
Zipper-based Embedding of Modern Attribute
Grammar Extensions?

Pedro Martins
Universidade do Minho, Portugal

Abstract. This research abstract describes the research plan for a Ph.D
project. We plan to define a powerful and elegant embedding of modern
extensions to attribute grammars. Attribute grammars are a suitable
formalism to express complex, multiple traversal algorithms. In recent
years there has been a lot of work in attribute grammars, namely by
defining new extensions to the formalism (forwarding and reference at-
tribute grammars, etc), by proposing new attribute evaluation models
(lazy and circular evaluators, etc) and by embedding attribute grammars
(like first class attribute grammars). We will study how to design such
extensions through a zipper-based embedding and we will study efficient
evaluation models for this embedding. Finally, we will express several
attribute grammars in our setting and we will analyse the performance
of our implementation.

1 Problem Description and Motivation

Attribute grammars (AGs) [1] are a convenient formalism not only for specifying
the semantic analysis phase of a compiler but also to model complex multiple
traversal algorithms. Traditional AG systems tailor their own syntax for the def-
inition of AGs. Attribute grammars in concrete syntaxes are then automatically
transformed into efficient implementations in general purpose programming lan-
guages such as Haskell, OCaml and C. LRC [2], UUAG [3] or Silver [4] are
among the AG systems that are designed in this way.

For many applications, it is desirable to design and implement a special
purpose language that is tailored to the characteristics of the problem domain.
Perhaps the most well-known example of such a language is provided by the com-
piler compiler system yacc. In general, however, the design and implementation
of a new programming language from scratch can be costly. For that reason, the
designers of Simula-67 proposed that new languages are implemented through
library interfaces, so the new embedded language inherits all the benefits of its
host language, and the implementation effort is much reduced.

In the context of attribute grammars, this idea has already been explored [5–
7]. Indeed, each of this embeddings benefits from the particular characteristics
of the host language in order to achieve elegant attribute grammar solutions.

? This work has been partially supported by FCT (Portuguese Science Foundation)
project AMADEUS, under grant (POCTI, PTDC/EIA/70271/2006)



Recently, an embedding for classic AGs has been developed in a functional lan-
guage [8]. This embedding, of around 100 lines of code, relies on an extremely
simple mechanism based on the notion of functional zippers [9].

With our work we intend to explore this new approach in a systematic way.
Our goal is to fully develop a mature system with advanced AG constructions
embedded in a zipper-based setting, namely circular attributes (fix-point compu-
tation), aspects (aspected oriented programming), higher-order and forwarding
(functional programming), references (imperative programming), multiple inher-
itance (object oriented programming), strategies (strategic programming) and
incremental attribute evaluation (incremental computation).

Once we define how such an embedding can be modeled in a functional
setting, we will study different models of execution for the AGs. Finally, we will
conduct a series of experiments in order to benchmark our system against other
well-established ones.

2 Overview and Related Work

Attribute grammars have proven to be a suitable formalism to the design and im-
plementation of both domain specific and general purpose languages, with pow-
erful systems based on attribute grammars [10–12, 2] been constructed. While,
in the beginning, AG systems were used mainly to specify and derive efficient
(batch) compilers for formal languages, nowadays, AG-based systems are power-
ful tools that not only specify compilers, but also syntax editors [10], program-
ming environments [2], visual languages [13], complex pretty printing algorithms
[14], program animations [15], etc. More recently, new extensions/features have
been defined for attribute grammars, like forwarding attribute grammars [16],
higher-order attribute grammars [17, 15], reference attribute grammars [18], mul-
tiple inheritance [19], aspect oriented attribute grammars [20].

While these extensions can be considered standard in traditional systems,
they have not yet been studied in the context of modern functional AG em-
beddings, such as [5, 7]. Given the simple mechanism of [8], however, we believe
that some extensions should be simple to obtain in that setting, while others,
although probably requiring improvements on the embedding mechanism itself,
still can be achieved elegantly.

