity makes these artifacts inaccessible to the end-users of the
system. However, end-users can discuss the logic (functionality) of the system
that abstracts away all the technical details of the software system. This should
be done in a language understandable to them. The logic of the problem is
usually expressed within the user requirements specifications.

Considering this two main problems arise. The first problem pertains to the
process of transition from end-user needs into design and implementation. This
includes problems with requirements elicitation and translating the functional
requirements into the logic of the system. Attempts to solve these problems
are mainly based on the introduction of formal and semi-formal requirements
specification languages and automation of transformation between requirements
and certain technical artifacts.

The second problem is that the path from requirements to code makes it
difficult to maintain appropriate traceability links. This is especially an issue
in projects that face high changeability of the requirements. Attempts to solve
these problems include rapid application development environments, certain ag-
ile methodologies, which try to shorten the path from requirements to code and
certain generative approaches where the traces are generated automatically.

Despite shifting the level of abstraction through the introduction of the
object-oriented paradigm, still, the existing approaches necessitate a significant
level of technical expertise to develop a working system. Thus, there is a rising
need to bring the end-user closer to the software developers. The idea here is to



let the end-users write some significant portions of software systems. The Gartner
Group, in its 2008 study predicts significant growth in end-user software devel-
opment. In 2010 an average of 34% of companies are expected to conduct more
than 20% of application development outside of IT. Unfortunately, there are no
approaches to allow the users to construct software through writing the problem
logic at the level of requirements. The traditional way of producing software sys-
tems is to shift from requirements to code in a generally manual process. More
modern approaches try to utilize dedicated tools to automate that process. This
necessitates formalizing requirements and constraining the natural language in
which they are normally written.

2 Related Work

Requirements engineering has been established in the industry as a method for
flawless transition from the early system vision over the design, implementation
up to the validation and tests. The current practice in this area is more focused
on requirements management [1] and requirements interchange [2] than require-
ments specification. There are also approaches where requirements are specified
more formally, like the Four Variable Model [3], [4]. In UML [5] or in its profiles
like SysML [6] or MARTE [7], requirements can be handled through creating
semi-formally defined visual models. In RSL [8], requirements are specified in
constrained natural language with a well defined grammar.

Few of the above mentioned general purpose requirements languages can ex-
ecute the requirements specification written in it, or can be transformed directly
into complete working code. On the other hand, in recent years there has been
a drive towards developing executable domain specific languages (DSL) [9]. The
idea is that it is more efficient to create a simple language and the corresponding
code generators than to apply general purpose languages. The questions are how
simple the language has to be and how frequent the language must change to
cope with rising demands by its users.

3 Proposed Solution

To go further in resolving mentioned problems, we propose to allow the end-users
actively participate in writing software while retaining their role of “requirements
specifiers”. They would specify the system logic in the language understandable
for them and then automatically transform such specifications directly into code.
This would certainly lead to significant gains in productivity.

We aim at delivering a framework consisting of three main elements: the User-
centric Programming Language (UcPL), the design time environment and the
transformation engine along with appropriate transformation algorithms. Figure
1 shows an overview of the UcPL approach. In UcPL we will substitute procedu-
ral or object-oriented programming with, so called, user-centric programming.
The user-centric language constructs would just allow to specify the logic of the
problem. This means that the user-centric programs could be written and read



Fig. 1. Overview of UcPL approach

by end-users with no software development background. Most of the design and
technological decisions will be hidden by the language platform.

A scenario of developing software application with UcPL is very straightfor-
ward. End-users creates requirements specification in the form of user-centric
program. Then they choose the desired transformation algorithm. Precision re-
quired in order to apply automatic transformation, necessitates extensive mech-
anism for validation and correction of the UcPL language constructs. Valida-
tion should precede the transformation step. The transformation engine takes
complete requirements specification in the form of user-centric program as an
input and produces complete code of the application logic (or controller in MVC
model). The output code lacks implementation of the application’s business
model – only class stubs with appropriate methods are generated. The appli-
cation logic code contains calls to these business entities. The same pertains to
the user interface elements like windows, buttons, messages, etc. However, the
generated code constitutes the application framework which can be compiled
and executed, what significantly shorten the time needed to develop the whole
system.

In order to generate code of a full system, appropriate extension of UcPL for
specifying business logic and user interface would be needed. This is, though,
outside the scope of this work.

A programming language (Java, C++, etc.) and all technological details (e.g.
use of a specific user interface technology or specific application framework)
of the generated code will depend on the transformation algorithm used. The
transformation engine built into the UcPL framework will be able to run any
transformation algorithm specified in appropriate transformation language.

