
A SILK Graphical UI for Defeasible Reasoning,

with a Biology Causal Process Example�

Benjamin Grosof1, Mark Burstein2, Mike Dean2, Carl Andersen2, Brett
Benyo2, William Ferguson2, Daniela Inclezan3, and Richard Shapiro2

1 Vulcan Inc., Seattle, Washington, USA, benjaming@vulcan.com
2 Raytheon BBN Technologies, Cambridge, Massachusetts, USA,

{burstein, mdean canderse, bbenyo, wferguson, rshapiro}@bbn.com
3 SRI International, Menlo Park, USA, daniela.inclezan@ttu.edu

Abstract. SILK is an expressive Semantic Web rule language and sys-
tem equipped with scalable reactive higher-order defaults. We present
one of its latest novel features: a graphical user interface (GUI) for knowl-
edge entry, query answering, and justification browsing that supports
user specification and understanding of advanced courteous prioritized
defeasible reasoning. We illustrate the use of the GUI in an example
from college-level biology of modeling and reasoning about hierarchically-
structured causal processes with interfering multiple causes.

1 Introduction to SILK

SILK4 (Semantic Inferencing for Large Knowledge) is an expressive Semantic
Web rule language and system equipped with scalable reactive higher-order de-
faults. The system includes capabilities for reasoning, knowledge interchange,
and user interface (UI). Part of Project Halo5, sponsored by Vulcan Inc., the
SILK research program addresses fundamental knowledge representation (KR)
requirements for scaling the Semantic Web to widely-authored Very Large Knowl-
edge Bases (VLKBs) in business and science that answer questions, proactively
supply info, and reason powerfully. The SILK effort has over 15 contributing
institutions, including Vulcan, Stony Brook University, Raytheon BBN Tech-
nologies, Cycorp, and SRI International.

SILK pushes the frontier of KR by combining expressiveness plus semantics
plus scalability. It targets defeasibility, higher-order, and actions — including to
support reasoning about complex processes that are described in terms of causal-
ity, hierarchical structure, and/or hypothetical scenarios. For example, reasoning
about causal processes is a large portion of first-year college biology, often re-
quiring multi-step causal chains and/or multiple grain sizes of description to
answer a textbook or exam question. Longer-term, SILK targets widely collabo-
rative KA by subject matter experts (SMEs), such as science students/teachers
or business people, not just knowledge engineers (KEs) or programmers.

� This work is part of the SILK project sponsored by Vulcan Inc.
4 http://silk.semwebcentral.org
5 http://projecthalo.com

http://silk.semwebcentral.org
http://projecthalo.com

SILK’s more expressive yet performant KR promises to improve knowledge
acquisition (KA) in two ways. First, expressive declarative semantics facilitates
and enables web knowledge interchange, which in turn aids scalability of col-
laborative KA. Second, SILK raises the abstraction level of the underlying KR,
which is the target for direct user knowledge entry, to be closer to the user’s
natural language and cognition. “The KR is the deep UI”.

SILK has a new fundamental KR: hyper logic programs, which extends nor-
mal declarative logic programs (LP). Hyper LP is the first to tightly combine sev-
eral key advanced expressive features: defaults , with strong negation and priori-
ties, cf. courteous LP [1] with argumentation theories [2] and omni-directionality
[3]; (quasi) higher-order syntax, reification, and meta-reasoning, cf. HiLog [4] and
Common Logic and procedural attachments to external actions (side-effectful),
queries (to built-ins, web sources or services), and events (knowledge update
flows), cf. situated/production LP [1] [5] (and similar to production rules). Other
advanced hyper LP expressive features include: webized syntax and interchange
cf. W3C Rule Interchange Format (RIF), (and the earlier RDF, RuleML, and
OWL); frame syntax (object-oriented style) cf. F-Logic [6]; and semantically
clean negation-as-failure (NAF), cf. well-founded [7].

KR languages supported for interchange include: SPARQL [8], and RDF(S);
[9]; SQL and ODBC (e.g., Excel spreadsheets); SILK, RIF (-BLD and -SILK),
and OWL (-RL); [10]; Cyc [11] (most of its KR and KB); and AURA [12]. AURA
is a Project Halo system for question-answering in first-year college science and
currently has a KB with tens of thousands of axioms about biology. AURA
largely pre-dates SILK and employs a frame-based KR that is considerably less
expressive than SILK.

The SILK reasoning subsystem primarily does backward inferencing, i.e.,
query answering. However, it employs LP tabling techniques [13] to save and
reuse computation from previous subqueries. It thereby also supports forward
inferencing, incremental updating, and persistent queries/views.

