Distributed Verification with LoLLA

Karsten Schmidt

Abstract

We report work in progress on a distributed version of explicit state space
generation in the Petri net verification tool LoLA. We propose a data structure
where all available memory of all involved workstations can be fully exploited,
and load balancing actions are possible at any time while the verification is
running. It is even possible to extend the set of involved workstations while
a verification is running.

1 Introduction

In explicit state space verification, we verify a system by explicitly enumerating
the reachable states and evaluating temporal logic formulas through simple search
algorithms on the constructed state space [VW86, CES86]. The well known state ex-
plosion problem is tackled by constructing a reduced state space that is smaller than
the original one, but preserves by construction the property to be verified. Among
the main reduction techniques are symmetries [HJJJ84, Sta91], the partial order
reduction [Val88], and, for Petri nets, the coverability graph construction [KM69].
Verifying temporal logic properties on a reduced state space is extremely efficient
(linear time with very small coefficients). The mentioned reduction techniques are
quite efficient, too. Most people in the area agree that every run of a verification
tool ends after few hours—either with a result, or through memory overflow. Since
computer aided verification is not necessarily an interactive task, time is not as
crucial a resource as elsewhere. Thus, in difference to other application areas, space
is the bottleneck ressource in explicit state space verification.

In most environments, many computers linked in a local area network are avail-
able, and their resources are hardly exhausted by their dedicated applications. Using
the combined ressources of a network of workstations is thus a cheap alternative to
buy powerful verification equipment. It is therefore desirable to have algorithms for
distributing state space verification to a heterogenious network of workstations.

Previous work on distribution of explicit state space generation was mostly based
on using a hash function on the states. The hash value of a state determines the
machine that is responsible for storing the state and to generate its successor states.
In the algorithm used in the Mur¢ tool [SD97], speeding up run time was the main
objective. They used a time-expensive procedure to compress states before storing
them, and distributed state space generation helped them to compute many of
these compressions in parallel thus obtaining significant speed-ups. They did not,
however, address the objective of gaining additional memory. Though they reported
that they obtained an even distribution of states among the workstations in their
examples, it is not clear whether this observation would be equally true if we dealt
with hundreds of workstations rather than with tens. In fact, a hash function
usually does not exploit particular structural knowledge about the system, so the
best behavior we can expect is a random-like (uniformly distributed) assignment
of hash values. Unfortunately, in such a stochastical setting, the expected number
of states at the moment when the first machine runs out of memory grows much

slower than the number of participating machines. It is not easy to change a hash
function once a state space generation is running, so there are only few possibilities
to react online to an unbalanced distribution of the state space.

In the sequel, we propose a different distribution scheme, with main emphasize
on the full exploitation of memory on all involved workstations. Our data structure
offers interesting opportunities for load balancing on-the-fly. Our procedure is able
to tolerate adding new processes to a running verification task. Furthermore, we
do not want to rely on an expensive local compression procedure in order to de-
crease the communication bandwidth. On the other hand, we put less emphasize
on the run time issue. We must admit that we have only limited experience with
our data structures at this time. We must therefore leave final conclusions concern-
ing performance of this technique to future research. We find it nevertheless very
promising, particularly for its capabilities to control the load on all participating
machines throughout the whole process of state space exploration.

2 Data structure

Our data structure can be seen as a distributed implementation of a binary decision
tree. Note that we do not consider symbolic model checking where this tree would
appear in a compressed form [BCM92]. With our approach, we cover ezplicit state
space verification. This is motivated bt the observation that for some classes of
systems (in particular, asynchronously communicating distributed systems) explicit
model checking outperforms symbolic model checking. This good performance of
explicit model checking is based on the strength of explicit state space reduction
techniques such as partial order reduction which can not easily be combined with
symbolic verification methods.

We assume that the participating workstations are fully interconnected via point
to point message passing. We assume further that the (asynchronous) message
passing protocol meets the following specification:

e Messages cannot get lost nor corrupted;
e The order of arrival can be different from the order of sending;

This specification is more strict than the standard protocol UDP, where messages
can get lost (and which is a broadcast protocol), but less strict than TCP /IP, where
the order of messages is preserved. More relaxed specifications enable more efficient
implementations. In the prototype implemenentation of our work in the tool LoLA
[Sch00], we built a simple protocol on top of UDP that works more efficiently than
TCP/IP and meets exactly the required specification.