In order to ensure end-user comprehension, the UcPL language will be based
on use case scenarios written in natural language with simple imperative sen-
tences (e.g. ”User enters login data“ or ”System calculates exchange rate“) and



control sentences expressing conditions, loops, etc. (e.g. ”exchange rate greater
than previous exchange rate“).

The language will clearly separate description of the user-system interaction
from the description of the domain (see Figure 1). Scenarios will be hyperlinked
with appropriate notions defined in a separate vocabulary. Such hyperlinks could
be then transformed into operation calls from application logic to business logic
and user interface layer.

The syntax of the language will be precisely defined as a meta-model in MOF
in order to enable automatic handling of user-centric programs.

4 Research Method

As we mentioned UcPL will need to combine informality with necessary pre-
cision, that the end-users would be able to comprehend and write user-centric
programs, as well as they are able to understand and write common-prose re-
quirements. The language that addresses most of mentioned issues is the RSL
language [10] which was recently developed as a part of the ReDSeeDS project
[11]. RSL allows for transformation from requirements specification into draft
model of system’s architecture. UcPL will be based on the RSL which will be
additionally formalized by specifying precise semantics for all the language con-
structs.

Also an appropriate set of transformation algorithms will be implemented in
the model transformation language MOLA [12]. Though there are many transfor-
mation languages like QVT [13] or ATL [14], MOLA is preferred for its readabil-
ity. MOLA is a graphical transformation language where an advanced pattern
mechanism is combined with simple traditional control structures. Moreover,
MOLA offers comprehensive transformation engine.

An important part of the solution is the design time environment for writing
user-centric programs and performing transformations to code. It will be imple-
mented as an extension to the existing ReDSeeDS tool which offers appropriate
infrastructure that can be utilized by using plug-in mechanism.

This will enable us to build a system that allows for developing software
applications by the end-users by direct transformation from requirements to
application logic code. Preliminary studies shows that the proposed approach is
possible through skilful extension and combination of the existing technologies.

This goal of retaining end-user comprehensibility of the UcPL as well as use-
ability and effectiveness of the whole framework will be assured and validated
through extensive experimental studies. These studies will be mainly carried out
by students during software engineering courses. The students will be divided
into two subgroups. One group will be developing a system using UcPL approach
while the second group will be developing the same or similar system in a tradi-
tional way. The results will be compared and analyzed taking into account such
factors as time needed to develop the final system and quality of the system
measured as the degree of initial user requirements fulfillment.



References

1. Leffingwell, D., Widrig, D.: Managing Software Requirements: A Use Case Ap-
proach, Second Edition. Addison-Wesley (2003)

2. ProSTEP: Requirements interchange format (rif). Technical Report PSI 6 Version
1.2, ProSTEP iViP (2009)

3. Parnas, D.: Systematic documentation of requirements. Requirements Engineering,
IEEE International Conference on 0 (2001) 0248

4. Heitmeyer, C., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for constructing
requirements specifications: The scr toolset at the age of ten. Computer System
Science and Engineering Journal vol. 1 (2005) 19 – 35

5. Object Management Group: Unified Modeling Language: Superstructure, version
2.2, formal/09-02-02. (2009)

6. OMG: Sysml -omg systems modeling language. Technical report (2008)
7. OMG: Marte - uml profile for modeling and analysis of real-time and embedded

systems. Technical report (2008)
8. Śmia lek, M., Ambroziewicz, A., Bojarski, J., Nowakowski, W., Straszak, T.: Intro-

ducing a unified requirements specification language. In Madeyski, L., Ochodek,
M., Weiss, D., Zendulka, J., eds.: Proc. CEE-SET’2007, Software Engineering in
Progress, Nakom (2007) 172–183

9. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. John Wiley & Sons, Inc. (2008)

10. Kaindl, H., Śmia lek, M., et al.: Requirements specification language definition.
Project Deliverable D2.4.1, ReDSeeDS Project (2007) www.redseeds.eu.

11. Śmia lek, M., Kalnins, A., Ambroziewicz, A., Straszak, T., Wolter, K.: Comprehen-
sive system for systematic case-driven software reuse. Lecture Notes in Computer
Science 5901 (2010) 697–708 SOFSEM’10.

12. Kalnins, A., Barzdins, J., Celms, E.: Model transformation language MOLA. Lec-
ture Notes in Computer Science 3599 (2004) 14–28

13. Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, version 1.0, formal/08-04-03. (2008)

14. Jouault, F., Kurtev, I.: Transforming models with the ATL. Lecture Notes in
Computer Science 3844 (2005) 128–138