Figure 1 shows the current architecture of SILK.

SILK’s UI and API are written in Java, built on top of an extended version
of Flora-26, which is built on top of XSB Prolog [14], which is written in C. XSB
provides a normal LP reasoning kernel that is highly efficient [15].

Outline and Contributions: A previous version of SILK was presented in
[16] [17]. In the rest of this paper, we present a novel addition to SILK since then:
a graphical user interface (GUI) for KA and querying that treats defeasibility
(section 2). We present an example of complex causal biology process reasoning
(section 3), of the kind to be used in our accompanying system demonstration.
Comparison with related work is given especially in section 2. We conclude by
discussing future work (section 4).

6 http://flora.sourceforge.net

http://flora.sourceforge.net

Command Line

Instant Message

Basic

External
Knowledge &

UI

• Authoring

• Explanation

Advanced
Java

Language Engine

Command Line

KB #1

Knowledge &
Reasoners API

Java

(Eclipse)

Abstract

• Querying

• Updating

• Actions

Parsing &
Serialization

Interoperability…KB #1 KB #n

…
Abstract
Syntax

• Actions

KR Languages
SILK RIF SILK

Engine #1 Engine #m

FLORA 2 Engine

(Registry of component implementations)

• SILK, RIF-SILK
• RIF-BLD, OWL-RL
• SPARQL, RDF(S)
• SQL, Cyc, AURA (InterProlog and ODBC interfaces)

FLORA 2 Engine

XSBSQ , Cyc, U

Fig. 1. SILK Version 2.2 System Architecture

2 SILK Graphical User Interface & Defeat Justifications

We have developed a graphical user interface (GUI) to the SILK system for
knowledge entry, query answering, and justification browsing. The GUI is cur-
rently used by KEs and is being extended to support use by SMEs. The GUI
supports user specification and understanding of advanced courteous prioritized
defeasible reasoning. It is implemented as a plug-in to the Eclipse 7 Integrated
Development Environment (IDE).

The GUI, pictured in Figure 2, offers users a number of capabilities. Entered
SILK statements are syntactically validated and statement components (e.g.,
annotations) are color-coded for clarity. User debugging of rule bases is facili-
tated by automatic tracking of target queries’ results against user changes to
the rules. This also allows what-if explorations. The GUI also offers query result
justification trees (technically, graphs) that can be explored incrementally, by
expanding each tree node to display its children. At each node, the user can
specify particular bindings to filter the portion of the justification tree that is
displayed. Trees of this sort are also available for negative results (i.e., when a
literal cannot be inferred), allowing developers to drill down and identify flaws
in a desired chain of logical reasoning. This display mechanism also supports the
reasoning chains found in courteous defaults by showing defeated ground rule

7 http://eclipse.org

http://eclipse.org

instances — rules whose heads are not true, despite their bodies being true, due
to conflict with other rules. Figure 2 shows an example of refutation-flavor defeat
of a rule instance (and thus of its head atom A). The rule instance has a candi-
date argument — i.e., the rule’s body is satisfied. But there also is a candidate
counterargument (whose head is neg A) that has a higher-priority rule tag.

In (ASCII) SILK syntax, a # c means that a is an instance of class c.
Skolems are prefixed by the underscore character (“ ”). A courteous rule label
term, used for prioritization, is called a tag. An explicit tag is specified in a
rule via an annotation which optionally begins the rule: @[tag->G] H :- B ;

specifies a rule with tag G. “:-” is the usual LP rule implication connective, i.e.,
informally “if”. H and B are called the rule head and body, respectively; and “;”
is the statement ending delimiter. “:- B” may be absent, i.e., the body may be
empty (true). The tag (G) may be strict (silk:strict), i.e., non-defeasible; if
so, the “tag->silk:” may be omitted.

The GUI also offers a graph view of rule bases, in which terms and relations
are displayed as nodes and arcs between nodes. Flexible control of selection and
layout of items to display is achieved via running rules that are specified (e.g.,
by power users) in SILK itself.

To our knowledge, the SILK GUI is only the second justification exploration
GUI for (prioritized) defeasible rules that have (declarative, model-theoretic)
semantics . The first such system was DR-DEVICE [18], which displays defeat
justifications, but with less extensive GUI functionality than SILK provides.
Its Defeasible Logic KR is closely related to the courteous feature of hyper LP
(see [19] for a comparison), but lacks higher-order and several other advanced
expressive features of hyper LP.