A binary decision tree stores a set of boolean vectors of dimension n. A full
decision tree is a complete binary tree of depth n where the leafs are labeled with
true or false. We attach a depth to each vertex in the tree, starting with depth 0 for
the root, and ending in depth n for the leafs, Each boolean vector b corresponds to a
particular leaf, in other words a path, in the tree. This leaf can be reached from the
root by taking, at depth k, the left successor if b[k] = false, and the right successor
if b[k] = true. A decision tree stores the set of vectors (states) the corresponding
leaf of which is labeled true. In an actual binary decision tree, only the vertices
that can reach a leaf labeled true are present. The size of an actual decision tree is
proportional to the size of the represented set of states. In the sequel, we consider
actual decision trees only.

We distinguish a logical and a physical distribution of an actual binary decision
tree (in the sequel, we call an actual binary decision tree just decision tree). Let
II={P,...,P,} be the processes participating in state space generation. Assume

that every vertex in the original decision tree is labeled (coloured) by an element
of II. We say that process P; owns a subtree of the decision tree iff the root of
that subtree is coloured P;. P; owns a state iff the leaf representing that state is
coloured P;. The process owning a state is responsible for computing that state’s
successors. The owner of a subtree is responsible for storing (and then owning) states
belonging to that tree, or forwarding them to other processes if those processes own
sub-subtrees. The owner of a subtree can shift parts of its realm to other processes.
The owner of the root of the decision tree is called master. The actual distribution
is obtained by starting a local search in the master process, then shifting repeatedly
subtrees to other processes.

e
/ / bosases

I
| /
: '\”' @ process 4
:x \
| /
|

true

o
L3050
sy
feterey
S

o
o
&

le— — — —

Figure 1: A logically distributed binary decision tree, involving 4 processes. Dashed
lines are assumed to be labeled 0, solid lines are labeled 1. Process 1 is master and
owns state (0,0,0,1). Process 2 owns states (0,1,0,0) and (0,1,1,0). Process 3 owns
(1,1,0,0) and (1,1,0,1). Process 4 owns (1,1,1,1).

We refer to the physical data structure as the local data structures present in
each process, collectively implementing the logical data structure.

Every process holds as its physical data structure a structure similar to a binary
decision tree. As the only difference, there may be inner vertices without successors.
As in the logical data structure, every vertex is coloured with a process identifier.
However, information stored in each process is only partial. The local tree of P;
consists of the following elements contained in the logical data structure:

e all vertices coloured P;;
e all vertices on paths that lead from the root to vertices coloured P;;

e all immediate successors of vertices coloured P; (if such successor is present
in the logical data structure);

The size of a physical data structure is proportional to the number of states owned
by P;. Furthermore, every process has full information about the states that it is
owning, so being able to compute its successors.

The colors of vertices not coloured P; are not necessarily the same in the local
tree of P; as they are in the logical data structure. This reflects the fact that a
process has only partial knowledge of the evolution of the logical data structure
in other processes. The color of a vertex v coloured P; # F; in the logical data
structure, is Py iff Py is the color of the deepest immediate successor of a node
coloured P; on the path from v back to the root in the logical data structure (Pj
is the root itself if no nodes coloured P; are on the path from v back to the root).
See Fig. 2. In other words, P; "knows” only the immediate successors of its own
vertices (besides the master), and these immediate successors manage the whole
subtree they own.

Figure 2: Local data structures of the four processes corresponding to the logical
data structure above.

It is immediately clear that the logical data structure can be retrieved from the
collection of all physical data structures in the participating processes.

3 Operations on the data structure

The main operation to be implemented on our data structure is search-and-insert.
Given a state that has been computed by some state, we need to find out whether
the state is already present in the logical data structure. If not, we need to add
a new branch to the logical decision tree, assign colors, and let the process that
becomes owner of the new state, compute its successors. For the process issuing
the search-and-insert request, it is only important whether it is obliged to compute
that state’s successor or not. There are two possible reasons why a process does
not need to compute successors—if the state already exists, or if some other process
is responsible for computing those successors. Which of these two cases applies is
irrelevant for the continuation of the process issuing the request.