With our work, we also propose to make incremental computation available
within our embedded AG system. Reps was the first to use incremental attribute
evaluation in the structured editors produced by the Synthesizer Generator Sys-
tem [10]. The LRC system [2] is a programming environment generator that
uses a strict, purely functional attribute evaluators and incrementality is ob-
tained via function memoisation [21]. The Eli [12] AG systems produce visual
programming environments but it does not support incremental evaluation, yet.
The ASF+SDF is a programming environment generator based on the paradigm
of term re-writing [22]. The action semantics environment was developed with
ASF+SDF [23]. None of these systems use incremental evaluation.

In the context of functional programming, John Hughes was the first to work
on the incremental evaluation of lazy programs [24]. Acar et al [25] presented



a general technique for the incrementalisation of functional programs. Magnus
Carlsson modeled this work as a Haskell library [26]. These techniques, however,
do not handle lazy evaluation. In [8], the authors show that within their embed-
ding, incremental computation can be obtained via function memoization. Their
techniques, however, do not require lazy evaluation. This means that if we rely
on lazyness in any of our extensions, this approach to incrementality may break
down and further studies are necessary. Even if this does not occur, the impact
of memoization in the authors’ approach still needs to be evaluated.

3 Research Method

The aim of this project is to embed advanced features of the AG paradigm into
a general purpose, lazy, and purely functional language. This goal builds upon
the definition attribute grammars as a domain-specific embedded language in
Haskell by [8]. That is, attribute grammars become a Haskell library of higher-
order and lazy functions, and we want to model in this library new language
concepts like circular attributes, aspects, higher-ordeness, forwarding, references,
multiple inheritance, strategies, and, finally, incremental evaluation.

We also intend to conduct a systematic performance study of traditional at-
tribute grammar evaluators versus their implementation as a library in Haskell.
We want to verify with realistic examples if a highly optimized functional imple-
mentation of AGs (lazy, strict and deforested evaluators [21]) is really faster than
the simple Haskell library. The outcome of the performance experiments, will al-
low us to to recommend improvements both to existing compilers for Haskell,
attribute grammar based systems, and incremental programming environments.

The phases described below constitute the main work areas for our work:

3.1 Design: For many applications, it is desirable to design and implement a
special purpose language that is tailored to the characteristics of the problem
domain. However, the design and implementation of a new programming lan-
guage from scratch is usually costy. The idea of embedded languages has been
enthusiastically embraced by the functional programming community [14, 7, 8].

The first goal to achieve in this project is to enhance the zipper-based embed-
ding of [8] with advanced AG features such as aspects, higher-order and circular
attributes, references, multiple inheritance and incremental attribute evaluation.
In order to achieve this, we will design and propose different implementations for
each feature, and each proposal will possibly rely on a different advanced feature
of the host language, Haskell. Then, we will conduct several experiments in
order to realize which proposal achieves our goal as elegantly as possible.

3.2 Implementation: One of the uses of AGs today is in the creation of pro-
gramming environments (also called language-based editing environments), that
report on syntactic and semantic errors as the program is being constructed.
In such an environment, it is important that the attribute values are computed
incrementally after each edit action, re-using results of previous computations
where possible. Reps and Teitelbaum were the first to demonstrate the feasibility



of the idea [10]. It is partly because of this emphasis on incremental computa-
tion that the embedding of attribute grammars into functional programming was
ignored: it was not clear at all how incremental computation could be achieved.

An important step was made by João Saraiva, who showed how the known
attribute evaluation techniques could all be implemented in a strict, purely func-
tional setting [21, 27]. He was however not able to apply these techniques as part
of an implementation of attribute grammars as a software library in Haskell: a
quite complex preprocessor was still required.

Acar et al. [25] presented a new technique for incremental computation of
functional programs, which is completely general as it can be used to make any
program incremental. Furthermore, it is implemented as a library of functions
in ML. A remarkable property of Acar’s work is that it maintains a dynamic de-
pendency graph, as opposed to the static dependency graph used in all previous
work on attribute grammars. Due to this, it potentially requires few recomputa-
tions after the input has been changed. This theoretical advantage may however
be outweighed in practice by the additional book-keeping required.