3 Example: A Complex Causal Process in Biology

We have developed a novel approach to modeling and reasoning about tempo-
ral hierarchically-structured causal processes, that smoothly handles interfer-
ence/exceptions between multiple causes and elegantly treats the “frame prob-
lem” (inertia / persistence of causal fluents). It leverages hyper LP’s prioritized
defaults. To fully describe the approach is beyond the scope of this paper, how-
ever. Instead, we illustrate the approach with an example of college-level biology
that shows the SILK GUI’s novel capability to explore justifications in the pres-
ence of prioritized defeat.

In biology and medicine, a key process is the cell cycle in which a cell grows
and then divides. (Control failure in this process causes cancer.) The cell cycle
is a complex hierarchically-structured process. It consists of two phases (sub-
processes): interphase and mitosis, in that temporal order. Interphase, in turn,
consists of three subphases G1, S, and G2, in that order. Mitosis too has several
subphases. Many of the above subphases in turn have sub-subphases, etc. DNA
synthesis occurs during S phase, and indeed begins when S phase begins. This is
the knowledge required to answer the following first-year college exam question8:

8 chapter 12 self-quiz question 15 in [20]

F
ig
.
2
.
S
IL
K

G
U
I:
ex
p
lo
ri
n
g
th
e
ju
st
ifi
ca
ti
o
n
o
f
d
ef
ea
t
o
f
a
b
io
lo
g
y
p
ro
ce
ss

ru
le

A researcher treats cells with a chemical that prevents

DNA synthesis from starting. This treatment traps the cells

in which part of the cell cycle?

Correct answer: G1.

That is, if DNA synthesis does not occur, then S Phase does not occur, and the
cell cycle stops in the preceding phase which is G1.

We have translated into SILK a substantial AURA KB about biological pro-
cesses, and then extended it with additional SILK rules to create a more expres-
sively powerful SILK KB about biological processes, which correctly answers the
above question (formulated in SILK).

AURA uses the Knowledge Machine (KM) [21] KR, and relies heavily on
KM’s skolemized frames called “prototypes” which are the focus of AURA’s
user KA. For example, the fact that cars have engines might be represented by
the SILK rule:

?car[engine -> _Engine92(?car) # Engine] :- ?car # Automobile

This says that if ?car is an instance of Automobile, then it is related by the
engine property to a skolem instance Engine92(?car) that is specific to that
?car.

In our SILK biological process KB, “prototype” statements like the one above
are used to express the knowledge that the cell cycle process is decomposed hier-
archically into its particular phases. Additional (non-“prototype”) SILK axioms
specify the positive and negative effects and preconditions of various processes,
and a general-purpose causal progression model of stepwise phased processes
as being “intended” to occur. These rules entail that if a step occurs at time
t then the next step should occur at time t + 1 unless it is prevented by some
other causal influence. The KB is too large to include in this paper. Some of the
important rules for the example question are:

// the cell cycle is intended at time step 0

_Cell_Cycle79[intended_at -> 0] ;

// G1 is followed by S Phase in Interphase

?x[subevent -> _G1_Phase60(?x) # G1_Phase[next_event ->

_S_Phase59(?x) # S_Phase]] :- ?x # Interphase ;

// the first subevent of S Phase is DNA_Synthesis

?x[first_subevent -> _DNA_Synthesis295(?x) # DNA_Synthesis]

:- ?x # S_Phase ;

// an action intended at time i occurs at time i

@[tag -> intended_actions_are_executed]

?a[occurs_at -> ?i] :- ?a # Action, ?a[intended_at -> ?i] ;

// prevented actions don’t occur

@[tag -> silk:strict]

neg ?x[occurs_at -> ?i] :- ?x # Action,?i # Step,

prevented(?x)[holds_at -> ?i] ;

Other rules allow derivation of the fact:

prevented(_DNA_Synthesis295(_S_Phase59

(_Interphase27(_Cell_Cycle79))));

Figure 2 shows a key intermediate step in SILK’s inferencing — defeat of a
candidate argument that: DNA Synthesis will occur for the question’s focal cell
cycle (Cell Cycle79), as is normal (i.e., “intended”) in the cell cycle’s process’s
cascade of causal phase steps. That argument is refuted because there is a higher-
priority counter argument (itself undefeated) based on the preventive/inhibitory
causal effect of the hypothetical scenario’s chemical treatment.

4 Conclusions

Contributions of this work were summarized in the Abstract and at the end of
section 2.

A key direction in current and future SILK work is to increase SME friendli-
ness of the UI in collaborative KA and querying, using in part controlled natural
language. SILK is now being integrated with other portions of Project Halo, par-
ticularly AURA. We are also refining a translator from Cyc to SILK and using
it to provide knowledge about biology.