Search-and-insert is implemented by two types of actions in processes. A SEARCH
action is parameterized with a state. It can be triggered locally, through the compu-
tation of a state in the local state space exploration, or by a message from another
process. SEARCH consists of traversing the logical data structure from the root
downwards, according to the path defined by the given state. If that path does
not end in a vertex owned by the executing process, new messages are triggered.
If it does end in a vertex owned by the executing process which is not a leaf, the
state is inserted by appending the corresponding branch to the decision tree, or by
delegating it to another process, using a specific DELEGATE message.

A DELEGATE action is parameterized with a state and a depth (a number k).
It requests the process to assume ownership of the given state, and for the whole
subtree defined by that state’s prefix up to depth k. DELEGATE is the tool for
shifting subtrees to other processes. DELEGATE can be sent only by processes
owning the immediate predecessor of the shifted subtree.

We consider first the implementation of a SEARCH action in P;, triggered by a
message or a request in the local search procedure. It starts with a traversal of the
local tree, according to the path defined by the given state. This traversal ends in
a vertex at some depth k.

Case 1: If k = n (the size of the state), the state exists already, so we do not need
to trigger computation of its successors. No modification of any search structure
applies, and no further message is issued.

Case 2: If k < n, and the final vertex on the traversed path is coloured P;, then
the state is new. In this case, there are two options. First, P; can decide to take
this state. In this case, it adds the remaining vertices for representing the state
in its own physical data structure. If the search request is the result of a search
message, it adds the state to the queue of states to be locally explored. If the search
request has local origin, the search procedure continues exploring successors of the
considered state immediately. Logically, we have added a branch in P;’s color to
a vertex in P;’s color, so no physical data structures of other processes need to
be involved. Second, instead of storing the state locally, P; can decide to delegate
the state, together with some subtree, to another process. In this case, it sends a
DELEGATE message to a process P; # P;, using the current state as parameter
as well as a number k that is larger than the depth k of the last traversed vertex.
Locally, P; inserts vertices corresponding to all components of the state up to depth
k. It colors the new vertex at depth k with P;, and all remaining inserted vertices
P;. In this case, local search does not compute successors since the receiver of the
DELEGATE message becomes responsible for executing this task. The option to
pass a subtree to another process is the only available one if a process has run out
of memory.

Case 3: If k < n, the last vertex on the traversed path is P;, different from
P;, and the whole traversed path does not contain any vertices labeled P; then

we trigger a SEARCH message with the given state to P;. In this case, P; is
the master. Locally, successors of the given state are not computed. The master
owns the state or is obliged to dispatch the state to a responsible process which is
definitely different from P;.

Case 4: If k < n, the last vertex on the traversed path is P;, different from F;,
and the traversed path contains vertices labeled P; then we trigger a DELEGATE
message with the given state to P;. As depth for DELEGATE, we use the depth
of the immediate successor of the deepest node coloured P; on the traversed path.
Locally, successors of the given state are not computed.

The fourth case is a tricky one. The fact that we send a DELEGATE message
rather than a SEARCH message may be surprising. The reason for this choice is
that we rely on a message passing protocol that allows messages to overtake. The
local data structure of P; means that, at some point in the past, P; has delegated
a subtree to P;, the same subtree as coded in the new DELEGATE message. If
we sent a simple SEARCH message in case 4, the new SEARCH message could
overtake the original DELEGATE message. In that case, P; could deal with the
message differently, for instance delegate some subtree to a third process, or back
to P;. This would result in inconsistencies of the physical data structures. Using
the DELEGATE message, P; becomes responsible for the same subtree as with
the original DELEGATE message, so the order of arrival of the two DELEGATE
messages does not matter. All we need to take care of is to let a process tolerate
receipt of multiple DELEGATES for one and the same subtree.

Case 2 insert locally or
Case 3 | DELEGATE

o arbitrarily
searcH-> |

Case 1
Case4 DELEGATE

do nothing
(depth 3) -->

L T T T T T 1T
T T T T T 00 T T T T T
T T T T T T 1

Figure 3: Reaction of a process to a SEARCH request, depending on the deepest
matching vertices of the searched state

The SEARCH action, seen as distributed over several processes, terminates in
every case. In cases 1 and 2, it terminates locally. In cases 3 and 4, we can assign
a termination function. Let ¢ = 0 for a sent SEARCH message, and ¢ be the
contained depth for a DELEGATE message. This number is strictly increasing
with every passed message. In case 3, it is increasing since ¢ = 0 in the sending
process (by case assumption), and ¢ > 0 in any subsequent message sent by the
receiving process which is the master and owns at least the root. For case 4, the
receiving process owns at least the immediate successor of the last node owned by
the sending process, so t is increasing as well, given that execution of DELEGATE
terminates.