With our work we will study different execution models for our extensions. In
particular, we will work on the development of incremental models of execution.

3.3 Benchmarks: We will apply the library developed in the previous phases
to realistic examples (Java grammar, Pretty-printing optimal algorithm [28],
etc). Then, we will compare the performance of the obtained implementations
with equivalent implementations obtained by other AG systems. Firstly, we will
compare the performance of our library against other functional AG embeddings,
whenever such a comparison is possible (recall that most of the features we want
to embed in our system are not available in functional embeddings such as [5,
7]). Secondly, we will compare our implementations against the ones derived by
standard AG systems from AG expressed in special purpose languages [2–4].

Research Questions: The following research questions have to be answered in the
project: How can we correctly and elegantly embed advanced attribute grammar
features,e.g., reference, forwarding, higher-orderness, in the embedding of [8]?
What is the impact of memoization in the embedding of [8] and in the extensions
we define for it? If lazyness is necessary for any of our extensions, how can we
restore incremental computation? In other words, how can we combine lazyness
and incremental computation? How does the perfomance of our implementations
compare to well-established others?

4 Conclusions
We propose to develop a mature attribute grammar system, embedded in a
modern functional programming language, and with all advanced AG features
incorporated. Later, a systematic analysis on this system will be conducted.

The beneficiaries of this research are implementors of functional programming
languages [29, 30], attribute grammar-based systems [12, 14, 2] and programming
environments [10, 22, 23, 31], because we provide experimental evidence to guide
further work. The software artifacts we produce in the process will be of use to
a wide audience of functional programmers.



References

1. Knuth, D.E.: Semantics of Context-free Languages. Mathematical Systems Theory
2(2) (1968) 127–145 Correction: Math. Systems Theory 5, 1, pp. 95-96 (1971).

2. Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental Language-Oriented
Tools. In Koskimies, K., ed.: 7th International Conference on Compiler Construc-
tion. Volume 1383 of LNCS., Springer-Verlag (1998) 298–301

3. Swierstra, D., Baars, A., Löh, A.: The UU-AG attribute grammar system (2004)
4. Wyk, E.V., Krishnan, L., Bodin, D., Johnson, E., Schwerdfeger, A., Russell, P.:

Tool Demonstration: Silver Extensible Compiler Frameworks and Modular Lan-
guage Extensions for Java and C. In: SCAM. (2006) 161

5. de Moor, O., Backhouse, K., Swierstra, D.: First-Class Attribute Grammars. In
Parigot, D., Mernik, M., eds.: Third Workshop on Attribute Grammars and their
Applications, WAGA’99, Ponte de Lima, Portugal, INRIA Rocquencourt (2000)

6. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of at-
tribute grammars. In Ekman, T., Vinju, J., eds.: Proceedings of the Ninth Work-
shop on Language Descriptions, Tools, and Applications (LDTA 2009). Electronic
Notes in Theoretical Computer Science, Elsevier Science Publishers (2009)

7. Viera, M., Swierstra, D., Swierstra, W.: Attribute Grammars Fly First-class: how
to do Aspect Oriented Programming in Haskell. In: Procs. of the 14th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP’09). (2009) 245–256

8. Fernandes, J., Sloane, A., Saraiva, J., Cunha, J.: A lightweight functional embed-
ding of attribute grammars (in preparation). (2010)

9. Huet, G.: The zipper. Journal of Functional Programming 7(5) (1997) 549–554
10. Reps, T., Teitelbaum, T.: The Synthesizer Generator. Springer (1989)
11. Jourdan, M., Parigot, D., Julié, C., Durin, O., Bellec, C.L.: Design, implementation

and evaluation of the fnc-2 attribute grammar system. In: PLDI ’90: Proceedings
of the ACM SIGPLAN 1990 conference on Programming language design and
implementation, New York, NY, USA, ACM (1990) 209–222