Acknowledgements: Thanks to all of the SILK team, particularly Paul
V. Haley, Terrance Swift, Michael Kifer, David Gunning, Vinay Chaudhri, and
Michael Gelfond.

References

1. Grosof, B.N.: Representing E-Commerce Rules via Situated Courteous Logic Pro-
grams in RuleML. Electronic Commerce Research and Applications 3(1) (2004)

2. Wan, H., Grosof, B., Kifer, M., et al.: Logic Programming with Defaults and
Argumentation Theories. In: Proc. 25th Intl. Conf. on Logic Programming. (2009)

3. Grosof, B., Andersen, C., Dean, M., Kifer, M.: Omni-directional Hyper Logic
Programs in SILK and RIF. In: Proc. 4th Intl. Web Rule Symp. (RuleML). (2010)

4. Chen, W., Kifer, M., Warren, D.: HiLog: A foundation for higher-order logic
programming. Journal of Logic Programming 15(3) (February 1993) 187–230

5. Grosof, B.N.: The Production Logic Programs Approach, in a Nut-
shell: Foundations for Semantically Interoperable Web Rules (December
2005) Working Paper. Version of Dec. 2005. Available on Web at:
http://ebusiness.mit.edu/bgrosof/#PLP.

6. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-Oriented and Frame-
Based Languages. Journal of ACM 42 (July 1995) 741–843

7. Przymusinski, T.: Well-founded and Stationary Models of Logic Programs. Annals
of Mathematics and Artificial Intelligence 12(3) (1994) 141–187

8. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Lan-
guage for RDF. W3C Recommendation 15 January 2008,
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

9. Brickley, D., Guha, R.: RDF Vocabulary Description Language
1.0: RDF Schema. W3C Recommendation 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

http://ebusiness.mit.edu/bgrosof/#PLP
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

10. McGuinness, D., van Harmelen, F.: OWL Web Ontology Lan-
guage Overview. W3C Recommendation 10 February 2004,
http://www.w3.org/TR/2004/REC-owl-features-20040210/

11. Cycorp, Inc: The Syntax of CycL.
http://www.cyc.com/cycdoc/ref/cycl-syntax.html

12. Gunning, D., Chaudhri, V.K., et al.: Project Halo Update: Progress Toward Digital
Aristotle. AI Magazine to appear, Fall 2010.

13. Swift, T., Warren, D.S.: An abstract machine for SLG resolution: definite programs.
In: Proc. Intl. Logic Programming Symposium (ILPS). (1994)

14. Swift, T., Warren, D.S.: XSB: Extending Prolog with Tabled Logic Programming.
Theory and Practice of Logic Programming to appear.

15. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: An Analysis of the
Performance of Rule Engines. In: Proc. WWW-2009 Conf. (2009)

16. Grosof, B.N., Dean, M., Kifer, M.: The SILK System: Scalable
Higher-Order Defeasible Rules. In: RuleML-2009 Challenge, part
of The International RuleML Symposium on Rule Interchange and
Applications (RuleML 2009), Las Vegas, Nevada (November 2009)
http://silk.semwebcentral.org/silk-ruleml-2009-challenge.pdf.

17. Grosof, B.: SILK: Higher Level Rules with Defaults and Semantic Scalability.
In: Proc. 3rd International Conference on Web Reasoning and Rule Systems (RR
2009), Chantilly, Virginia, Springer (October 2009) 24–25

18. Bassiliades, N., et al.: Proof explanation in the DR-DEVICE system. In: Proc. 1st
Intl. Conf. on Web Reasoning and Rule Systems. (2007)

19. Wan, H., Kifer, M., Grosof, B.: Defeasibility in Answer Set Programs via Argu-
mentation Theories. In: Proc. 4th Intl. Conf. on Web Reasoning and Rule Systems.
(2010)

20. Campbell, N.A., Reece, J.B.: Biology. 6th edn. Benjamin Cummings (2002)
21. University of Texas Computer Science Dept - Knowledge Systems Research Group:

KM: The Knowledge Machine. http://userweb.cs.utexas.edu/~mfkb/km/

http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.cyc.com/cycdoc/ref/cycl-syntax.html
http://silk.semwebcentral.org/silk-ruleml-2009-challenge.pdf
http://userweb.cs.utexas.edu/~mfkb/km/

	 A SILK Graphical UI for Defeasible Reasoning, with a Biology Causal Process Example
	Benjamin Grosof, Mark Burstein, Mike Dean, Carl Andersen, Brett Benyo, William Ferguson, Daniela Inclezan, and Richard Shapiro