Execution of a DELEGATE action in P; starts as well with a local traversal,
according to the state parameter.

Case 1. If this traversal ends earlier than the depth parameter k, the last vertex
in this traversal must be coloured with an identifier different from P;. Having an
own vertex without successor means that in our SEARCH/DELEGATE protocol
only P; itself can decide the logical color of the immediate successor, in contradiction
to the fact that another process claims ownership for the vertex according to the
given state at depth k — 1. In this case, P; must accept the new subtree. It inserts
at least the remaining vertices down to depth k, colors the vertex at depth k P;,
and the remaining inserted vertices with the color of the last traversed vertex. Then
P; decides whether to accept the state itself or to delegate it further, with some
depth greater than k. The remainder of this procedure works exactly like case 2 of a
SEARCH action. The requirement that P; needs to accept the subtree is necessary
to avoid data structure inconsistencies since the sending process has already marked
P; as the owner of that subtree and does not wait for acknowledgment. Additionally,
the fact that a process can respond to a DELEGATE message at most with a
DELEGATE message containing a larger depth parameter, guarantees eventual
termination.

Case 2. If the traversal ends at a depth > k (the depth parameter), then it
can be treated as a SEARCH. In that case, P; is already aware of its ownership
of the delegated subtree (otherwise, search traversal could not have ended beneath
the passed depth).

It is easy to see that, for every state, the sequence of SEARCH and DELEGATE
messages terminates, and the last process involved in that sequence finally owns the
state (and is responsible for computing successors).

4 Example

Assume a distributed situation as depicted in Fig. 2. We play first a scenario
where the diagonal process produces state (1,1,0,0)—obviously owned by the crossed
process in the logical data structures (remember that dashed lines represent 0 and
solid lines 1). The local traversal in the diagonal process ends in depth 0. Case 3
applies, and a SEARCH message is sent to the horizontal process (the master). The
master conducts a local traversal that terminates in the bricked vertex (the solid
line matches the first component of the vector. The master issues a DELEGATE
message with depth 1 to the bricked process. Local traversal in the bricked process
ends in the crossed vertex (the first 3 components of (1,1,0,0) match). Consequently,
a DELEGATE with depth 3 is sent to the crossed process. The crossed process
traverses the state completely. None of the processes needs to compute successors
of (1,1,0,0) unless that state is still pending in the crossed processes queue.

As a second scenario, assume that the diagonal process initiates a search for
(1,0,0,0). As before, it sends a SEARCH message to the master which forwards a
DELEGATE with depth one to the bricked process. Local search in the bricked
process ends at depth 1 (only the first component of (1,0,0,0) matches. It is now up
to the bricked process to decide whether to accept the state. If it does, it inserts a
chain representing the remainder of (1,0,0,0) to its local tree and adds (1,0,0,0) to
its queue. If not, it issues a DELEGATE, say to the diagonal process with a depth
greater than 1, say, depth 3. The diagonal process conducts another local traversal,
still ending at depth 0. Case 1 of the DELEGATE protocol applies, and the diagonal
needs to insert a new subtree. Assuming that the diagonal process accepts the state,
the local data structures of the diagonal and the bricked processes now look as
depicted in Fig. 4. The physical data structures of the remaining processes remain
unchanged.

ToorrEeT T 5% 7

Figure 4: New local data structures after delegation of state (1,0,0,0) from the
bricked process to the diagonal process, starting from the situation in Fig. 2. It
is a feature and not a bug that the new chain in the diagonal process is mostly
coloured horizontally. This color means only that corresponding search requests are
sent to the master who forwards them to the bricked process as the real owner of
that subtree.

5 Load balancing and reaction at end of memory

At every stage, a process that is about to store a state locally can decide to dele-
gate the state instead to another process. Only delegated subtrees must be stored
unconditionally. A process delegates states (and with it whole subtrees) at least if
it is about to run out of memory. It can choose a new host arbitrarily. However,
processes that are already out of memory should be exempt. This way, a process out
of memory is only as long receiving delegated subtrees as it takes other processes to
recognize that fact (via, say, broadcast messages containing a processes state sent
on a regular basis by every process). In other words, a process can exhaust its local
memory, up to a small amount of memory for accepting pending delegated subtrees.