12. Kastens, U., Pfahler, P., Jung, M.T.: The Eli System. In: CC ’98: Procs. of the 7th
Int. Conf. on Compiler Construction, London, UK, Springer-Verlag (1998) 294–297

13. Kastens, U., Schmidt, C.: Vl-eli: A generator for visual languages (2002)
14. Swierstra, D., Azero, P., Saraiva, J.: Designing and Implementing Combinator

Languages. In Swierstra, D., Henriques, P., Oliveira, J., eds.: 3rd Summer School
on Adv. Funct. Programming. Volume 1608 of LNCS Tutorial. (1999) 150–206

15. Saraiva, J.: Component-based programming for higher-order attribute grammars.
In: GPCE ’02: Proceedings of the 1st ACM SIGPLAN/SIGSOFT conference on
Generative Programming and Component Engineering, London, UK, Springer-
Verlag (2002) 268–282

16. Wyk, E.V., Moor, O.d., Backhouse, K., Kwiatkowski, P.: Forwarding in attribute
grammars for modular language design. In: CC ’02: Proceedings of the 11th In-
ternational Conference on Compiler Construction, London, UK, Springer-Verlag
(2002) 128–142

17. Swierstra, D., Vogt, H.: Higher order attribute grammars. In Alblas, H., Melichar,
B., eds.: International Summer School on Attribute Grammars, Applications and
Systems. Volume 545 of LNCS., Springer-Verlag (1991) 48–113

18. Hedin, G.: Reference attributed grammars. In Parigot, D., Mernik, M., eds.: 2nd
Workshop on Attribute Grammars and their Applications. (1999) 153–172

19. Mernik, M., Lenic, M., Avdicausevic, E., Zumer, V.: Multiple attribute grammar
inheritance. In: Informatica. (2000) 319–328



20. de Moor, O., Peyton Jones, S., van Wyk, E.: Aspect-oriented compilers. In:
Proceedings of the First International Symposium on Generative and Component-
Based Software Engineering (GCSE ’99). LNCS (1999)

21. Saraiva, J.: Purely Functional Implementation of Attribute Grammars. PhD thesis,
Department of Computer Science, Utrecht University, The Netherlands (1999)

22. van den Brand, M., Klint, P., Olivier, P.: Compilation and Memory Management
for ASF+SDF. In Stefan Jähnichen, ed.: 8th International Conference on Compiler
Construction. Volume 1575 of LNCS., Springer-Verlag (1999) 198–213

23. van den Brand, M., Iversen, J., Mosses, P.D.: An action environment. Sci. Comput.
Program. 61(3) (2006) 245–264

24. Hughes, J.: Lazy memo-functions. In Jouannaud, J.P., ed.: Functional Program-
ming Languages and Computer Architecture. Volume 201 of LNCS., Springer-
Verlag (1985) 129–146

25. Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming. In:
POPL’02: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, New York, NY, USA, ACM (2002) 247–259

26. Carlsson, M.: Monads for incremental computing. In: ICFP’02: Proceedings of the
seventh ACM SIGPLAN International Conference on Functional Programming,
New York, NY, USA, ACM (2002) 26–35

27. Saraiva, J., Swierstra, D., Kuiper, M.: Functional Incremental Attribute Evalua-
tion. In David Watt, ed.: 9th International Conference on Compiler Construction,
CC/ETAPS’2000. Volume 1781 of LNCS., Springer-Verlag (2000) 279–294

28. Swierstra, D., Chitil, O.: Linear, bounded, functional pretty-printing. Journal of
Functional Programming 19(01) (2009) 1–16

29. Peyton Jones, S., Hughes, J., Augustsson, L., et al.: Report on the programming
language Haskell 98. Technical report (1999)

30. Leroy, X.: The Objective Caml System - Documentation and User’s Manual (1997)
31. Michiel, M.: Proxima : a presentation-oriented editor for structured documents.

PhD thesis, Utrecht University, The Netherlands (2004)