It is also possible to delegate subtrees before running out of memory. Through
delegation, the master who begins state space exploration locally, starts to distribute
load after having computed a first initial decision tree that consists of a small number
of states. Delegation can be used to shift load away from overloaded processes. The
decision whether or not to delegate states, and where, is made exclusively by the
delegating process, while state space exploration is running. So, in difference to
hash techniques, available information about actual load situation in all processes
can influence that decision.

Using this data structure, actual computation of successor states differs only
little from sequential depth first search. As a minor difference, search and insert are
now a monolithic procedure. Other than this there is no change inside a running
depth first search since we have seen that a process does not need to distinguish
between an existing state and a state it is not responsible for. The main difference is
that there is now a queue of pending ”initial” states. Whenever a depth first search
is completed, a new state is taken from that queue, and a new depth first search
is launched. The queue is filled with states that are received through DELEGATE
and SEARCH messages from other processes where this process assumes ownership.

Through a specific termination protocol, distributed search ends as soon as all
processes have finished their searches and have empty queues.

6 Conclusion

The proposed algorithm is able to compute the set of reachable states. So far, we do
not have an efficient solution for storing events, or to compute strongly connected
components. Thus, our distributed search algorithm can, at this time, be used only
for properties that can be evaluated from the plain set of reachable states, such as
reachability properties.

Whether the proposed data structure, hash values, or other techniques are used
for distribution, distributed state space search has a major time disadvantage, com-
pared with local state space exploration. Since states are frequently shifted between
processes, the advantages of incremental computations of successor states, set of
enabled actions etc. are lost. Since our implementation of local state space explo-
ration uses all these techniques, we cannot exhibit experiments where distributed
state space exploration runs faster than local exploration. We can, however, show
that we are able to solve larger problems than with local search. We found that
network bandwidth of a usual local area network with mixed 10MB and 100MB
Ethernet connections is sufficient to satisfy the communication requirements with
reasonable delays. Compared with distribution based on hash functions, we believe
that our distribution scheme requires less states to be shifted to other processes.
We argue that a successor state is equal to the original state in most components.
Thus, in more cases than in a random setting, the successor state falls into the same
subtree (have a common prefix of considerable length) as the original state thus not
requiring interprocess communication.

As an example, the state space of a 1000 philosophers system reduced by partial
order reduction has 2,997,002 states and 3,997,000 edges. It cannot be verified on a
single workstation. On a network of 15 SUN workstations, the state space could be
constructed within less than 5 hours. Thereby, several of the 15 involved machine
reached their local memory limits.

References

[BCM92] J. R. Burch, Edmund M. Clarke, and Kenneth L. McMillan. Symbolic
model checking: 10?0 states and beyond. Information and Computation,
98(2), June 1992.

[CES86] Edmund M. Clarke, E. M. Emerson, and A. P. Sistla. Automatic verifica-
tion of finite-state concurent systems using temporal logic specifications.
ACMM Transactions on Programming Languages and Systems, 8(2):244
— 263, April 1986.

[HJJJ84] Huber, A. Jensen, Jepsen, and K. Jensen. Towards reachability trees for
high—level petri nets. In Advances in Petri Nets 1984, Lecture Notes on
Computer Science 188, pages 215233, 1984.

[KM69] R. M. Karp and R. E. Miller. Parallel programm schemata. Journ.
Computer and System Sciences 4, pages 147-195, Mai 1969.

[Sch00] K. Schmidt. Lola — a low level analyzer. Proc. 21th Int. Conf. Application
and Theory of Petri nets, LNCS 1825, pages 465—-474, 2000.

[SD97] U. Stern and D.L. Dill. Parallelizing the murphi verifier. Proc. Int. Conf.
Computer Aided Verification, LNCS 1254, pages 256-267, 1997.

[Sta91] P. Starke. Reachability analysis of petri nets using symmetries. J. Syst.
Anal. Model. Simul., 8:294-303, 1991.

[Val88] A. Valmari. Error detection bu reduced reachability graph generation.
Proc. of the 9th European Workshop on Application and Theory of Petri
Nets, Venice, 1988.

[VW86] M.Y. Vardi and P. Wolper. An automate-theoretic approach to to auto-
matic program verification. Proc. IEEE Symp. Logic in Computer Sci-
ence, pages 332-344, 1986.

10

